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Abstract—The Generation power of Generative Adversarial
Neural Networks (GANs) has shown great promise to learn
representations from unlabelled data while guided by a small
amount of labelled data. We aim to utilise the generation power of
GANs to learn Audio Representations. Most existing studies are,
however, focused on images. Some studies use GANs for speech
generation, but they are conditioned on text or acoustic features,
limiting their use for other audio, such as instruments, and even
for speech where transcripts are limited. This paper proposes
a novel GAN-based model that we named Guided Generative
Adversarial Neural Network (GGAN), which can learn powerful
representations and generate good-quality samples using a small
amount of labelled data as guidance. Experimental results based
on a speech [Speech Command Dataset (S09)] and a non-speech
[Musical Instrument Sound dataset (Nsyth)] dataset demonstrate
that using only 5% of labelled data as guidance, GGAN learns
significantly better representations than the state-of-the-art mod-
els.

I. INTRODUCTION

The generation power of a Generative Adversarial Neural
Networks (GANs) [1] is useful for learning a meaningful
representation [2], [3], [4], [5] from an unlabelled dataset.
However, the success of a GANs can mainly be found in
image generation; it does not perform equally well for audio
generation, as it requires to generate complex waveforms.
Encouragingly, recent studies, such as for Parallel WaveGAN
[6], and GAN-TTS [7] have shown success of GANs for audio
generation. Most of these GAN models are, however, based on
speech audio generation and conditioned on text or acoustic
features, therefore, they can not be generalised for other audio
domains, even for speech audios where transcripts are limited.
Some studies such as WaveGAN [8], GANSynth [9], and
TiFGAN [10] have shown intriguing results for text/acoustic
feature independent audio generation using GAN based mod-
els. In these studies, researchers focused on strategies to gen-
erate low-dimensional acoustic features/representation, such as
audio spectrograms, rather than generating raw waveform. The
spectrograms are then converted back to audio. Most of these

models are based on the conventional DCGAN architecture
[11], which leaves room to explore high performing GAN
based architecture such as BigGAN [4] and StyleGAN [3].
In this paper, we focus on the BigGAN architecture.

Like any GAN based model, BigGAN shows good perfor-
mance for conditional generation using labelled data (categor-
ical labels). These categorical labels add useful side informa-
tion for BigGAN, which help it to generate correct samples.
BigGAN requires an enormous amount of labelled data [12].
However, for audio, acquiring labels is very expensive and
error-prone. Therefore, using a BigGAN for conditional (cat-
egorical) audio sample generation with fewer labelled data is
a challenge.

This paper tackles this challenge by proposing the new
model called Guided Generative Adversarial Neural Network
(GGAN), which is based on the BigGAN architecture, but can
generate conditional audio samples successfully using a small
number of categorical labels.

The proposed GGAN offering not only to produce high-
quality generation, but also to learn useful representations for
two reasons: First, BigGAN, which is the core of GGAN,
is useful for representation learning [5]. Second, Locatello et
al. show that unsupervised representation learning is funda-
mentally impossible because many variational factors of the
data distribution are dependent on the human perception/bias,
which cannot be discovered from a dataset without any
supervision towards that bias [13]. This observation implies
that learning a good representation using BigGAN should
require some form of supervision. GGAN using guidance from
labelled data coincide with this finding.

We evaluate the performance of conditional (categorical) au-
dio sample generation and representation learning the quality
of the GGAN model using the widely used Speech Command
Dataset (S09) and the Musical Instrument Sound dataset
(Nsyth). A comparison with the existing studies shows that
the GGAN performs significantly better than the state-of-the-
art (SOTA) [10], [8] methods.



II. BACKGROUND AND RELATED WORK

In this section, we discuss related studies in audio genera-
tion and representation learning.

