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Rainfall in Bangladesh exhibits persistent wet and dry anomalies associated with
occurrence of floods and droughts. Assessing inter-annual variability of rainfall is
vital to account these hydrological extremes in the design and operations of water
systems. However, the inter-annual variability obtained from short record rainfall
data might be misleading as it does not contain whole climate variability which sig-
nifies the utmost importance of stochastic rainfall models. Since the inter-annual
variability and stochastic models have not been explored adequately for rainfall in
Bangladesh, this study evaluated (a) the spatio-temporal variability of rainfall
focusing on inter-annual variability, and (b) applicability of a stochastic daily rain-
fall model, referred as the Decadal and Hierarchical Markov Chain (DHMC)
model. Daily rainfall data of 1973–2012 for 18 stations across Bangladesh were
used to investigate the probability distributions and autocorrelations of rainfall, and
the model performances. Results show a higher magnitude of inter-annual variabil-
ities of rainfall depth (standard deviation 80–250 mm) and wet spells (standard
deviation 4–6 days) in wetter months (June to September) across rainfall stations in
the east region of the country. In contrast, higher rates of inter-annual variabilities
(i.e., coefficients of variations) were observed in drier months across the west
region. Spatially, the dry spells were observed consistent across the country.
Monthly rainfall showed decreasing trend over the region from west to the middle
part of the country, whereas monthly number of wet days showed increasing trend
over the eastern part. The DHMC was found to preserve the observed variabilities
of rainfall at daily to multiyear resolutions at all stations, except a tendency to
underestimate the autocorrelation of monthly rainfall depth. Despite this limitation,
DHMC can be considered as a suitable stochastic rainfall simulator for a tropical
monsoon climate like Bangladesh.
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1 | INTRODUCTION

As one of major regulating factors of hydrological processes,
rainfall variability is linked to a wide-range of hydrological
phenomenon such as flood and drought (Lehner et al.,
2006), urban water security (Lockart et al., 2016), agricul-
tural crop yield and food security (Murali and Afifi, 2014),

and hydro-power generation (Kern and Characklis, 2017).
Such influences of rainfall variability in Bangladesh, as a
tropical and monsoonal rain-fed country, are inevitable.
Heavy rainfall for a few hours often results into urban flash
flood in its major cities such as Dhaka and Chittagong with
apparent influence of impervious surfaces (Mark et al.,
2001; Yao et al., 2016) and rainfall for several consecutive
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days often results into extreme floods with frequent influ-
ence of upstream flows of the Ganga-Brahmaputra-Meghna
basin (Hopson and Webster, 2010; Masood et al., 2015;
Brammer, 2016). Therefore, evaluation of the rainfall vari-
abilities may provide important information to optimize the
design and planning of urban drainage and flood control sys-
tems of the country. Similarly, evaluation of the rainfall vari-
abilities at monthly to multiyear resolutions is also important
for sustainable design, planning and risk assessment of many
water infrastructures that are responsive to the seasonal to
multiyear variabilities of rainfall (Dai et al., 1998; Sarker
et al., 2012). For example, the groundwater, on which most
of the urban and irrigation water supply systems in
Bangladesh are dependent, significantly varies over seasons
(declines in dry winter months and recharges in wet mon-
soonal months). The overall aquifer level may exhibit an
increasing or decreasing trend over multiple years with rela-
tion to the multiyear variabilities of wet–dry spells and rain-
fall intensities (Sciance and Nooner, 2018). Rainfall and its
wet and dry spells are generally spatially non-uniform
(Singh, 1997; Segond et al., 2007). Particularly, there are
contrasts of hydro-climatic conditions among different parts
of Bangladesh, such as the crops in the northeast region of
the country are often damaged by floods due to seasonal
heavy rainfall (Ahmed et al., 2017), while the crops in the
northwest region are often affected by scarcity of irrigation
water due to groundwater depletion during long dry spells
(Kirby et al., 2016).

Spatio-temporal variabilities of rainfall and their implica-
tions were widely studied in many countries and geographi-
cal regions. For example, Higgins et al. (2007) identified the
frequency and inter-annual to inter-decadal variabilities of
daily rainfall and wet periods over the United States, Bee-
cham and Chowdhury (2010) and Rashid et al. (2015) statis-
tically tested the temporal variability of rainfall in southeast
Australia using measured point rainfall, Fang et al. (2011)
used a tree-ring network to test the spatial variability of rain-
fall in northwest China, Kaptué et al. (2015) used Tropical
Rainfall Measuring Mission (TRMM) estimations to assess
the spatio-temporal variabilities over Africa continent. Simi-
larly, in India and Myanmar, the neighbouring countries of
Bangladesh along the Bay of Bengal, the variabilities of
monsoonal rainfall were also widely investigated
(Sadhukhan et al., 2000; Mohapatra et al., 2003; Shrivastava
et al., 2016; Thomas and Prasannakumar, 2016; Chaudhary
et al., 2017).

Several studies investigated the temporal and spatial var-
iabilities of rainfall in Bangladesh (Sanderson and Ahmed,
1979; Ahmed and Karmakar, 1993; Ohsawa et al., 2000;
Singh, 2001; Ahmed and Kim, 2003; Islam and Uyeda,
2008; Shahid, 2008; Hossain et al., 2014; Singh et al.,
2014). However, they mostly focused on the intra-annual
seasonal variability, while only a few studies focused on the
inter-annual variability of rainfall. Shahid and Khairulmaini

(2009) examined daily rainfall data from 1969 to 2003 for
24 stations across Bangladesh and found seasonal variability
of rainfall depth in all stations with a Coefficient of Varia-
tion (CV) greater than 24% and inter-annual variability with
CV between 16% and 24%. Bari et al. (2017) investigated
the monthly rainfall data from 1964 to 2013 for eight sta-
tions in the northern part of Bangladesh and they observed
that the rate of inter-annual variability (i.e., CV) of winter
(December to February) rainfall is higher than that of mon-
soon (June to September) rainfall. However, these studies
did not explicitly investigate the inter-annual variability of
wet and dry spells.

