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Abstract 

Fibre Bragg Grating (FBG) sensors are extremely sensitive to changes of strain, and 

are therefore an extremely useful candidate for Structural Health Monitoring (SHM) 

systems of composite structures. Sensitivity of FBGs to strain gradients originating 

from damage was observed as an indicator of initiation and propagation of damage in 

composite structures.  To date there have been numerous research works done on 

distorted FBG spectra due to damage accumulation under controlled environments.  

Unfortunately, a number of related unresolved problems remain in FBG-based SHM 

systems development, making the present SHM systems unsuitable for real life 

applications. The work presented in this thesis highlights the application difficulties 

in using FBG for the SHM of advanced composite structures. The breakthrough 

technologies presented in this thesis resolve those major problems.  

As a solution to cope with complicated FBG responses, a novel signal processing 

approach was introduced using Artificial Neural Networks (ANN). To accommodate 

complete FBG spectral data into an ANN, a novel FBG data decoding system was 

developed. The Fixed FBG Filter Decoding System (FFFDS), along with an ANN 

was found to be an excellent tool for addressing real-time data input to in-situ FBG-

based SHM systems. Several experimental studies have been used to investigate the 

decoding system and performance of the ANN for damage detection in composite 

structures. The proposed system has identified a delamination within 0.01% error 

levels.  

Even though previous work has used the distortion of FBG spectra to detect damage 

in composite structures, to date there is no clear definition for distortion of the FBG 

spectra. This is a major shortcoming in FBG-based SHM system development. This 

thesis presents two novel concepts, “Distortion” and “Distortion Index”. These have 
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been used to define distortion of FBG spectra, and have been successfully used for 

damage identification and quantification in composite structures.  

A case study was also conducted to develop optimum the FBG sensor network for 

efficient damage detection in a composite structure. A detailed procedure was 

proposed for the optimization of FBG networks. The proposed optimization 

procedure extensively used finite element analysis (FEA), thereby eliminating 

expensive and time consuming prototype component testing for optimized sensor 

locations.  

Finally, developed decoding systems and the optimization methodology have been 

verified successfully using a representative sample. It was concluded that the 

breakthrough technologies developed under this thesis will exclude the major 

remaining problems associated with the development of SHM systems for advanced 

composite structures. Further, a few logical improvements were recommended for 

the development of next generation SHM systems.    
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1. Introduction 

 

1.1 Background and Significance 

Fibre reinforced polymer (FRP) composites have been used as an engineering 

material for more than six decades. The main attraction of the FRP is its superior 

strength-to-weight ratio. Aircraft and defence industries have been spending billions 

of dollars on investment in these composites to produce lightweight subsonic and 

supersonic aircrafts. Other desirable properties, such as the ease of fabrication of 

complex shapes and the ability to tailor desirable properties to suit different 

engineering applications, are enviable for an advanced material. Since research and 

development in the aircraft industry and space exploration agencies have been 

focused on FRP for many years, most of the advanced fibre composites available 

today, have one way or another, their origins in these fields. 

The weight-save or positive weight spiral in the aircraft industry is directly translated 

to the enhancement of the load carrying capacity of civil aircraft, while for the 

fighters, it will be translated to the performance enhancement (mainly on the fuel 

carrying capacity versus the flying speed). As composites are partially made from 

polymer-based materials, they possess very good damping and fatigue resistance 

properties as compared with traditional metallic materials. 

The commercial aircraft industry is gradually replacing metallic parts with FRP 

composites as much as possible. Hence, the FRP composites are frequently applied 

to primary load-bearing structures in the newly developed aircraft such as Boeing 

787 and Airbus 380. However, the main disadvantages of using FRP composites in 
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the aircraft industry are their difficulty for repair, anisotropic behaviour, high initial 

setup cost, and most importantly the complex failure criteria. Because of these 

undesirable properties, the FRP composite structures in the aircraft need to be closely 

monitored to prevent unexpected failure. 

FRP composite structures can include stress-concentrated regions such as pin-loaded 

holes and other cut-outs. These stress concentrations easily induce damage that 

includes concurrent splitting, transverse cracking, and delamination (F. Chang & 

Chang, 1987; Kamiya & Sekine, 1996; Kortscho & Beaumont, 1990). Unlike metals, 

the failure modes of composites are very difficult to predict. Therefore, there are no 

established standards for composite materials. For this reason, it is essential to 

monitor advance composites regularly. In view of the aforementioned issues, a 

structural health monitoring (SHM) technique has recently been developed for these 

composite structures (F. K. Chang, 2003; Zhou & Sim, 2002). 

Monitoring of composites began with damage detection technologies such as 

vibration and damping methods (Adams, Cawley, Pye, & Stone, 1978). Then 

sophisticated offline non-destructive test (NDT) methods were developed for the safe 

operation of composite structures. However, with the increasing complexity of 

structures, offline NDT was insufficient and developments of online SHM systems 

became vital. 

The process of implementing the damage detection and characterization strategy for 

engineering structures is referred to as SHM. Here, the indicator for damage is 

defined as changes to the material properties or changes to the structural response of 

the structure. The SHM process involves the observation of a system over time using 

periodically sampled dynamic response measurements from an array of sensors.  
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To address complex failure modes of FRP composites, a SHM system must be 

efficient, robust and accurate. Due to recent developments in the aerospace industry, 

utilization of FRP composites for primary aircraft structures, such as wing leading-

edge surfaces and fuselage sections, has increased. This has led to a rapid growth in 

the field of SHM. Impact, vibration, and loading can cause damage, such as 

delamination and matrix cracking, to the FRP composite structures. Moreover, the 

internal material damage can be undetectable using conventional techniques, making 

inspection of the structures for damage and clear insight into the structural integrity 

difficult using currently available evaluation methods. 

The SHM system developed to monitor aircraft and space structures must be capable 

of identifying multiple failure criteria of FRP composites (Reveley, Kurtoglu, Leone, 

Briggs, & Withrow, 2010). Since the behaviour of composites is anisotropic, 

multiple numbers of sensors must be in service to monitor these structures under 

multi-directional complex loading conditions. The layered structure of the 

composites makes it difficult to predict the structural behaviour only by using surface 

sensors. To address this issue, embedded sensors must be used, and the sensors used 

must possess sufficient durability as it is not possible to replace embedded sensors 

after fabrication of the parts. 

The Fibre Bragg Grating (FBG) sensor is one of the most suitable sensors for the 

SHM of aircraft structures. The diminutive FBG sensors can be embedded in FRP 

composites during the manufacturing of the composite part with no adverse effect on 

the strength of the part. This sensor has a narrowband response with a wide operating 

range, hence can be highly multiplexed. This nonconductive sensor can operate in 

electromagnetically noisy environments without any interference. The FBG sensor is 
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made up of glass possessing a long life time comparable to that of FRP composites. 

Because of its low transmission loss, the sensor signal can be monitored from longer 

distances making it suitable for remote sensing (K. O. Hill & Meltz, 1997; Kersey et 

al., 1997). 

The FBG sensor’s capability of detecting strain gradients along its length can be used 

to identify the strain variations at a critical part in the FRP composites structure 

through an optical phenomena called chirp, in the reflected spectra of the FBG sensor 

(P. C. Hill & Eggleton, 1994; Kersey et al., 1997). This phenomenon has been used 

for decades of research to detect damage in the composite structures (Okabe, 

Yashiro, Kosaka, & Takeda, 2000; Takeda, Okabe, & Takeda, 2002). But there are 

numerous cases reported where the chirp or the distortion of the FBG spectrum was 

not limited to stress concentrations (Y. Wang et al., 2008). There are other causes of 

chirp, and it is necessary to eliminate such effects to identify damage accurately.  

As such, there are many remaining unresolved problems and engineering challenges 

in FBG-based SHM systems. An extraction of important data from FBG spectra is a 

significant problem, which remains unsolved after many decades of research work. It 

is clear that the multiple causes lead to distortion to the FBG response spectra. Most 

of the effects cannot be eliminated in advanced aerospace applications. In order to 

identify damage from the distortions to the FBG response spectra, the individual 

contribution from each effect needs to be identified and eliminated. To 

unambiguously identify the effects from the damage, extensive computational power 

is required for post-processing of the spectral data. Figure 1-1 shows FBG response 

spectra from an FBG embedded near a damaged location with the part under the 

complex multi-directional loading. 
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Figure 1-1: Distorted FBG spectra due to multiple effects 

With the complex layout of composite structures, it is difficult to embed two sensors 

identically in two similar structures. The sensitivity of FBG is nano-meter range and 

small shift of location makes the two environments different to two sensors. As a 

result, it is difficult to compare fine spectral data of two spectra from two FBG 

sensors. Consequently, it is impossible to have universal decision making algorithms 

to work with FBG sensors. This complication is a major unsolved problem in the 

FBG-based SHM. Scarcity of adaptive decision making systems needs to be 

addressed. 

The manufacturing of advanced composite component with embedded sensors is 

another significant engineering challenge associated with FBG-based SHM systems.  

The number of sensor must be optimized, and there should be backup systems in 

place for any redundant sensors after manufacture.  Further, the embedded FBG 

network must be robust enough for compensating situations such as redundant 

sensors during operations.  These unresolved critical problems have caused barriers 

to the development of SHM systems.   

As a consequence, in a controlled/special laboratory environment, it is possible to 

discuss and interrelate the FBG spectra with the damage by creating an artificial 
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damage and observing spectrum of an FBG which is embedded closer to the damage 

location. But in the general application if such spectrum is observed, it is not possible 

to interpret the spectrum in order to identify the damage. In general application, 

identification of relevant features from the spectra is essential for damage detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-2: Novel approach to FBG-based SHM systems 
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work with FBG sensors in general conditions and to study the system as a whole, 

thus making SHM systems valid for real applications. Therefore the research work in 

this thesis addresses the fundamental unresolved problems in application of FBG-

based SHM systems for real structures. As such, the research work planned here is a 

breakthrough for FBG-based SHM systems.   

 

1.2 Objectives 

The aim of this study is to investigate the unresolved problems associated with 

applications of FBG-based SHM systems. The main objectives of the study are the 

following: 

 Identification of a/the general damage matrix which can be monitored using 

FBG-based SHM system 

 Identification of spectral distortion of an FBG sensor in the real world 

environment in the vicinity of the damage 

 Identification of limitations of FBGs in detection of damage 

 Development of a method to quantify spectral distortion with respect to the 

quality of damage 

 Optimisation of the FBG network 

 Development of a damage detection matrix and decision making algorithms 

and development of FBG-based SHM systems. 
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1.3 Innovation and expected outcomes 

The main objective of this research is to develop a FBG-based SHM system that can 

cope with general FRP applications, rather than for a particular idealised condition. 

To achieve the set objectives, this study will follow a bottom up concept. First, the 

complex damage mechanism of the composite will be identified with the critical 

cause of damage.  Subsequently, the damage will be quantified and monitoring 

indicators will be established.  Building upon this foundation, the project will 

carefully devise mechanisms and algorithms to: 

 Extract useful data related to damage identification from distorted FBG 

 spectra 

 Analyse extracted FBG spectral data to identify strain field at the FBG 

 location 

 Optimisation of the FBG sensor network 

 Identify and quantify the damage 

 Issue a warning to a monitoring system 

 

 

Therefore, research work planned in this thesis was carefully selected to address 

most of the unsolved problems in the application of FBG-based SHM systems. As a 

consequence the experience gained from this research will be the first information of 

its kind. The following expected outcomes are innovative technologies in the FBG-

based SHM field: 
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 Decoding system for FBG spectra 

 An ANN based decision making algorithm 

 FBG sensor network optimising procedures 

 FBG-based SHM system for general/real application 

 

The developed system is “Patent” pending. The industry partner, 

The Boeing Company, USA, organised the patent application with 

the US Patent office (Appendix A).  

 

 

1.4 Outline of the thesis 

This thesis is divided into 6 chapters which describe the different investigations 

conducted in this study: 

The first chapter outlines the background, research gap, significance and 

objectives of this study. Further it details the outline of this thesis 

Chapter 2 gives an overview of the composites used in the aerospace industry. 

The advantages of the use of composites in aerospace applications and the drawbacks 

are also discussed. Furthermore, the complex failure criteria of the composite 

materials and the requirement of reliable SHM systems for safe operation of FRP 

structures will be discussed 

Chapter 3 outlines the use of embedded FBG sensors for SHM of composite 

structures. The desirable properties of FBG sensors for damage detection in FRP 

structures are investigated. Then, the unresolved problems associated with the real 

application of FBG sensors will be discussed 
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Chapter 4 introduces the use of ANN, for post-processing of FBG spectral data. 

A novel decoding system will be introduced to decode complex response spectra of 

an FBG. Finally, the procedures will be discussed and the integration of the decoding 

system and ANN for damage detection will be demonstrated experimentally  

Chapter 5 will demonstrate procedures for optimising a FBG sensor network for 

efficient damage detection in a composite structure using the system introduced in 

Chapter 4. 

The main body of the thesis ends with Chapter 6 which presents the main 

conclusions of the research and the recommendations for future work.   

 

 



Chapter 2    

11 
Gayan Kahandawa 

2. Damage in composite structures 

 

2.1 Introduction 

Composite material is a combination of two or more chemically different materials 

with a distinct interface between them. The constituent materials retain their original 

properties and the composite materials provide combined properties which are 

different from the constituents.  There is neither chemical reaction between 

constituents, nor change to the chemical structure of the constituents. One of the 

constituents makes a continuous phase which is called the matrix. The others act as 

reinforcement (Mallick, 1997).  

The matrix material of a composite can be polymer, metal or ceramic, hence 

composite materials are classified as polymer matrix composites (PMC), metal 

matrix composite (MMC) and ceramic matrix composites (CMC). Figure 2-1 

illustrates the evaluation of composite materials.  

 

Figure 2-1: Composite materials  

CHAPTER 2 
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The majority of the composites, Glass Fibre Reinforced Polymer (GFRP) and Carbon 

Fibre Reinforced Polymer (CFRP), are based on a polymer matrix. The development 

of PMCs for structures started in 1950s, and they are by far the most common fibre 

reinforced composite material in use today. The matrix is a key factor determining 

the characteristics of a composite material. In the applications of glass fibre 

reinforced plastics the resin used comes with two parts, the resin and the hardener. 

The resin/hardener ratio also effects the mechanical properties of a composite 

(d'Almeida & Monteiro, 1998).  

Fibres are the principle load carrying component in fibre reinforced composites. The 

effectiveness of fibres in composite materials depends on the size, type, volume 

fraction and orientation of fibres in the matrix. A large variety of fibre types are 

available for engineering fibre reinforced composite materials. The most common 

fibre types are glass fibre and carbon fibre. 

Glass fibre composites are popular for applications such as boats, body parts of 

vehicles, small aircrafts, durable goods and consumer goods applications because of 

their low cost. The comparative strength with carbon fibre is less but the cost and 

simple manufacturing technology makes glass fibre popular in low-end applications.  

Carbon fibre provides tensile modules of 188.9 GPa, which is closer to ferrous 

materials and, most importantly, the strength to weight ratio is superior. For this 

reason, carbon fibre composites have replaced the metallic parts used in most aircraft 

and military applications.  
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  Glass fibres 2.1.1

Glass fibres are manufactured by drawing molten glass into very fine threads and 

then immediately protecting them from contact with the atmosphere or with hard 

surfaces in order to preserve the defect free structure that is created by the drawing 

process. Synthetic fibres are as strong as any of the newer natural fibres but they lack 

rigidity on account of their molecular structure. The properties of glasses can be 

modified to a limited extent by changing the chemical composition of the glass, but 

the only glass used to any great extent in composite materials is ordinary borosilicate 

glass, known as E-glass. The largest volume usage of composite materials involves 

E-glass as the reinforcement. S-glass has somewhat better properties than E-glass, 

including higher thermal stability, but its higher cost has limited the extent of its use. 

The stiffness of experimental calcium aluminate glass fibres can be as high as 

180GPa. 

 

  Carbon fibres 2.1.2

By oxidising and pyrolysing a highly drawn textile fibre, such as poly acrylonitrile 

(PAN), to prevent it from shrinking in the early stages of the degradation process, 

and subsequently hot-stretching it, it is possible to convert the fibre to a carbon 

filament with an elastic modulus that approaches the value that would predict from a 

consideration of the crystal structure of graphite. However, the final strength is 

usually well below the theoretical strength of the carbon-carbon chain (Watt, 1970). 

The influence of strength limiting defects is considerable, and clean-room methods 

of production can result in substantial increases in the tensile strength of commercial 

materials. Prior to sale, fibres are usually surface-treated by chemical or electrolytic 
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oxidation methods to improve the quality of adhesion between the fibre and the 

matrix in a composite. Depending on processing conditions, a wide range of 

mechanical properties (controlled by structural variation) can be obtained, and fibres 

can, therefore, be chosen from this range so as to give the desired composite 

properties. Recent developments in this field have led to the use of pitch as a 

precursor in place of textile fibres, and these newer materials have extremely high 

stiffness, compared to PAN based fibres, but rather lower strengths (Fitzer & Heine, 

1988). 

 The matrix of composites 2.1.3

The matrix binds the fibres together, holding them aligned in the important stressed 

directions. Loads applied to the composite are then transferred into the fibres, the 

principal load-bearing component, through the matrix, enabling the composite to 

withstand compression, flexural and shear forces, as well as tensile loads. The ability 

of composites reinforced with short fibres to support loads of any kind, is dependent 

on the presence of the matrix as the load-transfer medium, and the efficiency of this 

load transfer is directly related to the quality of the fibre/matrix bond. 

The matrix must also isolate the fibres from each other so that they can act as 

separate entities. Many reinforcing fibres are brittle solids with highly variable 

strengths. When such materials are used in the form of fine fibres, not only are the 

fibres stronger than the monolithic form of the same solid, but there is the additional 

benefit that the fibre aggregate does not fail catastrophically. Moreover, the fibre 

bundle strength is less variable than that of a monolithic rod of equivalent load-

bearing ability. But these advantages of the fibre aggregate can only be realized if the 

matrix separates the fibres from each other so that cracks are unable to pass 
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unimpeded through sequences of fibres in contact (which would result in completely 

brittle composites). 

The matrix should protect the reinforcing filaments from mechanical damage (eg. 

abrasion) and from environmental attack. Since many of the resins which are used as 

matrices for glass fibres prevent diffusion of water, this function is often not fulfilled 

in many GFRP materials and the environmental damage that results is aggravated by 

stress. In cement, the alkaline nature of the matrix itself is damaging to ordinary 

glass fibres and alkali-resistant glasses containing zirconium have been developed 

(Proctor & Yale, 1980) in an effort to counter this effect. For composites like MMCs 

or CMCs operating at elevated temperature, the matrix would need to protect the 

fibres from oxidative attack. 

A ductile matrix will provide a means of slowing down or stopping cracks that might 

have originated at broken fibres. Conversely, a brittle matrix may depend upon the 

fibres to act as matrix crack stoppers. 

Through the quality of its ‘grip’ on the fibres (the interfacial bond strength), the 

matrix can also be an important means of increasing the toughness of the composite. 

By comparison with the common reinforcing filaments, most matrix materials are 

weak and flexible, and their strengths and moduli are often neglected in calculating 

composite properties. But metals are structural materials in their own right and in 

MMCs their inherent shear stiffness and compressional rigidity are important in 

determining the behaviour of the composite in shear and compression. The potential 

for reinforcing any given material will depend to some extent on its ability to carry 

out some or all of these matrix functions. 
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2.2 Applications of Composites 

Composite materials have been used a wide range of applications such as aerospace, 

automobile, bio-engineering, structural engineering, marine engineering, sports.  

In the aerospace industry, a wide range of load-bearing and non-load-bearing 

components are already in use in both fixed-wing and rotary wing aircraft. Many 

military and civil aircraft now contain substantial quantities of lightweight, high-

strength carbon-, Kevlar- and glass-fibre composites, as laminated panels, 

mouldings, and sandwich composite structures with metallic or resin-impregnated 

paper honeycomb core materials. They are used in air frames, wing spars, spoilers, 

tail-plane structures, fuel tanks, drop tanks, bulkheads, flooring, helicopter rotor 

blades, propellers, and structural components, pressured gas containers, radomes, 

nose and landing gear doors, fairings, engine nacelles (particularly where 

containment capability is required for jet engines), air distribution ducts, seat 

components, access panels, and so forth.  

Many modern light aircraft are being increasingly designed to contain as much 

lightweight composite material as possible. For elevated-temperature applications 

carbon-fibre-reinforced composite is in use. Concord's disk brakes used this material, 

rocket nozzles and re-entry shields have been fashioned from it, and there are other 

possibilities for its use as static components in jet engines. Rocket motor casings and 

rocket launchers are also frequently made of reinforced plastics. A particularly 

interesting (and important) application of composites is in its development in 

Australia as a means of repairing battle damage (patching) in metal aircraft 

structures.  
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Space applications offer many opportunities for employing light-weight, high-

rigidity structures for structural purposes. Many of the requirements are the same as 

those for aeronautical structures, since there is a need to have low weight and high 

stiffness in order to minimize loads and avoid the occurrence of buckling 

frequencies. Dimensional stability is at a premium, for stable antennae and optical 

platforms, for example, and materials need to be transparent to radio-frequency 

waves and stable towards both UV radiation and moisture. 

2.3 Failure modes of Composites 

Damage in the FRP structures can be defined as the changes to material properties 

and/or changes to the structural response of the structure. Damage can be in both 

matrix and/or fibre. 

Many reinforced plastics consist of brittle fibres, such as glass or carbon, in a weak, 

brittle polymer matrix, such as epoxy or polyester resin. An important characteristic 

of these composites, however, is that they are surprisingly tough, largely as a result 

of their heterogeneous nature and construction. During deformation, micro-structural 

damage is widespread throughout the composite, but much damage can be sustained 

before the load-bearing ability is impaired. Beyond some critical level of damage, 

failure may occur by the propagation of a crack which usually has a much more 

complex nature than cracks in homogeneous materials. Crack growth is inhibited by 

the presence of interfaces, both at the microstructural level between fibres and 

matrix, and at the macroscopic level as planes of weakness between separate laminae 

in a multi-ply laminate. The fracturing of a composite therefore involves not only the 

breaking of the load-bearing fibres and the weak matrix, but a complex combination 

of crack deviations along these weak interfaces.  
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Composite materials can be analysed in different levels as shown in the Figure 2-2. 

The analysis of damage in composite structures starts from micromechanics to 

macro-mechanics. The failure of composites begins with micro-cracks in the matrix. 

The micro-cracks increase in number under increasing deformation. Due to a 

mismatch in the elastic module between the neighbouring layers, there exists an 

onset of delamination. As the critical value of the strain energy release rate is 

reached, the delaminations start growing rapidly. As a result, under the condition that 

the matrix crack density is very high and that the angle plies can no longer take 

tensile load, the entire tensile load is transferred through the 0
o
 fibres. With further 

tensile loading, the 0
o
 fibres break. This is the final stage of failure. Under 

compressive load also, the laminates start buckling at the delaminated zone and may 

fail instantaneously.  

 

Figure 2-2: Levels of analysis for damage in composites 

The evolution of a matrix crack as the initial stage of damage, followed by 

delamination, is also true for composites subjected to impact load (Marshall, Cox, & 

Evans, 1985). In most of the damage models reported in literature are transverse 

matrix cracks, splitting, delamination etc. and a combination of those are considered. 

The degradation of effective elastic module of damaged laminates used as the 

damage parameters. Once estimated through on-line health monitoring, such 

parameters can further be correlated to damage states. 

Micromechanics (matrix-fibre) 

Macromechanics (lamina - laminate) 

Structural analysis (structure) 
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Numerous failure theories have been proposed and are available to the composite 

structural designer (Daniel & Ishai, 2005). The failure theories have been classified 

into three groups, limit or non-interactive theories (maximum stress, maximum 

strain); interactive theories (Tsai-Hill, Tsai-Wu); and partially interactive or failure 

mode-based theories (Hashin-Rotem, Puck).  The validity and applicability of a 

given theory depend on the convenience of application and agreement with 

experimental results.  

Sun (2000) reviewed six failure theories and showed comparisons of theoretical 

predictions with experimental results for six different composite material systems 

under various loading conditions . He included uniaxial (normal and shear) loading, 

off-axis loading and biaxial (normal and shear) loading later.  It was found, as 

observed previously, that most theories differed little from each other in the first 

quadrant (tension-tension).  The biggest differences among theories occurred under 

combined transverse compression and shear.  In this case, predictions of the Tsai-Wu 

interactive theory were in better agreement with experimental results than other 

theories. 