A. Audio Generation

Generating human-like speech audio with a neural net-
work (NN) is an active area of research. Successful audio
generation with NNs is hard, as it depends on generating
coherent periodic waveforms maintaining the regularity in the
periodicity, where the temporal resolution (sampling rate) and
time scale (audio length) are high with short and long-term
dependencies [9], [14]. Human hearing is highly sensitive
to irregularities and discontinuities in the periodic nature
of any audio [9], which makes it even harder for any NN
to generate human-like speech audio. However, in recent
years, researchers have achieved extraordinary success using
neural networks for generating speech audio from text [15].
Most of these successes are dominated by the autoregressive
models. Oord et al. [16] proposed “WaveNet” as a powerful
autoregressive model for Text-To-Speech (TTS) synthesis for
both English and Mandarin. Later, Oord et al. improved this
work by proposing “Parallel WaveNet”, which is 20 times
faster [17]. This research proposed a new method for training a
parallel feed-forward network from a trained WaveNet. Further
improvement of WaveNet was proposed in the CLARINET
[18], where they introduced a parallel wave generation method
using Gaussian inverse autoregressive flow. Researchers have
also used seq2seq-based models for acoustic modelling (text to
acoustic features) such as TACOTRON (1 & 2) [19], [20] and
Char2Wav [21]. Here, TACOTRON 1 adopts Griffin-Lim [22]
for vocoding (acoustic features to waveform), TACOTRON 2
adopts WaveNet for vocoding, and Char2Wav adopts Sam-
pleRNN [23] for vocoding. Eunwoo et al. [24] proposed a
Long-Short-Term-Memory (LSTM) based Recurrent Neural
Network for TTS. Furthermore, many researchers have used
other Neural Networks for TTS [25], [26]. These autoregres-
sive models directly generate raw audios, which makes them
expensive and slow.

As an alternative approach (non-autoregressive models),
many researchers are currently focusing on generating low-
dimensional acoustic features/representation, such as audio
spectrograms, rather than generating a raw waveform. The
generated spectrograms are then either converted back to audio
using low computational methods such as IFFT/PGHI [9], [8],
[10] or using a neural network [14]. Recently, GAN-based
models are becoming popular to provide a non-autoregressive
solution. A GAN generally consists of two neural networks,
the Generator and the Discriminator, both trained using an
alternating minimax-game optimisation process. During train-
ing, the Discriminator tries to distinguish between real samples
from a data distribution and fake samples generated from the
Generator, while the Generator tries to fool the Discriminator
by producing samples closer to the real sample [1]. Parallel
WaveGAN [6], generates high-quality speech using a GAN-
based technique where the Generator uses a WaveNet-like
architecture. Kumar et al. [14] have proposed the MelGAN

framework, which generates waveform samples using mel-
spectrograms. Moreover, other studies propose GAN-based
solutions for speech generation such as GAN-TTS [7]. In
the GAN-TTS paper, the authors propose a text-conditional
feed-forward Generator using multiple discriminators which
evaluate the generated audio based on multi-frequency ran-
dom windows. Other studies have utilised GANs for spectral
conversion in speech data [27], [28]. The above GAN-based
Parallel WaveGAN, GAN-TTS, and MelGAN are conditioned
on text or acoustic features and mainly focus on speech
generation. Therefore, these models cannot be generalised
directly to other audio domains. They cannot even be used
for speech generation, where text is not available.

For generating audio/speech without text/acoustic features
as input, researchers are also using GAN-based solutions. In
the SpecGAN work, the authors generate spectrograms and
then convert them back to audio [8] using the Griffin-Lim
algorithm [22]. Marafioti et al. [10] in their TiFGAN paper
showed a significant improvement using the Phase Gradient
Heap Integration (PGHI) [29] algorithm for converting spec-
trograms to audio. As the PGHI algorithm can reconstruct
audio from a spectrogram with minimal loss in the perceptual
quality [10], generating real-like spectrograms should result
in a high-quality audio generation. The high performing GAN
architectures, such as Style GAN [3], or BigGAN [4] usually
work fine for spectrogram generation. The BigGAN model
has been successfully explored in the field of image datasets.
However, it is an open research question to explore its benefits
in the audio domain, which we address in this paper.

B. Audio Representation Learning
In any high dimensional data distribution, the variational

factors of the data are entangled and cannot be easily iden-
tified. Representation learning aims to disentangle these vari-
ational factors by mapping the high dimensional data to a
low dimensional latent/representation space [13]. For any par-
ticular domain, learning representation from vastly available
unlabelled data can improve the post-use case scenario where
the availability of the labelled data is limited. Researchers
are currently using deep neural networks to learn successful
representation from any labelled or unlabelled audio dataset
[30], [31], [32], [33], [34], [35], [36].

Among the unsupervised representation learning techniques,
self-supervised learning is dominant in the field of computer
vision [37], [38], [39], [40]. In self-supervised learning, an
alternative supervised signal is created from the information
that exists in the unlabelled data to train the model for
representation learning. An example is predicting the rotation
angle of images where the rotation angle is the supervised
signal for training the model [41]. Similarly, audio researchers
have achieved successful results using self-supervised rep-
resentation learning. Van den Oord et al. [42] proposed
a model for learning representation predicting future latent
observations. In another study, De Chaumont Quitry et al.
[43] have learnt representation by predicting the instantaneous
frequency. Likewise, other researchers have achieved improve-
ment in performance using different self-supervised techniques
[43], [44], [45], [46], [47], [48].



