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Abstract
Asthma is a common disease. The clinical diagnosis is usually confirmed on a pulmonary function test, which is not always

readily accessible. We aimed to develop a computationally lightweight handcrafted machine learning model for asthma

detection based on cough sounds recorded using mobile phones. Toward this aim, we proposed a novel feature extractor

based on a one-dimensional version of the published attractive-and-repulsive center-symmetric local binary pattern (1D-

ARCSLBP), which we tested on a new cough sound dataset. We prospectively recorded cough sounds from 511 asthmatics

and 815 non-asthmatic subjects (comprising mostly healthy volunteers), which yielded 1875 one-second cough sound

segments for analysis. Our model comprised four steps: (i) preprocessing, in which speech signals and stop times (silent

zones between coughs) were removed, leaving behind analyzable cough sound segments; (ii) feature extraction, in which

tunable q-factor wavelet transformation was used to perform multilevel signal decomposition into wavelet subbands,

allowing 1D-ARCSLBP to extract local low- and high-level features; (iii) feature selection, in which neighborhood

component analysis was used to select the most discriminative features; and (iv) classification, in which a standard shallow

cubic support vector machine was deployed to calculate binary classification results (asthma versus non-asthma) using

tenfold and leave-one-subject-out cross-validations. Our model attained 98.24% and 96.91% accuracy rates with tenfold

and leave-one-subject-out cross-validation strategies, respectively, and obtained a low-time complexity. The excellent

results confirmed the feature extraction capability of 1D-ARCSLBP and the feasibility of the model being developed into a

real-world application for asthma screening.
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1 Introduction

Asthma is a chronic recurring disease caused by an

increase in airway sensitivity [1] that can affect both large

and small airways [2, 3]. It is characterized by bronchial

inflammation, which induces increased airway secretions,

bronchial wall swelling, and smooth muscle contraction

[4]. In 2019, asthma afflicted 262 million people globally

and caused the death of 455.000 [5, 6]. Its incidence is

increasing [7], which is exacerbated by rising obesity,

stress, mood disorders, medication use, environmental

exposure to pollen, pets, smoke, air pollution, and indoor

allergens such as house dust mites [8–10]. Although

asthma can present at any age, 30% of cases occur in the

first year of life. Indeed, asthma is the most common

chronic disease in children. The risk of developing asthma

is higher in those with a family history of asthma [11].

Asthmatic symptoms include recurrent coughing,

wheezing, and shortness of breath, which can be triggered

by dust, smoke, odor, and pollen. Asthma may be caused

by allergies or it can develop independently of allergies

[12]. In the presence of frequent cough episodes, day/night

coughing, chest tightness, a family history of asthma, and

allergic symptoms, asthma should be considered. Spirom-

etry and peak expiratory flow rate (PEFR) measurement are

diagnostic tests that can also quantify the severity of air-

flow limitation caused by bronchial narrowing, which is

proportional to the level of airway inflammation [13].Extended author information available on the last page of the article
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Serial portable peak flow meter measurements can be used

to track changes in airway narrowing, which is particularly

useful for managing asthma in children [14]. Because

allergens can cause asthma, adjunctive allergy tests may be

performed to identify culprit allergens [15]. Avoiding

asthma triggers can help reduce the frequency of asthmatic

attacks [16]. With contemporary medical care, asthma can

generally be well controlled with inhaled medications,

allowing patients to lead normal lives. However, under-

diagnosis and under-treatment, which are more pervasive

in low- and middle-income countries, are still responsible

for residual risks, including mortality, among asthma

patients.

While the clinical symptoms and signs of asthma are

well-known, the physical examination may neither be

sufficiently sensitive nor specific. Various machine learn-

ing models have been proposed to detect asthma auto-

matically using recorded respiratory sounds. Haider and

Behera [17] developed an automated method for detecting

asthma and chronic obstructive pulmonary disease based

on Hurst analysis, empirical mode decomposition, and

spectral subtraction methods. Trained and tested on a

dataset of lung sounds acquired from 80 normal, 80 asth-

matic, and 80 chronic obstructive pulmonary disease sub-

jects, the model attained 99.30% accuracy using a decision

tree classifier. Kilic et al. [18] proposed a new machine

learning model called global chaotic logistic pattern to

discriminate asthma from other lung conditions and a

healthy control group. TQWT-based signal decomposition

was applied and four different feature selectors were used

for this purpose. The support vector machine (SVM)

algorithm was used as a classifier in the model, and a

classification success of 98.53% was reported. Iqbal et al.