Spatial variability of rainfall in Bangladesh is primarily
linked with the direction of monsoonal wind and local orog-
raphy in the northeast (i.e., Sylhet) and southeast
(i.e., Chittagong) regions. The monsoon wind is diverted by
the Meghalaya plateau and Chittagong hill-tracks in the
northeast and southeast regions, respectively, to pour highest
rainfall in these two regions (Ahmed and Karmakar, 1993).
Shahid (2010) examined daily rainfall data from 1958 to
2007 for 17 stations across Bangladesh and identified the
spatial variability of rainfall as the wettest and driest condi-
tion observed in northeast (i.e., Sylhet) and central-west
(i.e., Rajshahi) region, respectively. The mean annual rain-
fall depth gradually declines from around 4,300 mm in the
east to around 1,400 mm in the west. Based on a seasonality
index, Bari et al. (2017) showed that the length of dry
periods is also shorter (i.e., longer wet period) in the north-
east region compare to the northwest region. Shahid (2010)
also identified a sub-region of south-to-north spatial distribu-
tion in the southeast part of the country where a relatively
wet condition in the southeast coastline (i.e., Cox's Bazar)
declines to a relatively dry condition in the north. However,
in contrast to the mean rainfall depth, the rate of inter-annual
variability (i.e., CV) of rainfall tends to decline from the
west to the east of the country (Bari et al., 2017). Shahid and
Khairulmaini (2009) also found that the relatively dry north-
west region exhibits a high rate of inter-annual variability
compare to the relatively wet southwest region.

The above-mentioned studies on the spatio-temporal
rainfall variability in Bangladesh used observed ground-
based data of about 30 to 60 years at different spatial
regions, either for the entire country or for a specific region.
Most of the studies evaluated the variability of rainfall depth,
but their wet–dry spells were not considered. In addition,
these studies investigated the rainfall variability at monthly,
seasonal, and annual resolutions, but not at the daily and
multiyear resolutions. Since the understanding of spatio-
temporal variability of rainfall is important for the country's
sustainable management of water resources, including water
supply and agriculture, the first objective of this study is to
examine the variability of rainfall depth as well as their wet–
dry spells at different temporal resolutions (from daily to
multiyear) for the entire country.
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A short record of rainfall data is often unable to represent
full range of climate variability and generally not robust for
planning, design and risk analysis of hydrological and agri-
cultural infrastructures such as urban drainage, irrigation and
hydro-power systems (Mortazavi-Naeini et al., 2014). How-
ever, the short record data can be used to calibrate stochastic
rainfall models to generate long (e.g., 1,000 years) synthetic
data (Furrer and Katz, 2008; Chen et al., 2010). Therefore,
stochastic simulation is often performed in data scarce coun-
tries to generate synthetic rainfall time series in order to
incorporate a wide range of climatic variability in hydrologi-
cal and agricultural planning and design (Breinl et al.,
2017). This is particularly important for the study area,
Bangladesh, where a long record of rainfall data is not avail-
able. Utilization of stochastic models in design and risk anal-
ysis depends on its ability to simulate rainfall statistics such
as mean, standard deviation, autocorrelation, dry and wet
spell at different temporal resolutions, ranges from daily to
multi-year (Thompson et al., 2007; Sivakumar, 2016).

There are several parametric and non-parametric
approaches for the stochastic simulation of daily rainfall.
Sivakumar (2016) provided a comprehensive discussion on
different methods of stochastic simulation. A common para-
metric approach, primarily proposed by Richardson (1981),
is to simulate the occurrence of wet and dry days by a low-
order Markov Chain (MC) process and simulate the rainfall
depth in wet days by using an exponential type probability
distribution such as the single or mixed exponential distribu-
tion, gamma distribution, Weibull distribution and general-
ized Pareto distribution. A large number of studies (Wilks,
1999; Vrac and Naveau, 2007; Wang and Nathan, 2007;
Srikanthan and Pegram, 2009; So et al., 2015; Chowdhury
et al., 2017) used different variants of this approach to simu-
late daily rainfall in different parts of the world.

The non-parametric approaches generally resample the
historical data and generate a new synthetic data by using
different techniques such as the k-nearest neighbour
(Rajagopalan and Lall, 1999; Leander and Buishand, 2009;
Caraway et al., 2014), maximum entropy bootstrap
(Srivastav and Simonovic, 2015), and coupling MC or a
modified MC process with a resampling technique
(Apipattanavis et al., 2007; Mehrotra and Sharma, 2007;
Steinschneider and Brown, 2013; Mehrotra et al., 2015).
However, overdispersion is a well-known problem of the
stochastic daily rainfall simulation that refers to an underesti-
mation of the observed rainfall variability when aggregated
to higher scales (e.g., month and annual). Such underestima-
tion of low-frequency variability may underestimate the
extremes or overestimate the reliability of water resources.
Many of the above-mentioned stochastic models addressed
the underestimation of low-frequency variability by using
different techniques, such as by using mixture of
exponential-type distributions (Wilks, 1999; Vrac and Nav-
eau, 2007; Rashid et al., 2015), by adjusting the simulated

daily data into monthly and annual models (Wang and
Nathan, 2007; Srikanthan and Pegram, 2009), by correcting
frequency spectrum (Chen et al., 2010), by modifying MC
parameters using memory of past wet and dry periods
(Mehrotra and Sharma, 2007; Mehrotra et al., 2015), and by
using hierarchical parameterization technique (Chowdhury
et al., 2017). Nevertheless, each of these models has their
own limitations to appropriately reproduce one or more criti-
cal characteristics of observed rainfall (overestimation of
mean and underestimation of autocorrelation, for example),
while application of some models might be site- or region-
specific. Therefore, application of a stochastic model in a
new climate condition is subjected to an evaluation of its
suitability for that climate condition.