For self-supervised learning, we have to manually design
the supervised signal, which is a major drawback [49]. This
leads the researchers to focus on fully unsupervised rep-
resentation learning techniques. Most of the unsupervised
representation learning studies use autoencoders [50], [51].
Several researchers have utilised Variational Autoencoders
(VAEs) [52] to learn a useful representation from an unlabelled
speech dataset. Recent literature has used GANs for learning
meaningful representations in an unsupervised manner [53],
[54].

Unsupervised representation learning looks intriguing as it
can utilise an enormous amount of unlabelled data. However,
recent work of Locatello et al. have shown that entirely
unsupervised representation learning is not possible without
any short of supervise signal [13]. Furthermore, learning rep-
resentation in an unsupervised manner does not guarantee its
usability in the post-use case scenario. Therefore, we propose
the Guided Generative Adversarial Neural Network (GGAN),
which can learn an useful representation from an unlabelled
audio dataset according to the categorical supervision given
from a limited amount of labelled data.

C. Related Guided Generative Adversarial Neural Network
Architectures

In Spurr et al. [55] proposed a method to guide an InfoGAN
network. They use a small number of labels to help the
InfoGAN to capture a specific representation. However, it
fails to perform well for complex datasets such as SVHN
[56], CelebA [57], and CIFAR-10 [58]. Springenberg et al.
[59] suggested learning a classifier from a partially labelled
dataset and then used that classifier for semi-supervision in a
GAN architecture. They empirically evaluated their method on
synthetic data as well as on challenging image classification
tasks. Kumar [60] proposed two discriminators in a GAN
architecture where one discriminator learns to identify real
or fake samples from the unlabelled dataset, and another
discriminator learns to identify real or fake samples with
their labels from some labelled dataset. A recent study from
Lucic et al. [12] explored different semi-supervised methods
for images. They predict the missing labels of the dataset
with the help of a small labelled dataset. First, they train
with self-supervision and then fine-tune the classifier with a
small labelled dataset. Subsequently, they predict the labels
for other missing labelled datasets. They also propose a co-
training method for this task, where they train this classifier
on top of the discriminator during the training.

The review of the related guided GANs shows that most of
the studies are focused on images generation. Also, representa-
tion learning has received a small focus from yhe community.
We propose the GGAN, capable of learning a meaningful
representation from an unlabelled audio dataset with some
guidance from a minimal amount of labelled samples. The
newly introduced GGAN can also generate higher quality
audio samples than the state-of-the-art [10], [8] models given
the small guidance.

III. ARCHITECTURE OF GGAN

A. Overview of the GGAN

In our proposed model, we have eight networks. These
are the Encoder E, Generator G, Feature Extractor F , two
Classifiers Ce and Cx, and three Discriminators D1, D2, and
Df . Fig. 1 shows the essential connections between different
parts of the model.

The Generator of any unsupervised GAN usually takes a
random latent space as input and generates samples from the
real data distribution. It learns to map any latent space to
the data distribution. In the data distribution, the factors of
variation are entangled and not easily separable, but in the
latent space, these categories are disentangled, and can be
easily separated. The BiGAN [61] framework uses an extra
network to learn the reverse mapping from the data distribution
to the latent space. In our GGAN model, rather than feeding
a random latent space to the Generator, we feed it with a
generated latent space u(z), which is easily classifiable into
n categories. Our aim is that the Generator learns to map
different latent space categories to different data categories,
according to our guidance. However, the challenge is to force
the Generator to create such different samples for different
categories of latent space. To guide the Generator, we use
a small percentage of labelled samples from the training
datasets. This is how we achieve semi-supervised learning.

The first task is to generate a latent space u(z), which can
be divided into our desired n categories. In the GGAN model,
the encoder E learns to generate a new latent space u(z)
from any known distribution p(z) and categorical distribution
Cat(c, k = n), where Ce can classify u(z) into n categories.

The second task is to force the Generator G to generate
different categories of data samples from different latent
space categories. We utilise the classifier Cx to guide the
Generator G to generate accurate samples for different latent
space categories. Note that we only have a small percentage
of labelled samples from the training data, which is not
enough to successfully train the Classifier Cx. To address this
problem, we use these generated samples and the labelled
samples from different categories to train the Classifier Cx.
In the beginning, G produces incorrect samples, as Cx learns
to classify only some samples correctly based on the used
labelled samples. Then, Cx forces the Generator G to generate
those samples correctly. Gradually, the Generator G learns
to generate new samples with new characteristics, matching
some characteristics from those correct categories. These news
samples with correct categories improve the learning of Cx,
which recursively improves G.

