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Abstract

TOBs is a phenomenon concerning the time of day at which measurements are taken, whereby 
some maximum or minimum temperatures are not recorded; instead, a faulty, but always high 
(for maxima) or low (for minima), value is recorded from the ‘detritus’ of a more extreme value 
the previous day. This paper explains why such a phenomenon should leave a detectable 
signature in the statistics of maximum and minimum temperature changes from day-to-day. The 
entire US unadjusted temperature data, over 200 million data points, is divided into yearly 
baskets and examined for average occurrences of certain day-to-day temperature change patterns 
whose probability and/or magnitude would be expected to change, if the TOBs hypothesis is 
true, under changes in measurement time of day at recording stations. Whereas official estimates 
of TOBs are made by inference from models or from pairwise homogenisation (a process with 
many severe critics, but beyond the scope of this paper), this paper obtains direct estimates of 
TOBs error in daily maxima (Tmax) from the real data, along with statistical reliability estimates.
This method detects the systematic error that actually exists, rather than one inferred from 
modelling. We find that the official estimates of the errors due to TOBs are significantly over-
estimated. We also assess the use of the same method to find the TOBs error in daily minima 
(Tmin).

 1 Introduction

This paper will address the TOBs problem using a new analysis of actual historic data, but first 
we shall set the scene by reference to two main sources discussing the problem: a good general 
explanation by Zeke Hausfather (Hausfather (2015): Understanding Time of Observation Bias), 
who is a scientist on the Berkeley Earth climate science project, which is responsible for its own 
analysis of historic temperature data; the other is a paper referred to by Hausfather: Menne et al. 
(2009).
Hausfather’s explanation captures the dilemma nicely:

“Until the late 1950s the majority of stations in the U.S. record recorded temperatures in the 
late afternoon, generally between 5 and 7 PM. However, volunteer temperature observers 
were also asked to take precipitation measurements from rain gauges, and starting around 
1960 the U.S. Weather Service requested that observers start taking their measurements in the
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morning (between 7 and 9 AM), as that would minimize the amount of evaporation from 
rain gauges and result in more accurate precipitation measurements. Between 1960 and today, 
the majority of stations switched from a late afternoon to an early morning observation time,
resulting [in] a systemic change (and resulting bias) in temperature observations.

“...[Weather stations] use what are called minimum-maximum thermometers that record both
maximum and minimum temperatures between resets of the instrument. The time at which 
the instrument is reset and the measurements are written down in the observers logbook is 
referred to as the time of observation.

“...At first glance, it would seem that the time of observation wouldn’t matter at all. After all,
the instrument is recording the minimum and maximum temperatures for a 24-hour period 
no matter what time of day you reset it. The reason that it matters, however, is that 
depending on the time of observation you will end up occasionally double counting either 
high or low days more than you should. For example, say that today is unusually warm, and 
that the temperature drops, say, 10 degrees F tomorrow. If you observe the temperature at 5 
PM and reset the instrument, the temperature at 5:01 PM might be higher than any readings 
during the next day, but would still end up being counted as the high of the next day. 
Similarly, if you observe the temperature in the early morning, you end up occasionally 
double counting low temperatures. If you keep the time of observation constant over time, 
this won’t make any different to the long-term station trends. If you change the observations 
times from afternoons to mornings, as occurred in the U.S., you change from occasionally 
double counting highs to occasionally double counting lows, resulting in a measurable bias.”