Hinton (2004) experimentally evaluated the predictive capabilities of current failure 

theories (Hinton, Soden, & Kaddour, 2004). One observation of this exercise was that, 

even for the unidirectional lamina, predictions of the various theories differed by up 

to 200-300% from each other. The difficulty in evaluating failure theories is much 

greater in the case of a multidirectional laminate. Since the failure modes greatly 

depends on material properties and type of loading, different failure theories work 

well with different applications.   
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With the difficulty of evaluation of failure, SHM plays a major role in composite 

structures.  

 

  Delamination 2.3.1

Delamination, which is the failure of the interface between two plies, is known as the 

silent killer of the composite structures. It is caused by normal and shear tractions 

acting on the interface, which may be attributed to transverse loading, free edge 

effect, ply-drop-off, or local load introduction. Delamination can significantly reduce 

the structural stiffness and the load carrying capacity and, therefore, is considered as 

one of the critical failure modes in laminated composites. 

A laminate is constructed from groups of individual unidirectional plies which are 

laid at various angles, depending upon design requirements, or from layers of woven 

cloth laid at various angles to the main stress axes. The tension/shear coupling effects 

cause shear stresses to be developed in the plane of the laminate, especially near free 

edges, when the material is stressed.  As inter-laminar planes in non-woven 

composites are always planes of weakness, the inter-laminar shear stresses may 

easily become large enough to disrupt or delaminate a composite well before its 

overall tensile strength is reached. A crack travelling through a given ply may 

therefore find it energetically favourable to deviate along an inter-laminar plane. 

Under such circumstances, considerations of fibre debonding and pull-out are of little 

significance. 

For prediction of onset of interface damage, numerical methods have been developed 

based on the interface strength. A general, strength based First Ply Failure (FPF) 

criterion suitable for the assessment of interface damage has been proposed by Puck 
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and Scharmann (1998). For the prediction of formation of an initial delamination in 

an intact interface a strength/energy approach is proposed (Wimmer, Schuecker, & 

Pettermann, 2009) which combines strength criteria with fracture mechanics. For the 

simulation of delamination growth fracture mechanics are frequently used. It is 

widely accepted that conventional fibre reinforced epoxy resins show brittle fracture 

behaviour. Consequently, local material non-linearity in the vicinity of the 

delamination front are neglected and Linear Elastic Fracture Mechanics (LEFM) can 

be used. Several techniques based on LEFM have been developed and are utilized 

successfully within the framework of the Finite Element Method (FEM) for the 

simulation of delamination growth, such as crack tip elements (Jha & Charalambides, 

1998), the Virtual Crack Extension Technique, and the Virtual Crack Closure 

Technique (VCCT) (Liu et al.). Wimmer and Pettermann (2008) suggested a 

numerically efficient semi-analytical approach for the prediction of delamination 

growth and its stability was also proposed. An alternative method that takes into 

account the non-linear interface behaviour at the delamination front introduces a 

cohesive zone (Barenblatt, H.L. Dryden, & Howarth, 1962). Based on this idea, 

Cohesive Zone Elements (CZE) have been developed within the FEM (Alfano & 

Crisfield, 2001) for the simulation of delamination. 

Among the failure modes of composite structures, delamination is the most 

dangerous failure. In real applications, it is difficult to predict the behaviour of 

delaminations. The hidden nature of the growth of delamination can result in sudden 

failure of composite structures. Consequently, for safer operation of composite 

structures, it is vital to have SHM systems on board to identify delaminations both 

qualitatively and quantitatively.  
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2.4 Modelling of multilayer composite structures 

Fibre-reinforced composites are modern construction materials from which products 

used in many areas are made. These materials are characterised by very good 

mechanical properties. They are ideal for structural applications where high strength 

and stiffness are required. The mechanical properties of the composite are not only 

defined by the properties of reinforcing fibres and their percentage participation in 

this material; the full advantages of such materials are obtained when the fibres are 

optimally distributed and oriented in each layer, with respect to the assumed 

objective behavioural measure in the optimisation process under the structure’s 

actual loading conditions. 

In the process of modelling composite structures, two major approaches, Equivalent 

Single Layer (ESL) and Layer Wise (LW) models are used. 

2.4.1.1 Equivalent Single Layer (ESL) modelling 

The ESL description represents the composite stack as a single layer, whose stiffness 

properties are "equivalent" to the multilayered structure. This approach permits the 

exploitation of established models developed for homogeneous structures, such as 

Bernoulli and Timoshenko beams, and Kirchhoff and Reissner-Mindlin plates. In an 

ESL model, the number of DOF is independent from the number of layers 

constituting the laminate (Reddy, 1993). From the FEM modelling point-of-view, the 

ESL description is thus easily embedded into standard element formulations by 

simply declaring a composite cross-section. If the layer wise variation of parameters 

is required, layer wise modelling should be used. 

 



Chapter 2    

23 
Gayan Kahandawa 

2.4.1.2 Layer Wise (LW) modelling 

In a Layer-Wise description, each separate layer of the laminate is explicitly 

represented with its own degree of freedom (DOF). Since this description introduces 

a number of DOF that depends on the number of layers constituting the laminate, the 

LW approach can rapidly become very complicated. FEM modelling of an LW 

approach relies classically on the use of solid brick elements that are stacked on each 

other to form the whole laminate (Barbero & Reddy, 1991). ABAQUS also permits 

staking of continuum-based (solid) shells in order to reduce the conditioning 

problems related to the very different element edge lengths (the laminate thickness 

generally being much smaller than the in-plane dimensions).  

The LW modelling method consumes higher modelling time and calculations time of 

the computer. It is clear that a simplified method as the ESL requires less design time 

and less computing time. Instead, the LW may require a discrete design and 

calculation time that could become significant with the use of many finite elements 

over the composite cross-section. 

For the research work in this thesis, it is essential to have LW modelling. The 

embedded FBG sensors report the strain between layers and hence, FEA data should 

be available layer wise for comparison reasons. In the ABAQUS modelling 

environment for composites, two different element types (the conventional shell and 

continuum shell) have been commonly used.   

The conventional shell is the planar 2D representation of a solid element, even if 

deformable in the 3D space. A thickness is given to the planar element by assigning a 

section. In this case it is a composite one. However, since the geometry is defined in 
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the two-dimensional space, it is not possible to assign an element to each layer of the 

composite. This would always lead to an ESL model.  

For LW modelling, solid elements should be used. The promising solid element used 

in composite modelling is the continuum shell element. Continuum shell elements 

are three-dimensional stress/displacement elements for use in modelling structures 

that are generally slender, with a shell-like response but continuum element 

topology. 

 Modelling composite structures using FEA 2.4.2

Due to the anisotropic nature of composites, the material properties are commonly 

different in the three principal directions. The reinforcement of a composite is 

typically assigned the 1-direction, whereas the 2 and 3-directions are known as the 

transverse directions. Unlike 2-D conventional shell elements, the orientation of 

material properties must be explicitly assigned when using 3-D continuum elements.  

Figure 2-3 shows a composite plate that has been built with continuum shell 

elements. The global coordinate system is used to define the material orientation. 

The global system does not rotate with the curvatures of the model, thus incorrectly 

defining material properties for any portion of this curved plate not lying in the x-y 

plane. Discrete or local coordinate systems can be used for which a normal and 

reference direction can be assigned depending on the reinforcement and transverse 

directions of the material. It is very important to have the material orientation right 

for the accurate modelling of composite structures. Throughout the modelling used in 

this study, the material properties used are, E1=34.412 GPa, E2=6.531 GPa, 

E3=6.531 GPa, ν12=0.217, ν13=0.217, ν23=0.336, G12=2.433 GPa, G13=2.433 
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GPa, and G23=1.698 GPa. Direction 1 is the direction of angle x axis, while 

directions 2 and 3 are y and z respectively. 

 

Figure 2-3: Composite plate modelled in ABAQUS  

2.4.2.1 Continuum shell elements 

Composite layups are normally structures with significantly smaller thicknesses 

compared to other dimensions. Shell elements are used to model such structures. 

Normally conventional shell elements can be used to model structures in which the 

thickness is significantly smaller than the other dimensions. It is possible to define 

the thickness in the property module while creating the section. In contrast, in 

assigning continuum shell elements to solid parts, ABAQUS determines the 

thickness from the geometry of the part. From a modelling point-of-view continuum 

shell elements look like three-dimensional continuum solids, but their kinematic and 

constitutive behaviour is similar to conventional shell elements. For example, 

conventional shell elements have displacement and rotational degrees of freedom, 

while continuum solid elements and continuum shell elements have only 

displacement degrees of freedom (Figure 2-4). 
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Figure 2-4: Conventional shell elements and continuum shell elements in ABAQUS (ABAQUS Analysis 
User manual) 

Throughout the study, continuum shell elements (SC8R) have been used they 

provide both top surface and bottom surface strains. SC8R stands for continuum 

stress/displacement shell with 8 nodes and reduced integration (Figure 2-5). It is 

desirable to have strain variations at exact locations when it comes to comparison of 

strain readings obtained from embedded sensors (as discussed in Chapters 3 and 4).  

 

Figure 2-5: SC8R elements in ABAQUS (ABAQUS Analysis User manual) 
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 Modelling plated structures 2.4.3

Plated structures are widely used in many engineering constructions ranging from 

aircraft to ships, and from off-shore structures to bridges and buildings. Given their 

diverse use in severe loading environments, it is vital that their behaviour is analysed 

and understood. When it comes to FRP composite plated structures, the layer wise 

behaviour needs to be analysed to model the complete structure. To model the 

deformation of laminated plates, approaches based on the classical laminate beam or 

plate theory have been developed (Crawley & Lazarus, 1989). These approaches 

should be restricted to thin plate applications since the linear strain distribution 

through the thickness and zero transverse shear stress is assumed. However, the 

transverse shear stresses are usually important in composite laminates. As a result, it 

is necessary to use shear deformation theory to address moderately thick and thick 

laminate constructions. The first-order shear deformation theory has been used for 

modelling the laminates using FEA. Furthermore, the Layer Wise theory and Three-

dimensional (3D) coupled-analysis model have also been used.  

In the damage detection of FRP composite structures, damage can be initiated from 

the inside of the structure as a crack or delamination. That is the key advantage of 

using embedded FBG sensors for damage detection in FRP composite structures. An 

FEA with LW modelling is essential for comparison and verification of experimental 

results.  

Following case study was carried out to verify the FEA modelling with experimental 

results for a composite laminate with embedded FBG sensors. Principle of FBG is 

given in Chapter 3. 
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2.4.3.1 Sample Fabrication and experimentation 

A FBG sensor with a cantered wavelength about 1550 nm was fabricated on 9um 

core and 125um clad diameter telecommunication grade glass fibre.  The grating 

length was 10mm. To ensure maximum bonding between the FBG sensor and the 

matrix of resin in the GFRP material, the acrylate layer of the fibre was removed.  

An extra protective layer of rubber was applied to the fibre to enhance the sensor 

robustness.   

The sample was fabricated with 10 layers of E-Glass fibre in the orientation 

0/90/±45/90/0/0/90/±45/90/0. Kenetix R246TX epoxy resin was used as the matrix 

material.  The FBG sensor was embedded between non-parallel layers, 3 and 4, as 

shown in Figure 2-6. 

 

 

Figure 2-6: Location of the FBG sensor in the specimen between layers 3 and 4 
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The specimen was loaded on a four points bending test rig in steps of 25N up to 

1000N maximum load using an MTS (universal Material Testing System) as shown 

in Figure 2-7. The specimen was simply supported with a support span of 400 mm 

and loaded with loading span of 150 mm as shown in the Figure 2-7(a). The response 

spectrum of the FBG sensor was recorded at each loading step using the setup shown 

in the Figure 2-7(b). Micron Optics 3.1 sm125 optical spectrum analyser was used to 

recode FBG spectrum and the response spectrum of the FBG sensor for no load 

condition and 1000N flexural load is given in the Figure 2-8. The applied load 

shifted the peak location of the sensor which is used to calculate stain.  

 

 

Figure 2-7: Experimental setup 
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Figure 2-8: Response spectrum of the FBG sensor 

2.4.3.2 FEA model of the plate 

A detailed finite element model (FEM) was developed for the specimen using 

commercial software, ABAQUS using continuum shell elements which is SC8R: An 

8-node quadrilateral in-plane general-purpose shell element, reduced integration with 

hourglass control, finite membrane strains.  

Figure 2-9 shows the ply stack plot of the composite layup. The plies are starting 

from the bottom and ply 10 is the top most one. The element size was selected as 10 

mm for the FEA mesh. As FBG sensors provide the average strain along the gauge 

length, which is 10mm in this case. The FEA mesh in 10mm is also needed for 

comparison.  

 

Figure 2-9: ply stack plot of the composite layup 
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The model was loaded similar to the four point bending experiment up to 1000N load. 

This FEA data was generated for strain at each layer for each loading step. Figure 

2-10 gives the stress variation (S11) in the plate, in x direction, which is under 

1000N bending load. At the same loading, the deflection of the plate is given in the 

Figure 2-11.  

  

Figure 2-10: Stress variation in the model in 1000N load 

 

 

Figure 2-11: Deflection of the specimen at 1000N load 

The main purpose of FEA modelling in this study is to obtain layer by layer strain 

variation with the loading. The FBG sensors are embedded in between layers, and 

hence will be measuring the strains at the location of embedment. For the SHM of 

composite structures, simple surface measurements and interpolation will not be 

sufficient. The anisotropic properties and different orientations of the reinforcement 
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fibre layers make the monitoring insufficient only from the surface. Figure 2-12 

gives the strain variation in different plys, while the structure is under 1000N flexural 

load.  

  

  

Figure 2-12: Strain variation in different layers of the specimen 

 

The location of the embedded FBG sensor is between layers 3 and 4, and the centre 

of the FBG is 25 mm shifted from the centre of the specimen as given in the Figure 

2-6. Similarly, an element (element 293) at the same location as the model was  

selected to extract strain for comparison with the experimental results as shown in 

the Figure 2-13.  
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Figure 2-13: The element corresponding to the location of the FBG sensor  

 

2.4.3.1 Results and validation of the FEA model  

The strain values of each loading step for each ply were recorded for the element 

293. The strain variation of the each ply (ply 1 to 10) is given in Figure 2-14. As 

illustrated in the Figure 2-14, the ply 1 is under tension while the ply 10 is under 

compression as a result of bending loading and loading direction.    

 

Figure 2-14: Strain variation with bending loading (ply by ply) 

As the FBG sensor was embedded between ply 3 and 4, for comparison purposes, the 

top surface strain from ply 3 is used. Figure 2-15 shows the variation of FBG 

readings and the top surface strain for the element 293 for ply 3.  
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Figure 2-15: comparison of FBG reading with strain extracted from Element 293, ply 3 

The strain calculated using the peak shift of the FBG sensor and the strain extracted 

from the FEA model from the same location is with similar agreement as shown in 

the Figure 2-15. The negligible mismatch towards the higher loading is due to the 

experimental conditions (effects) which embedded FBG sensor would undergo 

during operation. FBG sensor interrogation, strain calculations using FBG sensors 

and various other effects on FBG sensor readings are thoroughly discussed in the  

Chapter 3.  

 

 Modelling tabular structures 2.4.4

Tubes and pipes made of composite glass fibre/epoxy resin are widely used in 

engineering structures such as aircraft, construction, chemical, civil infrastructures 

and defence industries. Depending on the structural composite, components will 

undergo both static and dynamic loading during their operational lifetime. A good 

example is a helicopter or wind turbine blade in dynamic applications which undergo 

millions of cycles of severe multi-axial loadings during their operational lifetime 

(Figure 2-16) (Epaarachchi & Clegg, 2006). The major drawback for designers of 

Fibre Reinforced Polymer (FRP) materials is the complexity of the failure modes. 
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The failure modes in anisotropic composite materials are more complex than the 

isotropic materials under the multi-axial complex loading which tubes will 

experience during the operation. (Eric, 1995; Lee, Hwang, Park, & Han, 1999) 

 

 

 

Figure 2-16: Wind turbine blade 

 

2.4.4.1 Fabrication of the specimens 

FBG sensors which operate in the range of a 1550nm centre wavelength were 

fabricated on 5μm core and 125μm clad diameter telecommunication grade glass 

fibre. The grating length is 10mm. To ensure maximum bonding between the FBG 

sensor and matrix of resin in the GFRP material, the acrylate layer at the grating 

region of the fibre was removed. Extra protective layer of rubber was applied to the 

fibre to maximise the handling of samples without damage to the sensors. 

The specimen was fabricated with six layers of biaxial glass fibre with 

90
o
\45

o
\45

o
\45

o
\45

o
\90

o
. Kenetix R246TX resin is used as the matrix. The inner 

diameter of the tube is  = 50mm and the thickness, , is in the range of  = 

3mm (Figure 2-17). The dimensions were selected according to the recommended 

geometry by Hodgkinson (2000) for torsion shear testing of thin-walled tubes to 
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ensure the shear stress is uniformly distributed around the circumference and along 

the axis of the tube. The wall thickness is made small compared to the mean radius 

so that the through-thickness shear gradient is negligible. The ends of the specimens 

are over layered with additional layers and tapered to promote failure with in gauge 

length. The tab thickness is 10mm. 

 

Figure 2-17: Thin-walled cylindrical specimen. 

The specimen was fabricated with a rosette attached to the outer surface of the tube 

at the centre of the tube and with an FBG sensor located between layers 5 and 6, at 

an angle of 45
o
 to the axis of the tube (Figure 2-18).  The rosette was attached above 

the FBG sensor (Figure 2-19).  

 

Figure 2-18: Rosette attached to the specimens. 
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Figure 2-19: Specimen with rosette strain gauges and embedded FBG sensor. 

 

2.4.4.2 Experimentation and results 

The torsional testing equipment and the test configuration are shown in Figure 2-20.  

The torsional testing equipment was designed and manufactured at the Centre of 

Excellence in Engineering Fibre Composites (CEEFC), University of Southern 

Queensland (USQ) by the author (Appendix B). The specimens were mounted on the 

torsion test machine with one end fixed. The other end of the specimen was 

supported with roller supports to avoid bending of the samples. Torque was applied 

by loading the arm attached at the roller support side by means of a screw jack. 

Applied torque is measured using an S type load-cell with 0-2kN range.  

 

Rosette 
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http://www.usq.edu.au/ceefc
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Chapter 2    

38 
Gayan Kahandawa 

   

 

 

 

  

 

Figure 2-20: Torsional test setup. 

 

The specimen was torsional loaded in 50 Nm increments as shown in Figure 2-20, 

and the strain gauge readings and FBG spectra were recorded. A Vishay Micro-

Measurements P3 strain indicator was used to measure the strain from rosette and 

Micron Optics 3.1 sm125 optical spectrum analyser was used to measure the FBG 

spectrum Figure 2-20(d). The specimen was loaded three times to ensure reliability 

of the readings.  The data were stored for post processing.   

The reading from the legs 0
o
 and the 90

o
 of the rosette (Figure 2-18) were used to 

verify the loading condition. Low reading of the 90
o
 leg is evidence for a minimal 

bending moment on the tube since the 90
o
 leg lies parallel to the axis of the tube. The 

strain value of the FBG sensor was calculated using peak shift. Since apodisation 

was present, averaging of the FBG spectrum was not accurate. A peak detection 
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algorithm was used to capture the peak of the spectrum.  Experimental results 

observed from the FBG sensors were compared with the strain values from rosette as 

shown in Figure 2-21.  

 

 

Figure 2-21: Variation of FBG and rosette readings 

A FEA model of the specimen is given in Figure 2-22. Figure 2-23 shows the 

principal strain, shear strain, FBG and FEA results for specimen. Finite element 

results show good agreement with the experimental results. The FBG sensor reading 

and FEA results of layer 5, where the FBG sensors are embedded, indicated an 

excellent agreement. 

 

Figure 2-22: FEM of the specimen 
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Figure 2-23: Variation of strain with the applied torque for the specimen  

 

 Modelling of a complex structure: helicopter blade 2.4.5

shank fitting 

When it comes to modelling of aerospace structures, it is rare to have simple 

structures such as plates and tubes. The complex structural elements used in 

aerospace applications need to be monitored with SHM systems as complexity 

increases the damage initiation risk. In the design stage of composite structures, and 

also for development of SHM systems for monitoring structures, it is essential to 

have reliable FEA modelling techniques. The following study details the modelling 

of a blade shank fitting which connects a blade of a helicopter to hub. With the 

modelling results, the representative sample has been fabricated and tested for 

verification. Figure 2-24 illustrates a drawing of a helicopter rotor blade shank 

fitting.  
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Figure 2-24: Helicopter rotor blade shank fitting (Bell helicopter, structural repair manual-BHT-MED-
SRM-1) 

The geometric parameters of the component are given in the Figure 2-25. The 

component, modelled in commercial FEA package ABAQUS, is shown in Figure 

2-26. The holes available in the blade shank fitting were used to connect the 

helicopter blade and the hub using bolts. Consequently, in the FEA model, the 

boundary conditions were selected to be compatible with real applications.  

 

Figure 2-25: Dimensions of the component in millimetres (mm) 
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Figure 2-26: FEA model of the connector 

The model was loaded in tension bending and torsional combined loading as 

illustrated in Figure 2-27. In real application, the connector is subjected to similar 

load cases as the helicopter blade is applying axial load due to centrifugal action, 

bending load due to gravitation load and torsional load due to pitching of the blade.  

 

Figure 2-27: Combined loading used in the model  

 

Figure 2-28 shows the stress variation of the component under combined loading. 
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Figure 2-28: Stress variation of the model under combined loading 

 

2.4.5.1 Fabrication of the specimen 

The blade shank fitting was fabricated with ten layers. The layup orientation was 

[0/90/45/-45/0]s.  Kenetix R246TX resin was used as the matrix. Wet bagging was 

used for the fabrication of the sample.  In the wet bagging process the initial layup 

procedure is similar to the hand layup, but after completing the part, a vacuum was 

applied to the sample as shown in the Figure 2-30(a). The vacuum removes the air 

trapped in the specimen and presses the layup evenly providing better properties and 

surface finish (Figure 2-30(b)). The cured plate was shaped to the geometry of the 

connector and the connecting holes were created using drilling as shown in the 

Figure 2-30(c). Finally, two strain gauges were attached to the specimen closer to the 

drill holes as shown in the Figure 2-30(d).  The locations of the sensors are given in 

the Figure 2-29. Sensor 1 was attached in parallel to x direction and sensor 2 was 

placed 45
o
 to the x direction.  
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Figure 2-29: Locations of the two strain gauges 

 

  
 

    
 

Figure 2-30: Fabrication of the sample 

 

2.4.5.2 Experimentation 

For the loading of the specimen, two fasteners were fabricated (Figure 2-31). The 

fasteners were designed to load the specimen using a MTS machine.    
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Figure 2-31: Fasteners used to load the specimen  

The specimen was loaded in tension as shown in the Figure 2-32. The sample was 

loaded for a maximum load of 2000N in 100N steps and the strain from the strain 

gauges was recorded.   

  
Figure 2-32: Tensile testing of the specimen 

 

2.4.5.3 Results and verification of the FEA model 

The strain readings obtained from the strain gauges is used to compare the FEA 

model. For the strain gauge locations, the surface strain in location of the sensor 1, x 

direction strain (E11) was used, and for the sensor 2, 45
o
 direction strain (E12) was 
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used. Locations of the elements corresponding to sensor 1 and sensor 2, are shown in 

the Figure 2-33.  

 

Figure 2-33: Extraction of strain readings from the model 

Figure 2-34 shows the comparison of strain readings obtained from sensor 1 with the 

FEA results.  The comparison of sensor 2 with the FEA results is given in Figure 

2-35.  

 
Figure 2-34: Comparison of sensor 1 with FEA  
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Figure 2-35: Comparison of sensor 2 with FEA 

From the results, it can be seen that using FEA for complicated composite structures 

can be questionable. Even though the FEA model estimates the strain closely in some 

cases, complicated geometries might affect the predictability. Local stress 

concentrations may affect the strain gauge readings. A detailed investigation on those 

effects will be given in Chapter 3. 

 

2.5 Modelling damage in composite structures:  

Delamination 

Delamination damage is one of the most common structural damage types in 

laminated composites, and can result from impact, overload, or fatigue crack growth 

from defects along or near the adhesion layer. Delamination leads to a reduction in 

stiffness and strength of the composite structure and potentially to catastrophic 

failure. Early detection of delamination damage is therefore vital for high risk and 

high value assets such as aircraft and civil infrastructure. An important aspect of any 

damage detection technique, especially displacement and strain based approaches, is 

an understanding of the mechanical behaviour of a delaminated composite 

component under a wide range of load and geometry conditions. This knowledge is 
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achieved through theoretical modelling such as by simplified beam or plate models 

as seen in Wildy et al. (Wildy, Cazzolato, & Kotousov, 2010) or extensive finite 

element analysis (FEA) (Waldron et al., 2002). Theoretical modelling can also 

provide ‘ideal’ comparisons for undamaged and damaged components, and can be 

used to evaluate the success and range of applicability of new damage detection 

methods. Simple beam or plate models are particularly good for this as they allow for 

a wide variation of input parameters without the computational and time constraints 

of FEA methods. 