[19] used machine learning methods for asthma detection

on a four-class lung sound dataset comprising 100 normal,

321 wheezes (typical of asthma), 98 stridor, and 73 rattle

sounds and attained 100% accuracy. Iqbal et al. [20] pro-

posed a forecasting technique for real-time asthma disease

detection on a cough sound dataset of 18 asthma patients

and attained 99.91% accuracy. Sen et al. [21] recorded lung

sounds with a 14-channel device to discriminate between

chronic obstructive pulmonary disease (COPD) and

asthma. Multivariate autoregressive model, Gaussian mix-

ture model and SVM were used together. In this study,

98% classification accuracy was achieved using sound

samples from 50 subjects. Khan et al. [22] developed a

real-time system for real-time asthma detection on lung

sounds based on signal normalization and empirical mode

decomposition embedded on Raspberry Pi. The model

attained 9.40% accuracy. On a lung sound dataset of 64

pneumonia, 48 asthma, and 100 healthy subjects, Yahyaoui

and Yumusak [23] applied machine learning to detect

pneumonia and asthma with 95.00% accuracy using the

k-nearest neighbor classifier. Topaloglu et al. [24] proposed

a ResNet18-based asthma detection model. For this pur-

pose, a sound dataset was created using a digital stetho-

scope and these sound signals were converted into images

using a Mel spectrogram. Next, features were extracted

from these images using ResNet18 deep network archi-

tecture, and the most significant features were selected by

iterative NCA algorithm. The selected features were clas-

sified using kNN and SVM algorithms. This model

achieved a classification accuracy of 99.73%. Yue and Xu

[25] developed an automated asthma and pneumonia

detection model based on short-time energy and Mel-fre-

quency cepstral coefficients. Their study of 850 cough

sounds recorded from patients attained 93.34% accuracy

using a SVM classifier. Tasar et al. [26] developed a pic-

colo pattern-based respiratory sound classification model.

Three cases were created in the research. They classified 7

respiratory diseases including asthma. In the developed

model, the kNN algorithm achieved the highest classifi-

cation success and a classification performance of over

99% was obtained for each case. A small number of asthma

detection studies were based on other signal inputs.

1.1 Motivation and our model

The main goal of our research is to design and implement

an automated system dedicated to asthma screening. Based

on a mobile-based machine learning model, our approach

integrates a state-of-the-art feature extractor carefully tai-

lored to the analysis of cough sounds. The ultimate goal is

to achieve a higher level of accuracy in asthma detection,

providing a solid foundation for the development of an

efficient and reliable screening tool. We were motivated to

develop an automated system to screen for asthma that is

accessible and easy to implement, i.e., computationally

lightweight. The reference standard for asthma diagnosis is

formal pulmonary function tests, while PEFR measurement

may be used for therapeutic monitoring in diagnosed

patients. On clinical examination, lung auscultation may

uncover wheezing sounds typical of acute asthma attacks,

but stethoscopes are not readily available, and lung aus-

cultation requires prior training. Many respiratory condi-

tions, including asthma, present with cough, cough sounds,

which can be readily recorded using mobile devices, may

contain features that can be used to discriminate the

underlying respiratory condition. To validate this hypoth-

esis, a new cough sound-based machine learning model

was proposed in this work and tested on a new dataset of

cough sounds recorded from more than 1000 participants.

We chose handcrafted machine learning over deep learning

to economize on computational demands and running time.

The proposed model comprised four steps: (i) preprocess-

ing; (ii) feature extraction; (iii) feature selection; and (iv)
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classification. Asthma classification using cough sound

recordings is technically challenging as they inadvertently

contain ambient noise like speech and are of variable

duration with inutile time pauses between the actual

coughs. Hence, preprocessing was obligatory to remove

unwanted speech and ambient noise from the sound signal

and segment the signal into standardized segment lengths

containing analyzable cough sounds to optimize the fidelity

and data efficiency of the input cough sound signals. We

used a one-dimensional (1D) version of the popular

attractive repulsive center-symmetric local binary pattern

(ARCSLBP) image descriptor [27] to extract features from

the cough sound signals. However, 1D-ARCSLBP is a

handcrafted feature extractor that, by itself, can only gen-

erate features at a low level. To overcome this constraint,

we applied tunable q-factor wavelet transformation

(TQWT) [28] to deconstruct the energy of the cough sound

signal effectively into multiple low- and high-frequency

wavelet bands. Applying 1D-ARCSLBP to the cough

sound input signal and the wavelet subbands could extract

features at both low and high levels. A simple neighbor-

hood component function (NCA) [29] feature selector was

applied to the extracted features to select the most dis-

criminative features. These were fed to a downstream

standard shallow SVM [30, 31] for classification.

1.2 Novelties and contributions

Novel contributions of this work include:

• A new cough sound dataset was acquired from more

than 1,000 subjects.

• New preprocessing method for efficient removal of

ambient noise, speech, and unwanted pauses in cough

sound recordings.

• Handcrafted 1D-ARCSLBP feature extraction enabled

the model to inherit known advantages of ARCSLBP

[27] for advanced signal processing without the need

for parameter tuning.

• Efficient and accurate computationally lightweight

architecture built on shallow models that required

linear running time to attain excellent performance

commensurate with deep models ([ 96% classification

accuracy) on robust tenfold and LOSO CV.

2 Proposed model

The handcrafted asthma classification model comprised

four phases: (i) cough sound signal preprocessing; (ii)

TQWT- and 1D-ARCSLBP-based feature extraction; (iii)

NCA-based feature selection; and (iv) SVM-based

classification using tenfold and LOSO CV (Fig. 1). Details

of the steps are explained in the following subsections.