While generation of such synthetic rainfall time series
using stochastic simulation is vital for Bangladesh due to its
short record length of rainfall data, only a few studies
(Rahman, 1999; 2000; Barkotulla, 2010; Hossain and Anam,
2012) have attempted to develop and evaluate stochastic
rainfall models for the region. Rahman (2000) used a first-
order MC and a skewed normal distribution (Arnold et al.,
1990) to simulate daily rainfall in the Barind Tract region at
north-western part of Bangladesh. The model tends to over-
estimate monthly mean rainfall in almost all seasons, while
the evaluation of the model to reproduce the rainfall variabil-
ity at higher scales (i.e., annual to multiyear) and variability
of wet–dry spells were not performed. Barkotulla (2010)
fitted a MC-gamma model to 30 years (1980–2009) daily
rainfall data for a rainfall station (Mahadevpur station)
located in the north-western part of Bangladesh. The model
well-reproduced the mean rainfall depth at daily and
monthly resolution, and standard deviation (SD) at daily res-
olution, but underestimated the SD of monthly wet days.
While it was not evaluated in the paper, the model is likely
to underestimate the low frequency variability as a known
limitation of such Richardson (1981) type MC-gamma
model. Kumar et al. (2013) used the Long Ashton Research
Station Weather Generator (LARS-WG) (Semenov and Bar-
row, 1997) to simulate daily rainfall data for 10 rainfall sta-
tions located in the Jamuneswari catchment of Teesta River
basin. The model was found to well-reproduce the monthly
mean and variance for most of the months, but could not sat-
isfactorily reproduce the wet and dry spells for non-monsoon
months (December to January). This suggests that the num-
ber and types of stochastic models tested for Bangladesh cli-
mate is limited, and there are significant limitations of the
tested models. In addition, application of stochastic models
for hydro-climatic impact studies is rare. Among only a few
examples, Thurlow et al. (2012) used a stochastic model
based on random perturbation of historical records to esti-
mate and decompose agricultural damages from historical
climate variability and future anthropogenic climate change.
Alam et al. (2014) used a MC model to calculate seasonal
and annual drought indices for Barind region of Bangladesh.
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The above discussion suggests that the use of stochastic
rainfall models is a seldom practice in Bangladesh. The
available models were generally tested for local scale that
did not represent the spatial rainfall variability of the country
and almost all tested models failed to reproduce the wet–dry
spells and low-frequency variability of rainfall depth.
Accordingly, it can be assumed that the existing design and
operation of water infrastructures of the country are based
on the model results which are limited in reproducing hydro-
logically important climate variability. In such a case, appli-
cation of stochastic rainfall models capable of incorporating
a wide range of hydrologically important variability, might
improve the design and operations of the water systems.
Moreover, such practice could be even more useful for
Bangladesh to face the future challenges of climate change
with an existing increasing trend of rainfall in the recent
decades which likely to be increased in future as found by
several studies (Immerzeel, 2008; Caesar et al., 2015).

With this background, in addition to the first objective to
examine the spatio-temporal variability of rainfall depth and
wet–dry spells, the second objective of this study is to cali-
brate a stochastic model to simulate daily rainfall at 18 sta-
tions across Bangladesh and evaluate its performance to
preserve the observed variabilities at different temporal reso-
lutions from daily to multiyear. We have calibrated and eval-
uated the Decadal and Hierarchical Markov Chain (DHMC)
stochastic model, proposed by Chowdhury et al. (2017). The
DHMC has been chosen because it was found to preserve
the hydrologically important low to high temporal variabil-
ities of observed rainfall for semi-arid climates in Australia
(Chowdhury, 2017; Chowdhury et al., 2017). Additionally,
this study enables us to evaluate the model in a tropical cli-
mate condition in Bangladesh.

2 | DHMC MODEL

An overview of the DHMC model is available in
Chowdhury et al. (2017). The model uses two MC parame-
ters, transition probabilities of dry-to-dry and wet-to-wet
days, in order to simulate the occurrence of wet and dry
days. In a Monte-Carlo framework, rainfall depth in each
wet day is simulated by a gamma distribution with two
parameters, mean and SD of wet day rainfall depth. Both the
MC and gamma parameters vary for each calendar month in
order to incorporate the seasonal variability. On the other
hand, in order to incorporate the low-frequency (annual to
multiyear scales) variabilities, the MC and gamma parame-
ters vary for each decade and year, respectively.

In the calibration of MC parameters, the transition proba-
bilities of dry-to-dry and wet-to-wet days were calculated for
every month of each decade. Whereas, the mean and SD of
wet day rainfall depth were calculated for every month of
each year for the calibration of gamma parameters. The
DHMC model assumes that the yearly varying gamma

parameters for each month are log normally distributed and
exhibit a strong cross-correlation between the log-
transformed values of the mean and SD for a month. There-
fore, the following bivariate lognormal distributions were
fitted to the calibrated mean and SD values for each calendar
month i:

log meani �N λmeani , ζ
2
meani

� �
, ð1Þ

log SDij log meani �N λSDi +
ζSDi

ζmeani
Ri

�

log meani−λmeanið Þ, 1−R2
i

� �
ζSDi

� �2 Þ,
ð2Þ

where λ and ζ denote the lognormal parameters of mean and
SD values for a month respectively, while R is the correla-
tion coefficient between log mean and log SD.

In simulation of wet and dry days, the DHMC uses the
monthly and decade-varied deterministic values of MC
parameters. Although DHMC uses only the dry-to-dry and
wet-to-wet transition probabilities, it accounts the dry-to-wet
and wet-to-dry transitions as the counterparts of the two
parameters, respectively. In simulation, within a Monte-
Carlo framework, if the dry-to-dry transition is not true after
a dry day, it is considered as a dry-to-wet transition, and the
subsequent day is simulated as a wet day (similarly, wet-to-
dry transition is related to the wet-to-wet transition). For the
simulation of rainfall depth in wet days using gamma distri-
bution, for every month of a year, the model uses gamma
parameters that are stochastically sampled from the bivariate
lognormal distributions shown in Equation 1 and 2.