In the scope of this research work FEA is used for several aspects. One of the key 

aspects is to identify the stress concentrations in composite structures, to detect 

delamination initiation locations. Furthermore, the stress concentrations have been 

used to locate the embedded sensors for damage monitoring. For this process, it is 

extremely important to determine the stress field around initiated damage while the 

structure is under operational loading, in the modelling environment. If the sensors 

were located outside the stress field, those sensors will not be able to detect damage 

in ordinary strain-based methods.   

Consequently, it is extremely important to model delamination using FEA accurately 

in order to place sensors effectively in the process of designing efficient SHM 

systems. The following examples of FEA models were developed to model 

composite components with delamination. First in a simple beam structure, and then, 

in a complicated structure.  
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 Modelling of plate with a delamination 2.5.1

A GFRP composite plate with twenty ply was used as the model. The composite 

layup of [90/0/90/-45/45/-45/45/90/0/90]s was used. The geometric parameters of the 

plate are given in Figure 2-36.  

 

Figure 2-36: Geometric parameters of the plate 

The plate was modelled in two parts as shown in Figure 2-37. Part 1 consisted of 

three (3) ply in orientation [90/0/90] and part two consisted the remaining ply  

[/-45/45/-45/45/90/0/90/90/0/90/0/-45/45/-45//90/0/90/0/90]. For the model, 

continuum shell elements have been used. 

 

Figure 2-37: Two parts of the model 

In the part 1, 10mm partition was created as shown in the Figure 2-38 which acted as 

the delamination of the model.  

300 mm 
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Figure 2-38: Partition of the part 1 

The two parts were placed together, part 2 on top of part 1. The two parts were tied 

only on the two contact surfaces as shown in the Figure 2-39.  The partitioned areas 

were not connected to each other.  

 
Figure 2-39: Contact surfaces of the two parts 

By not connecting the partitioned area of part 1 to part 2, between ply 3 and ply 4 

there was no connections in that particular area. Hence, this partitioned area acted as 

an ideal delamination. The surface interaction in the partitioned area was set to 

frictionless.  

An axial load of 100N and bending load of 50 N was applied one end of the plate 

while the other end was rigidly fixed (Figure 2-40).  
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Figure 2-40: Load applied to the plate 

 

2.5.1.1 FEA Results 

The stress variation of the plate is given in Figure 2-41. The stress variation from the 

simulated delamination was identified from the stress field. Furthermore ply by ply 

strain variation was also possible to obtain. Figure 2-42 shows the strain variation in 

ply 3 and ply 4. 

 

Figure 2-41: Stress variation of the plate 

 

The strain variation in ply 3 and ply 4 were not similar, as ply 3 consisted of 90
o
 fibre 

and in ply 4 it was -45
o
 fibres. The capability of obtaining ply by ply strain 

distribution was used to obtain FEA data to compare with embedded sensor readings.  
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Figure 2-42: Strain variation in ply 3 and 4 

The effect of the delamination can be visualising even from the surface strain 

readings. Figure 2-43 shows the stress variation obtained at the surface of the plate.  

 

Figure 2-43: Strain variation of the ply 20, surface of the plate 

Throughout the study, the aforementioned method was used for the modelling of 

delaminations. In the Chapter 3, the use of fibre optic sensors for the monitoring of 

damage (SHM) will be discussed. Delamination is used as the simulated defect for 

most of the study. Modelling and experimental study was simultaneously carried out 

Ply 3 

Ply 4 
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by comparing results from each method, modelling and experiments. The ply by ply 

strain data was used to compare with embedded FBG sensor readings. In the 

experimental study, embedded FBG sensors were used to monitor strain in order to 

monitor damages. The capability of obtaining ply by ply strain values provides strain 

readings at exact FBG embedded location for accurate verifications. 
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3. Structural health monitoring using  

FBG sensors 

 

3.1 Introduction 

The process of implementing a damage detection and characterization strategy for 

engineering structures is referred to as structural health monitoring (SHM). The 

SHM process involves the observation of a system over time using periodically 

sampled structural response measurements from an array of sensors. Most of offline 

non-destructive test (NDT) methods do not fall into SHM. 

With the complex failure modes of FRP composites, (as discussed in Chapter 2) the 

need for SHM of composite structures becomes critical. With the recent 

developments in the aerospace industry, utilization of FRP composites for primary 

aircraft structures, such as wing leading-edge surfaces and fuselage sections, has 

increased.  This is one of the major reasons for the rapid growth in the research fields 

related to SHM. Impact from flying objects, excessive vibration, and loading can 

cause damage such as delamination and matrix cracking to the FRP composite 

structures. Moreover, the internal material damage in the FRP composite structures 

can be invisible to the human eyes. In some cases, delaminations and cracks remain 

closed while the structure is under no loaded condition. As a consequence, inspection 

for damage and clear insight into the structural integrity become difficult using 

currently available evaluation methods. 

The SHM system developed to monitor aircraft and space structures must be capable 

of identifying the multiple failure criteria of FRP composites (Reveley et al., 2010). 

CHAPTER 3 

Structural health monitoring using  

FBG sensors 
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Since the behaviour of most composites is anisotropic, multiple numbers of sensors 

must be in service to monitor these structures under multi-directional complex 

loading conditions. The layered structure of the composites makes it difficult to 

predict the structural behaviour by using surface mounted sensors only. To address 

this issue embedded sensors need to be used, and these sensors must be robust 

enough to service the structure’s lifetime. It is impossible to replace embedded 

sensors after fabrication of the parts.  

The Fibre Bragg Grating (FBG) sensor is one of the most suitable sensors for the 

SHM of aircraft FRP structures. The FBG sensors can be embedded into FRP 

composites during the manufacture of the composite part with no adverse effect on 

the strength of the part as the sensor is diminutive in size. Furthermore, this sensor is 

suitable for networking as it has a narrowband response with wide wavelength 

operating range, hence can be highly multiplexed. As it is a nonconductive sensor it 

can also operate in electromagnetically noisy environments without any interference.  

The FBG sensor is made up of glass which is environmentally more stable and with a 

long lifetime similar to that of FRP composites. Because of its low transmission loss, 

the sensor signal can be monitored from longer distances making it suitable for 

remote sensing (K. O. Hill & Meltz, 1997; Kersey et al., 1997).   

The FBGs’ capability of detecting stress gradients along its grating length can be 

used to identify the stress variations in the FRP composites by means of chirp in the 

reflected spectra of the FBG sensor (P. C. Hill & Eggleton, 1994); (Le Blanc, Huang, 

Ohn, & Measures, 1994). This phenomenon can be used to detect damage in the 

composite structures (Okabe et al., 2000) (Takeda et al., 2002). But, it has been 

reported that the chirp of the FBG spectrum is not only due to stress concentrations 
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caused by damage accumulation in the composite structure (Y. Wang et al., 2008). 

There are other reasons for chirping of spectra other than existence of damage and 

eliminating such effects during the processing of spectra is necessary to identify 

damage accurately. Section 3.4 will discuss the other effects that cause distortions to 

the FBG spectra. 

The most recent development in the fibre optic sensor field is the pulse-pre-pump 

Brillouin optical time domain analysis (PPP-BOTDA)(Che-Hsien, Nishiguti, & 

Miyatake, 2008). The PPP-BOTDA is capable of achieving a 2cm spatial resolution 

for strain measurements. The PPP-BOTDA based system has been successfully used 

in various industrial applications, however, PPP-BOTDA is so far only able to 

measure the static or quasi-static strain.  

3.2 Fibre Bragg Grating (FBG) sensors 

Fibre Bragg Gratings (FBGs) are formed by constructing periodic changes in the 

index of refraction in the core of a single mode optical fibre. This periodic change in 

index of refraction is typically created by exposing the fibre core to an intense 

interference pattern of UV radiation. The formation of permanent grating structures 

in optical fibre was first demonstrated by Hill and Meltz in 1978 at the Canadian 

Communications Research Centre (CRC) in Ottawa, Ontario. In ground breaking 

work, they launched high intensity Argon-ion laser radiation into germanium doped 

fibre and observed an increase in reflected light intensity. After exposing the fibre for 

a period of time it was found that the reflected light had a particular frequency. After 

the exposure, spectral measurements were taken, and these measurements confirmed 

that a permanent narrowband Bragg Grating filter had been created in the area of 
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exposure. This was the beginning of a revolution in communications and sensor 

technology using FBG devices. 

The Bragg Grating is named for William Lawrence Bragg who formulated the 

conditions for X-ray diffraction (Bragg's Law). These concepts, which won him the 

Nobel Prize in 1915, related energy spectra to reflection spacing. In the case of Fibre 

Bragg Gratings, the Bragg condition is satisfied by the abovementioned area of the 

modulated index of refraction in two possible ways based on the Grating’s structure. 

The first is the Bragg Reflection Grating, which is used as a narrow optical filter or 

reflector. The second is the Bragg Diffraction Grating which is used in wavelength 

division multiplexing and de-multiplexing of communication signals. 

The gratings first written at CRC, initially referred to as “Hill gratings”, were 

actually a result of research on the nonlinear properties of germanium-doped silica 

fibre. It established, at the time, a previously unknown photosensitivity of 

germanium-doped optical fibre, which led to further studies resulting in the 

formation of gratings, Bragg reflection, and an understanding of its dependence on 

the wavelength of the light used to form the gratings. Studies of the day suggested a 

two-photon process, with the grating strength increasing as a square of the light 

intensity (Lam & Garside, 1981). At this early stage, gratings were not written from 

the “side” (external to the fibre) as commonly practiced now, but were written by 

creating a standing wave of radiation (visible) interference within the fibre core 

introduced from the fibre’s end. 

After their appearance in late 1970s, the FBG sensors had been using for SHM of 

composite materials efficiently for more than two decades. Recent advances in FBG 

sensor technologies have provided great opportunities to develop more sophisticated 
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in situ SHM systems. There have been a large number of research effort on the health 

monitoring of composite structures using FBG sensors. The ability to embed them 

inside FRP material between different layers provides a closer look at defects. The 

attractive properties such as small size, immunity to electromagnetic fields, and 

multiplexing ability are some of the advantages of FBG sensors. The lifetime of an 

FBG sensor is well above the lifetime of the FRP structures and also it provides the 

measuring of multiple parameters such as load/strain, vibration and temperature 

(Kashyap, 1999). 

 Evolution of FBG sensors 3.2.1

The Hill´s gratings were made in the fibre core by a standing wave of 488nm argon 

laser light (K. O. Hill, Fujii, Johnson, & Kawasaki, 1978). The grating exposure in 

this case was shown to be a two-photon process. Hill et al., (1978) found a 4% back 

reflection due to variation in refractive index. The field did not progress until Meltz 

et al, of United Technologies proposed that fibre gratings could be formed by 

exposure through the cladding glass of two interfering beams of coherent UV light, 

thus exciting the 240 nm band directly by one photon absorption (Meltz, Morey, & 

Glenn, 1989).  

Reliable fabrication of Bragg gratings depends on a detailed knowledge of the 

underlying mechanisms of photo-induced index changes. The basis of all proposed 

mechanisms is the ionization of GeO2 deficiency centres that exhibit an absorption 

band centred at 240 nm. Hand and Russell (1990) suggested that the photo-induced 

index changes in optical fibres originate from the bleaching of the 240 nm band and 

the creation of two bands at 281 and 213 (Hand & Russell, 1990). Their work 
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explained a photo-induced index change of almost 10% at visible wavelengths. 

However, experimental measurements show much larger index changes.  

To explain the observed large index changes, Sceats et al. (1993) proposed thermo-

elastic stress relaxation of the glass network caused by the formation of regions of 

low density around broken Ge-Si bonds (stress relief model) (Sceats, Atkins, & 

Poole, 1993). Alternatively, Bernardin and Lawandy suggested in 1990, that UV 

irradiation may induce rearrangement of the molecular structure, leading to a 

compaction of the glass matrix; referred to as the compaction model (Bernardin & 

Lawandy, 1990). The fabrication of FBG sensors has been developed to commercial 

level and main techniques used are Split Beam Interferometer, Phase Mask 

Technique and Point-by-Point Method.  

 Fabrication of FBG sensors 3.2.2

In 1989, Meltz et.al showed that it was possible to write gratings from outside the 

fibre (Meltz et al., 1989). This proved to be a significant achievement as it made 

possible future low cost manufacturing methods of Bragg Gratings and enabled 

continuous writing or “writing-on-the-fly”. With this method of writing gratings, it 

was discovered that a grating made to reflect any wavelength of light could be 

created by illuminating the fibre through the side of the cladding with two beams of 

coherent UV light. By using this method (holography) the interference pattern (and, 

therefore, the wavelength of reflected light from the grating) could be controlled by 

the angle between the two beams, something not possible with the internal writing 

method, as seen in Figure 3-1. The figure shows two methods of manufacturing a 

side-written grating. Figure 3-1(b) shows the light beam incident to the fibre with a 

phase mask. In Figure 3-1(a), the two coherent beams of light form an interference 
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pattern which creates a standing wave with variable intensity of light. The variable 

radiation intensity occurs within the fibre core. This variation in radiation intensity 

creates a modulated index of refraction profile within the fibre core. In Figure 3-1(b) 

the modulation is created by using a single light beam and a phase mask. In areas 

where the mask allows light transmission, the index of refraction is changed within 

the core, creating the grating. This technique is particularly useful to write gratings 

quickly. Both of these methods allowed for “tuning” of the grating to whatever 

wavelength was desired. This, in itself was an important development, as it allowed 

gratings to be easily written at various wavelengths to follow the communications 

industry’s changing source wavelengths. In addition, it was found at the time that this 

method was far more efficient. 

 

Figure 3-1: Split beam interferometer and Phase mask technique 

As described earlier, the first method of fabricating gratings was internal writing 

through standing waves of radiation and the second method was the holographic side 

writing of gratings. Today, both of these methods have been surpassed by the use of 

the phase mask (Anderson, Mizrahi, Erdogan, & White, 1993; K.O. Hill, Malo, 

Bilodeau, Johnson, & Albert, 1993). The phase mask is a planar slide of silica glass 

or similar structure which is transparent to UV light. A periodic structure with the 

appropriate periodicity is etched onto the glass slide to approximate a square wave 

(a) (b) 
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using photolithography (as viewed from the side) As shown in Figure 3-2: Use of 

phase mask for fabrication of grating, the optical fibre is placed very close to the 

phase mask while the grating is written. UV light is introduced to the fibre and is 

diffracted by the periodic structure of the phase mask, creating the grating structure 

described above. The periodic structure created in the fibre is half that of the spacing 

of the periodic structure in the phase mask. In this manufacturing technique, the 

periodicity of the FBG is independent of the wavelength of the UV light source. The 

wavelength of the UV light source is selected based on the absorbance spectra of the 

doped optical fibre core, thereby maximizing the source’s efficiency in writing 

gratings. Use of phase masks reduce costs, and made greater precision Bragg 

gratings possible by simplifying the manufacturing process. In addition, the phase 

mask technique made it possible to automate grating writing, and to write multiple 

gratings on a fibre simultaneously. The phase mask procedure allowed for the 

efficient writing of other types of gratings such as chirped gratings which have non-

constant periodicities for a wider spectral response.  

 

Figure 3-2: Use of phase mask for fabrication of grating 

The process of writing a grating using the phase mask method is illustrated in the 

Figure 3-3. The FBG sensors used in this work was fabricated at interdisciplinary 

Photonics Lab (iPL) at the University of Sydney. After completing training on 
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fabrication of FBG sensors, the author fabricated the sensors for the complete 

research work presented in this thesis.  

The Figure 3-3(a, b) shows the setup for the grating writing process with the phase 

mask and mirror arrangements to direct the laser to the phase mask and the phase 

mask mounted just above the fibre respectively. Figure 3-3(c) shows the writing in 

progress and the Figure 3-3(d) shows the corresponding response from the created 

grating.  

The reference spectrum shown in the Figure 3-3(d) was used to maintain the 

consistent reflection power of the sensors. When the reflected spectrum from the 

grating reached the reference spectrum power, the writing process was terminated. 

Excessive exposure of the fibre to the laser will broaden the reflection spectra as 

shown in the Figure 3-4, which makes it hard to track the peak of the spectrum. 
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Figure 3-3: Fabrication of FBG sensor using phase mask method (a) setup for the writing, (b) phase 
mask, (c) writing in progress, and (d) response of the grating 

 

Figure 3-4: Broadening of the reflection spectra due to over exposure to laser light 

The side lobes are one of the major drawbacks of using phase mask technique for 

FBG fabrication. As shown in the Figure 3-5: Side-lobes of an FBG sensor response 

spectrum, side-lobes of an FBG sensor response spectrum, are inherent to a particular 

phase mask and will be written to all FBG sensors fabricated using that phase mask. 

Apodisation technique can be used to get rid of those side lobes, but it will 
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extinguish the uniformity of the grating length (λ) which drops the sensitivity of the 

sensor for SHM purposes.   

 

Figure 3-5: Side-lobes of an FBG sensor response spectrum 

 

3.2.2.1 Apodisation of FBG sensors 

The side-lobes of the response spectra of an FBG sensor is not always desirable for 

some applications (Rego, Romero, Frazao, Marques, & Salgado, 2002). The cause of 

the side-lobes is the abruption of the grating at the beginning and exit of the sensor. 

The rectangular function of the grating yields to a sinc function, with its associated 

side-lobes structure apparent in the reflection spectrum. 

The suppression of the side-lobes by gradually increasing the coupling coefficient at 

the beginning of the grating and gradually decreasing at the exit form, is called 

apodisation of the reflection spectrum of an FBG sensor. 

However, simply changing the refractive index modulation amplitude change local 

Bragg wavelength and this is not desirable for FBG sensors used in damage 

detection. The variable Bragg wavelength makes the tracking difficult for strain 

gradients along the length of the FBG sensor. This is significant as is used to detect 

the damage which causes the strain gradient.  
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Thought out the work presented in this thesis, all the sensors 

used were not subjected to apodisation. 

 

 Principle of Bragg Grating   3.2.3

As described previously, FBG sensors are fabricated in the core region of specially 

fabricated single mode low-loss germanium doped silicate optical fibres. The grating 

is the laser-inscribed region which has a periodically varying refractive index. This 

region reflects only a narrow band of light corresponding to the Bragg wavelength 

λB, which is related to the grating period Λo  

   
      

 
                                                                                                              (3-1) 

Where k is the order of the grating and no is the initial refractive index of the core 

material prior to any applied strain.  

Due to the applied strain, ε, there is a change in the wavelength, ΔλB, for the 

isothermal condition, 

   

  
                                                                                       (3-2) 

where Pe is the strain optic coefficient and is calculated as 0.793.  

The Bragg wavelength is also changing with the reflective index. Any physical 

change in the fibre profile will cause variation of the reflective index. The variation 

of the Bragg wave length   ,as a function of change in the refractive index    , and 

the grating period    , is given below. 

                                                                       (3-3) 
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where η is the core overlap factor of about 0.9 times the shift of the Bragg 

wavelength, neff is the mean refractive index change, and Λo is the grating period. 

For the Gaussian fit, the sensor reflectivity can be expressed as 

 (    )                  (    )
                                                (3-4)  

where y0 is the added offset to represent the dark noise, αs is a parameter related to 

the full width at the half maximum (FWHM), λ is the wavelength, λs is the central 

wavelength, and S0 is the initial reflectivity of the fibre. 

 

3.3 Embedded FBG sensors 

In the layered FRP composite structure, it is difficult to use surface or external 

sensors to monitor inside damage effectively. The ability to embed FBG sensors 

inside FRP sandwich panels between different layers provides a closer look at 

defects such as delaminations and cracks. The FBG sensor is sensitive to stress 

gradients along the gauge length of the sensor and displays them as chirp (or 

distortion) from its response spectra.  

Embedding FBG sensors in structures introduces loads and strain in all directions to 

the FBG sensor, not just in the axial direction as the structure undergoes loading. 

This concept is further complicated by issues of embedment into FRP composites, 

where FBG fibre size and alignment are important issues. In addition, the 

introduction of embedded fibre sensors can cause residual stresses and concentrated 

stresses in the FRP composite that need to be eliminated or accounted for when 

analysing the structure as a whole. Those effects influencing the FBG sensor are 

discussed in Section 3-4, 
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 Embedding process  3.3.1

A major advantage of using FRP composites is the possibility of deciding on the 

number of layers and layup orientation based on the required structural behaviour. In 

a FRP composite aerospace structure there are a number of layers with multiple 

orientations. The layers are placed one on top of the other and hence it is possible to 

embed FBG sensors in any layer during the manufacturing of the structure.  

The process of embedding FBG sensors in FRP composites is quite complicated. The 

level of difficulty is largely dependent on the geometry of the part, lay-up 

configuration and embedding location of the sensors in the part. In general, FBG 

sensors will be placed closer to critical sections of the structure where high stress 

concentrations are predicted.  However, in reality locating FBG sensors in predicted 

locations are not always possible. On the other hand, reliance on a single sensor is 

not recommended as it is not possible to replace failed embedded sensors after 

manufacturing. As a result, many FBG sensors need to be embedded in the 

surrounding area closer to the critical locations of the structure in order to capture 

strain levels reliably.  

As such, multiplexed FBG sensors play a critical role in the SHM of aerospace 

structures. Normally in FRP, the damage starts from stress concentrations. In the 

process of implementing SHM systems, identification of the locations that have 

potential for damage is essential. Finite Element Analysis (FEA) techniques are 

being widely used to identify stress concentrations and, hence, to locate FBG 

sensors. It is less likely that FBG sensors are placed in simple planer structures in 

real applications, apart from where the requirement is mere strain rather than the 

damage detection.  
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Figure 3-6 shows the FEA analysis on a base of a helicopter blade using commercial 

FEA software, ABAQUS. From the FEA results the stress concentrated points have 

been identified and the ply with the maximum stress was selected to embed the FBG 

sensor. This process is discussed in detail in the Chapter 5. To monitor the stress 

concentration in Figure 3-6, FBG sensors were placed as shown in the Figure 3-7(a).  

Figure 3-7(b) shows the completed part with embedded FBG sensors. 

 

Figure 3-6 FEA analysis of helicopter blade base 

Manufacturing difficulty is the main problem with placing FBG sensors in a 

complicated location. The aerospace industry’s advanced manufacturing 

technologies, (such as pre-preg and autoclave process) creates a hazardous 

environment for brittle sensor. Every precaution needs to be taken to not apply loads 

on the sensor in the non-cured resin matrix during the manufacturing process. With 

applied pressures as high as 700kPa, even the egress ends of the sensors need to be 

supported to avoid breakage. It is essential to develop methods to protect FBG 

sensors during the FRP composite manufacturing processes.  Since there is no way of 

replacing damaged FBG sensors after manufacturing of the component, a strict set of 

procedures must be developed to follow during manufacture.   
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Figure 3-7: (a) Embedding FBG sensors and the support for the out coming end before sending to the 
autoclave (b) Cured sample from the autoclave 

Figure 3-7(b) shows a support given to the egress end of the sensor. Sometimes it is 

helpful to have an extra protective layer of rubber applied to the fibre to maximize 

the handling of samples without damage to the sensors. 

Figure 3-8 shows the use of a hand layup process to fabricate a FRP panel with 

embedded FBG sensors. Since the FBG sensors are brittle, it is necessary to be 

particularly careful during the process. Silicon rubber was applied to the egress end 

of the sensors to provide extra protection. Careful attention when rolling near FBG 

sensors is essential, as shown in Figure 3-8(d). 

 

 

 

(a) (b) 
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Figure 3-8: Hand layup process to fabricate FRP panel (a) Glass fibre fabric with different fibre 
orientations (b) Placement of FBG sensors (c) Application of protective silicon to egress ends of the 
sensor (d) Rolling (e) FBG sensor ends coming out of the panel (f) Cured panel with embedded FBG 

sensors  

As a precaution to avoid premature failure of FBG sensors during the fabrication, 

protective tubing was used (as shown in Figure 3-8(f)). Only the part of sensor 

imbedded in the panel was kept outside the tube. The sensor part outside the panel 

was supported from the top with a wooden frame to avoid contact with the wet top 

(a) 

(f) (e) 

(d) (c) 

(b) 
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surface of the panel, as shown in Figure 3-8(d). For the egress ends of the sensor, 

silicon was applied to provide flexibility while protecting the ends (Figure 3-8(d)).  