Hausfather’s Figure 2 shows the USHCN official historic adjustments to the record, reproduced 
here as Figure 1.
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It is important to note that the official adjustments are inferred from models and theoretical 
assumptions. Even when performed by pairwise comparison of nearby stations, assumptions are 
still being made about how nearby stations should behave, in order to decide how to adjust data. 
In contrast, the method used here actually measures, in a statistical sense, the effect on almost all 
of the data that is susceptible to this distortion. The new methodology will be described in the 
following section.
One final general point needs to be made before proceeding:

TOBs error is not a “bias”!
A bias is an inaccurate measurement where the inaccuracy falls preferentially to one side. The 
TOBs effect is an error, not a bias.1 True, it is an error that always has the same sign, but it is an 
error nonetheless. Considering afternoon measurements of maxima, sometimes the value we 
record today as today’s maximum is actually a spurious value “left over” from yesterday, as 
Hausfather explains above. If today’s real maximum is less than the leftover value from yesterday,
yesterday’s leftover will be recorded as today’s maximum, regardless of how much today’s true 
maximum falls below that number. Today’s true value is not recorded with a biassed offset; it is 
lost entirely.
So it is one thing for Hausfather to present us with Figure 1, the “adjustments” to the historic 
temperature record, if all that is intended is to gain a better assessment of overall trend, since even
an error might have a reliable average value. But it is quite another when the temperature recon-

1 For the sake of simplicity I shall discuss the effect of evening measurements upon maxima, with the 
understanding that most of the discussion applies also to morning measurements upon minima, with the sign of 
the error reversed.
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Figure 1: Net impact of TOBs adjustments on U.S. minimum and maximum temperatures via 
USHCN.



struction thus obtained is portrayed as if it is a more accurate representation of the past than the 
actual measured values. In particular, the highest of a series of maximum readings will always be 
unaffected by TOBs error. All of those recorded high temperature records from the U.S. in past 
decades actually happened.

We note that Christy et al. (2016) argue that Tmax is the most reliable estimator of global 
oceanic heat content. For this reason, and because Tmax can be analysed most simply, we shall 
now proceed to examine the situation with regard to maximum records.

 2 Overview of Methodology

[Note: Throughout this paper, for simplicity, I shall call any measurement that is not affected by 
TOBs, “valid”, without any implication that the measurement is valid on any other measure than
freedom from TOBs. All locally-highest Tmax are valid. All locally lowest Tmin are valid. In the 
maxima, TOBs can only affect a measurement lower than that of the day before; in the minima, 
it only affects those that are higher.]
In the following we only consider the temperature record for the maxima.
Our goal is to detect and measure the signal from the TOBs error in actual historic maxima. In 
brief, the plan is:

1. Firstly we characterise the properties of those data that are susceptible to the error.
2. Then we identify a subset of the susceptible data that can be identified in the record 

regardless of whether the error actually was possible for a particular datum (i.e., it is 
possible if the reading was taken in the afternoon, but not if taken in the morning; keep 
in mind that we do not know the time of day any specific datum was recorded).

3. Lastly, on a year-by-year basis, we perform a linear regression analysis, for the identified 
data, of the mean size of the fall in temperature from a previous valid datum (dependent 
variable) against the percentage of readings in that year that were recorded in the 
afternoon (TOBs – independent variable). Luckily we have yearly data concerning how 
many stations in the U.S. operated in the afternoon, morning, or other times, as 
explained below. The slope of this regression (degrees C per percent afternoon 
measurements) allows us to calculate the actual historic TOBs effect for each year from 
1895 to 2005, relative to our base year (2005). These may be directly compared with the 
official adjustments shown in Figure 1.

We note the following important facts:
1. All readings higher than the previous day’s are valid; the only way to get a higher reading 

than the true one on any given day is for the previous day’s higher temperature to push it 
up; therefore such a reading is today’s reading, not detritus from yesterday.

2. Readings lower than yesterday’s might or might not be affected.
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3. Readings equal to yesterday’s also might or might not be affected; but in this case, they 
can only be affected if the readings are taken at precisely the time of the maximum 
temperature. Since the U.S. record is largely the work of committed amateurs, such an 
occurrence, leading to an obvious error, seems unlikely—perhaps extremely unlikely. 
(Nevertheless, below we measure the frequency of this sad occurrence, and find it to be 
very low.)

Since we can identify certain data that are known to be valid (local highs), we can examine the 
sizes of the falls from there to the next day’s lower reading. If TOBs is in effect, we would expect 
the average magnitude of the fall to be reduced, since some of those following day’s readings will 
be invalid. This is shown in Figure 2.