2.1 Preprocessing step

First, the recorded cough sound signal input samples were

preprocessed to remove ambient speech using power

spectrogram-based classification [32]. This model was used

to detect cough sounds. Next, one-second segments con-

taining analyzable ‘‘clean cough sound’’ were sifted from

the input samples, which varied in duration, by applying a

predetermined threshold (the threshold value is selected as

0.01 dB for these sounds) to remove inutile stop sounds

(pauses) between the coughs and a standardized one-sec-

ond segment length. A result summarizing the effect (be-

fore/after) of the Preprocessing step applied to cough

Fig. 1 Block diagram of the proposed 1D-ARCSLBP-based model

for asthma classification using recorded cough sounds. First, cough

sound signal input samples of variable time lengths were preprocessed

to remove ambient speech and segment the samples into one-second

segments that each contained an analyzable ‘‘clean cough sound’’.

Next, TQWT was applied to each one-second clean cough sound

segment to generate 12 wavelet subbands (t1, t2, t3,…t12). Next, 1D-

ARCSLBP was applied to the clean cough sound segment and its 12

wavelet subbands to extract low- and high-level features. This yielded

13 feature vectors (f1, f2, f3,…f13) each of length 256, which were

concatenated into a final feature vector of length 3,328 (= 13 9 256).

From the latter, NCA selected the top 100 most discriminative

features to feed to the SVM classifier for two-class classification of

input cough sound samples into asthma versus non-asthma classes

using tenfold and leave-one-subject-out cross-validation strategies
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sounds from asthma patients is given in Fig. 2. In addition,

the steps of the preprocessing and the pseudocode (Algo-

rithm 1) are given below:

As shown in Fig. 2, a preprocessing step was applied to

remove the ambient and stop sounds from the raw signal.

This step is effective in improving the accuracy of the

proposed model. The steps of the preprocessing process are

as follows:

Step 1 Obtain clean sounds from the collected sound

samples by removing speech signals.

Step 2 Delete stop sounds (pauses) from the clean sound,

retaining only usable cough sounds.

Step 3 Create one-second sound segments containing

cough sounds to input into the model.

Algorithm 1 Pseudocode of cough sound preprocessing

2.2 Feature extraction step

TQWT was used to create wavelet subbands, from which

low-and high-level features could be extracted. TQWT is a

parametric signal transformation model that uses three

parameters to assign the wavelet filters: Q (Q-factor)

defines the oscillatory value; R is the redundancy value;

and J is the number of levels. A multileveled (J ? 1)

wavelet transform is created using J parameters. In this

work, we selected Q, R, and J parameter values of 1 (non-

oscillatory decomposition), 3, and 11, respectively, to

perform 12 levels of signal decomposition to generate 12

wavelet subbands. The signal sampling frequency deter-

mined the choice of J parameter value (48 kHz, i.e., each

one-second segment contained 48,000 values) and the

length of the overlapping block (9) employed in 1D-

ARCSLBP-based local textural feature extraction, based on

the following calculation: number of levels = 12

¼ log2
48000
9

� �
. The steps of the feature extraction are given

below:

Step 4 Generate subbands from each sound segment

using TQWT.

w ¼ /ðcs; 1; 3; 11Þ ð1Þ

where w represents the wavelet subband structure with 12

wavelet subbands; and /ð:Þ, the TQWT function.

Step 5 Extract features from wavelet subbands and

cough segments.
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f 1 ¼ uðcsÞ ð2Þ

f iþ1 ¼ u wi
� �

; i 2 1; 2; . . .; 12f g ð3Þ

where uð:Þ represents the 1D-ARCSLBP function, the

pseudocode of which is given below.

Algorithm 2 Pseudocode of 1D-ARCSLBP feature extraction function

From algorithm 2, it can be seen that 1D-ARCSLBP

generated seven attractive and seven repulsive bits per run.

Two map signals were generated from each bit by

deploying these attractive and repulsive bits. By extracting

the histograms of these map values, 2 9 27 = 256 features

were obtained. A block diagram summarizing Algorithm 2

is given in Fig. 3.

As can be seen in Fig. 3, the median value of both the

main signal and the overlapping block is calculated. In

addition, the mean value of the overlapping block is

determined. These values are then compared with the

center value of the overlapping block. In this way, the first

three bits of the attractive and repulsive bits are deter-

mined. The remaining four bits are obtained by sequential

comparison. After this process, the attractive and repulsive

bits are converted to decimals and added to the map signal.

Finally, histograms are extracted using the map signal, and

the two histograms are combined to obtain the feature

vector.

Step 6 Concatenate all features generated from the

cough sound segment and its 12 subbands into a final

feature vector.
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X d; jþ 256� i� 1ð Þð Þ ¼ f i d; jð Þ; de 1; 2; . . .; dimf g;
ie 1; 2; . . .; 13f g; je 1; 2; . . .; 256f g

ð4Þ

where X represents the final feature generated, and dim is

the dimension of the dataset (number of signals). The

length of X is 3328 (= 13 9 256).

2.3 Feature selection step

NCA, a simple but effective feature selector, was deployed

to select the 100 most discriminative features from 3328

features in X based on the calculated individual feature

weights, which represented the distinctive level of each

feature. The main purpose of NCA is to bring together

similar instances in the feature space and to remove

instances belonging to different classes from each other.

For this purpose, NCA optimizes an objective function.

This function measures the similarity of a given pair of

instances. In this research, the top 100 features were chosen

on the qualified feature vector by sorting these features in

descending order. Detailed steps of feature selection are

given below:

Step 7 Apply NCA to the generated features to calculate

3,328 individual weights.