FRP composite production methods are currently expensive and do not always 

produce composites with predictable traits. The autoclave process is extremely costly 

in terms of capital, skilled labour and time.  Quality control is very difficult with the 

hand layup method. A cheaper alternative is the vacuum bag and oven process, 

which requires fewer and cheaper materials, and produces composites with similar 

traits.  The vacuum used has a maximum pressure of 80kPa, which can still produce 

quality laminates. However, most of the aerospace grade composites use autoclave 

curing to obtain the required quality. 

 

3.4 Effects on embedded FBG sensors 

Though the embedded FBG sensor is used to monitor strain in order to detect 

damage, there are several effects that interfere with the response spectra of the 

sensor. During the curing of resin, the shrinkage affects the sensor and leaves it 

permanently compressed. On the other hand, loading on the composite is affecting 

the sensor by leading to transverse loads applied to the sensor. 

   

 

 Curing effect on FBG sensors 3.4.1

During the curing process the FRP composite is subject to shrinkage. The amount of 

shrinkage depends on the resin and the fibre fraction. The shrinkage applies a 

compressive loading on an FBG sensor and, as shown in the Figure 3-9, the peak of 
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the FBG sensor moves to a new centre location after curing. It was found that pre-

tensioning of the sensor is a possible solution to avoid there shrinkage effects. Pre-

tensioning can be used to locate the peak in a desirable position as well.  There is no 

significant longitudinal shrinkage of the sensor if the sensor is embedded between 

unidirectional parallel fibres and is parallel to the fibres. However, restricting to this 

orientation is difficult in real applications.  

 

 

Figure 3-9: Movement of the peak during curing due to shrinkage of thin FRP plate 

 

 

Figure 3-10: Distortion of the peak during curing, due to shrinkage of thick (8 mm) FRP plate 

 

The lateral shrinkage can be neglected for the thin FRP plates. However, in 

considerably thicker structures, lateral shrinkage is considerable and will distort the 
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response spectra of the sensor (Figure 3-10), especially when the FBG sensor is 

embedded between non-parallel fibres. The sensor becomes distorted due to uneven 

transverse loads applied by adjacent fibres as discussed in Section 3.5. To minimise 

the distortion to the FBG sensor caused by shrinkage during the curing, pre-

tensioning of the sensor can be used.  

Figure 3-11 shows the setup used to pretension the FBG sensor during the fabrication 

of an FRP panel. Pre-tensioning allows the sensor to be aligned with the fibres of the 

FRP panel if embedded between parallel fibres. Also, if adequate pre-tension is 

applied, during the shrinkage of the resign used for the FRP panel, the fibre remains 

straight (Figure 3-12). Further, there is no significant distortion to the FBG spectrum 

and peak relocation is also minimal.  

 

 

Figure 3-11: Pre-tensioning of FBG sensor during fabrication of an FRP panel 
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Figure 3-12: Pre-tensioned FBG before and after the curing process 

 

 Loading effect of FBG sensor 3.4.2

FBG sensors are very good in strain measurements and the linear unidirectional 

sensitivity in the axial direction of the sensor is desirable for accurate and reliable 

strain readings. In such applications, the FBG sensor undergoes pure elongation or 

contraction and hence, the cross-section always remains in a circular shape. In 

multidirectional loading cases, an FBG sensor may be subjected to torsional 

deformations other than linear elongation or contraction. For example, when a torque 

is applied to a composite sample which has an embedded FBG sensor, it undergoes a 

twist which may cause changes to its cross-section.  

Another possibility of changed cross-section of FBG sensors under torsional loading 

is due to micro-bending of the grating. The embedded sensor is not always laid on 

the matrix and there is a possibility of laying an FBG between reinforced fibre mats. 

In that situation, when the structure is subjected to lateral pressure, the fibre sitting 

on the FBG sensor will press the FBG sensor against the fibres, causing the sensor to 

experience micro-bends. These changes of the cross-section of the FBG lead to 

changes in the refractive index of the core material of the sensor. Since the changes 
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are not uniform along the grating length, the refractive index of the sensor unevenly 

varies along the grating length of the sensor causing distortion in the FBG spectra. 

It is obvious that the distortion of FBG sensors depends on the type of loading. The 

effect of the twist and micro-bending of FBG sensors under multi-axial loading has 

been identified as the causes for this discrepancy.  The change of section geometry of 

the FBG sensor due to micro-bending and twisting, leads to a variation of the 

refractive index of the FBG core material which causes distortion of the FBG 

response spectra. Figure 3-13 illustrates a distorted FBG sensor response due to 

tension and torsion combined loading on the FRP panel which the FBG is embedded.  

 

 

Figure 3-13: Distortion of the peak due to applied torsion and tension combined loading 

 

3.4.2.1 Effect of transverse loading on refractive index of FBG sensor 

The effect of transverse loading on the refractive index of glass fibre core material 

has been investigated by many researchers (S. A. Mastro, 2005). The simplest case to 

begin the analysis of the FBG is a diametrically loaded cross-section of an optical 

fibre with no coating or jacket and is been comprised only with silica. The load case 

can be defined by the Hertz solutions for stress states in disks and spheres under 
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diametrical compression under point loading (Procopio, Zavaiangos, & Cunnigham, 

2003). The Hertz approximation assumes very small strains and shape change, point 

loading, and frictionless contact. These assumptions are appropriate for a high 

Young’s modulus material like silica optical fibre (E=69 GPa). Hertz’s 

approximations were first formulated for brittle high modulus materials. Plane strain 

is also assumed. Equations 3-5 and 3-6, give the stress in x and y directions while the 

fibre is under point load, P (Figure 3-14). 

 

 

 

 

 

 

 

 

Figure 3-14: Transvers loading on cross-section of the fibre 

 

Hertz formulated the normal stresses within the disk to be: 
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that maximum stresses will occur in the centre of the disk, and that stress is tensile 

along the x axis. The solution of these equations give the normal stresses in the x and 

y direction for any location (x,y) within the optical fibre cross section. 

Using the stress at these locations, a map of stress for both σx and σy can be created 

for the fibre core. If these values are combined with a relation for photoelasticity, 

which directly relates the state of stress to the change in index of refraction, then a 

map of the index of refraction can be created for the optical fibre core. 

Photoelasticity relates the change in the index of refraction to the stresses in the fibre 

by:  

 

 

where neff is the effective index of refraction, E is the Young’s modulus, ν is the 

Poisson’s ratio, p is the photo elastic constant, and σx,y,z are normal stresses. The 

above analysis was completed for the simplest case, a cylindrical uncoated silica 

fibre with a circular cross section (Figure 3-15). 

Equations 3.7 and 3.8 gives the variation of the effective index of refraction with the 

stress in x and y directions of the fibre.  
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Figure 3-15: Index of reflection change under transverse loading (a) x direction, (b) y direction (S. 

Mastro, 2005) 

 

The uneven loading on the fibre makes an uneven distribution of the index of 

reflection along the length of the FBG sensor making the reflection spectra distorted.  

Experimental verification of the transverse loading effect on the FBG sensor 

spectrum distortion is given in Section 3.5. 

3.5 Self-distortion of the FBG sensor 

Although the linear unidirectional sensitivity is excellent, this sensitivity creates 

difficulties for accurate and reliable strain readings in the multidirectional loading 

conditions created in real fibre composite applications.  If the FBG sensor undergoes 

pure tension or compression, the cross-section always remains in a circular shape. In 

multidirectional loading cases, FBG sensors are subject to torsional deformations and 

bending in addition to tension or compression. When a torsional load is applied to a 

composite sample which has an embedded FBG sensor within it, the embedded FBG 

sensor undergoes a twist which will cause changes to its cross-section. Another 

possibility of changed cross-section of FBG sensors under torsional loading is due to 

micro-bending of the grating (Martelli, Canning, Gibson, & Huntington, 2007). The 
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embedded sensor is not always lying on the matrix and there is a possibility of lying 

an FBG between reinforced fibre mats. The fibres near the FBG sensor will press the 

FBG sensor against the fibres when the structure is subjected to lateral pressure, 

causing the sensor to experience micro bends (Y. Wang et al., 2008). The changes of 

the cross-section of FBG sensor changes the refractive index of the core material of 

the sensor as discussed in Section 3.4.2.1. Since the changes are not uniform along 

the grating length, the refractive index varies unevenly along the grating length of the 

sensor causing distortions in the FBG spectra.   

The following section details a pilot studies which was undertaken to investigate the 

several effects on self-distortion of FBG spectra.  

 Torsional loading of FBG sensor:  3.5.1

Experimental verification  

3.5.1.1  Fabrication of the specimens 

Two tabular-specimens were fabricated (Specimen 1 and Specimen 2) with 6 layers 

of biaxial glass fibre fabric in the orientation of [90
o
\45

o
\45

o
]s. Kenetix R246TX 

epoxy resin was used as the matrix material. The inner diameter of the tube was  = 

50mm and the thickness, Δ, is Δ = 3mm. The dimensions were selected 

according to the recommended geometry by Hodgkinson (2000) for torsion shear 

testing of thin-walled tubes to ensure that the shear stress is uniformly distributed 

around the circumference and along the axis of the tube. The wall thickness is made 

small compared to the mean radius so that the through-thickness shear gradient is 

negligible. The ends of the specimens are over-layered with additional layers and 
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tapered to promote failure within the gauge length. The tab thickness was 10mm 

(Figure 3-16) . 

 

Figure 3-16: Configuration of thin-walled cylindrical specimen 

FBG sensors which operate in the range of 1550nm centre wavelength were 

fabricated on 9μm core and 125μm clad diameter telecommunication grade glass 

fibre (SMF28). The grating length was 10mm. To ensure maximum bonding between 

the FBG sensor and matrix of resin in the GFRP material, the acrylate layer at the 

grating region of the fibre was removed. An extra protective layer of rubber was 

applied to the ends of the fibre which were located outside the sample to improve the 

flexibility of handling of samples without damaging the sensors.  Specimen 1 was 

fabricated with an FBG sensor located in between layers 5-6, at an angle of 45
o
 to the 

axis of the tube (Figure 3-17(a)).  

 

                    (a) Specimen 1                (b)  Specimen 2   

Figure 3-17: Specimen 1 and 2 with embedded FBG sensors 

FBG sensors 

Delamination  
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Specimen 2 was fabricated with an embedded delamination between the layers 4-5 at 

the centre of the tube (Figure 3-17(b)). Two FBG sensors were placed in the sides of 

the delamination between the 4th and the 6th layers.  One FBG sensor was attached 

parallel to the axis of the tube and the other FBG was placed directly above the 

delamination at a 45
o
 angle to the axis of the tube between layers 5-6.  

Figure 3-18 shows the configuration of the embedded delamination between the 

layers 4-5 in the centre of the tube.  

 

 

 

 

 

Figure 3-18: Configuration of the Delamination in the Specimen 2 

 

 

Figure 3-19: A view of a plate specimen (Specimen 3 and 4) with an embedded FBG sensor 

In addition to cylindrical samples, two plates were fabricated (Specimen 3 and 

Specimen 4) as shown in Figure 3-19. The lay-up configuration was [0/0/90]s for 

Specimen 3 and for Specimen 4 was [0/+45/-45]s. In both panels the FBG sensor 

was placed in-between the outer layers. In Specimen 3, between 0/0 layers and in 

50 mm 

50 mm 

225 mm 

  70 mm  
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Specimen 4, between 0/+45 layers. In panel 3, the FBG sensor was placed between 

parallel fibre layers and in Specimen 4, between non-parallel fibre layers. 

 

3.5.1.2 Experimentation   

The torsional testing equipment and the test configuration is shown in Figure 3-20.  

The torsional testing equipment was designed by the author and manufactured at the 

Centre of Excellence in Engineering Fibre Composites (CEEFC), University of 

Southern Queensland (USQ). Manufacturing drawings and specifications are given 

in Appendix B. Specimens were mounted on the torsion at test equipment with one 

end fixed. The other end of the specimen was supported with roller supports to avoid 

bending of the samples. Torque was applied by loading the arm attached at the roller 

support side by means of a screw jack. Applied torque was measured using an S type 

0-2 kN range load-cell as shown in Figure 3-20(b). When applying a bending load, 

the roller support could be removed. 

The specimen was loaded in 50 Nm increments, and FBG spectra were recorded. A 

Micron Optics sm125, optical spectrum analyser was used to measure FBG spectra. 

Each specimen was loaded three times to maintain the consistency of the readings.  

The data was recorded and stored for post processing.   

 

http://www.usq.edu.au/ceefc
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Figure 3-20: Torsional test setup 

A lateral pressure of 6MPa was applied to the embedded FBG sensors in Specimens 

3 and 4 by means of a load of 2250 N on an area of 25 X 15 mm
2
 (as shown in 

Figure 3-21) and the spectra were recorded. 

 

Figure 3-21: Lateral loading of FBG sensor in Specimens 3 and 4 

Subsequently, Specimens 3 and 4 were loaded on a mechanically operated testing 

machine as shown in Figure 3-23. The panels were subjected to a torque and axial 
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Embedded 

FBG Sensor 

Specimen 3 

(and 4)  

Support 

Tube 

Load cell 

Loading arm 

Screw Jack 

Roller 

support 

(a) 

(d) (c) 

(b) 

Load cell 



Chapter 3   

85 
Gayan Kahandawa 

load independently, and subsequent combined axial and torsional loads (Figure 

3-23). The machine was used to apply axial tension to the specimen by moving top 

and bottom supports. The torque was applied on the other hinge by means of a 

handle fixed to one support while the other support was fixed. The rotating handle is 

shown in Figure 3-23(b).  

 

 

 

 

 

 

Figure 3-22: Axial and torsion combined loading on the panel 

 

Initially, Specimen 3 was subjected to a 10 Nm torque without any axial load. Then 

the specimen was loaded with axial loads of 420 N and 730 N and finally, combined 

axial and torsional loading was applied. The FBG spectrum was recorded for three 

load cases, namely pure axial, pure torsion and combined loading. 

 

 

Figure 3-23: Axial and torsional loading on FBG 
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3.5.1.3 Results and discussion  

 Spectrum of sensors embedded in Specimen 1 and 2:  The reflected spectrum of the 

sensor embedded in Specimen 1 was distorted with applied torque as shown in 

Figure 3-24. Figure 3-24(a) shows the response spectra of the FBG while the tube is 

under 300 Nm torsional load and Figure 3-24(b) shows the response spectra under 

425 Nm torsional loads.  Since there is no significant defect at the vicinity of the 

embedded FBG sensor of Specimen 1, the main peak of the spectrum can be clearly 

distinguished from the other peaks. With the incremental increase in torque, the main 

peak moves rightward while the distortion of the spectra also varied significantly.  

 

 

  

 

Figure 3-24: Reflected spectrum of the FBG sensor embedded in Specimen 1 under torsional loading. 
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Figure 3-25 shows the reflected spectrum of the FBG sensor embedded in Specimen 

2, parallel to the axis of the tube. The specimen is under torsional loading of 300 Nm 

as shown in Figure 3-26. As the bending of the beam is minimal, the original peak 

must be intact. However, the presence of the delamination in the same layer and 

possible micro-bending due to torsional loading has distorted the spectrum with the 

increased toque. In this case the track of the main peak was lost. 

  

Figure 3-25: Reflected spectrums of the FBG sensor which is parallel to the axis of Specimen 2 

 

Figure 3-26 shows the reflected spectrum of the FBG sensor embedded in Specimen 

2 at an angle of 45
o
 to the long axis and above the delamination. The 45

o
 sensor was 

positioned between layers 5 and 6 and in the centre of the long axis as in Specimen 1. 

The peak movement of the sensor was minimal compared to Specimen 1. The two 

peaks observed in 300 Nm loading (Figure 3-26(a)) were further widened (Figure 

3-26(b)) with increased loading due to the stress concentration and the distortion of 

the sensor’s cross-sectional geometry. The other important observation here is the 

disappearance of sharp peaks (Figure 3-26) which may be a combined effect of the 

delamination and the section geometry distortion.   
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Figure 3-26: Reflected spectra of the FBG sensors in the 45o direction embedded in the Specimen 3 

 

Figure 3-27 provides a simple explanation to this discrepancy. As shown in Figure 

3-27(a), the pressure load applied on FBG sensor by the outer glass fibre layers, can 

distort the cross section of FBG to an oval shape. Since the FBG sensor is placed in-

between non-parallel fibre layers, micro bending of the sensor is also possible. The 

top 90
o
 layer fibres undergo tension due to the torsional loading on the tube. Due to 

the large diameter of the FBG sensor, compared to the diameter of glass fibres, there 

are additional transverse forces on the FBG sensors which lead to micro-bending as 

shown in Figure 3-27(b). 
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(a) Deformation of the cross-section of the sensor due to torsional loading 

 

 

(b) Micro-bending of the sensor 

 

Figure 3-27: Transverse loading on FBG sensor 

 

Both these effects will lead to a variation of the refractive index of the core material, 

causing the chirped spectrum as shown in the Equation 3.3. 

This explanation also supports the observations reported by Wang et al (2007) and 

Yiping et al (2005). (H. Wang, Ogin, Thorne, Reed, & Ussorio, 2007; Yiping et al., 
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2008). Theoretical explanation for this discrepancy was provided by Mestro, (2005) 

as discussed in Section 3.4.2.1. 

 

 

 

Figure 3-28: Embedment of FBG sensor between glass fibre 

 

Spectra of embedded FBGs inside Specimens 3 and 4: Specimen 3 with an FBG 

between layers 1 and 2, both with 0
o
 fibre direction, (Figure 3-28(a)) did not show 

any significant distortion to the spectrum under lateral pressure loading, as shown in 

Figure 3-29(a). There is no or negligible possibility of micro-bending happening in 

the FBG sensor since the glass fibres and FBG are parallel to each other. The 

spectrum of FBG in Specimen 4 between layers 1 and 2, which are in 45
o
 angle to 

each other (Figure 3-28 (b)), was distorted as shown in Figure 3-29(b), under lateral 

pressure loading. The overlapping glass fibres applying individual small transverse 

forces on the FBG, as explained in the above section, could possibly be the cause of 

this behaviour. 
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Figure 3-29: Chirp in the FBG sensors due to lateral loading 

 

Figure 3-30 shows the distortion of the spectrum of the FBG sensor embedded in 

Specimen 3 due to applied torque of 10 Nm only. Figure 3-31(a) and (b) show the 

chirp of FBG spectrum with 420N and 730N axial load combined with the 10 Nm 

torque.  
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Figure 3-30: Spectra of embedded FBG in Specimen 3 under an applied torque 

 

  

 

  

 

Figure 3-31:  Spectra of embedded FBG in Specimen 3 under pure axial and combined torque and 
axial load 
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With the applied axial load, the peak of the spectrum moved smoothly rightwards. 

While the axial load was fixed at 420 N, a torque of 10 Nm was applied to the 

specimen. The spectrum chirped as shown in the Figure 3-31(a). The peak of the 

spectrum moved leftward, while axial load remained at 420 N. The process was 

repeated with a higher axial load, 730 N and the results demonstrated similar travel, 

as shown in Figure 3-31(b). Specimen 3 had an embedded FBG sensor between 

parallel glass fibre layers. By twisting the panel, the FBG also twisted, but the 

possibility of micro-bending was minimal. Hence, the results obtained in Figure 3-30 

and Figure 3-31, representing the twisting effect on the FBG. Therefore, the use of 

FBG sensors to measure axial strain in a twisted sample did not produce accurate 

results.   

The FBG sensors which were embedded in torsionally loaded composite samples 

have shown substantial distortion in reflected spectra without any significant damage 

at the vicinity of the grating. On the other hand, it has been observed that the effects 

of stress concentrations due to a delamination have also caused distortion of the 

spectra of the FBG sensor as expected. As such, it can be concluded that the 

distortion of FBG sensors is dependant on the type of loading.  The effect of the twist 

and micro-bending of FBG sensors under multi-axial loading is the cause of this 

discrepancy.  The change of section geometry of the FBG sensor leads to variation of 

refractive index of the FBG core material along the length which causes distortions 

to the FBG response spectrum. The effect of twist and micro-bending was 

independently identified by separately subjecting an FBG sensor to twist and micro-

bending. It has been observed that twisting causes chirp with smooth peaks (Figure 

3-29(a) on FBG spectra whereas micro-bending causes small sharp peaks (Figure 

3-29(b). Since the effect of the loading on the FBG sensors is significant, these 
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effects must be accounted for in the post-processing of the spectra for damage 

identification in an advanced SHM system.  

 

3.6 Distortion of the embedded FBG sensor spectra 

The majority of research work on FBG sensors in SHM of composite structures has 

focused on investigation of the spectra of FBG sensor embedded in the vicinity of 

damage. Observations of the distorted sensor spectra due to stress concentrations 

caused by delaminations and cracks have been used to estimate the damage 

conditions. Many researchers have investigated purposely damaged axially loaded 

specimens, and the changes of FBG spectra were attributed to the damage and 

successfully identified the damage (Takeda, Okabe, & Takeda, 2008). In real life 

situations, the applied loads are not limited to uni-axial loads and hence the 

performance of FBGs in multi-axial loading situation needs to be investigated for a 

complete understanding of damage status. The FBG spectral response is significantly 

complicated under multi-axial loading conditions (G. Kahandawa, Epaarachchi, 

Wang, & Lau; Sorensen, Botsis, Gmur, & Cugnoni, 2007). The distortion of FBG 

spectra is not only due to the accumulated damage, but also the loading types. In the 

previous section, it was shown that embedding FBGs between non-parallel fibre 

layers and the application of torque caused substantial distortions to the FBG spectra.  

Even through the distortion of the response spectra of an FBG sensor has been 

widely used in SHM applications to detect structural integrity, unfortunately there is 

still no definite method available to quantify the distortion. This has been a 

significant drawback in the development of SHM systems using embedded FBG 

sensors for decades. Quantification of distortion of the FBG sensor will allow 
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referencing and comparison to monitor for the progressive damage status of a 

structure. An explicit method to quantify distortion to the sensor including self-

distortion needs to be developed.   

The next section will introduce a novel method, the “Distortion Index” to quantify 

distortion in the FBG spectrum. The Distortion Index is calculated related to the 

original spectrum before the presence of any damage.  

 

 Concept of Distortion Index 3.6.1

The Distortion Index (DI) is introduced to create a correlation between the damage 

and the distortion of the response spectra of a FBG sensor. This index provides the 

ability to generalise the distortion of FBG spectra for a particular structure. The 

index can be used to quantify the damage in the structure relative to its original 

condition, which can be the condition of structure during a regulated time, (i.e. a 

month of uninterrupted operation or the first hours in operation). 

In the early stages of operation of a structure, to a standardised load case, the DI can 

be calculated and recorded. For comparison reasons, it is possible to define a 

particular load case for a structure. The defied load case should be repeatable. After 

several years of operation, the structure can be subjected to that same (defined) load 

case, and the DI can be recalculated. If the structural integrity is intact, the DI should 

be equal to the previous value.  

Even through the distortion of the FBG sensor has been used for several decades to 

investigate damage in composite structures, there is no clear definition for 
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quantifying distortion of FBG spectra. The suggested method first defines distortion 

of the FBG spectrum in order to introduce the Distortion Index.  

 

3.6.1.1 Distortion (Ds) 

Distortion (Ds) is defined using the Full-Width Half-Maximum (FWHM) value of 

FBG spectra and the maximum power of the FBG response spectrum. FWHM is an 

expression of the extent of a function given by the difference between the two 

extreme values of the independent variable at which the dependent variable is equal 

to half of its maximum power (Figure 3-32). 

 

 

Figure 3-32: Full width at half maximum 

 

Generally for a FBG response spectrum, the FWHM value increases with the 

distortion while the peak value decreases.       (     ).  

For the comparison, the distortion Ds and the distortion index DI, need to be 

calculated for the same load case. Distortion of the peak at a particular load case, Ds, 

can be expressed as: 

P 

P/2 

http://en.wikipedia.org/wiki/Independent_variable
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               (3-9) 

 

where, P is the peak strength of the FBG sensor reflection spectra in dB as shown in 

the Figure 3-33. 

3.6.1.2 Distortion Index, DI 

With the calculated Distortion value, the Distortion Index, (DI) can be calculated.  

Distortion Index, DI at the same load case: 

   
   

   
                                   (3-10) 

where     is the current distortion and     is the distortion at the original condition 

(no damage). 

If there is no damage present in the structure, Dsi is equal to Ds0 for the same load 

case. In that case the Distortion Index (DI) is equal to unity. With the presence of 

damage, the response spectrum of an FBG sensor broadens (FWHM increases), 

while the peak power of the spectrum decreases. As a result Dsi increases making the 

Distortion Index, DI value above unity. This phenomenon can be used to identify the 

presence of damage in a structure.  
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Figure 3-33: Peak value and the FWHM of FBG response spectra 

 

To verify the Distortion Index, it is better to use several load cases to calculate 

distortion and corresponding Distortion Indices. At the initial stage, the structure can 

be subjected to several known load cases, and corresponding distortion, Ds0 can be 

recorded. In future operations, those load cases can be used to calculate the 

Distortion Index in order to identify damage. In the following experiment, the 

Distortion Index has been calculated to investigate the relationship of DI to a 

growing defect. 