But knowing that a reading might be erroneous doesn’t help us estimate the error. But as 
mentioned above we have yearly statistics for U.S. stations operating in the afternoon, morning, 
or other times. Therefore we can do a regression analysis of the proportion of sites observing in 
the afternoon (i.e. TOBs error is possible) versus the size of the drop in temperature from the 
valid datum to the following, possibly affected, datum. The relevant site data is provided by both 
Menne (his Fig. 3) and Hausfather (his Fig. 1), shown here as Figure 3.
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Figure 2: When TOBs is in effect, some data after local highs will be 
lost and a higher value recorded instead.



Unfortunately this diagram is not directly useful, since the size of any systematic error due to 
TOBs depends upon the proportion of stations measuring by each method, not the absolute 
number. Accordingly the data in this graph has been digitised and converted to percentages, as 
shown in Figure 4.

In this conversion, sites with unknown TOBs are ignored, which is equivalent to assuming that 
they are distributed in the same proportions as the known sites. (From about 1910 onwards, this 
assumption cannot introduce a large error because the number of unknown sites falls off 
dramatically.)
In outline, the method used here is to perform a linear regression of the mean size of the 
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Figure 4: Observation times as percentages can be used in regression.

Figure 3: Number of stations using each observation time window, per year.



temperature drops in the days after a valid reading against the percentage of afternoon readings. 
We know that the true relationship, if any, must be linear because the error is present, yes or no, 
depending on whether a station does, or does not, make its recordings in the afternoon. This is 
not to say that other effects do not influence the average size of the error; for example, a station 
recording early in the afternoon would be expected to have greater or more errors than one 
recording late. But such effects should be random in relation to our independent variable (TOBs).
The size of such effects should display on a residual plot as scatter around a straight line, whereas 
non-random effects should distort the shape of the line. In fact the results as highly satisfactory, 
as we shall see.

 3 Analysis

 3.1 Obtaining a reliable subset of the data

We explained the basic method in the previous section, but there are some pitfalls that we need to
address in detail. Before we can perform regression, we have to ensure that we are using a reliable 
subset of the data; that is, a subset that will be present (except in circumstances too uncommon to
significantly change the statistics) in both affected and unaffected stations. All local highs are 
valid, as we have seen, but in affected stations we might not recognise them all as the valid highs 
that they are, if the previous datum followed an even higher value, and was lifted, due to TOBs, 
above the following high. To understand this, consider the four consecutive daily readings shown 
in Figure 5.
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Datum 3 is valid. It cannot be affected by TOBs. The only question is, can we find it? If there is 
no TOBs error on datum 2, or if the error is small enough that datum 2 is still lower than datum 
3 (the valid one), then the FRF pattern will remain in the data, and we can find datum 3 
regardless of TOBs. But if the error lifts datum 2 above datum 3, the FRF pattern is transformed 
into FFF, and we now do not know that datum 3 is valid (even though it still is).
We can measure how critically TOBs robs us of the ability to spot valid highs by measuring the 
frequency of the FRF pattern shown above in the historic data. We can ‘lose’ an FRF pattern as 
shown above, but we can also gain one: an FRRF pattern can be converted into FFRF, which 
contains an FRF pattern. However, since FRF is four data long, and FFRF is five, FFRF will 
occur on average only half as often, meaning that when TOBs is active, there are twice as many 
losses from the set of FRF patterns as there are gains. If, therefore, TOBs raises data points in any
significant number so as to alter the relationships of rises and falls, we will observe this by the 
simple measure of counting FRF patterns in the historic data. The result is shown in Figure 6.
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Figure 5: The FRF pattern identifies one valid datum amongst the 
daily maxima.