3 | STUDY SITE AND DATA

This study has used daily rainfall data of 18 rainfall stations
across Bangladesh (Figure 1) for the period 1973–2012, col-
lected from the Bangladesh Meteorological Department
(BMD, 2018). BMD operates a total of 36 rainfall stations
across the country. The record length of most of the stations
varies roughly between 35 and 60 years. Presence of missing
data for almost all the stations was observed. A significantly
high percentage of missing records was observed in years
such as 1970–1972 (possible impact of the liberation war of
Bangladesh), 1973–1976 and 1981 (see Supporting Informa-
tion Table S1). After data screening, 18 stations were
selected so that they cover all hydro-climatic regions of the
country, and their missing data was less than 6% for the
period from 1973 to 2012 (Figure 1). Missing data for each
station were filled by available records for the respective
days from the nearest neighbouring stations. More details
about the filling of missing records are provided in
Table S1. The rainfall depth presented in this paper are in
millimetre (mm) unless otherwise specified.
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4 | METHODOLOGY

4.1 | Rainfall variability assessment

This study has assessed the distribution characteristics of rain-
fall depth using the first two moments such as mean and SD,
while coefficients of variation (CV) was calculated as a ratio
of SD and mean. In addition, the 95th percentile of rainfall
depth was considered in order to include the extremes. Wet
days were only considered in the estimation of rainfall depth
statistics at the daily temporal resolution. In order to evaluate
the seasonal variability, rainfall statistics were estimated for
each calendar month at both daily and monthly resolutions.
Whereas, for annual to multi-year resolutions, rainfall statis-
tics were estimated for 1 to 10 overlapping years.

For wet and dry spells, this study has assessed the statis-
tical moments (mean and SD) of the “average wet (and dry)
spells” and the number of wet days. The 95th percentiles of
the number of wet days and the mean of the “long wet (dry)
spells” were also investigated. The statistics for wet and dry
spells were evaluated at the monthly and annual resolutions
assuming that the lengths of wet and dry spells do not signif-
icantly vary at higher scales, whereas the number of wet
days were evaluated at the monthly, annual and multiyear
resolutions.

The “average wet (dry) spells” and the “long wet (dry)
spells” were defined by the average and 95th percentile of
the length of wet (dry) spells (one or more consecutive wet
(dry) days) at a temporal resolution. For example, at monthly
resolution, first the wet (dry) spells were extracted for each

FIGURE 1 Location of 18 rainfall stations used in this study. The percentages of missing records in each station are shown in the parentheses. The colours
indicate spatial distribution of annual mean rainfall (in mm) over Bangladesh produced by using empirical Bayesian kriging method in ArcGIS [Colour figure
can be viewed at wileyonlinelibrary.com]
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month of every year. Then, for each month of every year,
mean and 95th percentile of the lengths of the extracted wet
(dry) spells were calculated that we defined as “average
spell” and “long spell” respectively. Finally, for each calen-
dar month, the mean and SD of the yearly varying average
wet (dry) spells were estimated, whereas only the mean of
the yearly varying long wet (dry) spells was estimated to
check the climatological pattern of maximum lengths of wet
(dry) spells. Similarly, the mean and SD of the average wet
(dry) spells and mean of long wet (dry) spells were also esti-
mated at annual resolution.

To examine the homogeneity and stationarity of rainfall
time series, the Mann–Kendall test for trend (Mann, 1945;
Kendall, 1975) at a 5% significance level was conducted for
daily rainfall time series, and for monthly total rainfall and
number of wet days for each month.

4.2 | Model calibration

In the calibration of MC parameters (i.e., probabilities of
dry-to-dry and wet-to-wet day), this study has divided the
40-year data of each station into four decadal samples and
calibrated the parameters of each calendar month to each
decadal data, therefore there were 48 values (12 months ×
4 decades) for each parameter. Whereas, in the calibration of
gamma parameters (i.e., mean and SD of wet day rainfall
depth), 12 values of each parameter were calculated for each
year that provided a total of 480 values (12 months ×
40 years) for each parameter. The spatial correlations of MC
and gamma parameters between pairs of stations
(e.g., correlation between 48 values of dry-to-dry probabili-
ties of a station with the corresponding parameter values of
each of the other 17 stations) were also examined.

4.3 | Model assessment

First, to test how well the DHMC model reproduces daily
rainfall series, the Spearman's rank correlation coefficients
(Spearman, 1904; Fieller et al., 1957) were estimated
between the observed and simulated daily rainfall. Simulated
daily rainfall series was obtained as median of the 1,000 rep-
licates of DHMC model. Then, performance of the DHMC
model was assessed for selected statistics of rainfall depth
and wet–dry spells at different time resolutions ranging from
daily to multiyear. The selected statistics include mean and
SD, 95th percentile and autocorrelation. The first two
moments (i.e., mean and SD) were used to examine the abil-
ity of DHMC to reproduce the distributions of observed rain-
fall series. However, higher moments (e.g., skewness,
kurtosis) were not examined as Wang and Nathan (2007)
and Lombardo et al. (2014) showed that the first two
moments generally provide enough information to under-
stand the characteristics of the distributions, while use of
higher moments may result in inappropriate inferences of
model performance. Instead, this study used the 95th

percentile to explicitly examine the ability of DHMC to
reproduce the extreme events. The autocorrelation is
checked because a stochastic model may underestimate the
observed autocorrelation by introducing excessive variability
to overcome overdispersion issue (Chowdhury, 2017). The
above-mentioned statistics used to evaluate the performance
of DHMC include most of the statistics of the extreme pre-
cipitation indices (Karl et al., 1999; Rashid et al., 2017).

The Z score (defined in Equation 3) was used to evaluate
the model performance to reproduce the observed statistics
of rainfall. First, the model was run for 1,000 times to gener-
ate 40-year long (consistent with the 40-year long observa-
tion from 1973 to 2012) 1,000 synthetic rainfall series.
Then, the selected rainfall statistics were estimated for the
synthetic rainfall series, which eventually produces 1,000
realizations for each of the selected rainfall statistics. Finally,
statistical moments (mean and SD) were estimated from
those 1,000 realizations. The Z score was estimated using
the Equation 3.

Z score=
ObsS−Exp_synthS

SD_synthS
, ð3Þ

where ObsS represents the observed value of any rainfall sta-
tistic (95th percentile, for example), Exp_synthS and
SD_synthS represent the mean and SD of corresponding rain-
fall statistics, respectively, obtained from the 1,000 synthetic
rainfall series as described above.