 Experimental Investigation of the Distortion Index 3.6.2

An experimental study was conducted to investigate the Distortion Index and its 

suitability for referencing to damage growth. Two test specimens were fabricated 

using a glass/epoxy composite.  On one specimen a cut was placed along the 

transverse direction through the laminate, and on the other specimen, a hole was 

drilled through the thickness to simulate damage. FBG sensors were embedded in the 

vicinity of the damage. To ensure maximum bonding between the FBG sensor and 

the matrix of resin in the GFRP material, the acrylate layer of the fibre was removed.  

An extra protective layer of rubber was applied to the fibre to enhance sensor 

robustness. 
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3.6.2.1 Fabrication of specimens 

 Specimen 1:  

In a glass/epoxy composite sample with stack sequence of [0/0/90/90/-45/45/90/0]s. a 

rectangular slot was created during the fabrication of the specimen as shown in the 

Figure 3-34. The slot was used as the controllable defect for the experiment. The 

initial width of the cut was 10 mm which is considered as no damage or damage size 

0 mm (Figure 3-34(b).  

 

 

 

 

 

 

 

 

 

 

Figure 3-34: Fabrication of the specimen with damage 

 

A FBG sensor with centre wavelengths at 1539 nm was embedded above the cut on 

the top layer, as shown in the Figure 3-34(c). The cut was used as a controllable 

Initial slot  

(10 mm x 1 mm)  

(a) 

(c) 

(b) 

300 mm  

50 mm  

10mm  

FBG sensor 

Cutting 

direction 
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defect, as the size of the cut was increased using a thin hacksaw, as shown in the 

Figure 3-35.  

 

Figure 3-35: Increasing the damage size by cutting 

For comparison, the FBG response for 100N load in each damage size, 0mm to 

10mm, (which is cut size from 10 mm to 20 mm) was used. Distortion and the 

Distortion Index for each damage size were calculated.  

Specimen 2: 

The sample was fabricated with 10 layers of E-Glass fibre in the orientation 

[0/90/±45/90/0]s. Kenetix R246TX epoxy resin was used as the matrix material.  The 

FBG sensor at the centre wave length 1560 nm was embedded between non-parallel 

layers, 3 and 4, 15 mm away from the centre of the hole, as shown in Figure 3-36. 

 

Figure 3-36: Location of the FBG sensor in the specimen between layers 3 and 4 

300 mm 

50 mm 
FBG Sensor 

FBG sensor  

Drill Hole  
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The drill hole was used as a controllable defect, as the size of the hole was increased 

using a drill, as shown in the Figure 3-36.  

 

 

 

 

 

Figure 3-37: Experimental setup 

 

The loading setup for the specimens is given in Figure 3-37. To avoid loading 

directly above the defect and the FBG sensor, the load was applied 25mm from the 

centre of the specimen as shown in the Figure 3-37.  

Specimen 2 was loaded in 10N steps up to 100N for each damage size (hole diameter 

5mm, 8mm, 10mm, 12mm and 16 mm) and the spectral response was recorded.  

 

 

3.6.2.2 Results and Discussion 

Specimen 1: 

Figure 3-38 shows the spectral response of the embedded FBG sensor in Specimen 1 

under the same loading value, 100N with different damage sizes. Figure 3-38(a) 

shows the initial spectrum which is considered to be the non-damaged condition. 

Figure 3-38(b) to Figure 3-38(f) show the distorted spectrum with damage sizes 

3,5,7,9 and 10 mm.  

100 mm 

300 mm 

Load  
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  (a) No damage             (b) 13mm 

 

(c) 15mm    (d) 17mm 

 

(e) 19mm    (f) 20mm 

Figure 3-38: Spectral response of the FBG sensor at 100N loading for different damage sizes 

The original cut (10 mm) was created during the fabrication of the specimen. The 

FBG sensor was embedded with the presence of the cut. As such, the distortion is 

minimal due to the original size of the cut 10 mm as shown in the Figure 3-38(a). 

Therefore, it was assumed that the distortion due to 10 mm cut is negligible 

compared to the subsequent extended cuts, and hence the spectra at the 10mm cut 

was taken as the original no damage condition. Even with presence of distortion, a 

spectrum can be used as no damage status, knowing the cause of distortion is not 
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damage. Figure 3-39 illustrates the cut size and the damage size conceded in this 

study.  

 

Figure 3-39 : Relationship of damage size to the cut size  

The results show a significant distortion to the FBG response spectra with the 

damage growth. Distortion of the spectrum and the Distortion Index for each damage 

size were calculated using the Equations 1 and 2. Figure 3-40 shows the Distortion 

Index values respectively for the damage sizes 0 to 10. 

  

Figure 3-40: Variation of Distortion Index with the damage size 

Specimen 2: 

Figure 3-41shows the spectral response of the embedded FBG sensor in Specimen 2 

under the same loading value 100N, with different damage sizes. Figure 3-41(a) 

shows the initial spectrum which is the non-damaged condition. Figure 3-41(b) to 
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Figure 3-41(f) shows the distorted spectrum with damage sizes (hole diameters) 5, 8, 

10, 12 and 16 mm.  

 

No damage                              (b) 5mm diameter 

 

(c) 8mm diameter                               (d) 10mm diameter 

 

(e) 12mm diameter               (f) 16mm diameter 

Figure 3-41: Spectral response of the FBG sensor at 100N loading for different damage size (hole 
diameter) 

The results show a significant distortion to the FBG response spectra with damage 

growth. Distortion of the spectrum and the Distortion Index for each damage size 

were calculated using the Equations 1 and 2.  Figure 3-42 gives the Distortion Index 

values respectively for the damage sizes 0 to 16 mm.  
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Figure 3-42: Variation of Distortion Index with the damage size (hole diameter) 

Figure 3-40 and Figure 3-42, shows the variation of the Distortion Index with the 

damage growth. It has been observed that, with the growth of the damage, the 

Distortion Index increases. Due to increased damage size, the FBG response 

spectrum is broadened. The peak strength of the spectra is decreased as the reflection 

energy from the FBG sensor, i.e. total area under the curve, is a constant. As a result, 

the distortion value of the sensor rises with the damage size growth.  

3.6.2.3 Conclusion 

The distortion of FBG spectra has been quantified as Ds. A Distortion Index (DI) was 

defined to reflect the increased size of the damage. It has been seen that the 

Distortion Index can be used to quantify damage in composite structures. In this 

study the damage size was increased linearly and the corresponding increase of DI 

has shown a linear trend.  However, the linear trend may not be true as distortion of 

FBG spectra is dependent on the damage type and propagation, loading type and 

fibre orientation. It can be concluded that the Distortion index (DI) can be devised to 

rank damage condition in a particular composite component or a structure.  
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3.7 Damage detection in composite structures using 

FBG sensors 

From the observations discussed earlier in this chapter, it is clear that multiple causes 

lead to the distortion to the FBG response spectra. Most of the effects such as the 

embedment of FBG sensor only between parallel fibre laminates, parallel to the fibre 

orientation, and multidirectional loading on FBG sensor, cannot be eliminated in 

advanced aerospace applications. In order to identify damage from the distortions to 

the FBG response spectra, the individual effect from each effect needs to be 

identified and eliminated. To identify the pure effects from the damage, distinguished 

from the other effects, extensive computational power is required for post-processing 

of the spectral data. Figure 3-43 shows FBG response spectra from an FBG 

embedded near a damaged location with the part under the complex multi-directional 

loading. 
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Figure 3-43: Distorted FBG spectra due to multiple effects 

As a consequence, in the laboratory environment, it is possible to discuss and 

interrelate the FBG response spectra with the damage by creating an artificial 

damage and observing spectrum of an FBG which is embedded closer to the damage 

location. But in real applications, if such a spectrum is observed, it is very difficult to 
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interpret the spectrum in order to identify the damage. The one directional accuracy, 

which is if there is a known damage in the structure, response spectra (distortion) of 

embedded FBG can be explained, but if distorted response spectrum is observed, it is 

not possible to identify it as a presence of damage. This incongruity made some of 

the SHM researchers disappointed and discouraged. There was a huge demand for an 

out of the box approach to overcome this discrepancy.  

The system discussed in the Chapter 4 is a novel approach to overcome the 

complications above mentioned. The approach is to develop a system to adapt to the 

initial conditions of the structure and to identify new conditions by comparing them 

with the initial condition. The response of the FBG during the undamaged states of 

the structure is recorded, and this recorded data is used as a “reference”. Therefore, 

the isolation of possible “reference” data from a distorted spectrum of any embedded 

FBG sensor will definitely provide the subsequent distortions to the spectra caused 

by accumulated damage.  

The main difficulty for this approach is to develop a system to reference the FBG 

response spectra. Historically, statistical methods such as artificial neural networks 

(ANN) have been used to analyse such complicated data associated with a large 

number of random variables. The main advantage is the ability to train an ANN with 

undamaged data, and subsequently, the trained ANN can be used to distinguish any 

new spectral variation. In order to input spectral data to the ANN, decoding system 

needs to be developed. To address the above issues, the “fixed FBG filter decoding 

system” was developed to capture the distortion to the FBG sensor response spectra.  
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4. Decoding FBG sensor response spectra  

using fixed wavelength FBG filters and use 

of Artificial Neural Networks for damage  

detection 

 

4.1 Introduction  

The SHM systems use in damage detection in FRP composites must be capable of 

identifying the complex failure modes of composite materials. The damage 

accumulation in each layer of a composite laminate is primarily dependent on the 

properties of the particular layer (McCartney, 1998, 2002) and the loads which are 

imposed onto the layer. As such, the layered structure of the composite laminates 

makes it difficult to predict the structural behaviour using only surface attached 

sensors. Over the past few years, this issue has been critically investigated by many 

researchers using embedded FBG sensors (Eric, 1995; Lee et al., 1999; Takeda et al., 

2002; Takeda, Okabe, & Takeda, 2003; Takeda et al., 2008).  

Observations of the distorted FBG spectrums produced by these sensors have been 

used to estimate the damage in composites.  The majority of the research works were 

focused on the investigation of the spectra of FBG sensors embedded in the vicinity 

of damage loaded with unidirectional loading. However, in real life situations, the 

applied loads are not limited to uni-axial loads and hence the performance of FBGs 

in multi-axial loading situation needs to be investigated for comprehensive damage 

characterization.   

CHAPTER 4 

Decoding FBG sensor response spectra using 

fixed wavelength FBG filters and use of 

Artificial Neural Networks  

for damage detection 
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The FBG spectral response is significantly complicated by multi-axial loading 

conditions (Sorensen et al., 2007), fibre orientation, and the type of damage present 

in the structure (G. C. Kahandawa, Epaarachchi, Wang, & Canning, 2010; G. C. 

Kahandawa, Epaarachchi, Wang, Followell, et al., 2010). It has been shown that 

FBG’s embedded between non-parallel fibre layers and subjected to torque create 

significant distortions in the spectra (Figure 4-1).  

 

Figure 4-1: A typical distortion of FBG spectra 

It is clear that the cause of the distortion of FBG spectra depends, not only on the 

consequences of accumulated damage, but also on loading types and the fibre 

orientation. Embedding FBGs in between non-parallel fibre layers and the 

application of torsional loading to the component have caused substantial distortions 

to FBG spectra. In order to identify damage using the response of the FBG sensor, 

the other effects imbedded in the response needs to be identified and eliminated. The 

introducing referencing technique for the FBG spectrum using fixed wavelength 

FBG filters, provides the capability of identifying the variations to the FBG spectrum 

and distinguish the other effects causing distortions. Consequently, elimination of 

distortions caused by other effects will permit identification of distortions of FBG 

spectra caused by the damage. The proposed system is used to capture the distortions 
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of reflected spectra of an embedded FBG sensor inside a composite laminate, thus 

enabling a quantitative estimate of the damage size in the vicinity of the sensor. 

The aforementioned effects on the FBG spectrum along with the accumulation of 

damage make the response of the FBG highly non-linear. The nonlinearity of the 

response varies from structure to structure hence the estimation of transfer functions 

is extremely difficult. In this scenario, statistical methods provide promising results 

for data processing. Among the methods available, the ANN has provided proven 

results for non-linear systems with high accuracy. Application of ANNs is an 

efficient method for modelling non-linear characteristics of physical parameters and 

creates a system which is sensitive to wide range of noise. 

The decoding of spectral data to feed in to ANN was addressed using a fixed filter 

FBG decoding system. The main objectives in this work are to decode the spectral 

data to determine the average strain at the embedded location. Furthermore, 

identification of damage also will be discussed. This method eliminates lengthy post-

processing of data, and bulky equipment for data acquisition (as shown in Figure 

4-2).  

 

 

 

 

 

 

 

Figure 4-2: Replacement of OSA with Fixed filter decoding system (FFFDS) 
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Hereafter, the Fixed FBG Filter Decoding System is referred 

to FFFDS.   

 

4.2 ANN based damage detection 

With the complex damage modes of composite materials and complex spectral 

responses of FBG sensors under complex operational loading, the damage detection 

in composite materials using FBG sensors becomes extremely difficult. 

Incorporation of multiple sensor readings is also a challenging task. Further, 

extraction of important date and the elimination of valueless data imbedded in the 

response spectra of an FBG, is a challenging task. Even through it is possible to 

avoid these complications in the laboratory environment, in real applications these 

are not avoidable. To overcome these difficulties the introduced novel fixed FBG 

filter decoding system (FFFDS) with an artificial neural network (ANN) is being 

used.  

The FFFDS uses the desirable characteristics of ANN to work and train with 

complications, to identify the real working environment. As a result of considering 

the working environment as the base (reference), the system’s sensitivity to changes 

such as damage, was remarkably improved. The following section introduces the 

field of Artificial Neural Networks and the characteristics. 
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  Introduction to Neural Networks 4.2.1

Artificial Neural Networks (ANN) are commonly referred as “Neural Networks” 

(Haykin, 1998). This concept emerged while scientists were looking for a solution to 

replicate human brain. In some cases like identification and prediction, the human 

brain tracks the problem more efficiently than other controllers. That is because the 

human brain computes in an entirely different way from the conventional digital 

computer. 

The human brain is a highly complex, non-linear and parallel computer (information 

processing system) (Kartalopoulos, 1995). It has the capacity to organize its structure 

constituents, known as neurons, so as to perform certain computation many times 

faster than the fastest digital computer available today. 

For an example, in human vision, the human routinely accomplishes perceptual 

recognition tasks such as recognizing a familiar face embedded in an familiar scene 

in approximately 100-200ms, whereas tasks of much lesser complexity may take 

hours on a conventional computer (Freeman & Skapura, 2007). Hence, we can say 

that the brain processes information super-quickly and super-accurately. It can also 

be trained to recognize patterns and to identify incomplete patterns. Moreover, the 

trained network works efficiently even if certain neurons (inputs) failed. The 

attraction of ANN, as an information processing system is due to the desirable 

characteristics presented in the next section.  
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4.2.1.1 Characteristics of ANN 

From the mathematical perspective, the neural network is a dynamic system that can 

be modelled as a set of coupled differential equations (Kartalopoulos, 1995). The 

neural networks are characterized by:  

1. Collective and synergistic computation: 

 Program is executed collectively and synergistically 

 Operations are decentralized 

2. Robustness: 

 Operation is insensitive to scattered failures 

 Operation is insensitive to partial inputs or inaccurate inputs 

3. Learning: 

 Network makes associations automatically 

 Program is created by the network during learning 

 Network adapts with or without a teacher 

4. Asynchronous operation 

All aforementioned characteristics are common to the human brain as ANN is an 

engineered human brain.  

4.2.1.2 Engineering of Brains  

Discovering how the human brain works has taken an ongoing effort that began more 

than 2000 years ago with Aristotle and Heraclitus, and has continued with the work 

of Ramony Cajal, Colgi Hebb, and others (Kartalopoulos, 1995). The Better we 

understand the brain, the better we can replicate it. 
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Figure 4-3: The biological neuron (Kartalopoulos, 1995) 

 

4.2.1.3  Neuron Physiology 

The neuron is the fundamental unit of and the nervous system (Figure 4-3), 

particularly the brain (Eccles, 1977; Nicholls, Martin, & Wallance, 1992). It works as 

an amazingly complex biochemical and electric signal processing unit.    

The word neuron came from Greek and means the nerve cell. The neuron is the 

fundamental unit of nervous system. Considering its microscopic size, it is an 

amazing processor. Neurons receive and combine signals from many other neurons 

through filamentary input paths called dendrites (Figure 4-4). 

 

Figure 4-4: Parts of the neuron (Kartalopoulos, 1995) 
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Dendrites are bunched into highly complex “dendritic trees”. Dendritic trees are 

connected with the main body of the nerve cell, the soma. The soma has a pyramidal 

or cylindrical shape. The outer body of the cell is the membrane. The interior of the 

cell is filled with intercellular fluid and the outside of the cell is filled with 

extracellular fluid. The membrane and substances inside and outside the neuron play 

an important role in its operation. When excited above a certain level, the threshold, 

neuron fire. It transmits an electrical signal, action potential, along a signal path 

called an axon. The axon meets the soma at the axon hillock and it ends in a tree of 

filamentary paths called the axonic endings that are connected with dendrites of other 

neurons. 

The connection, or junction, between a neuron’s axon and another neuron’s dendrite 

is called a synapse. In Greek, synapse means the contact. A synapse consists of the 

presynaptic terminal, the cleft or the synaptic junction, and the postsynaptic terminal 

(as shown in Figure 4-5). 

 

Figure 4-5: The synapse (Kartalopoulos, 1995) 
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A single neuron may have 1000 to 10000 synapses and may be connected with some 

1000 neurons (Kartalopoulos, 1995). Not all the synapses are excited at the same 

time and according to the received sensory pattern via the synapses probably excites 

a relatively small percentage of sites, and an almost endless number of patters can be 

presented without saturating the neuron’s capacity (D.L.Alkon & Rasmussen, 1988). 

When the action potential reaches the axon ending, chemical massage known as 

neurotransmitter is released. The neurotransmitters are stored in tiny spherical 

structures called vesicles. Neurotransmitters are responsible for effective 

communication between neurons. The neurotransmitter drifts across the synaptic 

junction and initiates the depolarization of postsynaptic membrane and, thus, voltage 

moves across the membrane of the receiving neuron causing postsynaptic potential 

changes. Depending on the type of neurotransmitter, the postsynaptic potential is 

excitatory (more positive) or inhibitory (more negative).    

Decoding at the synapse is accomplished by temporal summation and spatial 

summation (D.L.Alkon & Rasmussen, 1988). The total potential charge from 

temporal summation and spatial summation is encoded as a nerve impulse 

transmitted to another cell. All integrated signals are combined at the soma and, if 

the amplitude of the combined signal reaches the threshold of the neuron, it produces 

an output signal.  

  Artificial Neural Networks (ANN) 4.2.2

Artificial neural networks emanate from the biological principle described above, 

and mathematics have attempted to accurately describe the biological behaviour of 

neurons and their network. The neural networks consist of two sections, architecture 

and neurodynamics. Architecture defines the network structure, which is the number 
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of neurons in the network and neuron interconnectivity. The neurodynamics of 

neural networks defines their properties, which are how the neural network learns, 

recalls, associates, and continuously compares new information with existing 

knowledge, and how it classifies new information, and how it develops new 

classifications as necessary.  

The information processing of a neural network are not with a sequential algorithm 

as in most of the information processors. The information processing of neural 

networks is based on parallel decomposition of complex information into basic 

elements (Kartalopoulos, 1995). 

4.2.2.1 Basic Model of a Neuron 

The problem now is how to model this neural network artificially. Over the last 100 

years, serious attempts to create a neuron model have made remarkable progress 

(Akers, 1989). The artificial neuron is the fundamental unit (or the building block) of 

the artificial neural network, and the model is shown in Figure 4-6. Even through the 

term artificial neuron is used, it does not even closely describe the biological neuron.  

The model artificial neuron has a set of n inputs xj, where the subscript j takes value 

from 1 to n. Each input xj is weighted before reaching the main body of the 

processing element by the weight factor wj. In addition, it has bios term w0, a 

threshold value Ө that has to be reached or exceeded for neuron to produce a signal, 

a linearity factor F that acts on the produced signal R, and an output O after the 

nonlinear function. O constitute input signal to other neurons.  
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Figure 4-6: Basic Neuron Model (Kartalopoulos, 1995) 

 

When a neuron is part of a network, an additional subscript, i, is needed to 

distinguish the neuron. Hence input, weight, activation signals, output, threshold and 

nonlinear function are written as xij, wij, Ri, Oi, Fi respectively.  

The transfer function of the basic neuron model is described below 

      (∑       
 
   )        4-1 

 

The neurons firing condition is 

∑          
 
          4-2 

The purpose of non-linearity function is to ensure that the neuron’s response is 

bounded. That is, the actual response of neuron is conditioned, as a result of small or 

large activating stimuli that is controllable. Commonly used nonlinearities are the 

hard limiter, sigmoid and ramp function.  

4.2.2.2  Learning in ANN   

Learning is the process by which the neural network adapts itself to a stimulus. After 

making the proper parameter adjustments, it produces the desired response. Learning 

is a continuous process, and if stimulus appears at the network, the network either 
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recognizes it or it develops a new classification. In the learning process, the network 

adjusts its parameters. The synaptic weights, in response to an input stimulus, so that 

its actual output response converges to desired output response. When the output 

response is the same as the desired response, the network has completed the learning 

process.  

For different structures of neural networks, the learning process is not the same. Just 

as different learning methodologies suit different peoples different learning 

techniques suit different artificial neural networks. Some of the common learning 

techniques are supervised learning, unsupervised learning, reinforced learning and 

competitive learning.  

 

4.2.2.3 Neural Network Topologies 

As an artificial neural network consists of many neurons, the interconnectivity 

between neurons casts them in to different topologies. Some of the most popular 

topologies are shown in Figure 4-7. Normally a network contains an input layer, 

output layer and one or more hidden layers between the input and output layers. 

Hidden layers are so named because their outputs are not directly observable.    
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Figure 4-7: Common neural network topologies 

 

4.2.2.4 Multilayer ANN  

The fundamental model of an artificial neural network is a network with one layer of 

neurons (output layer only, without hidden layers) (Bishop, 1995). The simplest 

network consists of just one neuron with the function g chosen to be the identity 

function, g(v) = v for all v.  

Multilayer neural networks are undoubtedly the most popular networks used in 

advance applications. While it is possible to consider many activation functions, in 

practice it has been found that the logistic (also called the sigmoid) function g(v) =  

ev /(1+ev) as the activation function (or minor variants such as the tanh function) 
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works best. In fact the revival of interest in neural networks has been sparked by 

successes in training neural networks using this function in place of the historically 

(biologically inspired) step function, the “perceptron”. 

Using a linear function does not achieve anything (in a multilayer network) that is 

beyond what can be done with single layer networks with linear activation functions. 

The practical value of the logistic function arises from the fact that it is almost linear 

in the range where g is between 0.1 and 0.9 but has a squashing effect on very small 

or very large values of v. 

In theory, it is sufficient to consider networks with two layers of neurons, one hidden 

and one output layer. This is, certainly the case for most applications. There are, 

however, a number of situations where three and sometimes four and five layers have 

been more effective. For prediction the output node is often given a linear activation 

function to provide forecasts that are not limited to the zero to one range. An 

alternative is to scale the output to the linear part (0.1 to 0.9) of the logistic function. 

Unfortunately there is no clear theory to guide us in choosing the number of nodes in 

each hidden layer or indeed the number of layers. The common practice is to use trial 

and error, though there are schemes for combining optimization methods such as 

genetic algorithms with network training for these parameters. Since trial and error is 

a necessary part of neural net applications, it is important to have an understanding of 

the standard method used to train a multilayered network: back propagation.  

It is no exaggeration to say that the speed of the back propagation algorithm made 

neural networks a practical tool in the manner that the simplex method made linear 

optimization a practical tool. The revival of strong interest in neural networks in the 
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mid 80’s was, in large measure, due to the efficiency of the back propagation 

algorithm. 

4.2.2.5  The Backward Propagation Algorithm 

 

Figure 4-8: Back propagation algorithm 

There is a minor adjustment for prediction problems where predicting continuous 

numerical value is attempted. In that situation, the activation function changes for 

output layer neurons, for the identification of function that has output value=input 

value.  An alternative is to rescale the logistic function to permit the outputs to be 

approximately linear in the range of dependent variable values. The back propagation 

(BP) algorithm cycles through two distinct passes, a forward pass followed by a 

backward pass through the layers of the network. The algorithm alternates between 

these passes several times as it scans the training data. Typically, the training data 

has to be scanned several times before the networks “learns” to make good 

classifications.  