When our Generator G can successfully map n categories of
latent samples ze 2 u(z) to the n categories of data samples,
the latent space becomes a useful representation of the data
distribution. We then connect a Feature Extractor network F ,
which learns to map real data samples to the latent space u(z).
The output of the feature extractor then essentially becomes
our “learnt representation.”



Fig. 1: The architecture of the proposed GGAN model. The model consists of the Encoder E, Generator G, Feature Extractor
F , two Classifiers Ce and Cx, three Discriminators D1, D2, and Df Networks. Here, z is the random sample from a continuous
distribution, c is the random sample from a categorical distribution, x̂ is the generated sample, x is the sample from real train
data distribution, xl is the labelled sample from the real train data distribution. Different colour of the arrow shows the direction
from the input to output. For the Discriminator D1, D2, and Df , the red colour indicates the real samples, where the green
colour indicates fake/generated samples.

B. Detailed Architecture of the GGAN

1) Encoder and Classifier (Ce): The Encoder, E, learns
to map any sample z and c to ze 2 u(z), where u(z) is
any continuous distribution generated by E, z 2 p(z), and
c 2 Cat(c, k = n) ; pz is a random continuous distribution,
e. g., a continuous uniform distribution and Cat(c, k = n) is a
random categorical distribution with n number of categories.

When E learns to map z and c to ze, it can easily ignore the
categorical distribution. To address this problem, we introduce
a classifier network Ce, which takes ze as input and outputs the
predicted class ĉe, where the true label is the given categorical
sample c. By using the network Ce, we force E to maximise
the mutual information between c and ze. Therefore, E learns
to create a sample space u(z), which can be classified into n
categories by the network Ce.

2) Generator: Like any other GAN framework, we have
a Generator G, which learns to map ze into sample x̂ 2

PG, where PG is the generated sample distribution. One of
the major goals of G is to generate PG so that it matches
the true data distribution Pdata. Another goal of G is to
maximise the mutual information between x̂ and the given
random condition c (random categorical sample) ensuring that
there are categorical variations in the generated samples. This
formulation ensures that G generates x̂ according to the input
condition c.

3) First (D1) and Second (D2) Discriminators : The Dis-
criminator plays primary roles in the GGAN model. Like all
GAN models, it forces the Generator to generate samples
from the training distribution. In the GGAN model, we have
two sample Discriminator D1 and D2. The Discriminator D1

has two parts: a feature extraction part D, and the real/fake
sample identification part D

0
. From D, we obtain the features

dx̂, dx, and dxl for x̂, x and xl, sampling from the data
distribution respectively, where a real data sample is x 2



Pdata and a labelled data sample xl 2 Pldata ; Pldata is the
labelled data distribution. Here, Pldata can be the subset of
the Pdata or any other data distribution. For a real sample x
and a fake sample x̂, we obtain the output d

0

x and d
0

x̂ from
D

0
respectively. In our D1 Network, D optimises the feature

learning for both the classification and the discrimination tasks,
making the optimisation task considerably more complex. So,
D1 cannot focus only on discrimination. Therefore, we have
added another Discriminator D2 to focus solely on the sample
discrimination task.

4) Feature Extractor, Classifier (Cx), and Third Discrim-
inator (Df ): The feature extractor network F learns the
representation fx̂ , fx, and fxl for x̂, x, and xl, respectively.
To map x̂, x and xl to the feature space, we need a network
similar to D. So, rather than introducing another network, we
use D to get a lower dimensional representation (dx̂, dx and
dxl ) of the samples. Then, F is trained to map dx̂, dx and dxl

to the latent space u(z). As we do not use another network
similar to D, it reduces the computation as well as it helps F
from overfitting as the extracted representation/features from
D is constantly changing during the task of discriminating real
training samples and generated/fake samples.

To ensure that F can generate fx from the known distribu-
tion u(z), we have another discriminator Df following the im-
plementation from the “Bidirectional Generative Adversarial
Networks” framework [61]. For any GAN based architecture,
the generated samples are considered as fake samples and the
training samples as real samples. Similarly, as ze is a sample
from u(z) and x̂ is a generated sample from ze, Df learns this
(ze, x̂) pair as a real sample. We want F to map real sample
x to fx according to the relationship presents between ze and
x̂. Therefore, the (fx, x) pair is considered as fake sample for
the discriminator Df .