Step 8 Sort these weights and obtain sorted indexes.

Step 9 Choose the best 100 features.

2.4 Classification step

We used cubic SVM [33], a standard shallow classifier, for

the two-class classification of input cough sound segments

into asthma versus non-asthma classes. The main goal of

SVM is to classify a dataset into two or more classes. In the

case of binary classification, SVM tries to find a hyperplane

that separates the classes as clearly as possible. In this

paper, default hyperparameter settings were employed:

Kernel: polynomial;

Polynomial order: three;

Kernel scale: automatic;

Box constraint: one;

Validation: tenfold CV and LOSO CV.

Step 10 Classify the top 100 features by deploying SVM

with tenfold and LOSO CVs.

3 Experiments

3.1 Experimental setup

The model was implemented in central processing unit

mode on a personal computer with the following specifi-

cations: 16 GB memory, 512 GB solid-state disk, Intel i7

processor with a 4.3 GHz clock, and Windows 11 operat-

ing system. MATLAB programming environment was used

Fig. 2 Before and after the

preprocessing step
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in the model development process and the toolboxes, and

libraries used in this process are listed in Table 1.

3.2 Dataset

The dataset comprised 994 and 881 cough sound record-

ings obtained from 511 asthmatics (103 male, 408 female;

mean age 55.23 ± 14.97 years, range 10–2 years) and 815

non-asthmatic subjects (509 male, 306 female; most of the

subjects in this group were healthy university students

without a history of asthma), respectively. The cough

sounds were recorded with varying durations in the hospital

environment using a Samsung S6 Edge mobile phone. All

recordings have a sampling frequency of 48 kHz. The

duration of cough sound recordings obtained from 511

asthmatics ranges from a minimum of 0.5 s to a maximum

of 6.59 s. Recordings from non-asthmatic subjects vary in

length, ranging from 0.23 to 5.42 s. The cough sound

recordings obtained from the subjects are in.wav file for-

mat. The hospital ethics committee had approved the ret-

rospective collection of the cough sound dataset.

3.3 Performance evaluation metrics

For the evaluation of model performance for binary clas-

sification into asthma versus non-asthma classes, standard

metrics were calculated: accuracy, sensitivity, specificity,

precision, geometric mean (of sensitivity and specificity),

and F1-score (harmonic mean of sensitivity and precision)

[34, 35]. The mathematical equivalents of these perfor-

mance metric values are given in Eqs. (5)-(10).

Accuracy ¼ TruePositivesþ TrueNegatives

TotalExamples
ð5Þ

Sensitivity ¼ True Positives

TruePositivesþ FalseNegatives
ð6Þ

Specifity ¼ TrueNegatives

FalsePositivesþ TrueNegatives
ð7Þ

Pr ecision ¼ TruePositives

TruePositivesþ FalsePositives
ð8Þ

Fig. 3 1D-ARCSLBP feature

extraction method proposed in

this work
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Geometricmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity� Specificity

p
ð9Þ

F1score ¼ 2� Precision� Sensitivity

Precisionþ Sensitivity
ð10Þ

3.4 Results

Our model attained excellent results for binary classifica-

tion of cough sounds into asthma versus non-asthma clas-

ses, with 98.24% and 96.91% accuracy rates on tenfold and

LOSO CV (Table 2).

These metrics highlight the robust performance of our

model, showcasing its accuracy, sensitivity, specificity,

precision, geometric mean, and F1-score across different

cross-validation techniques. As shown in Table 2, the

proposed method achieves a very high classification suc-

cess for both cross-validation techniques (98.24% and

96.91%). In addition, when the F1-score result is analyzed,

a very high-performance value is achieved. This result

demonstrates the ability of the proposed model to strike a

harmonious balance between precision and sensitivity.

3.5 Time burden

The time complexity of our model, shown for every layer

using big O notation, is shown in Table 3,

As can be seen in Table 3, the approximate computa-

tional complexity of the proposed method is Oðnþ k þ dÞ.
Feature selection and classification steps are well-known

methods in the literature, and their complexities are OðkÞ
and OðdÞ, respectively. The preprocessing and feature

extraction steps consist of multiple phases. In this context,

the time complexity of preprocessing (Algorithm 1) is

analyzed in detail in Table 4.

When the analysis is performed using the cost and time

information given in Table 4, the time complexity of the

preprocessing step is given below:

Total time cost ¼ c1 � 1þ c2 � Lþ 1ð Þ þ c3 � Lþ c4 � L
þ c5 � Lþ c6 � Lþ c7 � cntþ c8
� f þ 1ð Þ þ c9 � f

ð11Þ

¼ c1 þ L� c2 þ c3 þ c4 þ c5 þ c6ð Þ þ c2 þ c7 � cntþ f
� c8 þ c9ð Þ þ c8

ð12Þ
¼ O nð Þ ð13Þ

Herein, c represents the cost and L represents the length

of the signal. The values of cost, cnt and f are neglected in

the algorithmic analysis. In addition, since L ffi n, the time

complexity of the preprocessing step is OðnÞ. The next

phase of the proposed model is feature extraction. In this

phase, the signal is decomposed into 12 levels using the

TQWT algorithm. Then, features are extracted from both

the raw signal and the subbands using the 1D-ARCSLBP

method. The pseudo code for this process is given in

Algorithm 3, and the time complexity calculated using this

algorithm is shown in Table 5.