Thought out the work presented in this thesis, all the 

Artificial Neural Networks use back propagation as the 

learning algorithm. 

Oi 
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A theoretical explanation of the BP used in this study is given below. Consider a 

multi-layer perceptron (MLP) with Ni inputs and No outputs. Given an input vector x 

Є R
NI

 and an output vector y Є R
No

, the output of a given neuron k(  
 
) with N input 

connections when a pattern p is presented to the network is given as a function of its 

activation (  
 
) given by  equation  

   
 
            (  

 
)      (∑      

  
       )                                        4-3 

 

Where     is the activation function of the neuron k,     represents the weight 

associated with the connection between neuron j and neuron k,   
 
 is the output of 

neuron j and    is the bias. Note, that in the case of the input layer,   
 
 is equal to   

 
. 

The gradient descent rule (BP) minimizes the quadratic error function, given in 

equation 4.4 
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where   
 
 is the desired output when the pattern p is presented to the network and   

 
 

is the neuron output. Following the minimization process, the network weights are 

adjusted by  

          
 
  
 
                                                                                4-5 

 

where   is the learning rate,   
 
 the local gradient of neuron k,       is the change 

made to the weight     when the last pattern q was presented to the network and   is 

the momentum term. 
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4.3 Use of ANN in SHM of composite structures 

ANN based systems have been used in different SHM stages by several researches, 

as illustrated graphically in Figure 4-9. Hosni et al. (Hosni Elhewy, Mesbahi, & Pu, 

2006) used ANN for the reliability analysis of structures. They used an ANN (1 

hidden layer and 10 PEs) to predict the structural response of a structure to random 

variables. Mechanical properties of the material, thickness of the plates, angle of 

orientation and in-plane loads were used as the inputs to the network. 120 data sets 

were used to train the network. Then the output of the ANN was used to estimate the 

reliability using first order and second momentum (FORM), or the Monte Carlo 

simulation method (MCS). They used an ANN to replace a FEA and save 

computational time, and to estimate limit state function for the structure. 

 

 

 

 

 

Figure 4-9: Use of ANN in SHM applications 

 

Lopes et al. in 2010 used the ANN to save computer processing time on reliability 

analysis of laminate composite structures (P. A. M.  Lopes, Gomes, & Awruch, 
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2010). The research work targeted the optimisation of structural performance and 

substituted the FEA with two types of ANN models (MPL and RBN), and used 

Monte Carlo simulation, FORM and FORM with multiple check points to compare 

the solution. It was reported that the ANN is saving a considerable amount of 

processing time.  

Garg et al. used a spectral finite element (SFEA) and neural network to estimate the 

damage model parameters of a composite structure (Garg, Roy Mahapatra, Suresh, 

Gopalakrishnan, & Omkar, 2004). They used acoustic wave excitation (AE) signals 

and an ANN for spectral signal processing of the AE signals. Fourier spectral data 

was the input to the ANN and, for training, SFEM data was used. Output was the 

span-wise location of the damage, length of the damage zone and stiffness 

degradation factor. The results reported were up to a good standard for both damage 

location and size.  

Lewis et al. in 2007 tried an ANN to interpret a complex optical spectrum and time 

resolved signals from optical fibre sensors (not FBG). A three layer feed forward 

network with one hidden layer was used.  

ANN is famous for the classification of spectral data. Zhang et al., used an ANN to 

improve the FBG signal detection system (Zhang, Zhao, & Rong, 2008). They used 

an ANN to eliminate errors in the conversion of optical signal to electrical signal. 

Veiga et al. used an ANN to improve the reliability of the FBG signal under power 

variations of light source (Veiga, Encinas, & Zimmermann, 2008).  

Paterno et al. used ANN for FBG peak detection (Paterno, Silva, Milczewski, 

Arruda, & Kalinowski, 2006). They used Gaussian, Polynomial or Lorentzian fit to 

avoid ambiguity in the detection of the peak. This fitting is further improved using a 
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green function and input to the ANN using radial basis function. The improved 

accuracy was reported. 

 

Figure 4-10: Peak detection of distorted response of an FBG using ANN (Paterno et al., 2006) 

The versatility of ANN for the processing of non-linear parameters was proven by 

researchers all over the world and in many fields. The ANN holds a strong reputation 

for human brain type identification and prediction. In this case, when it comes to 

identification of damage in composite structures, and prediction of strain using 

highly distorted FBG response spectra, the use of an ANN is highly advantageous. 

The main difficulty of using an ANN for processing of FBG spectral data is the 

difficulty of decoding data to feed into the ANN. During the decoding, the vital data 

imbedded in the spectrum must be preserved. The FBG spectrum carries the 

information about the strain gradient of its physical embedded location, and this vital 

data must be fed into the ANN.  The damage initiation in the composite changes the 

strain gradient and hence is considered to be important information for damage 

detection. For the aforementioned task, FFFDS has been introduced.  The decoding 

system consists of a tuneable laser, fixed FBG filters, optical couplers and photo 

detectors.  This system eliminates the use of sophisticated and expensive equipment 

such as optical spectrum analysers and data acquisition systems. 
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4.4 Novel method to decode FBG spectral data as 

ANN input: Fixed filter FBG decoding system 

(FFFDS)  

During the past decade, many systems for decoding FBG spectra using fixed FBG 

filters have been developed (Lewis et al., 2007; P. A. M. Lopes, Gomes, & Awruch; 

Luiz C. S. Nunes, Olivieri, Kato, Valente, & Braga, 2007; Veiga et al., 2008; 

Zimmermann, Veiga, & Encinas, 2008). Figure 4-11 illustrates a general 

arrangement of a fixed FBG filter system. The system consists of a tuneable laser 

(TLS), fixed FBG filter, optical couplers (CP) and photo detector (PD).  A high 

frequency data acquisition system (DAQ) has been used to acquire the PD voltage 

values.  

Figure 4-11 illustrates the simplest form of this system, using only one (1) FBG 

filter, which is the building block of the complete decoding system.  Tuneable laser 

light, A, is transmitted to the FBG sensor and the reflected light, B, of the FBG 

sensor is fed to the FBG filter through an optical coupler.  The intersection of the 

wavelengths reflected from the sensor and the wavelengths’ reflected light, C, by the 

filter (λ ), or conversely, the wavelengths which are not transmitted through the filter, 

are reflected to the photo-detector.  L1 and L2 are the light transmitted through the 

FBG sensor and filter respectively.  

While the sensor receives the total wavelength range from the tuneable laser source, 

the filter only receives the wavelengths reflected by the sensor.  Hence, the filter can 

only reflect light (to the photo-detector) if the wavelength from the sensor is within 

the filter’s grating range (λ ted light of the filter is captured using the 
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photo-detector, converted to a voltage, and recorded in the DAQ system.  A system 

can be implemented with multiple FBG filters with λn wavelengths as required for a 

specific application.  

 

Figure 4-11:  FBG spectrum decoding system 

Figure 4-12 shows the reflected spectra of the FBG sensor and the filter. The filter 

can only reflect light if the received wavelength from the sensor reflection is within 

the filter’s grating range.  Thus, the filter reflects the intersection as shown in Figure 

4-12. 

 

Figure 4-12: Intersection of the FBG spectra 
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The reflected light of the FBG filter was captured using the PD and the voltage was 

recorded using the DAQ.  Figure 4-13 shows the PD voltage in the time domain 

corresponding to the intersection of the spectra shown in Figure 4-12.  Tuneable laser 

sweeping frequency allows transformation of voltage reading to time domain.  Since 

the filter spectrum is fixed, the intersection of the two spectra only depends on the 

sensor spectrum position.  Variation of the intersection can be used to identify the 

location of the peak, the strain at sensor, and the damage status of the structure. Any 

distortion to the spectrum is visible from the PD voltage-time plot (Figure 4-13).  By 

matching the tuneable laser swept frequency with the DAQ sampling frequency, it is 

possible to transform voltages to respective wavelength values accurately.  More 

filter readings will increase the accuracy, the operating range and robustness of the 

system.  

 

Figure 4-13: PD reading due to the intersection of the FBG spectra 

There were several attempts to fit the FBG spectra using mathematical functions 

such as the commonly used Gaussian curve fit (L. C. S. Nunes, Valente, & Braga, 

2004).  Sensor reflectivity can be expressed as 
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Where yo is the added offset to represent the dark noise, as α is a parameter related to 

full width at half maximum (FWHM) and λ is the wave length.  Unfortunately 

Gaussian fit always gives an error for a distorted spectrum as shown in Figure 

4-14(a).  Realistically, a distorted spectrum must be considered as a piece wise 

continuous function,     in order to capture the distortion (Figure 4-12).  

Consequently, optical power, P, of the distorted signal can be obtained using the 

following integral.  

    ∫    
  
  

                                                                                                   4-7 

where β is a constant dependent on the power of the source, and, ta and tb are the 

integral limits in the time domain Figure 4-14(b)).  The power integral at each point 

can be used to estimate the strain in the sensor by using an ANN.  The sensitivity of 

the integrated data depends on the integral limits - larger integration limits reduce the 

sensitivity and very small limits cause data to scatter.  Both cases make the 

algorithms inefficient.  Optimum limit values have to be set to achieve better results.  

 

 

 

 

 

 

 

 

Figure 4-14: Gaussian fit and the piecewise continuous function 
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4.5 Application of Fixed wavelength filters and  

ANN for FBG data processing and damage  

identification 

The fixed wavelength filters and data capturing system is used to decode spectral 

data from an FBG sensor to a form which can be fed into an ANN in order to 

estimate strain and/or damage in a composite structure.  

Figure 4-16 illustrates a data flow diagram of the structural strain and damage 

assessment process. First, reflected spectral data from the FBG sensor mounted on 

the structure is entered into an FBG filter.  The reflected spectral data from the FBG 

filter (representing the spectral intersection of the reflected FBG sensor data and the 

inherent filter characteristics) is entered into a photo-detector.  The voltage time 

domain output of the photo detector is entered into a data acquisition unit.  The data 

is then processed and entered into a neural network.  Finally, the neural network 

output is the state of strain and/or damage (Figure 4-15).  

 

  

Figure 4-15: Decoding FBG spectrum using Fixed FBG’s and use of ANN 
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Figure 4-16: Flow chart of the process for the fixed FBG filter system 

 

Figure 4-17 depicts a general arrangement of the proposed system.  The system 

consists of a tuneable laser (TLS), three (3) fixed FBG filters (Filters 1-3), optical 

couplers (CP) and three (3) photo-detectors (PD).  A high frequency data acquisition 

system (DAQ) was used to record (100 Hz) the photo-detector output voltages which 

are subsequently fed into the processor to determine the state of strain and damage.   

(FFFDS) 
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Figure 4-17: Fixed FBG Filter Decoding System (FFFDS) 

 

Three (3) filters are used to increase the accuracy, operating range and robustness of 

the system, and the composite signal created by the photo-detectors represents a 

unique signature of the sensor spectrum.  Furthermore, the output of the photo-

detectors contains information relative to the sensor spectra in a form which can be 
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used with an artificial neural network (ANN).  The number of filters and FBG 

sensors is not limited to the example shown in this figure.  Any one filter in the 

system is capable of covering an approximate range of 500 micro-strain/1 nm 

movement of the peak of the sensor spectrum.   More filters can be used with the 

same system to cover a wider operating range of the embedded FBG sensors and to 

obtain more precise data.   

 

4.6 Post-processing of FFFDS data using ANN 

As discussed in earlier sections, under complex load conditions, the spectrum of the 

FBG distorts. Figure 4-18 shows the FBG sensor response of an FBG embedded in a 

composite structure during operation under several load cases. The complicated 

response makes it extremely difficult to model using mathematical transfer functions 

in order to estimate strain as well as damage. In such cases, an ANN provides 

promising functional approximations to the system. 

 

Figure 4-18: Distorted FBG response  

One of the commonly used neural network architectures for function approximation 

is the Multi-Layer Perceptron (MLP). Back-Propagation (BP) algorithms are used in 
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 The ANN model 4.6.1

Figure 4-19 shows a general arrangement of the ANN used in this study. The ANN 

consists of three input neurons, which accommodate three FBG fixed filters, three 

hidden layers and an output layer.  

 

 

Figure 4-19: ANN developed to estimate strain 

The neurons of the hidden layers are with Gaussian activation functions, and the K 

value used is 1, as shown in Figure 4-20(a). It takes a parameter that determines the 

centre (mean) value of the function used as a desired value. The neuron of the output 

layer is with sigmoid activation function with k=1, as shown in Figure 4-20(b). this 

function is especially advantageous for use in neural networks trained by back-

propagation algorithms because it is easy to distinguish, and can minimize the 

computational capacity of training (Karlik & Olgac, 2010).  Initial weights (at the 

start of the training process) of the neurons were randomly places between -1 and 1.   
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Figure 4-20: Activation functions of the neurons of ANN (a) Hidden layer neurons (b) Output neuron 

Three different composite specimens, with embedded FBG sensors, were 

investigated using the developed system in order to evaluate the system performance 

for estimation of strain and/or damage. 

 

4.7 Experimental study of the FFFDS with ANN 

For the following case studies, an ANN with three (3) inputs was developed. The 

network consists of three hidden layers having 20, 50 and 25 neurons respectively. A 

back propagation algorithm was used as the training technique. Three pre-processed 

fixed filter readings were given to the ANN through three input neurons, and the 

strain at the sensor and damage was predicted through the output neuron/s.  

The ANN is trained for the initial conditions of the specimens and the expected 

loading regime. The movement and distortions to the spectrum induced during this 

regime were set as the reference normal condition.  The reference is used to identify 

unexpected changes to the FBG spectrum due to damage. 
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 Case 1: Prediction of strain 4.7.1

In this case study, an FBG spectra of an FBG embedded in a composite specimen, 

which was highly distorted under loading was considered. With the distortion to the 

spectra, it was extremely difficult to detection the peak of the spectra.  

     

 

 

 

 

 

Figure 4-21: Sample with embedded FBG sensor 

A rectangular 450 mm x 150 mm sample was fabricated with 10 layers of E-glass 

fibre in the orientation of [0/90/±45/90/0]s. Kenetix R246TX epoxy resin was used 

as the matrix material. A FBG sensor with a wavelength centred 1541 nm was 

embedded between non-parallel fibre layers, 3 and 4, at the location shown in Figure 

4-21(a). A specimen was cured at 30 
0
C Figure 4-21(b) shows the specimen with 

embedded FBG sensor. 

The filter circuit consisted of three filters to cover a wide range of wavelength 

(1537.5 nm - 1539 nm).  A tuneable laser light with a swept frequency of 5nm per 

second (5 Hz) was connected to the embedded FBG sensor, through an optical 

coupler, C1.  The reflected waveform of the FBG sensor was fed into three FBG 

fixed filters, F1, F2 and F3 through couplers C2, C3 and C4 respectively.  Three PDs 

were used to read the reflections of the three filters (Figure 4-22).  The PD’s 

analogue voltage outputs were recorded using a DAQ at sampling frequency of 10 
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kHz.  (Specifications of the tuneable laser light, optical couplers, photo diodes and 

the DAQ are given in Appendix C)  

 

 

Figure 4-22: (a) Optical circuit and the specimen (b) Layout of couplers and PD arrangement 

 

 

Figure 4-23: Experimental setup 

 

Figure 4-24: Loading the panel using MTS machine 
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The specimen was loaded in a four points bending test rig in steps of 25N up to 

1000N (Figure 4-23) maximum load using a MTS 100kN uniaxial loading machine 

as shown in Figure 4-24. The readings from the DAQ were recorded at each of the 

loading steps. 

A detailed finite element model (FEM) was developed for the specimen using the 

commercial software ABAQUS. The model consists of continuum shell elements as 

discussed in detail in Chapter 2.  The model was loaded similar to the four point 

bending experiment.  A part of the results, of the FEA was used to train the ANN and 

selected data points were kept for experimental validation of the system.  Figure 4-25 

shows the strain contours of layer 4 under flexural loading.  

  

Figure 4-25: FEM of the specimen 

The recorded PD readings were pre-processed using an algorithm written on 

MATLAB (Appendix D) and converted to time domain voltage data. Weighted, pre-

processed data was subsequently fed into the ANN through the three input neurons. 

The ANN was trained using the data set until the RMS error of the network output 

was reduced to 0.3%.  The network took 35,000 epochs to reach the expected RMS 

error level of 0.3%.  Final network weights are given in Appendix E. 
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4.7.1.1 Experimental Results 

The FBG spectra distort significantly with the applied load. Figure 4-26 shows the 

distortions observed in the spectrum in three loading levels 50N, 500N and 1kN. 

With the increased load, the spectrum become complicated and locating the peak in 

order to estimate the strain it is an extremely complex task.  

 

Figure 4-26: Distortion of the FBG spectrum with the loading 

 

Figure 4-27 shows a plot of data recorded with the DAQ at an applied load of 725N.  

The response of all three PDs at this load level can be seen.  

 

Figure 4-27: PD readings at 725 N load 
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Figure 4-28 shows the strain calculated using the highest peak value of the distorted 

spectrum.  Non-linearity of the readings is caused by the distortions.  It is clear that, 

with the observed distorted peaks, the calculated strain is not accurate. At higher 

loads, the distorted spectrum has multiple peaks, and highest peak fluctuates rapidly 

making peak tracking inaccurate. 

 

Figure 4-28: Variation of strain due to the distortions to the FBG spectrum 

 

4.7.1.2 Analysis  

The recorded PD readings were pre-processed using an algorithm (written on 
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Figure 4-29:  Extracted data from the FBG spectrum 

 

The ANN was trained using the data set until the RMS error of the network output 

was reduced to 0.3%.  The network took 35,000 epochs to reach the expected RMS 

error level.  Figure 4-30 shows the training rate of the network.  

 

Figure 4-30: RMS error with the training process 
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sensor spectra before reaching the filter spectrums.  The sensor starts away from the 

filters, as shown in the Figure 4-32, and until the spectrum of the sensor reaches the 

location of the filter spectra, there is no considerable change in the PD readings.  

 

Figure 4-31: Variation of the integrated PD readings with applied load 

The embedded FBG sensor peak’s location with no loading is 1541 nm, 3 nm away 

from the first filter’s spectrum (1538 nm).  With loading, the sensor peak starts to 

move towards the bandwidth of the filters (1539 nm – 1537.5 nm).  The accurate 

operating range of the filter system is shown in Figure 4-32.  By selecting filters as 

appropriate, it is possible to set the system to work in any of the regions of the 

operating range of the sensor.  By increasing the number of filters, it is possible to 

increase the operating bandwidth of the system.  By optimising the filter bandwidth, 

it is possible to eliminate the non-intersected regions and improve the learning rates 

of the ANN.  
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Figure 4-32: Operating range of the sensor 

Figure 4-33 shows the network output and the desired output. The desired output is 

the FEA’s estimated strain at the sensor location between layers 3-4.  The ANN 

output closely matches with the desired output values.  An initial mismatch was 

found due to values recorded out of the filter’s operating range.  Hence, the 

percentage error for the strain from the ANN at 250 N is higher as shown in the 

Table 4-1 (7.4628%).  

As shown in Figure 4-26, the response spectra of the FBG sensor has been 

significantly distorted under higher loads, but the ANN has predicted the strain with 

high accuracy illustrating its ability to accommodate the distorted signal (Table 4-1). 

 

Figure 4-33: The network output and the desired output 
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As depicted in Figure 4-33, the overall prediction of the ANN has shown an excellent 

agreement with calculated strains.  The maximum peak values show considerable 

variation with the desired strains, thus disqualifying its use it as a reliable measure.   

Table 4-1 shows the error which was calculated relative to the desired value as:  

 

                 
(                                         ) 

             
   

 

Table 4-1: Percentage error of strain calculated from the FBG peak location and ANN 

 

Percentage Error 

Load /N 
Strain calculated from 

FBG peak 
ANN 

50 -5.3421 0.3463 

250 -1.0045 7.4628 

500 -6.2716 0.1315 

750 -3.6897 0.0029 

1000 16.1156 0.0636 

 

 

4.7.1.4 Conclusions 

A spectrum of an embedded FBG sensor, which was highly distorted as a function of 

increased load, has been decoded with fixed FBG filters (FFFDS) and an ANN, and 

the strain in the loaded specimen was determined.  The ANN produced an error level 

less than 0.3% compared with strain values calculated using an FEM.  The agreement 

of ANN predictions and the calculated strains confirms that the developed ANN 
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system accommodates the inherent distortions of the spectra induced by other factors 

(Section 3.5) besides damage.  Further, the system is capable of understanding any 

abnormal event such as a surge of strain due to damage inside the specimen under 

four point bending loading.  Additionally, the trained system acts as a reference for 

the particular specimen’s strain response under four point loading.  

Further work to train the ANN to identify damage (both qualitatively and 

quantitatively) when exposed to combined loadings, is the next logical step and will 

be discussed in the next section.    

 

 Case 2: Prediction of hole diameter 4.7.2

In this case a drill hole was used as the defect in a composite laminate plate. Defect 

growth was simulated as the increase in the hole diameter. With hole diameter 

growth, the stress pattern closer to the FBG sensor changes as in any case of defect 

growth. Even though the real defect is not closer to a drill hole, it was simulated as a 

defect for the controllability of the defect in this experiment.   

 

4.7.2.1 Sample Fabrication 

FBG sensors with a wavelength centred about 1550 nm were fabricated on 9µm core 

and 125µm clad diameter telecommunication grade glass fibre.  The grating length 

was 10mm. To ensure maximum bonding between the FBG sensor and matrix of 

resin in the GFRP material, the acrylate layer of the fibre was removed.  An extra 

protective layer of rubber was applied to the fibre to enhance the sensor robustness.   
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The sample was fabricated with 10 layers of E-Glass fibre in the orientation 

[0/90/±45/90/0]s.  Kenetix R246TX epoxy resin was used as the matrix material.  

The FBG sensor was embedded between non-parallel fibre layers, 3 and 4, as shown 

in Figure 4-34. 

 

 

Figure 4-34: Sample with embedded FBG sensor  

4.7.2.2 Experimental procedure 

A tuneable laser light with a swept frequency of 5nm per second was injected into 

the FBG sensor through an optical coupler.  The reflected waveform of the FBG 

sensor was fed into three FBG fixed filters. Three PDs were used to read the 

reflections of the three filters Figure 4-22(a)).  The PD’s analogue voltage outputs 

were recorded using a DAQ with sampling frequency of 10 kHz.  The experimental 

setup is shown in Figure 4-22(b). 

The specimen was loaded in three points in steps of 25N up to 100N maximum load 

using an MTS, as shown in Figure 4-35. To avoid loading directly above the defect 

or the FBG sensor, the load was applied to the specimen with 25 mm shift from the 

centre of the specimen as shown in the Figure 4-35. 
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Figure 4-35: Experimental setup 

Subsequently, the readings from the DAQ were recorded at each of the loading steps.  

Additionally, the FBG sensor spectra were recorded using an optical spectrum 

analyser for later verification purposes. The diameter of the hole was increased from 

5 mm to 16 mm is several steps. The loading was repeated for the sample with defect 

sizes 0 mm, 5mm, 8mm, 10 mm, 12 mm and 16 mm. 

4.7.2.3 Experimental Results  

Figure 4-36 shows a plot of data recorded at an applied load of 20N in bending; 

Figure 4-36(a) for the initial sample which is with no hole and Figure 4-36(b) for the 

sample with 10 mm hole. The responses of all three PDs at this load level can be 

seen. The 10 mm hole has a significant effect on the readings.  

  

Figure 4-36: PD readings at 20N axial load for the damage size (a) No damage, (b) 10 mm hole 
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subsequently fed into the ANN through the three input neurons of the ANN. Figure 

4-37 shows the calculated inputs (I1, I2 and I3) to the ANN using PD data.  

  

  

Figure 4-37: Extracted data from the FBG spectrum 

 

The ANN was trained (using the data set) to estimate hole diameter until the RMS 

error of the network output was reduced to 0.3%.  The network took 82,000 epochs 

to reach the expected RMS error level. Figure 4-38 shows the training rate of the 

network.  

 

Figure 4-38: RMS error with the training process 
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4.7.2.5 Results and Discussion 

The integrated PD data used to train the ANN are illustrated in Figure 4-36. Figure 

4-39 shows the network output and the desired output.  The desired output is the 

actual size of the drill hole. The ANN output closely matches with the desired output 

values.  The response spectra of the FBG sensor has been significantly distorted 

under higher loads, but the ANN has predicted the hole diameter with high accuracy 

illustrating its ability to accommodate the distorted signal. As depicted in Figure 

4-39, the overall prediction of the ANN has shown an excellent agreement with 

actual damage size.   