The second Classifier Cx learns to classify labelled data as
well, as it learns to classify the generated sample x̂ according
to a given categorical, conditional class sample c. For the
classification of x̂ and xl, we feed the features generated from
F to Cx.

C. Losses

1) Encoder, Classifier (Ce), and Generator loss: For the
Encoder E and the Classifier Ce, the classification loss is
ECloss. We have ze = E(z, c), where z is sampled from
p(z) and c is sampled from Cat(c, k = n). Therefore,

ECloss = �
X

c log(Ce(ze)). (1)

For the Generator G, we have two generation losses coming
from the discriminators D1 and D2. Our GGAN model is
inspired by the BigGAN architecture [4], which uses hinge
loss. We therefore use the hinge loss for both of our Generator
and Discriminator. We have x̂ = G(ze) and dx̂ = D(x̂).
Therefore,

Gloss1 = �D
0
(dx̂), (2)

Gloss2 = �D2(x̂). (3)

The Generator G has another loss for the classification of
the samples. We have fx̂ = F (dx̂), so the Classification Loss,
GCloss for G is,

GCloss = �
X

c log(Cx(fx̂)). (4)

a) Mode Divergence Loss: Similar to other GAN archi-
tectures, GGAN faces the challenge of mode collapse [62],
where the Generator only produces samples from fewer modes
(variational factor) of the data distribution. Moreover, the
latent input variable has a minor impact on the generated
samples from the Generator. To address mode collapse, we
design a loss named “Mode Divergence Loss”, MGloss, which
is inspired by the study of Mao et al. [62]. Our, Mode Di-
vergence Loss forces the Generator to generate samples from
different modes by penalising the Generator for generating
similar samples. For calculating this loss, we take two random
inputs z1, z2 sampled from p(z), and the same conditional
code c sampled from Cat(c, k = n). For z1, z2, we get x̂1 =
G(E(z1, c)) and x̂2 = G(E(z2, c)), respectively. We also take
two random samples x1 and x2 from the real data distribution
pdata, where x1 6= x2. We calculate the loss based on the
feature extracted from D. Let dx1 = D(x1), dx2 = D(x2),
dx̂1 = D(x̂1), dx̂2 = D(x̂2), and ↵ has a small value such as
0.0001. So we get,

MGloss = max{1, X
(|dx1 � dx2|)/(

X
(|dx̂1 � dx̂2|) + ↵)}.

(5)
Here, dx1, dx2, dx̂1 and dx̂2 are the extracted features from

the D network. To identify the real and fake samples, D
0

is
trained on the representation from the D network. Therefore,
D has to learn the key attributes of the data distribution. Now,
|dx1 � dx2| calculates the differences between the attributes/
characteristics of the real samples in the representation space.
Similarly, |dx̂1�dx̂2| calculates the difference for the generated
samples. Therefore,

P
(|dx1 � dx2|)/(P (|dx̂1 � dx̂2|) calculates

the ratio between the difference of the attributes for real
and generated samples. The target of the Generator G is to
minimise this ratio, which implies that G needs to maximise
the term |dx̂1 � dx̂2| as it does not have any control over
|dx1�dx2|. Now, to maximise |dx̂1�dx̂2|, G has to create two
samples (x̂1, x̂2) with different attributes for different samples
(z1, z2) from the p(z) distribution. Since the Encoder E is also
trained to minimise the MGloss loss, it is also forced to create
two different samples ze1, ze2 for two different samples z1 and
z2. Otherwise, G can not generate two different samples from
ze1, ze2 where ze1 = ze2.
Hence, we have a combined loss, ECGloss for E, C, and G.
We average the Gloss1, Gloss2, and MGloss as all of these
are losses for the generation of the sample. The E, C, and G
networks are updated to minimise the loss ECGloss.

ECGloss = ↵((Gloss1 +Gloss2 +MGloss)/3)

+�(ECloss) + �(GCloss).
(6)

Here, ↵, � and � are the regularising hyperparameters.
2) Feature Extractor and Classifier (Cx) loss: We have

the feature generation loss, FGloss, coming from the third



Discriminator Df , enforcing F to create features like ze from
real data.

FGloss = �Df (fx, dx), (7)

where, dx̂ = D(x̂) and x is a sample from the real data
distribution Pdata.