The underlying assumption of the Z score calculation is
that the values of a statistic from the 1,000 synthetic rainfall
series are normally distributed with a mean equal to
corresponding observed value of the statistic. Therefore, a
Z score equal to zero for a statistic indicates that the statistic
has been exactly reproduced by the model. The positive and
negative values of the Z score indicate the tendency of the
model to underestimate and overestimate the observed statis-
tic, respectively. A value of Z score between −2 and + 2 for
a statistic indicates that the observed value falls within the
95% confidence interval of the statistic values from 1,000
synthetic rainfall series. Accordingly, Z scores greater than
+2 and less than −2 can be considered as significant under-
estimation and overestimation of the observed statistic by
the model, respectively.

In addition to the Z scores, the distribution statistics at
the annual resolution were shown by probability plots. Auto-
correlations of monthly rainfall depth and the number of wet
days were also used to evaluate the model performance. The
month-to-month (January to February of same year, for
example) and year-to-year (January of two successive years,
for example) autocorrelations of the monthly rainfall depth
and number of wet days were estimated from the observa-
tions and compared with the model outputs. Autocorrela-
tions of modelled monthly rainfall depth and number of wet
days were estimated as the average of 1,000 realizations
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obtained from 1,000 synthetic rainfall series as described
earlier.

To examine the performance of DHMC to incorporate
the variability of rainfall outside the calibration period, we
performed a cross validation test. For the cross validation,
40 years rainfall (1973–2012) data were divided into two
halved (1973–1992 and 1993–2012) of 20 years each. Then,
the Spearman's rank correlation coefficients were estimated
by calibrating the model to one half (e.g., 1973–1992) and
comparing against another half (e.g., 1993–2012), and vice
versa.

5 | RESULTS AND DISCUSSION

5.1 | Spatio-temporal variabilities of rainfall

Figures 2 and 3 show the transition probabilities of wet-to-
wet days and boxplots of the mean of wet day rainfall depth,
respectively. Transitional probabilities of dry-to-dry days
and SD of wet day rainfall depth are shown in Figures S1
and S2. Figures 2 and 3 exhibit a strong seasonal variability
of rainfall in all stations. With a relatively high wet-to-wet
probabilities (around 0.5 to 0.85) and mean of wet day rain-
fall depth (around 15 mm to 30 mm per wet day), the pre- to
post-monsoon months (i.e., March to November, will be
referred as “monsoonal months” hereafter) indicate a wet
season with the wettest condition in the monsoon months
from June to September. The winter months from December
to February are relatively dry. Figure 3 indicates that the dry

months are extremely dry with almost zero mean of wet day
rainfall depth for almost all stations (except for a few sta-
tions such as Jessore and Satkhira). The 95th percentiles of
the mean of wet day rainfall depth (upper whiskers of the
boxplots in Figure 3) for winter months indicate occasional
dry season storms in few years. However, the above findings
of seasonal variability are well-established in existing litera-
tures (Ahmed and Karmakar, 1993; Ohsawa et al., 2000;
Ahmed and Kim, 2003).

Figure 2 indicates similar seasonality in the decadal wet-
to-wet probability values for all four decades with nominal
inter-decadal variabilities (mostly overlapped) for all sta-
tions. However, inter-decadal variabilities of wet-to-wet
probabilities were found slightly higher in the drier months
(December to February) compare to the variabilities in the
wetter months (March to November) (although there might
be some inconsistencies in wet-to-wet probabilities of 1973s
in some stations such as Bhola, Cox's Bazar, and Comilla
with possible link to data inconsistencies as discussed in
Section 3). On the other hand, the probabilities of dry-to-dry
days (Figure S1) indicates some higher inter-decadal vari-
abilities in the wetter months compare to the drier months.
This suggests an existence of inter-decadal variability of wet
and dry spells in the dry (winter) and wet (monsoon) sea-
sons, respectively. Similarly, relatively high CVs were
observed for monthly rainfall depth and wet spells in dry
winter months (around 100–200% and 85–150% as shown in
Figure 4(a) and (b), respectively). In contrast, relatively high
SDs were observed for monthly rainfall depth and wet spells

FIGURE 2 Transitional probabilities of wet-to-wet day for each calendar month and for each of the four decades between 1973–2012. The stations are
denoted by their first five characters of full name (Mymensingh = Mymen, for example) [Colour figure can be viewed at wileyonlinelibrary.com]
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in wet monsoonal months (around 80–250 mm and
4–6 days per month as shown in Figure 4(a) and (b), respec-
tively). While the mean and SD of monthly dry spells were
found to be complementary to the respective wet spell statis-
tics, the CVs of monthly dry spells were found higher
(around 65–100%) in the pre- and post-monsoon months
compare to the monsoon and winter months (Figure S3).

The above results suggest that the rates of inter-annual
variability (i.e., variability as a percentage of mean as den-
oted by the CVs) of rainfall depth and wet spells are higher
in the dry winter months with a potential link to the inter-
decadal variability of wet-to-wet transition probabilities, but
the magnitudes of these inter-annual variability (as denoted
by the SDs) are higher in the wet monsoonal months (and
vice versa in case of dry spells). Since the dry winter months
are extremely dry with less than 5% of annual rainfall, the
higher rate of inter-annual variability of rainfall depth and
wet spells in the dry winter months likely to have nominal
impacts on the hydrological systems. Instead, the higher
magnitude of inter-annual variability of rainfall depth and
wet spells in the wet monsoonal months might be of greater
interest for design and operation of water systems. This
understanding is a clear advancement in the relevant scien-
tific knowledge as the existing literatures (Bari et al., 2017,
for example) are mostly based on CVs of monthly rainfall
depth and only focused on the higher inter-annual variability
in the dry winter months.