 

Figure 4-39: The network output and the desired output for hole diameter 

4.7.2.6 Conclusions 

A spectrum of an embedded FBG sensor, which is highly distorted as a function of 

increased load and damage size, has been decoded with an ANN and the diameter of 

the hole in the specimen was determined.  The ANN produced an error level less 

than 0.3% compared with the actual diameter of the hole. The agreement of ANN 

predictions and the measured delamination confirms that the developed ANN system 

accommodates the inherent distortions of the spectra induced by other factors besides 

damage.  Further, the system is capable of understanding any abnormal event such as 

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70

H
o

le
 D

ia
m

e
te

r 
/ 

m
m

Data Set

Desired Output

Network Output



Chapter 4   

152 
Gayan Kahandawa 

a surge of strain due to damages inside the specimen under bending loading.  

Additionally, the trained system acts as a reference for the particular specimen’s 

strain response under bi-axial loading.  

 Case 3: Prediction of Delamination Growth 4.7.3

Even though the growing hole was used as a controllable defect for simulation and 

verification of the FFFDS, a drill hole does not represent a real defect in an FRP 

composite structure. But for system verification it allows the FBG sensor to lie in a 

stress field as it is closer to a real defect. The next experiment was conducted to 

simulate a delamination, using a thing cut in between laminates. This is closer to a 

real defect. On the other hand, to represent multidirectional loading on composite 

component, in this case study, bi-directional loading was accommodated. To 

simulate real application, a sample with growing delamination under bi-axial loading 

was considered.  

4.7.3.1 Sample Fabrication and Experimental procedure 

The experimental setup is similar to the hole diameter experiment (Case 2) described 

in Section 4.7.2. The specimen was fabricated with a thin slot as a simulated 

delamination, as shown in the Figure 4-40. Test specimen was manufactured using a 

glass/epoxy composite with stack sequence of [0/0/90/90/-45/45/90/0]s. A 

rectangular slot was created during the fabrication of the specimen. Figure 4-41 

shows the fabrication process of the specimen. A thin blade was used to create a 

rectangular cut which was used as the controllable defect for the experiment.  The cut 

was located in between layers 6 and 7. The initial width of the cut was 10 mm. An 

FBG sensor was embedded above the cut in between layers 2 and 3, as shown in 

Figure 4-40. 
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Figure 4-40: Location of the FBG sensor in the specimen between layers 3 and 4 

 

 

Figure 4-41: Fabrication of the specimen with damage 

The specimen was loaded in biaxial loading as shown in Figure 4-42. An MTS 

machine was used to load the specimen in tension while a screw jack was used to 

apply a bending load. The spectral response of the sensor was recorded for loading in 

100 N steps in tension up to 10 kN while the bending load was increased 10N steps 

up to 100N for each tensile loading step. The cut was increased in 1mm steps from 

10 mm as shown in Figure 4-43, up to 20mm, and the experiment was repeated.  

 

Figure 4-42:  Experimental setup 
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Figure 4-43: Increasing the damage size by cutting 

 

4.7.3.2 Experimental Results  

The FBG spectra distort significantly with the applied load.  Figure 4-44 shows the 

distortions observed in the spectrum in three load cases. With the increased load, the 

spectrum becomes complicated and locating the peak in order to estimate the strain is 

extremely difficult. 

Figure 4-44(a) shows the distortions  to the FBG sensor response under axial load 

only, and in Figure 4-44(b) the FBG sensor is loaded on bending only. The combined 

effect on the FBG sensor spectra, while the structure under tension and bending 

combined loading, is shown in the Figure 4-44(c). As expected, the increase of the 

delamination and the combined multi-axial loading has significantly distorted the 

response spectra of the embedded FBG sensor.  
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Figure 4-44: Distortion to the FBG spectrum with the multi-axial combined loading 

 

Figure 4-45 shows a plot of data recorded at an applied load of 10kN axially and 

1000N in bending.  The response of all three PDs at this load level can be observed. 
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Figure 4-45: PD readings at 10 kN axial load and 1kN bending load 

 

4.7.3.3 Analysis  

The recorded PD readings were pre-processed using an algorithm (written on 

MATLAB) to read the time domain spectrum.  Weighted, pre-processed data was 

subsequently fed into the ANN through the three input neurons of the ANN. Figure 

4-46 shows the calculated inputs (I1, I2 and I3) to the ANN using PD data.  

 

Figure 4-46: Extracted data from the FBG spectrum 
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The ANN was trained using the data set until the RMS error of the network output 

was reduced to 0.3%.  The network took 35,000 epochs to reach the expected RMS 

error level.  Figure 4-47 shows the training rate of the network.  

 

Figure 4-47: RMS error with the training process 
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Figure 4-48: The network output and the desired output for delamination size 

 

4.7.3.5 Conclusions 

A spectrum of an embedded FBG sensor, which is highly distorted as a function of 

increased load and delamination size, has been decoded with an ANN and the 

delamination in the specimen was determined.  The ANN produced an error level 

less than 0.1% compared with actual delamination size.  The agreement of ANN 

predictions and the measured delamination confirms that the developed ANN system 

accommodates the inherent distortions of the spectra induced by other factors besides 

damage.  Further, the system is capable of understanding any abnormal event such as 

a surge of strain due to damages inside the specimen under four point bending 

loading.  Additionally, the trained system acts as a reference for the particular 

specimen’s strain response under bi-axial loading.  
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 Concluding remarks for the FFFDS 4.7.4

Two experiments were conducted with two simulated defects in vicinity of the 

embedded FBG sensor. The novel FFFDS was used to capture the distorted response 

spectra of the embedded FBG sensor while the FRP composite structure was under 

multi-axial loading. The recovered data was used to predict following parameters. 

 Existence of defect 

 Strain at FBG sensor location 

 Defect size and growth 

 

4.7.4.1 Existence of defect 

In both experiments the system predicted the existence of defect with 100% 

accuracy. The ANN identified existence of damage after 9559 Epoch for hole 

diameter experiment and 11245 Epoch for delamination. Figure 4-49 shows the 

desired output, which is the existence of damage in this case, and the ANN predicted 

output.   

 

Figure 4-49: Identification of damage existence for hole experiment 
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In aerospace structures, identification of the existence of damage itself is a good 

achievement since that is the initiation point for a set of comprehensive testing for 

structural integrity. A reliable system that identifies the existence of defects will 

condense frequent NDT testing programs in the future.  

 

4.7.4.2 Strain at FBG sensor location 

With the distortions observed during operation of FBG sensors in aerospace 

composite structures, it is not possible to track the peak of the FBG sensor for strain 

readings. This will dramatically reduce the reliability of FBG sensor as a strain 

measuring sensor. In the both experiments the FFFDS predicted the strain as sensor 

location with 0.3% accuracy with the train values calculated from FEA results 

(Figure 4-33).  

 

4.7.4.3 Defect size and growth 

In the delamination experiment, the FFFDS was used to predict the size of the defect. 

During the training phase, the data captured while increasing the defect, was used to 

train the ANN and it was shown that, after the training, ANN could identify damage 

size accurately. The challenge here is training the ANN with more realistic data. 
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4.8 Working range of FFFDS  

In the design stage of the FFFDS, it is important to identify the working range of the 

system. During the operating of embedded FBG sensors, the sensors will operate in a 

particular wavelength range. The FFFDS should be able to capture that wavelength 

range. Figure 4-50 shows a response spectrum of an FBG sensor at no load 

condition, and a fixed FBG filter. During the loading, the FBG sensor spectrum 

moves to the right side allowing the two spectra to intersect. Figure 4-51 shows the 

sensor at 100N load.  

 

Figure 4-50: Response spectra of an FBG sensor (at no load) and a filter 

 

Figure 4-51: Intersection of FBG sensor at 100N and the filter 

-36.5

-34.5

-32.5

-30.5

-28.5

-26.5

-24.5

-22.5

-20.5

1566 1567 1568 1569 1570

P
o

w
e

r 
/ 

d
B

m

Wavelength / nm

Filter

Sensor

Intersection 

between sensor 

and the filter 



Chapter 4   

162 
Gayan Kahandawa 

 

Figure 4-52: PD reading for intersection in Figure 4-8 

Figure 4-52 illustrates the corresponding voltage recorded at the PD for the sensor 

filter intersection shown in the Figure 4-51.  

 

Figure 4-53: FBG response at 190 N loading 
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fixed FBG filters. Three fixed FBG filters will provide an operating range of about 3 

nm.  

 

Figure 4-54: FBG response and spectrums of three filters 
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Figure 4-55: Use of multiple FBG sensors with FFFDS 

 

One of the advantages of using FFFDS is the possibility of using multiple sensors for 

monitoring a structure using the same FFFDS. As the building block (shown in 

Figure 4-11), is a system with only one fixed FBG filter, and can be used to build the 

system with multiple fixed FBG sensors (Figure 4-17), it is possible to use the 

system shown in the Figure 4-17 as a building block to use multiple sensors for 

damage detection in a structure. Figure 4-55 shows a system of systems used to 

incorporate a multiple number of sensors to one SHM system. The total system 

consists of n number of embedded FBG sensors, and each sensor is connected to a 

multiple number of filters. As mentioned earlier, the effective number of filters 

needed for each sensor is dependent upon the operating rage of the sensor. Each filter 

is connected to a photo diode and then to a DAQ. Acquired data was post-processed 
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using the numerical integrator and fed in to the ANN. ANN should have m number 

of input neurons, which is equal to number of filters (or photo diodes) used. 

For an efficient detection of defect in a SHM system, it is essential to identify the 

number of sensors required, and the locations of each sensor. It is not efficient to use 

an excessive number of sensors as this will lead to delays in the post-processing of 

sensor data and also a high implementation cost. In the Chapter 5, a comprehensive 

study on optimisation of FBG sensor network is presented.  
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5 Optimisation of the FBG sensor network 

 

5.1 Introduction 

With the increased use of FRP composites in load bearing structures especially in 

aerospace industry, it is crucial to have in situ SHM systems to ensure safe operation 

of the structure. When it comes to using FBG sensors for the task, it is not possible to 

monitor the structure using a single sensor. Consequently, many FBG sensors are 

needed for monitoring the integrity of a complex composite structure. Using 

randomly placed or uniform sensor networks is a loss of resources and hence an 

optimum layout of sensors for a particular structure is required for efficient detection 

of damage. On the other hand, there should not be a provision for error or 

insensitivity in the process of SHM. 

The novel SHM system introduced in Chapter 4 can be readily applied to any 

established or new FBG sensor network. Consequently, establishing an efficient FBG 

sensor network is an equally important factor for efficiency of the SHM system. This 

chapter details a methodology for establishing an optimised FBG sensor network. 

For the optimisation of a FBG sensor network, strain data were utilised. For this 

process, FEA simulated data were used and then for verification, FFFDS estimated 

data were used. This data came from a real sample with embedded FBG sensors. The 

optimised number of sensors obtained from the FEA simulation was taken for the 

fabrication of sample. For efficient operation of FFFDS, it is important to have a 

lesser number of sensors. A large number of sensors in a network make the FFFDS 

complicated, as the decoding of each sensor uses a separate set of optical circulators 

and photo diodes. 

CHAPTER 5 

Optimisation of the FBG sensor network 
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As a case study, a helicopter blade base structure has been investigated. During the 

operation, helicopter blade base structures undergo complex loading conditions in the 

forms of axial, bending and torsion. FEA simulation is used to model the structure 

for possible load cases to identify stress concentrations (hot spots) which will be used 

to locate FBG sensors in vicinity of the hot spot. Finally, an optimised number of 

sensors is discussed. In case of sensor failure, reliability analysis is conducted to 

investigate the monitoring ability of the system without the failed (obsolete) sensor. 

The ability of the system to estimate an obsolete sensor has also been investigated. 

In this study, the optimum number of sensors needed to monitor a delamination in a 

FRP helicopter blade base structure was investigated.  A complete Finite Element 

Analysis (FEA) together with an experimental verification was used for the 

investigation.  Initially, the critical sections of the component’s critical locations 

were identified by using FEA simulation.  Then a delamination was simulated in the 

same FEA mesh alone with several FBG sensors simulated in the same FEA mesh.  

The strain values at the simulated FBG sensors were used with an ANN (ANN1) to 

identify the delamination.  

The procedure was repeated with varying numbers of FBG sensors until the 

prediction of the algorithm was reached within a 0.1% error level.  The optimal 

number of FBGs was taken at 0.1% error level. It was found that the prediction levels 

of the algorithm had not significantly improved until the number of sensors reduced 

to the optimal number of sensors.  Furthermore, the effect of obsolete sensors of an 

optimized sensor network, on prediction of the damage levels, was investigated.   

The optimized network was physically fabricated and tested on a representative 

sample of a component with embedded FBG sensors.  Similar delamination, as in 
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FEA simulation, was purposely created in the sample. With the presence of the 

delamination, the FBG readings were recorded for the similar load cases as in FEA, 

at the FBG locations using FFFDS.  The decoded FBG readings obtained from 

FFFDS were fed into an ANN to estimate the strain at each sensor location (as 

discussed in Section 4.7.1).  The estimated strain values were used to verify the 

optimised FBG sensor network obtained using the FEA simulation data. Further, the 

experiment was extended to investigate the effect of obsolete FBG sensors on the 

prediction error level.    

 

5.2 Identification of the locations of FBG sensors in a 

composite structure to detect damage using FEA 

simulation 

In order to locate FBG sensors in a FRP composite structure, a detailed FEA model 

has been used. Commercial FEA software, ABAQUS, provided the competency of 

comprehensive modelling of FRP laminate structures (Chapter 2). The capability of 

providing layer by layer stress variations can be used to identify potential locations 

for damage initialization. Hence, those locations can be covered by FBG sensors for 

damage detection.  

5.2.1. The process of optimisation of FBG sensor network 

The process of optimisation of the FBG sensor network is graphically illustrated in 

Figure 5-1. Initially, the critical load bearing structural component need to be 

identified. To identify the critical structural component, actual operating loading 

and/or the design loading can be used. To identify stress concentration as a whole 
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and the stress variations in each layer, the component must be modelled in the FEA 

environment using all, or critical load cases.  

 

Figure 5-1: Process of optimisation of FBG sensor network 

 

The strain values around the stress concentration have been used as strain readings of 

simulated FBG sensors in those particular locations. The FEA generated strain values 

(simulated FBG readings) have been used with an ANN in order to identify damage 

and/or damage initiation in the pre-identified stress concentration.  

To decide on the number of sensor locations, the learning rate (epoch) of ANN was 

used as the measure. A higher epoch was observed irrespective of the number of 

FBG sensors. The optimum number of FBG sensors was identified at the lowest 

epoch, which is obtained when the ANN is operating with highest learning rate. The 

learning rate is a measure which gives the correlations in between ANN inputs. If the 

ANN inputs have strong correlation, learning of the ANN is efficient and hence the 

learning rate is higher. Consequently, the epoch reduces. If the correlation in between 
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ANN inputs is weak, the learning process is difficult and learning rate lower, and as a 

result, the epoch will be higher.   

In this case study the ANN inputs are the strain reading from FBG sensors 

(simulated), and hence the learning rate or the epoch of ANN can be used as a 

measure of the correlation between each sensor in the sensor network. As a result, it 

is possible to identify the sensor network which gives the lowest epoch, indicating 

the identified sensor network where the sensors have strong correlation to each other. 

A trial and error method was used to find the lowest epoch using different numbers 

of sensors and network with the lowest epoch, was used as the optimised FBG sensor 

network. 

With the optimised number of FBG sensors and their corresponding locations, a 

specimen was fabricated for verification of the performance of the network. Using 

the same load cases used in the FEA modelling environment, the specimen was 

tested. The experimental data was used with the ANN and the result obtained was 

used to verify the optimised FBG network.  

The main advantage of this optimisation process is the possibility of deciding the 

number and the locations of FBG sensors in the modelling environment. The 

following study details the use of the proposed process to optimise the FBG sensor 

network in a helicopter blade base structure. 
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5.2.2. Case study: Optimisation of FBG sensor network in a 

helicopter blade base structure 

The selected helicopter blade base structure was modelled with the commercial FEA 

software ABAQUS. The load cases were selected using the operation loads which a 

helicopter blade base would experience while in operation. Figure 5-2 shows the 

strain variation observed from simulation of a helicopter blade base under axial 

tension and torsion loading.  

In the real testing environment, due to the limitations of the test equipment, it is 

difficult to load the specimen in axial, bending and torsion at the same time. Because 

of these limitations in the test rig, only axial and bending loading was used for the 

experiment. However, for the process of identifying stress concentrations in the 

modelling environment, axial, bending and torsional loading was used as shown in 

the Figure 5-2. 

  

Figure 5-2: Strain variation in helicopter blade base combined loading 

The process of selecting a critical structural component for monitoring is graphically 

illustrated in Figure 5-3. The selected structure has been analysed for all operational 

and critical load conditions using finite element analysis. The model is used to 

identify stress concentrations (hot spots) which can lead to damage. During the 

fabrication of the structure, FBG sensors can be embedded to detect that particular 

“hot spot” while the structure is in operation. 
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Figure 5-3: Process of locating FBG sensors 

The following study details a case study on optimising the FBG sensor network to 

detect damage in the hot spot shown in Figure 5-2. 

5.2.2.5. FEA model of the structure 

The laminated structure with 16 layers with layup [0°/0°/90°/90°/-

45°/+45°/90°/0°/]s, was modelled and the geometry of component is given in Figure 

5-4. To accommodate the modelling of delamination, the structure was modelled in 

two parts as shown in Figure 5-5. The top part of the specimen consisted of 4 layers 

with lay-up [0°/0°/90°/90°] of the total thickness 2 mm. The bottom part consisted of 

12 layers with lay-up [-45°/+45°/90°/0°/0°/90°/+45°/-45°/90°/90°/0°/0°] of the total 

thickness 6 mm. Part 1 and Part 2 were initially rigidly connected to each other to 

make one component using surface constrains available in ABAQUS. 
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Figure 5-4: Specimen configuration (all dimensions are in millimetres) 

 

Figure 5-5: Two parts of the model 

 

The bulk material properties were adopted as follows: E1=34.412 GPa, E2=6.531 

GPa, E3=6.531 GPa, ν12=0.217, ν13=0.217, ν23=0.336, G12=2.433 GPa, 

G13=2.433 GPa, and G23=1.698 GPa in the direction of angle 0° (x axis). The model 

consisted of a mesh with 737 elements and 1674 nodes using SC8R elements which 

are 8-node quadrilateral in-plane general-purpose continuum shell elements. Use of 

SC8R elements reduces integration with hourglass control and finite membrane 

strains with the composite option for the cross-section description. The component 

was rigidly supported on one side as shown in Figure 5-6, and axial load of 10kN and 

bending load of 500N was applied in 20 steps. Table 5-1 shows the loading in each 

load case. The strain distribution of the component was observed for each layer of 

the laminate. The deformation of the structure at the end of loading steps is shown in 

Top part  

Bottom 

part  

Assembled 

component  



Chapter 5   

175 
Gayan Kahandawa 

the Figure 5-7. As the experimental setup limits the loading in torsion, only axial and 

bending loading was used for the comparison with the experimental results. 

 

 

Figure 5-6: Applied load on the component 

 

Table 5-1: Load cases used in the FEA modelling 

Load case Axial load 

(N) 

Bending load 

(N) 

1 500 25 

3 1500 75 

5 2500 125 

8 4000 200 

10 5000 250 

12 6000 300 

15 7500 375 

17 8500 425 

20 10000 500 

 

Figure 5-7 shows the deformed shape of the 3D model at the end of the analyses 

(Step 20). The strain distribution of the component was observed for each layer of 

the laminate.  

100 mm 



Chapter 5   

176 
Gayan Kahandawa 

  

Figure 5-7: Deformed shape of the component  

 

Figure 5-8 shows the stress concentrations in x direction (E11) in the adjacent layers, 

layers 4 and 5. The concentration point has shifted slightly from layer 4 to layer 5 (as 

shown in the Figure 5-8(a) and (b). Considering the mismatch in strain distribution, 

the stress concentration was identified as a potential point for damage initiation. 

After identifying the hot spot, in the next FEA model semicircular delamination was 

simulated in the “hot spot”. 

 

  

 

Figure 5-8: Strain variation in x direction (E11) (a) layer 4 (b) layer 5 
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5.2.2.6. Modelling delamination in the helicopter blade base structure 

For the modelling purposes the delamination used in this study was considered as 

“ideal delamination” with no friction between separated surfaces. In the simulation 

of delamination, the contact surface of the top part was partitioned as shown in 

Figure 5-9(a). Only the partitioned semicircular section Figure 5-9(b) was not 

connected to the bottom part and the surface interaction was set to “friction less”. 

 

  

 

Figure 5-9: Delamination in the component 

Initially 13 locations (A to M) were selected as locations for FBG sensors, as shown 

in Figure 5-10. Initial placement was arbitrary and strain readings from the top 

surface of each layer (1 to 16) were extracted. The total number of locations for FBG 

sensors was 208 (13 x 16) in the beginning of the study. For an example, the notation 

“A1” provides the sensor in location “A”, layer 1. For the 20 loading steps, the strain 

reading in E11 direction were recorded.  
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Figure 5-10: Locations of the FBG sensors 

In the FEA model, rectangular elements, 10mm long and 5 mm wide, were used as 

FBG sensors. Average top surface strain in X direction (E11) is used as 

representation of strain calculated using the FBG sensors. Sensor G9 (which is the 

sensor in the location G and placed on top of layer 9) is used as the deteriorating 

sensor (obsolete sensor).  

 

Figure 5-11: Layup of the structure 

 

5.2.2.7. Analysis of FEA data 

Extracted FEA data for E11 for all sensor locations for both models, first without 

delamination, and second with delamination, were used as representations of FBG 

readings in each load case. Strain readings in the location G for without delamination 
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and with delamination models are given in Figure 5-12(a) and Figure 5-12(b) 

respectively. 

As illustrated in Figure 5-12, there was a clear effect on the strain reading at location 

G resulting from delamination. Sensor G9 is selected as the sensor for identification 

of delamination in the model. The delamination is located in between layers 4 and 5. 

Sensor G9 was placed in layer 9 and hence was a fair distance away from the 

damage. Strain needs to be transferred through layers 6, 7 and 8 to layer 9. As 

illustrated in Figure 5-12, the strain level increased in layer 9 and in layer 11 the 

same strain levels decreased from model without and with delamination.  

 

 

 

 

Figure 5-12: Variation of strain in location G under combined loading 
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5.2.2.8. Identification of delamination using FBG data generated by FEA 

Generated FBG readings (E11 strain in each element location in each layer) were 

used to identify the existence of delamination using an ANN1.  In both the models, 

with delamination and without delaminations, the data was extracted for each 

location (A to M) and each layer (1 to 16). But for the identification of delamination, 

it was found that even with a single sensor, the ANN could identify the delamination 

accurately. For the identification of the delamination in this study, an ANN which is 

with three hidden layers has been used. Hidden layers 1, 2 and 3 contain 20, 50 and 

25 neurons, as shown in Figure 5-13 (ANN1). The parameters of the ANN are as in 

Section 4.7.1. 

 

 

Figure 5-13: ANN used to identify delamination (ANN1) 

 

 Figure 5-14 gives the ANN output and the actual existence of delamination. With 

sensor readings G9 and G11 only the ANN predicted the existence of delamination in 
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1201 epoch. With sensor G9 only, it took 4878 epoch to identify delamination with 

0.1% error. Figure 5-15 shows the learning rate of the ANN with two sensors and 

single sensor.  

 

Figure 5-14: Identification of delamination using ANN1 

 

 

Figure 5-15: Learning rate of the ANN with two sensor data (G9 and G11) and single sensor data (G9) 

 

From the study, it was shown that the identification of delamination is possible with 

even a single sensor in the modelling environment. It is also important to investigate 

the effect of losing an embedded sensor to the efficient functionality of the damage 

detection mechanism.  
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5.2.3. Prediction of failed (obsolete) FBG sensor  

In an FRP composite component, identification of damage using embedded FBG 

sensors depends on the sensitivity of the FBG sensors to the strain field generated by 

the existence of a defect. After estimating the possible locations for the initiation of 

damage with FEA modelling techniques, it is crucial to locate FBG sensors within 

the modelled strain field in order to identify damage. An optimised number of 

sensors are needed for the robust operation of the damage detection system. It is not 

acceptable to have a system depend on a single or small number of FBG sensors. If a 

sensor accidently failed, (FBG sensors are brittle) the effect of that failure on the 

system should be investigated. The failure of the sensor may or may not be caused by 

damage in the FRP structure. If the failure of sensor is caused by structural defect, 

that defect should be significant and should have been identified in advance by the 

SHM system. For the following study it was assumed that sensor failure was not 

caused by damage growth in the FRP structure. One possible cause of the sensor 

failure is breakage from the egress end of the sensor. 