We have two classification losses for Cx, one for the labelled
sample, Clloss, and another one for the generated sample,
Cgloss. The label of the real sample is y. Now, we have
fxl = F (dxl), where xl is sampled from the labelled data
distribution and fx̂ = F (dx̂). Therefore,

Clloss = �
X

y log(Cx(fxl)), (8)

Cgloss = �
X

c log(Cx(fx̂)). (9)

Likewise, the total loss for F and Cx is FCloss, which is the
sum of the above losses:

FCloss = Clloss + Cgloss + FGloss. (10)

We update the F and Cx network to minimise the FCloss.
3) Discriminators loss: The D

0
part of D1, and D2 are two

discriminators for identifying the real/fake samples generated
from the generator. D1 also has a part D, which is responsible
for generating features for the F and Cx networks. It is also
optimised to reduce the classification loss, Clloss, of the real
labelled samples. Finally, the Discriminator Df identifies the
real or fake feature sample pairs from F . The discriminator
losses D1loss, D2loss, and Dfloss for D1, D2, and Df ,
respectively, are given by,

D1loss = �min(0,�1 +D
0
(D(x)))

�min(0,�1�D
0
(D(x̂)))� Clloss,

(11)

D2loss = �min(0,�1 +D2(x))

�min(0,�1�D2(x̂)),
(12)

Dfloss = �min(0,�1�Df (fx, dx))

�min(0,�1 +Df (ze, dx̂))),
(13)

where, x is a sample from the real data distribution Pdata.
Here, the discriminators’ weights are updated to maximise
these losses. The algorithm to train the whole model is given
in Algorithm 1.

We present the architectural difference between GGAN and
other related models in Table I. The GGAN model can be
considered as an extension of the InfoGAN model [63]. We
have added an extra Discriminator for latent space, a Classifier
for latent space, and a Feature extractor for the real sample.
These networks are added to facilitate the accurate conditional
sample generation and guided representation learning using
fewer labelled data. Comparison of the primary tasks of
GGAN with other models are summarised in Table II.

IV. DATA AND IMPLEMENTATION DETAILS

A. Datasets

We have validated GGAN based on two different scenarios:
Speech audio and non-speech music audio tasks. For the

Algorithm 1 Minibatch stochastic gradient descent training of the
proposed GGAN. The hyperparameter k represents the number of
times the discriminators are updated in one iteration. We use k = 2,
which helped to converge faster.

1: for number of training iterations do
2: for k steps do
3: Sample minibatch of m, noise samples

{z(1), . . . , z(2m)} from pz , conditions {c(1), . . . , c(m)}
from Cat(c), data points {x(1), . . . ,x(2m)} from pdata
and labelled data points {xl(1), . . . ,xl(m)} from Pldata.

4: Update the parts D,D
0

of discriminator D1 by as-
cending its stochastic gradient:

r✓d,✓d0
1

m

mX

i=1

h
D1loss

(i)
i
.

5: Update the discriminator D2 by ascending its
stochastic gradient:

r✓d2

1

m

mX

i=1

h
D2loss

(i)
i
.

6: Update the discriminator Df by ascending its
stochastic gradient:

r✓df

1

m

mX

i=1

h
Dfloss

(i)
i
.

7: end for
8: Repeat step [3].
9: Update the Generator G, Encoder E, and Classifier Ce

by descending its stochastic gradient:

r✓g,✓e,✓ce

1

m

mX

i=1

h
ECGloss

(i)
i
.

10: Repeat step [3].
11: Update the Feature Extractor F and Classifier Cx by

descending its stochastic gradient:

r✓f ,✓cx

1

m

mX

i=1

h
FCloss

(i)
i
.

12: end for

speech audio dataset, we use the S09 [64] corpus and the
Librispeech dataset [65]. For the non-speech music audio
dataset, we use the popular Nsynth dataset [66].

In the S09 dataset, digits from zero to nine are uttered by
2618 speakers [64]. This dataset is noisy and includes 23 000
samples, where many of these samples are poorly labelled.
Labels for the speakers and gender are not available in the
S09 corpus. LibriSpeech is a corpus of approximately 1000
hours of 16 kHz read English speech. In the dataset, there are
1166 speakers, where 564 are female, and 602 are male [65].

The Nsynth dataset consists of 305 979 musical notes with
four seconds duration from ten different instruments including
acoustic, electronic, and synthetic ones [66]. For our exper-
iment, we use three acoustic sources: Guitar, Strings, and



TABLE I: Difference between the constituent networks of the GGAN model and the other related models from the literature.

Model Sample
Generator

Discriminator
(Data Sample)

Discriminator
(Latent Sample) Feature Extractor Classifier

(Data Sample)
Classifier

(Latent Sample)
Supervised GAN [1] Y Y N N N N
Unsupervised GAN [1] Y Y N N N N
InfoGAN [63] Y Y N N Y N
TiFGAN [10] Y Y N N N N
BiGAN [61] Y Y N Y N N
GGAN Y Y Y Y Y Y

TABLE II: Comparison between the primary tasks of the GGAN model and the other models from the literature.