Inspection of this Figure shows some fluctuation in the early years when there is little data 
(which is to be expected), then the line settles down to a very gentle decline over the next century
or so. The slow decline is unexplained; in truly random data on such a massive dataset, we would
expect small wiggles on a flat line. Instead, we get small wiggles on a slowly falling line. But what 
is crystal clear is that there is no visible effect that bears any relation to the proportion of 
afternoon measurements. 
This may be verified with a regression check. The TOBs effect should preferentially reduce the 
frequency of this pattern, the higher the proportion of afternoon  measurements. The regression 
slope of the above FRF percentage against afternoon measurement percentage is 0.00474781: it is 
very small, and in the wrong direction! Therefore the TOBs effect is insufficient to promote or 
evict any significant number of sequences into or out of the set of FRF patterns.
A related problem is as follows. Consider all patterns consisting simply of a fall (F); that is, a 
measurement followed by a lower measurement. This can be seen in days 2 and 3 of Figure 2, or 
days 1 and 2, or days 3 and 4, of Figure 5. If rises in the second datum are extreme enough to 
break the patterns of rises and falls in any significant number, then sometimes the second value 
will be the same as the first. This would happen if the thermometer was reset at the time of 
maximum itself. It would result in our not considering some sequences: we would be failing to 
include in our analysis measurements that were wrecked in the worst possible way. If we want to 
know if declines are reduced in magnitude due to TOBs, we cannot omit declines that decline all 
the way to zero!
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Figure 6: Percentage of FRF patterns in historic maximum data, with 9-year 
moving average; The shape of the graph of percentage of afternoon measurements 
is shown in grey for comparison.



However, if any significant number of declines are being counted as unchanged (I shall use S, 
“same”, for such patterns), then changes in time of observation should introduce a disturbance in 
the percentage of S patterns in the total data set. We have to remember with S patterns that there 
are other confounding factors. Observations are not real or rational numbers, they are quantised 
by the fineness of the recording apparatus, so issues such as Fahrenheit vs Celcius, digital vs 
analog, and thermometer markings, all confound a simple analysis of the S pattern. However, the
results are shown in Figure 7.

One again, random data would exhibit a flat line. The actual data, unlike the previous case, is 
somewhat more ‘active’, even in the years where vast numbers of observations are available to 
smooth the statistics. We might speculate about the reasons for the variation; for example, the 
slow fall in recent years could be due to the introduction of digital thermometers, which might 
be more precise (even if not more accurate). But such speculations are beside the point: we can 
test the dependence by performing a linear regression to find the dependency of the percentage of
S sequences upon the percentage of afternoon readings. The regression line for S percentage, s, 
upon afternoon reading percentage, a, is:

s = 0.00822485a + 7.75539 (1)
The R2 statistic for this regression is 0.0707484. Thus there is almost no dependency upon TOBs,
and even this is swamped by other factors. To put this in context, the difference between no 
afternoon measurements and all afternoon measurements is just 0.8% more unchanged 
measurements. That is, almost no unchanged measurements are due to a TOBs error caused by 
resetting the thermometer at exactly the hottest time of day.
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Figure 7: Percentage of observations with the same recorded maximum as the day 
before.



 3.2 Analysis methodology

These results allow us to conclude that we can find a reliable subset of the falling data for 
analysis: almost all of it. To correct for the loss of some falls (as explained above), we can simply 
pad our figures with an appropriate number of zero-valued extra “falls”. A more complex 
adjustment method would be unlikely to make much difference, due to the small fraction of lost 
falls under consideration.
We can collect statistics from various patterns within the data and perform linear regressions as 
follows:

• The independent variable is the percentage of afternoon observations in a calendar year;
• the dependent variable is the size of the fall of a (possibly compromised) maximum 