As shown in Table 5, the proposed methods consist of

TQWT-based signal decomposition and 1D-ARCSLBP.

Since TQWT is a signal decomposition process, the com-

putational complexity of this step is OðlognÞ. In addition,

an analysis of the computational complexity of the 1D-

ARCSLBP method is given in Eqs. (14)-(19).

Total time complexity ¼ number of levelsðTQWTÞx1D
� ARCSLBP

ð14Þ
TQWT signal decomposition complexity ffi OðlognÞ ð15Þ

Table 1 Details of the

programming platform
Features Value

Programming platform MATLAB

Version 2022a

Toolboxes MATLAB Classification Learner Toolbox for classification step

TQWT for signal decomposition step

Table 2 Performance of the 1D-ARCSLBP-based cough sound

classification model for asthma detection

Performance metrics Results (%)

Tenfold CV LOSO CV

Accuracy (%) 98.24 96.91

Sensitivity (%) 98.19 96.08

Specificity (%) 98.30 97.84

Precision (%) 98.49 98.05

Geometric mean (%) 98.24 96.96

F1-score (%) 98.34 97.09

CV cross-validation, LOSO leave-one-subject-out
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¼O lognð Þ � ðc1 � 1þ c2 � ln� 7ð Þ þ c3 � ln� 8ð Þ½
þ c4 � ln� 8ð Þ þ c5 � ln� 8ð Þ þ c6 � ln� 8ð Þ þ c7

� ln� 8ð Þ þ c8 � 4� ln� 8ð Þ þ 1ð Þ þ c9 � 4� ln� 8ð Þð Þ
þ c10 � 4� ln� 8ð Þð Þ þ c11 � ln� 8ð Þ þ c12 � 7� ln� 8ð Þ þ 1ð Þ
þ c13 � 7� ln� 8ð Þð Þ þ c14 � 7� ln� 8ð Þð Þ
þc15 � 2þ c16 � 1�

ð16Þ

¼ O lognð Þ � ½c1 þ ln c2 þ c3 þ c4 þ c5 þ c6 þ c7 þ 4ð
�ðc8 þ c9 þ c10Þ þ c11 þ 7� ðc12 þ c13 þ c14

�
� 7

�c2 � 8� ðc3 þ c4 þ c5 þ c6 þ c7 þ c11Þ � 31

�c8 � 32� ðc9 þ c10Þ � 55� c12 � 56

�ðc13 þ c14Þ þ c15 � 2þ c16�
ð17Þ

¼ O lognð Þ � OðnÞ ð18Þ
Totaltimecost ¼ O n� lognð Þ ð19Þ

As shown in Eq. (19), the total computational com-

plexity of the TQWT-based 1D-ARCSLBP method is

OðnlognÞ. In this context, considering all the steps per-

formed, the preprocessing step is OðnÞ, feature extraction

step is OðnlognÞ, feature selection step is OðkÞ, and clas-

sification step is OðdÞ. As a result of these calculated

values, the time complexity of the model developed in this

research is Oðnlognþ k þ dÞ.

4 Discussion

In this work, we have presented a new 1D-ARCSLBP-

based cough sound classification architecture that was

tested on a new two-class asthma cough sound dataset

collected from more than 1000 patients. We were moti-

vated by the success of ARCSLBP-based feature extraction

in computer vision applications to develop a novel asthma

cough sound classification model using a one-dimensional

version of this feature extractor (1D-ARCSLBP). TQWT

was incorporated to generate multilevel wavelet subbands

from which both low- and high-level features could be

extracted, effectively surmounting 1D-ARCSLBP’s ability

to extract only low-level features. As a result of our

conscious decision to employ only shallow functions, our

model possessed a low-time burden (Table 3). Despite this,

our handcrafted multileveled feature extraction-based

architecture attained excellent performance with 98.24%

and 96.91% accuracy rates on tenfold and LOSO CV,

which is better than or commensurate with other state-of-

art methods, including deep models (Table 6).

As shown in Table 6, the 1D-ARCSLBP and NCA-

based model, which is a lightweight method proposed in

this research, was validated by applying LOSO and tenfold

CV strategies. In this context, a classification success of

96.91% for LOSO CV and 98.24% for tenfold CV was

achieved. The dataset used in this research is larger than

most of the state-of-the-art methods in the literature

[21, 37, 39–41, 43]. In addition, two different validation

strategies were used in this research. These strategies

increase the reliability of the results obtained using the

proposed method. The proposed method provides a light-

weight solution according to the literature [24]. Tasar et al.

[26] used 8 classes in their research. However, the com-

putational complexity of the method used in this study is

higher than our model. The LOSO strategy, which is used

to ensure the generalizability of the results, has been used

in only two studies [18, 43]. One of these studies, Singh

et al. [43] achieved 94.52% classification success and the

size of the dataset used in this study is quite small. Kilic

et al. [18] achieved a higher classification success than our

model. However, the computational complexity of the

model developed in this research is higher than our model.

In this context, when state-of-the-art methods are analyzed,

the automatic asthma detection model presented in this

research is more efficient in terms of both classification

performance and computational complexity.