Tasks Supervised GAN Unsupervised GAN InfoGAN
TiFGAN/
SpecGAN/
WaveGAN

BiGAN GGAN

Conditional Sample Generation Y N Y Y N Y
Latent Space Generation N N N N N Y
Requires Labelled Data Y N N Y/N N Y
Guided Representation Learning N N N N N Y
Generalised Representation Learning N N N N Y N

Mallet from the Nsynth dataset.

B. Measurement Metrics
To evaluate the generation results, we use the Inception

Score (IS) [67], the Fréchet Inception Distance (FID) [68],
[69], Classification Accuracy [70] and Mean Opinion Score
(MOS) [71].

1) Inception Score (IS): The IS score measures the quality
of the generated samples as well as the diversity in the
generated sample distribution. A pretrained Inception Network
V3 [72] is used to get the labels for the generated samples.
The conditional label distribution p(y|x̂) is derived from the
inception network, where x̂ is the generated sample. We want
the entropy to be low, which indicates a good quality of
the sample. It is also expected that the samples are diverse,
so the marginal label distribution

R
p(y|x̂)dz should have a

high entropy. Combining these two requirements, the KL-
divergence between the conditional label distribution and
the marginal label distribution is computed as the IS score:
exp(Ex̂KL(p(y|x̂)||p(y))). A ‘higher’ IS score indicates that
the generated samples have good quality.

2) Fréchet Inception Distance (FID): The IS score is com-
puted solely on the generated samples. The Fréchet Inception
Distance (FID) improves the IS score by comparing the
statistics of generated samples to real data samples. First, the
features are extracted for both real and generated samples
from the intermediate layer of the inception network. Then,
the mean µr, µg and covariance ⌃r, ⌃g for real and gener-
ated samples are calculated respectively from those features.
Finally, the Fréchet Distance [73] between two multivariate
Gaussian distributions (given by the µr, µg and ⌃r, ⌃g) is
calculated using: ||µr � µg||2 + Tr(⌃r + ⌃g � 2(⌃r⌃g)1/2).
A ‘lower’ FID score indicates a good quality of the generated
samples.

Note that the Inception V3 model is trained on the Im-
ageNet dataset [74], which is completely different from
audio spectrograms. Therefore, it will not be able to classify
spectrograms into any meaningful categories, resulting in poor

performance on the calculation of the IS and FID scores for
our datasets. In the “Adversarial Audio Synthesis” [8] paper
proposed by Donahue et al., instead of using the pretrained
Inception V3 network to calculate the IS and FID scores, the
authors trained a classifier network on the S09 spoken digit
dataset and obtain good performance. We, therefore, use their
pretrained model to calculate both the IS and FID scores for
our generated samples. For the Nsynth dataset, there is no
pre-trained classifier available. Therefore, we train a simple
Convolutional Neural Network (CNN) on the training dataset.

3) Classification Accuracy: To evaluate the accuracy of the
conditional sample generation, we use the approach similar to
the study of Shmelkov et al. [70]. We train two CNN networks;
the first one is trained with all the labelled training data, and
the second one is trained with the generated samples from
the GGAN model for different random conditions/categories.
For training the second CNN network, the random condi-
tions/categories are used as true labels. Now, the classification
accuracy is calculated based on the test dataset for both of
the CNN models. The classification accuracy of the second
classifier is compared with the first classifier. Here, the second
CNN model will perform better when the GGAN model can
generate correct and diverse samples according to the given
conditions/categories. This classification accuracy metric can
evaluate both conditional sample generation as well as the
sample diversity.

4) Mean Opinion Score (MOS): For subjective evaluation,
we had 20 student volunteers (10 Males and 10 Females). The
students were in their undergraduate studies and their medium
of study was English. For the S09 and Nsynth datasets, we
collected ten real and ten generated samples for each model.
The students marked the audio samples in the range from 1
to 5 presented in Table III. Then, the scores were averaged
for each of the datasets. We informed the students that some
recordings are real, and others are generated using a computer
program. Finally, for different models, we averaged the scores
for each of the datasets. This average value is called as Mean
Opinion Score (MOS) [71].



TABLE III: Meaning of the different scales in the Mean
Opinion Score.