The spatial variability of rainfall over Bangladesh is
mainly driven by the monsoonal rainfall. Figure 4(a) and

(b) indicates the existence of an east-to-west gradient of wet-
ness with the wettest condition in the Sylhet station of north-
east region with a relatively high mean monthly rainfall
depth (around 850 mm) and wet spell (around 11 days) in
the monsoon, whereas the driest condition is observed in the
stations located in central-west region such as the Rajshahi
and Iswardi stations with a lower mean monthly rainfall
depth (around 250 mm) and wet spell (around 4 days) in the
monsoon. Figure 1 shows an overall spatial distribution of
the annual mean rainfall depth that indicates a gradual dry-
ness from the northeast to the central-west region and from
the southeast coastline to the further north (note that our
Figure 1 is comparable to the Figure 1(a) of Shahid (2010)).
The wet conditions in the northeast and southeast region are
linked with the topographic lifting effects of the Meghalaya
plateau and Chittagong hills, respectively (Ahmed and
Karmakar, 1993). In the west, the Rangpur station in the
northwest region is wetter than the central-west region with
a possible influence from the Himalayan foothills, whereas
the Khulna and Satkhira stations in the southwest region are
also found wetter than the central-west region with possible
influence of the vicinity to the Bay of Bengal. Such findings
of spatial variability of rainfall depth and wet–dry spells are
mostly consistent with the findings of relevant previous stud-
ies (Ohsawa et al., 2000; Shahid, 2010).

As a new finding on spatial variability, this study has
observed that the mean and 95th percentile of wet-day rain-
fall depth (Figure 3 and S4) in some winter months
(December–February) in the stations of southwest to south-

FIGURE 3 Distribution of the mean of wet day rainfall depth over the data period from 1973 to 2008. Each boxplot shows the quartiles including median
with fifth and 95th percentiles as lower and upper whiskers, respectively. The solid circles are mean of the yearly-varied values of mean of wet day rainfall
depth [Colour figure can be viewed at wileyonlinelibrary.com]
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central regions (e.g., Jessore, Khulna, Satkhira, Barisal,
Bhola) are as high as the pre- and post-monsoon months,
while the mean (and 95th percentile) of monthly rainfall
depth for the respective months indicate drier conditions
(Figure 4(a)). Such months of these stations probably receive
small size storms (mean wet day rainfall depth below 5 mm
as shown in Figure 3) for short wet spells (mean length of
wet spells below 2 days as shown in Figure 4(b)) during
winter which contribute to their wet-day rainfall depth to be
higher than the respective dry winter months of other sta-
tions. The average length of dry spells in winter months are
also slightly shorter (around or below 20 days as compare to
25–30 days in other stations) in those stations of southwest
and south-central regions (Figure S3) that supports the above
observation of short-duration winter storms in that region.
The short duration winter rainfall events are likely to be gen-
erated by weak tropical depressions in the Bay of Bengal
(origin of most of the storms in Bangladesh) (Ahmed and
Karmakar, 1993), which mostly fall on the coastal districts

of southwest and south-central regions, but do not progress
further north to the inland regions.

As shown in Figure 4(a) and (b), the magnitude of inter-
annual variabilities (SDs) of rainfall depth and wet spells
declines from east to west, while the rate of inter-annual var-
iabilities (CVs) show an opposite trend. This is an enhanced
understanding of the spatial distribution of the inter-annual
variability of rainfall depth and wet spells in Bangladesh.
Previous studies (Bari et al., 2017), which are mostly based
on spatial distribution of CVs, concluded that the inter-
annual variability of rainfall declines from west to east.

The autocorrelations of monthly rainfall depth and wet
days (Figure 5; also see Figures S5 and S6) indicate that the
patterns of seasonality of rainfall depth and wet spells are
similar in all stations throughout the country exhibiting rela-
tively strong correlations at lag-1 (around 0.5 to 0.7), lag-6
(around −0.5 to −0.7) and lag-12 (around 0.55 to 0.75). This
might be because the storms that mostly originated in the
Bay of Bengal and flow from south to north, maintain a

(a) (b)

FIGURE 4 Mean, SD, and CV of (a) monthly rainfall depth and (b) monthly average wet spells. In each X-axis, the stations are arranged from left to right
according to an approximate geographical direction from west to east. Please note the scale of colour bars in each subplot is different [Colour figure can be
viewed at wileyonlinelibrary.com]
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similar interval of arrival and withdrawal dates over the
entire country, while the intensity of rainfall and length of
wet spells vary over space due to the direction of monsoon
winds and local orography.

The spatial variabilities are clearer in the rainfall depth
and wet spells compare to the dry spells. This observation is
supported by the spatial correlations of DHMC parameters
between station-pairs as shown in Figure 6. In Figure 6(a),
the right triangle shows the correlation coefficient (r) values
for dry-to-dry probabilities (correlations of the 12 × 4 values
of the parameter in two stations) and the left triangle shows
the r values for wet-to-wet probabilities. Figure 6(b) shows
the r values for mean and SD of wet day rainfall depth (two
Gamma parameters) in right and left triangles, respectively.
The spatial correlations of dry-to-dry probabilities are strong
(r ≈ 0.90–0.95) for almost all station-pairs indicating high
similarity of dry spell occurrence in entire country. The cor-
relations of wet-to-wet probabilities are weaker than that of
dry-to-dry probabilities, but still strong for most of the
station-pairs (r ≈ 0.70–0.90). This might indicate that most
of the storms produce rainfall over the entire country. How-
ever, the correlations are only moderately strong for the
mean and SD of wet-day rainfall depth (r ≈ 0.45–0.65) indi-
cating that although a storm might cause rainfall over the
entire country, the rainfall depth could significantly vary
spatially.

Note that the spatio-temporal variability of long wet–dry
spells and multiyear variabilities of rainfall depth and wet
days are also investigated by this study. The findings are
consistent with the spatio-temporal variabilities as discussed
(Figure S7 and S8).

Table 1 shows the results of Mann–Kendal test for daily
rainfall series, and for monthly total rainfall and monthly
number of wet days for each month. For daily rainfall, sta-
tions across the western region were found trendless whereas
significant (at 5% significance level) increasing and decreas-
ing trends were observed in stations across the eastern and
southern coastal regions (e.g., Barisal and Bhola), respec-
tively. In case of monthly rainfall depth, significant decreasing
trends were observed over the region from west to the middle
part of the country, particularly in the monsoonal months. In
contrast, number of wet days in monsoonal months showed
increasing trends over the eastern region of the country.

The above results of this study have provided enhanced
understandings of the spatio-temporal variabilities of rainfall
depth and wet–dry periods over Bangladesh. These under-
standings are important in terms of stochastic simulation of
rainfall that the stochastic model(s) should preserve these
rainfall characteristics.