reading from an earlier day’s valid maximum reading..
We collect “scenarios” from the data by looking for patterns in the data for daily maxima. To 
denote these patterns, we use the notation introduced earlier: “R” stands for a rise (a 
measurement following a lower measurement the day before); “F” for a fall; “S” for the same 
recorded value as the day before; and we also use lower case “n” to stand for “not”: thus “nF” is 
“not a fall”, and “nR” is “not a rise”.
The simplest pattern suiting our purpose is the shortest: RFR, which is four data long. This 
collects those falls that have a valid datum immediately preceding, but are not followed by 
another fall. The reason we do not collect, in a single step, “just any” fall following a valid datum 
is that this is not a random data set; it is a physical system limited in an approximate sense by the 
maximum change that can occur between very high and very low values. If two falls occur in a 
row, we expect that they are likely to be individually smaller, on average, than a single fall, since 
the entire sequence must fit between physically realistic possibilities for the highest and lowest 
values. It turns out that this expectation is confirmed by examining the data itself. This is 
illustrated in Figure 8; note that this Figure is provided to illustrate the point only, the numbers 
plotted are not used in the analysis.
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Similar results follow for the second and subsequent falls. The practical consequence of this is 
that we must perform a separate linear regression on each kind of fall: the first fall in a given 
sequence has different statistical properties from the second in the same sequence, etc., and the 
nth fall in one sequence is different from the nth fall in any other.
Choice of sequence. Another issue is which sequences we should use for the analysis. Our goals 
are, (a) to collect and analyse as many falls as we can dependably relate to a preceding valid value 
for statistical analysis; and (b) extract overall results of the highest reliability. These goals can 
conflict if collecting extra data of slightly less ‘soundness’ greatly increases the overall coverage.
Our complete dataset has 174 million data points. But the total of all the Fs, Rs, and Ses in the 
data does not equal 100% because the first datum can never be counted; every missing data point 
also introduces a datum (the next day) that cannot be identified as an R, F, or S. Our goal is to 
find as many useful Fs in the complete data set as possible. As it happens, we have two possible 
ways to perform our analysis.
(The first way) In the above we have used sequences RF...R, up to six falls in length. Very few 
sequences have length greater than this, so no useful purpose is served by including them. 
However, we can capture some of the (very few) even longer sequences by, on the longest 
pattern, omitting the final R; thus the six Fs of the longest sequence are in fact the first six Fs of 
sequences of six or more Fs. Specifically, our six patterns are RFR, RFFR, RFFFR, RFFFFR, 
RFFFFFR, and RFFFFFF. It turns out from complete analysis of the entire data set, that overall 
43.57% of them are Fs. These six RF...R sequences pick up Fs amounting to 32.09%, or roughly 
75% of the possible F data.
(The second way) Once again we use sequences up to six falls in length, but this time we use the 
nFF...nF sequences; that is, instead of demanding an R at the start and end, we allow an R or an 
S. These data sets include Fs summing to 41.99% of the total data, or over 96% of the total Fs. 
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Figure 8: Mean magnitude in ºC of fall in maximum temperature on the day 
after a valid reading, sorted by length of the falling sequence.



(Most of the 3-odd percent not found are because of sequences that straddle missing data or the 
start or end of a data sequence; very few are from sequences longer than six Fs.) An S is, of 
course, a datum that is the same as the value the day before. Since these can be compromised by 
TOBs error, they are not all valid. Our reason for considering this method of analysis is the fact, 
discussed previously, that very few Ses are in practice introduced by TOBs. But perhaps the 
additional data collected makes it worthwhile. In similar manner to the first way, our final 
sequence omits the ending nF.
It turns out that the two methods give similar results; but we leave it to the reader to choose 
which they prefer. Each analysis is shown below.

 3.3 Results – RF...R sequences

Our analysis covers the years 1895 to 2005 inclusive, as these are the years for which we have the 
TOBs breakdown. We show the effect of TOBs error as a ∆T difference from 2005.
The RF...R sequences account for around 75% of the possible F data, as described above. We 
consider six sequences, RFR … RFFFFFR, RFFFFFF. Each F has different statistical properties, 
so we perform a total of 21 separate computations.
Each computation is a linear regression of the amount of fall from a previous higher valid datum.
The first F after the initial R in each of the six sequences is straightforward: it is the fall from that
previous valid value. For the final five sequences, the datum after the second F is subtracted, not 
from the previous datum, since that might not be valid, but from the same datum after the initial 
R as were the initial Fs, that is, two days previously. Likewise, the third F (occurring in the final 
four sequences) is subtracted once again from the previous valid high, but now this was three 
days previously; and so on for the fourth, fifth, and sixth Fs where these are present.
This is shown in the example Figure 9.
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Table 1 shows the occurrence frequency, regression slope, and R-squared and p-values of each 
regression included in the assessment.