 

5.2.3.5. Estimation of obsolete FBG sensor reading with multiple FBG 

sensors 

In this study the sensor G9 was the sensor used to identify the existence of a defect in 

the FRP structure. The location of the sensor G9 is shown in Figure 5-16.  
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Figure 5-16: Location of the Sensor G9 

For the prediction of sensor G9, using surrounding sensors, a different ANN (ANN2) 

was used. Initially for prediction, a large number of sensors were used. To 

accommodate the number of sensor inputs to the ANN2, a similar number of input 

neurons were used. A number of hidden layers was fixed to three layers and other 

parameters of the ANN were as discussed in Section 4.7.1. Starting with 64 sensors 

(inputs), it was found that, until the sensor number was reduced to 14, the network 

took significantly high training epoch (15000+) due to excess data. Even through it is 

easier to correlate ANN2 inputs with extra amount of data, the excess data overloads 

the network resulting in a higher training epoch. 

 

Figure 5-17: Prediction of sensor G9: learning rate with 14 sensors 
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For the final prediction of sensor G9, 14 sensors in locations I, H, E, D and G were 

used (I9,I11,I13,H9,H11,H13,E9,E11,E13,D9,D11,D13,G11 and G 13). With the 14 

sensors, after 12696 epoch, the ANN predicted sensor G9 with 0.1% accuracy. By 

reducing the number of sensors the prediction of sensor G9 was carried out. It was 

observed that the optimum number of sensors to predict G9 was six sensors in 

locations D13, E13, G13, H13, G11 and I13.   

Table 5-2 shows the corresponding epoch for each number of sensors and Figure 

5-18  shows the variation of epoch for each number of sensors.  

Table 5-2: Prediction of sensor G9 with different numbers of sensors 

Number of sensors Epoch 

14 12696 

12 12051 

10 11932 

8 10841 

6 9236 

4 14227 

2 18394 
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Figure 5-18: Variation of epoch with number of sensors 

 

It was found that, in this case study, the optimum number of sensors to detect 

delamination in the selected FRP helicopter blade structure is seven. With the use of 

additional sensors, the system was found to be overloaded which delayed the damage 

detection process. With the identified optimum number of sensors, the system 

performed faster and the required accuracy, 0.1%, was obtained. It was observed that 

it is possible to detect the delamination with just one FBG sensor in the strain field 

created by the damage. But, to improve the robustness of the system, a total number 

of seven sensors were used. The proposed technique can address the effect of lost 

critical sensors for the damage detection process, and hence robustness of the system 

is improved. 

The proposed technique can be used to determine the optimum number of sensors for 

a particular structure for efficient detection of damage using FBG sensors in the 

modelling stage. 
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5.3 Experimental validation of the optimised system – 

estimation of obsolete sensor 

Using the FEA analysed data and the ANN, the optimum number of sensors has been 

determined. Furthermore, the locations of the sensors also been identified. With the 

results from the aforementioned study, an FRP specimen was fabricated with 

embedded FBG sensors in identified locations (G9, D13, E13, G13, H13, G11 and 

I13). 

5.3.1. Fabrication of the specimen 

The structural component was fabricated with E glass fibre mats using epoxy resin. 

The laminate was fabricated with fibre orientation [0/0/90/90/-45/45/90/0]s, similar 

to the FEA model. The geometry of the specimen is illustrated in Figure 5-4. The 

woven fabric fibre layup is shown in the  

Figure 5-19(a). The locations of the FBG sensors have been decided using the FEA 

analysis with the use of ANN1. The sensor G9 was used as the sensor to identify the 

delamination. During the fabrication of the sample, seven FBG sensors, in locations 

G9, D13, E13, G13, H13, G11 and I13, were embedded.  

  

 

Figure 5-19: The fabrication of the specimen with embedded FBG sensors 
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Furthermore, simulated delamination was created in the specimen as shown in the 

Figure 5-19 (b). The completed specimen is shown in the Figure 5-20. 

 

 

Figure 5-20: Specimen with FBG sensors 

 

5.3.2. Experimentation 

The component was rigidly supported on one side as shown in Figure 5-21(a), and 

axial load of 10kN and bending load of 500N were applied in 20 steps. The loading 

arrangement is shown in the Figure 5-21(b).  

The FBG reading in each load case was decoded, using FFFDS, and recoded for post 

processing. The load cases are given in the Table 5-3. 
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Figure 5-21: Experimental setup 

 

Table 5-3: Load cases for the loading of the component 

Load case Axial load Bending load 

1 500N 25N 

5 2500N 125N 

10 5000N 250N 

15 7500N 375N 

20 10000N 500N 

 

 

5.3.3. Results and discussion 

The strain reading at each load case was estimated using the FFFDS readings and 

ANN as discussed in Section 4.7.1. The predicted strain readings are shown in Figure 

5-22.  

(a)  (b)  
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Figure 5-22: Strain estimated form the FFFDS and ANN for each load cases 

 

Figure 5-23 shows the comparison of FEA generated strain and FFFDS estimated 

strain for sensor G9. The predictions for other sensors have also shown similar 

accuracy. 

 

Figure 5-23: Comparison of FEA results with FBG readings for sensor G9 
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used to predict G9 reading.  Similarly, as in previous case discussed in Section 

5.3.1.1, the FBG estimated with FFFDS for sensors D13, E13, G13, H13, G11 and 

I13, were used with an ANN to predict the sensor G9 as shown in the Figure 5-24. 

The ANN (ANN2) used was with six input neurons and one output neuron. Three 

hidden layers, 1, 2, and 3, were used with 20, 50 and 25 neurons respectively.   
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Figure 5-24: ANN used to predict sensor G9 (ANN2) 

The ANN predicted the sensor G9 with 0.1% accuracy after 13719 epoch as shown 

in the Figure 5-25.  

 

Figure 5-25: Training rate of the ANN 
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fabricated with embedded FBG sensors. The FRP sample was loaded and the FBG 

results were used with the ANN for prediction of obsolete sensor.  

Compared to the training epoch 9236 obtained from the FEA data, the experimental 

data took 13719 epoch to predict the obsolete sensor with 0.1% accuracy.  

5.4 Conclusions for optimisation of FBG sensor  

network  

A process for setting up an FBG sensor network in an FRP structure was proposed 

using FEA modelling and ANNs. As a case study, the FBG sensor network in a root 

of a helicopter blade was investigated. The optimised FBG sensor network was 

fabricated into a FRP composite helicopter blade structure. The performance of the 

FBG network was found to be excellent.  

Furthermore, the case of a lost critical FBG sensor from an optimised network while 

in operation, was investigated. It was found that the operational data acquired from 

the FBG network while the obsolete sensor was in operation, can be used with an 

ANN to estimate the obsolete sensor. Hence, it was found that the use of an ANN for 

managing FBG sensor networks and post-processing FBG sensor network data, 

increases the efficiency and robustness of the SHM system. 
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6. Conclusions 

 

This thesis intended to investigate and find corrective measures for current 

unresolved issues associated with the development of FBG-based SHM systems. A 

well planned research methodology has been proposed to identify the niche areas of 

SHM system development and was executed successfully to its completion.  

This chapter summarizes the outcomes of this work and discusses possible further 

work. The breakthrough technologies and procedures achieved under the project can 

be grouped into three categories: 

1. Efficient use of FBG sensors for SHM in advanced composite structures 

2. Effective use of FBG spectral data for SHM of advanced composite structures 

3. Use of ANN with FBG data for damage detection for SHM. 

 

6.1 Principal achievements 

This study planned to solve the unresolved problems associated with applications of 

FBG-based SHM systems. Six objectives were investigated during the study. All the 

set objectives of the research were achieved with a great confidence level.  

 Identification of general damage matrix which can be monitored using FBG-

based SHM system:  

Critical damage in composites has been identified. Delamination was selected as the 

critical damage in this study, as it is difficult to detect from conventional techniques 

and can have serious consequences if not detected in advance. Delamination was 

CHAPTER 6 

Conclusions 
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modelled in FEA and simulated in a real composite structure experimentally. Both 

results were found to be in good agreement.  

 Identification of spectral distortion of an FBG sensor in general environment 

in vicinity of damage: 

The embedment process of an FBG sensor in a composite structure was investigated. 

It was found that pre-tensioning the FBG sensor minimised the spectral distortion. 

For the protection of FBG sensors while in the manufacturing of composite 

structures, several protective measures were suggested. By using FEA modelling and 

testing many samples with embedded FBG sensors, it was verified that the presence 

of damage can be detected by FBG sensors using the distortion of FBG spectra.   

 Identification of limitations of FBG in detection of damage: 

Distortion of FBG sensor spectra was thoroughly investigated. It was found that data 

from existence of damage as well as other effects are imparted into the distortion of 

FBG response spectra. Using the reduction method to isolate distortion solely due to 

the damage was found to be impossible as the other effects are non-unique and non-

repeatable. It was found that once the optical signal (FBG response) is received, it is 

impossible to regenerate the strain field using FBG data. The FBG spectral data do 

not carry location details along with strain data. Consequently, FBG spectral data 

was found to be one directional. This phenomenon was identified as a major 

limitation of using FBG sensors for damage detection in composite structures.  
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 Development of method to quantify spectral distortion with respect to the 

quality of damage: 

A novel method to quantify distortion, “Ds” of FBG response was introduced. The 

peak power and the HWHM were used to calculate distortion. Furthermore, a novel 

index was introduced “Distortion Index, DI” for the quantification of spectral 

distortion with reference to original FBG spectra. It was found that the Distortion 

Index increases with the increasing damage in composite structures. Consequently, 

the Distortion Index can be used to identify damage as well as for the quantification 

of damage.   

 Optimisation of FBG network: 

Novel methodology is introduced to optimize the FBG sensor network in a 

composite structure. FEA modelling is used to model the structure in order to 

generate the strain field of the structure while in operational loading. An ANN was 

used to find the correlations between FBG locations for optimisation of FBG sensor 

networks. For a critical location of FBG sensor, several other FBG sensors with 

correlations were located, so that those FBG sensors could be used to estimate the 

critical sensor in a failed sensor scenario. The optimised FBG sensor was tested with 

representative specimen and found to be in excellent agreement with modelling 

results. 

 Development of a damage detection matrix and decision making algorithms 

and the development of FBG-based SHM systems: 

The key achievement of this study is the FFFDS. FFFDS is used to decode distorted 

FBG response using fixed FBG filters. The decoded data was used to identify 



Chapter 6   

196 
Gayan Kahandawa 

damage in composite structures using an ANN. Even through ANN is well known 

for processing non-linear data; there was no method to feed FBG spectral data into 

an ANN. The newly developed FFFDS do the above without losing important data in 

the spectra. In other words the FFFDS made it possible for FBGs to talk to ANN. 

The capability of ANN was used to train the ANN with FBG data in order to create a 

reference for the non-damaged structure. The created reference was used to identify 

initiation of damage.  

The research work on FBG-based SHM systems were focused on absolute and/or 

general systems, but the novelty of the proposed approach is that it uses the non-

damage status as a reference for damage detection. The training functionality of 

ANN was used for referencing. As a result of the reference, it was found that 

detections of initiation of damage have been confidently achieved. The experimental 

verification of the system was also found to be excellent.  

As a consequence the outcome of this research is the first of its kind and the 

outcomes are innovative technologies in the FBG-based SHM field. FFFDS is in the 

process of patenting at the US patent office.    

 

6.2 Summary 

Delamination, which is the failure of interface between two layers, is identified as a 

critical defect in composite structures. Detection of delamination using surface 

mounted sensors and non-destructive test methods is extremely difficult.  

Consequently, embedded sensors have been identified as a solution to overcome 

weaknesses of surface sensors. The layered construction of the composites, allow the 
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embedding of sensors. For the embedded sensors, the Fibre Bragg Grating (FBG) 

sensor was identified as the most suitable candidate. It has been shown that the 

diminutive FBG sensor can be embedded in any location of the composite without 

compromising the strength of the structure. It is identified that the sensor should be 

embedded in the stress field of a damage to detect that damage. Embedding the 

sensor external to a stress concentration makes the sensor insensitive to that stress 

concentration.  

Despite the favourable characteristics of FBG sensors, it was found that the response 

of an FBG becomes complicated when it is embedded in a complicated structure, 

while the structure is under complex loading. Several other effects, micro-bending 

and transverse loading on the FBG sensor have been identified as the causes for this 

discrepancy. Those effects have been individually identified using a set of 

experiments. It was found that, with all aforementioned effects and the existence of 

damage, creates a distorted the FBG spectrum. As a result, the response spectra of an 

FBG embedded in a complicated structure while the structure is under complex 

loading, becomes complicated and non-linear. Consequently, is has been identified 

that for post-processing FBG responses need sophisticated algorithms.  

Artificial Neural Networks (ANN) have been identified as a post-processor for 

processing complicated non-linear signals for identification problems. A novel 

decoding system was used for decoding FBG spectra using fixed FBG filters to feed 

into ANN. The wavelength of the fixed FBG filters makes the decoded data 

wavelength dependent. Several filters were used to cover a broad wavelength range.  
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It was found that a proper learning session will train an ANN to identify damage 

even with complicated response spectra. The trained network identified the damage 

both quantitatively and qualitatively.   

Several experimental studies have been used to investigate the decoding system and 

performance of ANN for damage detection in composite structures. After the 

learning process, the system identified a growing delamination with 0.01% error 

using an embedded FBG sensor.  

Finally, a case study was conducted to develop an optimum FBG sensor network for 

efficient damage detection in a composite structure. Proposed methodology used 

finite element analysis (FEA) data for the optimisation process and hence can be 

used to locate FBG sensors while the structure is been fabricated. The methodology 

was experimentally verified using a representative sample.  

It can be concluded that all the set objectives of the project was successfully 

achieved. Therefore, research work presented in this thesis addressed the recognised 

unsolved problems in FBG-based SHM systems. As a consequence, knowledge 

gained from this research is the first of its kind. The outcomes are ground-breaking 

technologies in the SHM field. 

 

6.3 Future work 

The ANN used for the study is a general one and was selected for its simplicity and 

availability. As the development of a decoding technique enabled use of any ANN 

for damage detection using FBGs, the optimum ANN for damage detection requires 
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investigated. The training technique, back-propagation, may not be the optimum 

technique for training the ANN. Other training techniques must also be investigated.  

For the training of ANN, alternative techniques should be investigated as a means of 

generating data.  

The performance of the FBG-based SHM system needs to be experimented in real 

application environments. As learning of ANN is a major reason for the successful 

operation of the system, collecting real data for the learning needs to be investigated. 

The suggested data collection from initial operations of the structure for training 

needs to be experimentally verified.  

Optimising the ANN, specifically for the damage detection needs to be investigated 

with the real structure in real working environment. For the application of developed 

systems in real structures, the development of miniature systems needs to be 

investigated. As the novel system is only using comparatively miniature equipment, 

it is possible to develop miniature unit.  
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Appendix B Torsion test equipment 
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Appendix C Specifications of Equipment used 

for FFFDS 

Photo Diode 

PDA20CS 

InGaAs Switchable Gain Detector 
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Optical Coupler 

Thorlab 10202A-50-FC 
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Data Acquisition System 

MicroDAQ USB-26/30 
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Appendix D MATLAB code for numerical 

integration of FBG spectral data 

MATLAB Programme  

 

clc;   

dt = 0.05; 

%t = Time; 

%y = PD1; 

%yy = PD2; 

%yyy = PD3; 

   

a1 = xlsread('850N.xls'); 

  

t = a1(:,1); 

y = a1(:,2); 

yy = a1(:,3); 

yyy = a1(:,4); 

 % Find % -------------------------- 

 yyd = 0.007; 

 idi1 = find(yyy>= yyd); 

  idi2a = idi1(1); 

idi2b = idi1(length(idi1)); 

ta = t(idi2a) 

 tb = t(idi2b) 
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  %ta = 0.765; 

%tb = 0.768; 

   

% Integration ------------------------ 

idi_t1 = find(t>=ta & t<=tb); 

t1 = t (idi_t1); 

y1 = y(idi_t1); 

yy1 = yy(idi_t1); 

yyy1 = yyy(idi_t1); 

  

I1 = trapz(t1,y1) 

I2 = trapz(t1,yy1) 

I3 = trapz(t1,yyy1) 

 I = {I1,I2,I3} 

 xlswrite('Intval.xls',I, 'sheet1', 'A2'); 

 % Plot % ------------------------------ 

figure(1) 

plot(t,y,'o') 

plot(t,yy,'+') 

plot(t,yyy,'*') 

 hold on 

plot (t, y); hold all; plot (t, yy); plot (t, yyy);   

plot(t.*0+ta,y) 

plot(t.*0+tb,y) 

xlabel('t') 
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ylabel('y') 

grid on 

 

Figure C-0-1: Plot of data at load 850N 

 Integrated Outputs 

ta = 

    0.7600 

tb = 

    0.7700 

 

I1 =   2.2656e-004 

I2 =   1.2761e-004 

I3 =   1.9434e-004 

Input matrix vales for ANN 

I =  

    [2.2656e-004]    [1.2761e-004]    [1.9434e-004] 
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>> 

Table C-1: The output data for all load steps (0N to 1000N) 

Load I1 I2  I3  

0 0 2.72E-06 2.30E-05 

25 9.52E-06 2.11E-05 3.97E-05 

50 8.39E-06 1.70E-05 2.98E-05 

75 8.94E-06 1.95E-05 4.97E-05 

100 8.48E-06 2.14E-05 4.46E-05 

125 7.57E-06 2.14E-05 4.93E-05 

150 8.36E-06 1.91E-05 4.59E-05 

175 9.16E-06 2.19E-05 4.78E-05 

200 9.25E-06 1.97E-05 4.66E-05 

225 8.73E-06 2.36E-05 4.34E-05 

250 8.97E-06 2.20E-05 4.81E-05 

275 7.63E-06 1.96E-05 5.79E-05 

300 8.42E-06 2.00E-05 4.29E-05 

325 9.00E-06 2.31E-05 6.11E-05 

350 8.12E-06 2.08E-05 5.19E-05 

375 8.79E-06 2.04E-05 5.35E-05 

400 8.64E-06 1.94E-05 5.60E-05 

425 9.03E-06 1.96E-05 5.31E-05 

450 9.61E-06 2.05E-05 5.45E-05 

475 9.49E-06 2.02E-05 6.58E-05 

500 9.89E-06 2.34E-05 5.37E-05 

525 1.06E-05 2.20E-05 5.92E-05 
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Load I1 I2  I3  

550 9.64E-06 2.24E-05 5.61E-05 

575 1.21E-05 2.51E-05 5.76E-05 

600 1.50E-05 3.00E-05 6.78E-05 

625 2.04E-05 2.93E-05 5.10E-05 

650 2.69E-05 3.27E-05 5.49E-05 

675 5.40E-05 4.37E-05 6.56E-05 

700 5.18E-05 4.60E-05 7.00E-05 

725 7.81E-05 5.71E-05 8.75E-05 

750 1.03E-04 6.88E-05 1.00E-04 

775 1.20E-04 7.68E-05 1.04E-04 

800 2.29E-04 1.16E-04 1.14E-04 

825 2.52E-04 1.29E-04 1.45E-04 

850 2.27E-04 1.27E-04 1.94E-04 

875 1.96E-04 1.04E-04 2.03E-04 

900 2.27E-04 1.20E-04 2.36E-04 

925 2.59E-04 1.26E-04 2.06E-04 

950 2.71E-04 1.40E-04 2.04E-04 

975 2.48E-04 1.38E-04 2.14E-04 

1000 2.25E-04 1.14E-04 1.96E-04 
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Appendix E ANN for strain estimation 

 

Figure D-0-2: The ANN used for strain estimation 
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C Code for the ANN 

/** 

 Created by Gayan Kahandawa 

*/ 

#include <math.h> 

/** 

 inputs  - array of 3 element(s), containing the network input(s). 

 outputs - array of 1 element(s), that will contain the network output(s). 

 Note : The array inputs will also be changed. Its values will be rescaled between -1 

and 1. 

*/ 

void Gayan(double * inputs, double * outputs) { 

 double mainWeights[] = {2.872879740189390, -2.583549979881009, -

0.752151018781287, -1.135131192390938, 0.681420177946371, 

1.948531337507985, -0.411732541894937, 1.910039666244582, -

2.298438136085826……….0.238498234388381, 2.578971596556626, -

2.278428291720948, 1.652815002197443, 2.172203084927900, 

0.086502529849448, -0.219379239230267, 0.446856695586866, 

1.047303263489046, -1.363940625633989, 2.281928793835090, -

1.744765031520035, 0.190683540058157, 0.094383493902343, -

1.972993259677275, -1.191859815593576}; 

 double * sw = spaceWeights; 

 double mk[95]; 

 double *m = mk; 

 double hiddenLayer1outputs[20]; 
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 double hiddenLayer2outputs[50]; 

 double hiddenLayer3outputs[25]; 

 int c; 

 

 inputs[0] = -1.0 + (inputs[0] - 0.000000000000000) / 0.000135500000000; 

 inputs[1] = -1.0 + (inputs[1] - 0.000002720000000) / 0.000068640000000; 

 inputs[2] = -1.0 + (inputs[2] - 0.000023000000000) / 0.000106500000000; 

 mk[0] = *sw++; 

 for(c = 0; c < 3; c++) mk[0] += *sw++ * inputs[c]; 

 mk[0] = 1.0 / (1.0 + exp(-mk[0])); 

 mk[1] = *sw++; 

 for(c = 0; c < 3; c++) mk[1] += *sw++ * inputs[c]; 

 mk[1] = 1.0 / (1.0 + exp(-mk[1])); 

 mk[2] = *sw++; 

 for(c = 0; c < 3; c++) mk[2] += *sw++ * inputs[c]; 

 mk[2] = 1.0 / (1.0 + exp(-mk[2])); 

 mk[3] = *sw++; 

 for(c = 0; c < 3; c++) mk[3] += *sw++ * inputs[c]; 

 mk[3] = 1.0 / (1.0 + exp(-mk[3])); 

 mk[4] = *sw++; 

 for(c = 0; c < 3; c++) mk[4] += *sw++ * inputs[c]; 

 mk[4] = 1.0 / (1.0 + exp(-mk[4])); 

 mk[5] = *sw++; 

 …………………………………………….. 

 mk[92] = *sw++; 
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 for(c = 0; c < 3; c++) mk[92] += *sw++ * inputs[c]; 

 hiddenLayer1outputs[3] = exp(-(hiddenLayer1outputs[3] * 

hiddenLayer1outputs[3])); 

 hiddenLayer1outputs[3] *= *m++; 

 hiddenLayer1outputs[4] = *mw++; 

 for(c = 0; c < 3; c++) hiddenLayer1outputs[4] += *mw++ * inputs[c]; 

 hiddenLayer1outputs[4] = exp(-(hiddenLayer1outputs[4] * 

hiddenLayer1outputs[4])); 

 hiddenLayer1outputs[4] *= *m++; 

 hiddenLayer1outputs[5] = *mw++; 

 ………………………….. 

 for(c = 0; c < 25; c++) outputs[0] += *mw++ * hiddenLayer3outputs[c]; 

 outputs[0] = 1.0 / (1.0 + exp(-outputs[0])); 

 outputs[0] = 0.000000000000000 + (outputs[0] - 0.000000) * 

1000.000000000000000; 

} 
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Final network weights: Main network 

Table D-2: Weights of the main network 

  
From the input layer 

To the 1st hidden layer bias 
1th 

neuron 

2th 

neuron 

3th 

neuron 

1st neuron 2.87288 -2.58355 -0.75215 -1.13513 

2nd neuron 0.68142 1.94853 -0.41173 1.91004 

3th neuron -2.29844 -1.4724 -1.65286 -0.53848 

4th neuron -2.15219 -0.86625 -1.86924 0.05886 

5th neuron -2.16003 1.22267 -0.24768 0.806822 

6th neuron 0.779424 1.79353 -1.10349 2.70755 

7th neuron -0.04136 -0.06319 -2.24885 -1.08254 

8th neuron 1.60604 -0.88724 -2.55918 3.38869 

9th neuron -1.64867 -0.23778 2.76324 -1.00212 

10th neuron 1.48818 -0.08192 -0.06689 -3.05389 

11th neuron -0.02124 1.76989 2.93786 -0.31239 

12th neuron -1.18936 -0.16613 0.617685 -1.18058 

13th neuron 0.555094 -0.39536 -0.15492 2.82352 

14th neuron 0.511283 -2.79541 -2.77048 -1.84054 

15th neuron -2.2698 1.05565 -2.06892 1.94697 

16th neuron 0.510544 0.377473 -2.60716 2.94021 

17th neuron -1.65615 -0.51197 -2.39026 0.601149 

18th neuron -1.77626 -0.46264 0.183825 -0.42747 

19th neuron 1.29329 2.87221 0.346652 -0.37826 

20th neuron 1.52543 0.009152 -2.08735 2.98758 
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