FIGURE 5 Autocorrelation of monthly rainfall depth and wet days for
Sreemangal as a typical station (autocorrelations of all other stations are
similar as shown in Figure S5 and S6). The shades indicate 95% confidence
interval [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Correlation coefficients (r) of DHMC parameters between
station-pairs—(a) r values for dry-to-dry (right triangle) and wet-to-wet (left
triangle) probabilities and (b) r values for mean (right triangle) and SD (left
triangle) of wet-day rainfall depth [Colour figure can be viewed at
wileyonlinelibrary.com]
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5.2 | Model performances

The Spearman's rank correlation coefficients between the
observed and modelled daily rainfall time series were found
above 0.9 in all stations (see Table S2) indicating satisfac-
tory performance of DHMC to reproduce the daily rainfall
series. Figures 7 and 8 show the performances of DHMC to
simulate the distribution statistics (i.e., mean, SD, and 95th
percentiles etc.) of wet day rainfall depth and monthly wet
spell lengths, respectively. The typical results for monthly
rainfall depth, number of wet days, and dry spell lengths are
shown in Figures S9, S10, and S11, respectively. Then, in
Table 2, the overall performances of the model for the rain-
fall depth and wet–dry spell statistics are shown as average
of the absolute values of respective Z scores in each of the
four seasons. Table 2 does not include the relevant statistics
for 95th percentiles of rainfall depths and mean of long wet–
dry spells (i.e., extreme events) because the performance of
DHMC for the extremes is similar to its respective perfor-
mance for mean and SD (Figures 7 and 8).

The DHMC has satisfactorily preserved the mean, SD
and 95th percentiles of wet day rainfall depth for the wetter
months of pre- to post-monsoon (March to November) as
Z scores are mostly between −2 and +2 indicating observed
statistics are within the 95% confidence interval of the
DHMC simulated values. However, the model tends to
underestimate the statistics for the wet day rainfall depth in
relatively dry months of winter (December to February) with
Z scores greater than +2 (Figure 7). The likely reason of this
underestimation is that the drier months receive nominal
rainfall with almost no wet days in most of the years except

some occasional storms in some years (as shown in Figure 3
and discussed in above section), while the generation of rain-
fall depth in DHMC by a stochastic process using gamma
distribution cannot reproduce the occasional storms. How-
ever, the underestimation of DHMC for such occasional wet
day rainfall in the drier months might be negligible for
hydrological systems. Note that the model underestimates
the mean of wet day rainfall depth of November for some
stations of relatively dry west regions such as Rajshahi,
Satkhira, Iswardi etc. (Figure 7 and Table 2). It indicates that
the dry season is probably extended from November to
February in these relatively dry regions, although November
is defined as a post-monsoon month. The performance of
DHMC for the mean, SD, and 95th percentiles of monthly
rainfall depth is consistent with the respective performance
for wet day rainfall depth (Figure S9 and Table 2). The
above results are mostly similar for all stations irrespective
of the spatial variabilities discussed in the previous section.

The DHMC has satisfactorily reproduced the statistics of
wet spell length in all stations for all months except underes-
timation of the SD of average wet spell length in a few sta-
tions for some of the wetter months such August of
Sreemangal and May of Khulna etc. (Figure 8 and Table 2).
However, these rare failures of the model can be associated
with potential inconsistencies in the observed data. The per-
formance of DHMC for the monthly number of wet days is
similar to its respective performance for monthly wet spells
(Figure S10). The DHMC has also satisfactorily reproduced
the statistics of dry spell length in all stations for all months
with a tendency to underestimate the dry spells in the pre-

TABLE 1 Results of Mann–Kendal test for daily rainfall series, and for monthly total rainfall and monthly number of wet days for each month

Station
name

Daily
rainfall
(mm)

Monthly total rainfall (mm) Monthly number of wet days

J F M A M J J A S O N D J F M A M J J A S O N D

Rajsh D

Satkh

Iswar D

Jesso

Rangp I

Bogra D D D

Khuln D

Mymen

Dhaka D D

Baris D

Bhola D D D

Mcour I I I I I I

Comil I I

Chitt

Sreem I I I

Sylhe I

CoxsB I I D I I

Ranga I I I

Notes. The blank cells indicate no trend, while the “I” and “D” signs indicate increasing and decreasing trends, respectively. The stations are arranged from top to bot-
tom according to an approximate geographical direction from west to east
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monsoon months of March to May (Figure S11). Despite
these limitations, the overall performance of DHMC is

satisfactory to preserve the distribution of monthly wet and
dry spells.

FIGURE 7 Z score for mean, SD, and 95th percentile of daily (wet days) rainfall depth. Z scores outside of −3 and +3 limit are not shown [Colour figure
can be viewed at wileyonlinelibrary.com]

FIGURE 8 Z score for mean and SD of monthly average wet spell lengths and mean of long wet spells [Colour figure can be viewed at
wileyonlinelibrary.com]
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In addition to the above-mentioned distribution statistics,
this study has also investigated the DHMC performance to
preserve the autocorrelations of the observed rainfall.
Figure 9 shows the performance of DHMC to reproduce the
autocorrelations of monthly rainfall depth and number of
wet days at lag-1, lag-6, and lag-12 (lags with relatively
strong observed autocorrelations) in all stations. It indicates
that the DHMC has preserved the autocorrelations of
monthly wet days at all three lags with r value of above 0.95
for lag-1 and lag-6, and 0.89 for lag-12. However, the model
shows a consistent tendency to underestimate the autocorre-
lations of monthly rainfall depth at all lags with the r values
of around 0.6 for lag-1 and lag-12, and 0.8 for lag-6. Such
tendency of DHMC to underestimate the autocorrelations of
monthly rainfall depth is likely to be linked with the hierar-
chical generation process of rainfall depth by using bivariate
lognormal distributions of gamma parameters that incorpo-
rate excessive variability of rainfall depth in the model.