The model developed in this work uses the SVM algo-

rithm as the classification method. In addition to this

algorithm, some well-known classification algorithms in

the literature were also tested. These are k-nearest neighbor

(kNN), artificial neural network (ANN), decision tree (DT),

and random forest (RF) algorithms. The SVM algorithm

showed the best performance among these methods and the

calculated classification accuracies (for tenfold CV) are

comparatively given in Fig. 4.

As shown in Fig. 4, the best classification performance

was obtained with the SVM algorithm. The DT algorithm

showed the lowest classification performance with about

73%.

The advantages and limitations of our model are dis-

cussed below.

Advantages:

• A learning architecture was built using novel 1D-

ARCSLBP and other shallow methods. While compu-

tationally lightweight, it was demonstrated to be highly

Table 3 Transition table of the proposed model

Steps involved Time complexity

Preprocessing step OðnÞ
Feature extraction OðnlognÞ
Feature selection OðkÞ
Classification OðdÞ
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accurate when tested on a new asthma cough sound

dataset comprising 1,875 samples recorded from 1,326

hospitalized subjects.

• Over 96% accuracy rates for binary classification into

asthma versus non-asthma classes were attained by

deploying robust validation techniques. In particular,

the LOSO CV results support the readiness of the model

for implementation in real-world applications, e.g., in

the clinic or hospital ward.

• Our proposed architecture has linear time complexity

(Oðnlognþ k þ dÞ), is very simple, and can be coded

by researchers/developers efficiently.

Limitations:

• The cough sounds were collected from a single center.

The reliance on data from a solitary center may

introduce potential biases and limit the generalizability

of our findings. The specificity of the dataset to a

particular demographic, environmental conditions, or

healthcare setting raises concerns about the external

validity of our model. The potential consequences of

this constraint include the risk of model overfitting to

the characteristics unique to the single-center dataset.

Variabilities in cough sound patterns influenced by

regional accents, environmental factors, or demo-

graphic differences may not be adequately captured.

Consequently, the model may exhibit reduced perfor-

mance when applied to diverse populations or alterna-

tive healthcare environments. However, in future

works, multiple centers can contribute to a common

larger dataset. Collaboration with multiple institutions

or leveraging existing databases with diverse samples

could be instrumental in addressing this limitation.

• Cubic SVM was implemented with default settings. The

use of default settings without hyperparameter opti-

mization may result in suboptimal model performance.

Cubic SVM has hyperparameters that, if left unopti-

mized, might not be well-suited for the specific

characteristics of the dataset. This could lead to issues

such as underfitting or overfitting, compromising the

model’s ability to generalize to new, unseen data.

Hyperparameters can be further tuned using an opti-

mizer to obtain better classification results. By opti-

mizing hyperparameters, researchers can fine-tune the

Table 4 Detailed computational complexity analysis of the preprocessing step
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model to extract the best possible performance from the

chosen algorithm, ensuring it aligns with the specific

characteristics of the data.

Potential advantages and challenges in clinical

applications:

• The successful translation of our proposed model from

a research context to practical, real-world scenarios,

such as clinics or hospital wards, holds significant

potential. The model’s high accuracy in asthma screen-

ing can facilitate early detection of the condition. This,

in turn, enables prompt intervention and treatment,

potentially improving patient outcomes and reducing

the burden on healthcare resources.

• By automating the screening process, the proposed

model has the potential to optimize healthcare

resources. Clinics and hospital wards can allocate

personnel more efficiently, directing attention to

Table 5 Detailed computational complexity analysis of the feature extraction step
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Table 6 Comparison of automated asthma detection models

Study Method Classifier Subjects (n) Split ratio Classes(n) Results

(%)

Kilic et al. [18] Global chaotic logistic

pattern and four feature

selector

SVM 815 non-asthma,

613 asthma;

1428 segments

LOSO 2 Acc 98.53

Pre 98.54

Sen 98.86

Spe 98.90

Gm 98.88

F1 99.14

Sen et al. [21] Gaussian mixture model

and multivariate

autoregressive model

SVM 20 COPD,

30 asthma

tenfold CV 2 Acc 97.5

Topaloglu et al.

[24]

Mel spectrogram

conversion and attention

ResNet18

SVM 767 asthma,

722 non-asthma;

1489 segments

tenfold CV 2 Acc 99.73

Tasar et al. [26] Piccolo pattern and iterative

NCA

kNN 458 URTI,

695 healthy,

1294 COPD,

320 Bronchiectasis,

740 Pneumonia,

260 Bronchiolitis,

20 Asthma

40 LRTI

3827 segments

tenfold CV 8 Acc 98.95

Pre 98.56

Sen 98.99

Gm 98.98

F1 98.77

Badnjevic and

Pokvić [36]

ANN Neural network 522 healthy,

728 asthma;

1800 samples

80:20 2 Acc 98.85

Sen 97.11

Spe 98.85

Islam et al. [37] Welch’s method, Z-score

normalization, statistical

features

ANN, SVM 30 healthy,

30 asthma

58:2 2 Acc 93.30

Sen 93.30

Spe 93.30

Naqvi et al. [38] Spectral analysis SVM 100 healthy,

100 asthma,

100 pneumonia; 3000 samples

fivefold CV 3 Acc 96.70

Nabi et al. [39] Integrated power features kNN 55 asthma (mild, moderate,

severe); 775 samples

tenfold CV 3 Acc 100.0

Badnjevic et al.