Table 1: Statistical properties of each fall (F) included in the calculation

Which F Freq. (%) Regression slope R-squared p-value
RFR(F1) 9.09 -0.017449 0.592 5.602E-23
RFFR(F1) 5.56 -0.010775 0.414 2.655E-14
RFFR(F2) 5.56 -0.008003 0.0643 7.259E-03
RFFFR(F1) 2.27 -0.008099 0.336 2.578E-11
RFFFR(F2) 2.27 -0.005970 0.0453 0.02497
RFFFR(F3) 2.27 -0.005366 0.0196 0.14270
RFFFFR(F1) 0.79 -0.004901 0.120 3.783E-04
RFFFFR(F2) 0.79 -0.003585 0.0147 0.20539
RFFFFR(F3) 0.79 -0.001525 0.00135 0.70235
RFFFFR(F4) 0.79 -0.001817 0.00127 0.71052
RFFFFFR(F1) 0.25 -0.000335 0.000405 0.83395
RFFFFFR(F2) 0.25 -0.000399 0.000132 0.90481
RFFFFFR(F3) 0.25  0.000257 2.86E-05 0.95554
RFFFFFR(F4) 0.25  0.000169 8.07E-06 0.97639
RFFFFFR(F5) 0.25 -0.001434 0.000419 0.83113
RFFFFFFR(F1) 0.11  0.000532 0.000779 0.77115
RFFFFFFR(F2) 0.11  0.003585 0.00781 0.35625
RFFFFFFR(F3) 0.11  0.007759 0.0198 0.14098
RFFFFFFR(F4) 0.11  0.011097 0.0272 0.08338
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Figure 9: Dependent regression variables are all measured from the 
previous valid datum.



Which F Freq. (%) Regression slope R-squared p-value
RFFFFFFR(F5) 0.11  0.010531 0.0174 0.16761
RFFFFFFR(F6) 0.11  0.008710 0.00915 0.31791
The main features of the regressions shown here are:

• in general, as one progresses to longer sequences and to Fs further on in the same 
sequence, the regression slope decreases until it is no longer significantly different from 
zero (indicated by a large p-value—where 0.05 represents the familiar 95% confidence 
level);

• the R-value, which is interpreted as the fraction of the variation that is explained by the 
regression’s independent parameter, also decreases—as it must, if TOBs is having a 
decreasing effect on the longer sequences.

 3.3.1 Statistical validity

There are good reasons to believe that these regressions have reasonably well detected and 
measured the actual average effect upon the data of TOBs error. For the larger initial falls with 
larger amounts of data, the high R-squared and low p-values are as expected. These become 
problematic when the dependent variable really is indistinguishable from zero, and is lost in the 
noise. The TOBs error is becoming small at the same time as the noise is getting larger due to the
smaller sample sizes. We can check, however, that what remains really is indistinguishable from 
random noise about zero, by plotting the residuals.

Let us start with the very worst regression, as indicated by high p-value and low R-squared, 
namely RFFFFFR(F4). See Figure 10. The residuals, along with linear and quadratic fits, are 
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Figure 10: Residuals (ºC) for the regression with the poorest statistical properties, RFFFFFR(F4).



shown. That these are both virtually flat indicates that the TOBs regression slope really does 
capture the entirety of the TOBs effect upon these data.
More residual plots are shown below, representing the individual regressions with the greatest 
impact upon our final answer. See Figures 11, 12, and 13.