Figure 10 shows the performance of DHMC to repro-
duce the rainfall depth, number of wet days, and average
length of wet–dry spells at annual resolution for Sreemangal
and Bogra as representative stations of relatively wet and
dry regions respectively (plots for all other stations are pro-
vided in Figures S12 to S15). It indicates that the distribu-
tions of rainfall depth and wet–dry periods at annual
resolution have been preserved well by the DHMC for all
stations irrespective of spatial variability of rainfall among
the stations. The Z scores of DHMC for SDs of rainfall depth
and wet days at multiyear resolutions (i.e., at 2, 5, and
10 multiple overlapping years) are also mostly between −2
and +2 as shown in Figure 11. However, the model shows a
consistent tendency to overestimate the variability of rainfall
depth at multiyear resolutions (negative Z scores for SDs of
rainfall depth in most of the stations), while SDs of wet days
at multiyear resolution are well-preserved with slight ten-
dency of underestimation at 2-year resolution (mostly posi-
tive Z scores). Despite these limitations, we conclude that
the performance of DHMC to preserve the low-frequency

variabilities (i.e., variabilities at annual and multiyear resolu-
tions) of rainfall in Bangladesh is satisfactory considering
the well-known challenge of over dispersion of daily rainfall
models.

In cross-validation, the Spearman's rank correlation coef-
ficients between observed rainfall outside of calibration
period and simulated rainfall were found very strong (above
0.9, see Table S2). This indicates that the DHMC can incor-
porate the characteristics of rainfall outside of its calibration
period.

The above findings indicate that the DHMC can satisfac-
torily simulate the daily rainfall in stations across
Bangladesh (irrespective of underlying spatial variabilities)
by preserving the key statistical characteristics of rainfall
depth and wet–dry periods at both high and low temporal
frequencies (i.e., daily to multiyear resolutions). The only
critical limitation of the DHMC is that the model tends to
underestimate the autocorrelations of monthly rainfall depth
particularly at lag-1 and lag-12, which could be due to the
excess variabilities introduced by the hierarchical stochastic
generation process of rainfall depth. Despite that, the DHMC
can be considered as a suitable stochastic rainfall simulator
to use in the planning and operations of various water infra-
structures in Bangladesh.

6 | CONCLUSION

This study evaluated the spatio-temporal variability of rain-
fall and the potential of using a stochastic rainfall model
(known as DHMC) to simulate daily rainfall in a tropical
monsoon climate, that is, Bangladesh. Rainfall depth and
wet–dry periods were investigated at different temporal reso-
lutions using the daily rainfall data of 18 rainfall stations
across the country. In light of the observed rainfall variabil-
ity, the performances of the DHMC model were assessed.

Results indicate existence of short wet spells of small-size
storms during the dry winter months in the southwest to

r
r

FIGURE 9 Autocorrelations of monthly observed and simulated rainfall depth and monthly number of wet days at lag-1, lag-6, and lag-12 for all stations.
Values in the parenthesis indicate correlation coefficients (r) between observed and simulated autocorrelation values at each lag [Colour figure can be viewed
at wileyonlinelibrary.com]
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south-central regions of the country. For inter-annual variabil-
ity of rainfall, magnitude of inter-annual variability (i.e., SD)
was found higher in wetter months (i.e., June to September)
over the south and northeast regions, whereas the rate of
inter-annual variability (i.e., CV) shows a contrasting pattern.
Since the dry winter months contribute around 5% of annual
total rainfall, the higher rate of inter-annual variability of rain-
fall in these months likely to have nominal impacts on the
hydrological systems. Instead, the higher magnitude of inter-
annual variability (i.e., SDs) of rainfall in the monsoon might
be of greater interests that can critically influence the water
systems. However, understanding of the higher rate of inter-
annual variabilities (i.e., CVs) in the relatively dry west region
is also critical to monitor the potential drought conditions
(including groundwater depletions) for agricultural and
domestic water supply in that region.

Dry spells are found consistent over the entire country
followed by wet spells of slightly weaker spatial correlations,
while the correlations for mean and SD of wet day rainfall
depth are only moderately strong. This probably indicates that
most of the storms occur rainfall over the entire country, while
the intensity of rainfall may significantly vary over space.

The trend analysis shows significant decreasing trend of
monthly rainfall over the relatively dry western region and
increasing trend of monthly wet days in relatively wet east-
ern region. Such trends indicate enhanced risks of drought
and flood in the west and the east part of the country, respec-
tively, in the face of a changing climate.

The results of DHMC show that the model can satisfacto-
rily preserve the variabilities of rainfall depth and wet–dry
periods at both high- and low-temporal frequencies in all sta-
tions irrespective of spatial variabilities. However, DHMC

FIGURE 10 Observed and simulated probability distributions of rainfall depth (mm), number of wet days, mean length of wet spell, and mean length of dry
spell at annual resolution in Sreemangal and Bogra as representative stations of relatively wet and dry regions, respectively (plots for all other stations are
provided in Figure S12–S15). The dots are observed values and the solid and dashed lines are the medians and 95% confidence intervals (CI) of the 1,000
realizations of DHMC simulation [Colour figure can be viewed at wileyonlinelibrary.com]
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shows a tendency to slightly underestimate the autocorrelations
of rainfall depth that might be linked with the hierarchical sto-
chastic generation process of rainfall depth that incorporate
excessive variabilities in the model. Despite this, the DHMC
has performed reasonably well to be considered as a suitable
tool for stochastic simulation of daily rainfall in Bangladesh.
The model can be used in future impact studies such as water
security assessment for urban and agricultural supply.

Unavailability of high-quality long record data was a
limitation of this study. At the time of this study, we only
obtained data until 2012, and therefore, it was not possible
to include more recent data. Additionally, the record length
of the data was limited to 40 years because of unavailability
of longer record and high percentage of missing record
before 1973. Moreover, in some stations such as Cox's
Bazar, Bhola, and Comilla, the data for 1973s contained
high percentage of missing record, which slightly affected
the MC parameters of DHMC for that decade but did not
affect the overall performance of the model.

The overall findings of the study are expected to be use-
ful for the hydrological and agricultural design and opera-
tions of the country. In addition, since the DHMC was

previously tested for Australian climate conditions only
(Chowdhury et al., 2017), results of this study suggest the
suitability of the model in a different climate. Such findings
are likely to be of interest for many relevant international
studies to consider the DHMC as a stochastic simulator.
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