[40]

Neuro-fuzzy system ANN 37 healthy,

170 asthma

248 pneumonia;

700 samples

80:20 3 Acc 99.41

Shaharum et al.

[41]

Mel-frequency cepstral

coefficients

kNN 30 mild asthma,

20 moderate asthma,

35 severe asthma

70:30 3 Acc 97.50

Khasha et al.

[42]

Time-series feature

extraction

Time-series

ensemble

learning

96 asthma;

2870 samples

tenfold CV 3 Acc 92.10

Sen 87.00

Spe 94.00

Singh et al. [43] Quantitative analysis SVM 43 healthy,

30 asthma

LOSO CV 2 Acc 94.52

Sen 97.67

Spe 90.00
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confirmed cases while streamlining the diagnostic

workflow.

• Seamless integration with existing healthcare systems

can enhance the model’s adoption. Compatibility with

Electronic Health Records (EHR) or other clinical

databases ensures a smooth incorporation into routine

medical practices.

• The challenges associated with diverse patient popula-

tions and varied cough sound characteristics across

different clinical settings may affect the model’s

generalizability. Addressing this requires continuous

validation and adaptation of the model to accommodate

diverse datasets.

• Ensuring regulatory compliance and adherence to

healthcare standards are paramount. The proposed

model must meet stringent regulatory requirements to

guarantee patient safety and data security, adding an

extra layer of complexity to implementation.

Clinician acceptance and training are crucial factors for

successful integration. Clinicians may initially be skeptical

of automated systems, and effective training programs

must be implemented to familiarize healthcare profes-

sionals with the model’s capabilities and limitations.

5 Conclusions

Using a novel 1D-ARCSLBP feature extractor, a new

hand-modeled architecture was proposed and studied on a

new large cough sound dataset that comprised 1875 cough

sound segments acquired from 1326 participants. Our

model attained excellent 98.24% and 96.91% accuracy

rates using tenfold and LOSO CV, respectively. Moreover,

the model possessed a low-time complexity of

O(nlogn ? k ? d). The excellent results confirmed the

feature extraction capability of 1D-ARCSLBP on cough

sound signals. In addition, the low-computational demands

and ease of implementation position our model favorably

against published state-of-the-art models, demonstrating

that our model is ready to be developed into a real-world

application.

Table 6 (continued)

Study Method Classifier Subjects (n) Split ratio Classes(n) Results

(%)

Our method 1D-ARCSLBP- and NCA-

based model

SVM 815 non-asthma,

511 asthma;

1875 segments

1. LOSO 2.

tenfold CV

2 1

Acc: 96.91

Sen: 96.08

Spe: 97.84

Pre: 98.05

Gm: 96.96

F1: 97.09

2. Acc:

98.24

Sen: 98.19

Spe: 98.30

Pre: 98.49

Gm: 98.24

F1: 98.34

**ANN artificial neural network; CV cross-validation; kNN k-nearest neighbor; LOSO leave-one-subject-out; NCA neighborhood component

analysis; SVM support vector machine

Fig. 4 Summary of classification results obtained with tenfold CV
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23. Yahyaoui A, Yumuşak N (2021) Deep and machine learning

towards pneumonia and asthma detection. In: 2021 International

conference on innovation and intelligence for informatics, com-

puting, and technologies (3ICT). IEEE, pp 494–497

24. Topaloglu I, Barua PD, Yildiz AM, Keles T, Dogan S, Baygin M

et al (2023) Explainable attention ResNet18-based model for

asthma detection using stethoscope lung sounds. Eng Appl Artif

Intell 126:106887

25. Yue L, Xu W (2021) Automatic classification of childhood

asthma and pneumonia based on cough sound analysis. In: 2021

2nd international conference on artificial intelligence and com-

puter engineering (ICAICE). IEEE, pp 779–783

26. Tasar B, Yaman O, Tuncer T (2022) Accurate respiratory sound

classification model based on piccolo pattern. Appl Acoust

188:108589

27. Ruichek Y (2019) Attractive-and-repulsive center-symmetric

local binary patterns for texture classification. Eng Appl Artif

Intell 78:158–172

16870 Neural Computing and Applications (2024) 36:16857–16871

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-0-387-09834-0_50
https://doi.org/10.1007/978-0-387-09834-0_50
https://www.who.int/news-room/fact-sheets/detail/asthma
https://www.who.int/news-room/fact-sheets/detail/asthma


28. Selesnick IW (2011) Wavelet transform with tunable Q-factor.

IEEE Trans Signal Process 59(8):3560–3575

29. Goldberger J, Hinton GE, Roweis S, Salakhutdinov RR (2004)

Neighbourhood components analysis. Adv Neural Inf Process

Syst 17:513–520

30. Vapnik V (1998) The support vector method of function esti-

mation. In: Suykens JAK, Vandewalle J (eds) Nonlinear model-

ing. Springer, Boston, pp 55–85. https://doi.org/10.1007/978-1-

4615-5703-6_3

31. Vapnik V (2013) The nature of statistical learning theory.

Springer Science & Business Media, Berlin

32. Espi M, Fujimoto M, Kubo Y, Nakatani T (2014) Spectrogram

patch based acoustic event detection and classification in speech

overlapping conditions. In: 2014 4th joint workshop on hands-

free speech communication and microphone arrays (HSCMA).