Figure 11: Residuals for the most common F, RFR(F1) (20.86% of all Fs, 9.09% of total data)

   
Figure 12: Residuals for the first F in RFFR (12.76% of all Fs, 5.56% of total data)
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Figure 13: Residuals for 2nd F in RFFR (12.76% of all Fs, 5.56% of total data)

These regressions display all the qualities of a successful match of a dependent variable that is 
linearly related to its independent variable. We can have high confidence that no other 
dependence (such as a non-linear one) of size-of-fall upon percentage of afternoon readings exists. 
As noted previously, this is almost a necessity given that TOBs error is either possible (if readings
are in the afternoon) or not (if they are not), barring unlikely scenarios such as year-dependent, 
system-wide systematic alterations of the precise timing of afternoon readings.
The final test of the validity of these regressions is the summation of all these separate regression 
slopes, weighted by their frequency, into a single overall result. This is shown in Figure 14.

Figure 14: Residuals from the summed calculated TOBs effect due to afternoon readings.

The result is highly satisfactory. Once again, the outcome is as flat and random as could possibly 
be expected, and clusters closer to zero, as would be expected from the greater sample size.

 3.3.2 RF...R Results
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We have seen that the regressions available in the RF...R patterns may reliably be used to measure
all, or virtually all, of the TOBs error in the falls that they make use of. We calculate as follows:

1. For each year 1895 – 2005:
1. for each individual regression:

1. multiply the regression slope by the percentage of afternoon measurements;
2. multiply this by the fraction of the data that these Fs comprise;

2. sum these values to give the effect of all Fs used in all regressions;
3. assuming Fs not considered behave, on average, like those that were, multiply by the 

total percentage of Fs in this year’s data, and divide by the total percentage used in the 
regressions.

4. subtract the value thus calculated for 2005, to obtain a zero-based offset.
A similar process is followed to obtain observed values for comparison, except in step 1.1.1 
above, in which, for each individual regression, instead of using the regression slope times the 
afternoon percentage, we use the observed fall minus the intercept computed in the regression. 
This subtraction is necessary because each category of observed data has a very different 
magnitude for its average fall. (Recall that we are subtracting from the previous valid datum, not 
from the previous day’s datum.) Thus the magnitude of the first fall from a valid datum will be 
very different from, say, the fifth fall.
After processing the observed and computed values in these similar ways, the observed changes in
fall magnitude are our observational “gold standard” against which the calculated TOBs error 
may be compared for goodness of fit. We can also include the USHCN modelled TOBs error 
shown in Figure 1. The three curves (observation, our calculated TOBs error, and USHCN 
modelled TOBs error) are shown in Figure 15.
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The overall USHCN modelled result is 177.9% of the effect measurable from the actual data; that
is, corrections to temperature trends in official records should really be only 5/9ths of their 
current value.

 3.3.3 Further check

It may seem surprising that the value recovered from actual data is so much less than that 
obtained from modelling. Hausfather explains that modelling proceeds by using the past several 
years of computerised records, where readings are available throughout the day, and testing 
various measurement times throughout the day. Without asserting any particular reason why this
overestimates reality, it is worth noting again Figure 7, the percentage of observations with the 
same recorded maximum as the day before. This shows a distinct “phase change” starting around 
1985, where an accelerating dropoff commences. As we contemplated earlier, this may be due to 
more precise measurements recently. It is hard to think of a reason, in nature, that might cause 
such a change in a huge amount of observational data.
An independent check that might help choose between the two contenders for the truth about 
the actual historic TOBs error is its linear nature. Barring random fluctuations, it is strictly linear
in the percentage of affected stations. Therefore, the putative historic curve tracking its 
magnitude would be expected to closely follow the shape of the curve representing the percentage
of afternoon observations. We can modify Figure 15 to remove the observational data, and 
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Figure 15: Detected TOBs error (ºC)  in RF...R sequences, USHCN adjustment, and observations



include the percentage of afternoon observations (Figure 16).

There is little to be said for Figure 16, except that our results do match the curve and USHCN’s 
do not. It bears repeating: the effect of TOBs error is linear in the percentage of afternoon 
measurements. Our curve of measured TOBs error closely overlays the afternoon curve, with 
expected random errors, and bearing in mind we cannot collect measurements for all Fs. The 
USHCN curve is simply a different shape. Setting aside entirely its failure to match the data in 
magnitude, its shape shows that it cannot be a competent assessment of a linear effect. This 
conclusion follows from comparison of two USHCN profiles; it does not depend in any way on 
the calculations given in this paper.

 3.4 Results – nFF...nF sequences

Whereas RF...R sequences capture almost 74% of all Fs, these sequences capture over 96% of the 
Fs, but as explained earlier, at the cost of a small possibility that the starting value is not actually 
valid. This means that a datum which is included in the nth fall after a valid datum might actually
belong in the (n+1)th fall. As we have seen, the number of “faulty” S sequences is small, but 
some degree of error will be introduced by this process. Without repeating the explanations from
the previous section, we first check the plot of overall residuals (Figure 17).
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Figure 16: This paper's results and USHCN's modelling, each overlaid with scaled % afternoon



The residuals in this case resemble those from the RF...R sequences (Figure 14), but have a small 
amount of extra spread. The result for nFF...nF sequences, corresponding to Figure 15 in the 
RF...R sequences, is shown in 
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Figure 17: Summed residuals from the nFF...nF sequences



The result is visually almost indistinguishable from the RF...R cases, although these data include 
all but about 3% of Fs in the data set. If we take this as the more reliable reconstruction, then the
overall USHCN modelled result is 175.9% of the effect measurable from the actual data. (Recall 
that in the RF...R case it was 177.9%; this is very slightly better for the official estimate, though it
is still far greater than the actual effect.)
Finally, what about the 3.6% of the Fs that we cannot use? As explained earlier, these are mostly 
due to sequences that straddle the start, end, or a missing value, in a station observation record. 
Since longer sequences have a greater probability of interruption, and they also have lower 
sensitivity to TOBs, our results are almost certainly a slight over-estimate of the TOBs effect. 
Thus our “worse” result, the nFF...nF sequence, paints the most flattering picture that is at all 
credible for the official estimates: they are at least ≃176% of the real amount, on average.
One last comparison: this 176% is a ratio of area under the curve. But in some years the official 
estimate is far worse. Huge overestimates are common. In 1895, it is an astonishing 760%; 214% 
in 1914 and 1916; 186% in 1966; and 236% in 1998.

 4 Conclusion and Summary

Our method is based on the observation that, if TOBs error affects measurements then, over the 
course of a year, keeping in mind the large number of observations across all stations in the US, 
the sizes of measured daily falls in maximum temperature relative to a preceding unaffected 
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Figure 18: Detected TOBs error (ºC)  in nFF...nF sequences, USHCN adjustment, and observations



datum (from the previous day or a day a few days earlier) should be statistically reduced by an 
increasing fraction of stations measuring in the afternoon. Furthermore, this effect must be linear
unless there have been systematic changes in the exact time of measurement in the afternoon (for 
stations taking measurements then). Given the complete absence of information on that account, 
and its unlikelihood, such systematic confounders have been discounted.
We have found that linear regression has worked extremely well based on this assumption. 
Statistical measures R-squared and p-value have been very satisfactory, and residual plots look 
completely random, as they should. Finally we have learned that the official TOBs adjustments, 
based upon modelling using recent data and projected back upon the historic data, are, on 
average, at least 176% of the value found in the historic data itself, with some individual years 
overestimated even more.
This judgement is in regard to the official modelled values based on experiments with synthetic 
changes to recent computerised hourly measurements. We cannot speculate on why those 
experiments give a TOBs estimate greater than that in the real data, except to say that they clearly
do. Hausfather also mentions that more recent analyses, such as Berkeley Earth, do not need to 
make this TOBs adjustment, as they use a pairwise homogenisation algorithm to detect and 
correct for step changes in station data. Again, any comment on those methods is beyond the 
scope of this paper, except to say that, if they do indeed closely resemble the official TOBs 
adjustments discussed here, they, to, are necessarily over-estimated.
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