IEEE, pp 117–121

33. Bagasta AR, Rustam Z, Pandelaki J, Nugroho WA (2019)

Comparison of cubic SVM with Gaussian SVM: classification of

infarction for detecting ischemic stroke. In: IOP conference ser-

ies: materials science and engineering. IOP Publishing, p 052016

34. Powers DM (2020) Evaluation: from precision, recall and

F-measure to ROC, informedness, markedness and correlation.

arXiv preprint https://doi.org/10.48550/arXiv.2010.1606

35. Warrens MJ (2008) On the equivalence of Cohen’s kappa and the

Hubert–Arabie adjusted Rand index. J Classif 25(2):177–183

36. Badnjević A, Gurbeta L, Cifrek M, Marjanovic D (2016) Clas-

sification of asthma using artificial neural network. In: 2016 39th

international convention on information and communication

technology, electronics and microelectronics (MIPRO). IEEE,

pp 387–90

37. Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G (2018)

Multichannel lung sound analysis for asthma detection. Comput

Methods Progr Biomed 159:111–123

38. Naqvi SZH, Arooj M, Aziz S, Khan MU, Choudhary MA (2020)

Spectral analysis of lungs sounds for classification of asthma and

pneumonia wheezing. In: 2020 International conference on

electrical, communication, and computer engineering (ICECCE).

IEEE, pp 1–6

39. Nabi FG, Sundaraj K, Lam CK (2019) Identification of asthma

severity levels through wheeze sound characterization and clas-

sification using integrated power features. Biomed Signal Process

Control 52:302–311

40. Badnjevic A, Cifrek M, Koruga D, Osmankovic D (2015) Neuro-

fuzzy classification of asthma and chronic obstructive pulmonary

disease. BMC Med Inform Decis Mak 15(3):1–9

41. Shaharum SM, Sundaraj K, Aniza S, Palaniappan R, Helmy K

(2016) Classification of asthma severity levels by wheeze sound

analysis. In: 2016 IEEE conference on systems, process and

control (ICSPC). IEEE, pp 172–176

42. Khasha R, Sepehri MM, Taherkhani N (2021) Detecting asthma

control level using feature-based time series classification. Appl

Soft Comput 111:107694

43. Singh OP, Palaniappan R, Malarvili M (2018) Automatic quan-

titative analysis of human respired carbon dioxide waveform for

asthma and non-asthma classification using support vector

machine. IEEE Access 6:55245–55256

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Prabal Datta Barua1 • Tugce Keles2 • Mutlu Kuluozturk3 • Mehmet Ali Kobat4 • Sengul Dogan2 •

Mehmet Baygin5 • Turker Tuncer2 • Ru-San Tan6,7 • U. Rajendra Acharya8,9

& Prabal Datta Barua

prabal.barua@usq.edu.au

Tugce Keles

201144107@firat.edu.tr

Mutlu Kuluozturk

mutlukuluozturk@hotmail.com

Mehmet Ali Kobat

mkobat@firat.edu.tr

Sengul Dogan

sdogan@firat.edu.tr

Mehmet Baygin

mehmet.baygin@erzurum.edu.tr

Turker Tuncer

turkertuncer@firat.edu.tr

Ru-San Tan

tanrsnhc@gmail.com

U. Rajendra Acharya

Rajendra.Acharya@usq.edu.au

1 School of Business (Information System), University of

Southern Queensland, Toowoomba, QLD 4350, Australia

2 Department of Digital Forensics Engineering, College of

Technology, Firat University, Elazig, Turkey

3 Department of Pulmonology Clinic, Firat University

Hospital, Firat University, 23119 Elazig, Turkey

4 Department of Cardiology, Firat University Hospital, Firat

University, 23119 Elazig, Turkey

5 Department of Computer Engineering, Faculty of

Engineering, Erzurum Technical University, Erzurum,

Turkey

6 Department of Cardiology, National Heart Centre Singapore,

Singapore, Singapore

7 Duke-NUS Medical School, Singapore, Singapore

8 School of Mathematics, Physics and Computing and Centre

for Health Research, University of Southern Queensland,

Springfield, Australia

9 Centre for Health Research, University of Southern

Queensland, Springfield, Australia

Neural Computing and Applications (2024) 36:16857–16871 16871

123

https://doi.org/10.1007/978-1-4615-5703-6_3
https://doi.org/10.1007/978-1-4615-5703-6_3
https://doi.org/10.48550/arXiv.2010.1606
http://orcid.org/0000-0001-5117-8333

	Automated asthma detection in a 1326-subject cohort using a one-dimensional attractive-and-repulsive center-symmetric local binary pattern technique with cough sounds
	Abstract
	Introduction
	Motivation and our model
	Novelties and contributions

	Proposed model
	Preprocessing step
	Feature extraction step
	Feature selection step
	Classification step

	Experiments
	Experimental setup
	Dataset
	Performance evaluation metrics
	Results
	Time burden

	Discussion
	Conclusions
	Data availability
	References