Rating Quality Distortion
5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying and objectionable

C. Data Preprocessing

We conduct experiments based on one-second audio seg-
ments with a sampling rate of 16 kHz. For the Nsynth dataset,
we take the first one second from any audio clip. After
investigating the Nsynth sample, we found out that the first
second of the audio represents most of the sound from any
instrument. For the Librispeech dataset, a one-second audio
segment is sampled randomly from any audio clip. We convert
the audio data to log-magnitude spectrograms with the short-
time Fourier Transform. The generated log-magnitude spectro-
grams are converted to audio through the PGHI algorithm [29].
We followed the exact method from TifGAN [10] to calculate
the log-magnitude spectrograms. We calculate the short-time
Fourier Transform with overlapping Hamming window of size
512 ms, and a hopping length of 128 ms, which gives us a
spectrogram of size 256 ⇥ 128 (matrix). The spectrogram
is standardised with the equation X�µ

� , where X is the
spectrogram, µ is the mean of the spectrogram, and � is the
standard deviation of the spectrogram. We limit the dynamic
range of the log-spectrogram by clipping the values at �r.
For the S09 and Librispeech datasets, we found 10 as a
suitable value of r, and for the Nsynth dataset, we found 15
as suitable value. After the clipping, the values of the spec-
trograms are normalised between 1 and �1. This spectrogram
representation of audio is used to train the Discriminators, the
Feature Extractor, and the Classifier. The Generator generates
the spectrogram with the values between 1 and �1. Then, the
above steps are reversed before applying the PGHI algorithm.

V. EXPERIMENTAL SETUP, RESULTS, AND DISCUSSION

For our Generator and Discriminator network, we use the
BigGAN [4] architecture for its unprecedented success. We
maintain the same parameters as BigGAN, except we only
change the input size of the Discriminator and output size
of the Generator to accommodate the 128 ⇥ 256 size log-
magnitude spectrogram. During the training of GGAN, we
keep the learning rate of the generator and Discriminator
equal. The architecture details are given in the supplementary
document.

A. Impact of Labelled Data on Conditional Audio Generation

1) Setup: The conditional sample generation quality of the
GGAN model for different percentage of labelled data (1% -
5%, 50%, 75%, 100%) as guidance is measured with the IS
and FID score. The IS and FID scores are calculated based
on 50 000 generated samples from the GGAN model [67]. To

TABLE IV: Comparison between the performance of the
GGAN model and the other models on the S09 dataset, in
terms of the quality of the generated samples, measured with
IS and FID score.

Model Name IS Score FID Score
Real (Train Data) [8] 9.18 ± 0.04 -
Real (Test Data) [8] 8.01 ± 0.24 -
TiFGAN [10] 5.97 26.7
WaveGAN [8] 4.67 ± 0.01 -
SpecGAN [8] 6.03 ± 0.04 -
Supervised BigGAN 7.33 ± 0.01 24.40 ± 0.50
Unsupervised BigGAN 6.17 ± 0.2 24.72 ± 0.05
GGAN 7.24 ± 0.05 25.75 ± 0.10

TABLE V: Comparison between the performance of the
GGAN model and the other models on the Nsynth dataset,
in terms of the quality of the generated samples, measured
with IS and FID score.

Model Name IS Score FID Score
Real (Train Data) 2.83 ± 0.02 -
Real (Test Data) 2.81 ± 0.12 -
Supervised BigGAN 2.64 ± 0.08 148.30 ± 0.23
Unsupervised BigGAN 2.21 ± 0.11 172.01 ± 0.15
GGAN 2.52 ± 0.06 149.23 ± 0.09

calculate the IS and FID scores, we first convert the generated
log-magnitude spectrograms of the models to audio using the
PGHI algorithm. We then convert the audio to spectrogram to
pass through the pretrained classifier to calculate the IS and
FID scores, as the input spectrogram format for the pretrained
model is different. We follow this process for both the S09
and the Nsynth dataset.

For a given percentage of data, we train the GGAN model
three times. Each training takes approximately 36 000 iter-
ations with mixed-precision [75] for a batch size of 128.
For training, we randomly sample the datasets, and repeat
training only for three times. A single training run time on
two Nvidia p100 GPUs is approximately 19 hours, making
the total training time approximately 17 ⇥ 3 ⇥ 8 (1-5%, 50%,
75%, 100% data) ⇥ 2 (two datasets) = 816 hours or 34 days.

2) Results and Discussions: Fig. 2 shows the impact of the
percentage of labelled training data used as guidance and the
IS and FID score of the GGAN model. For both datasets, we
notice that the performance of the GGAN model improves
along with the increase of the percentage of the data. We also
note that with 5% of labelled data as guidance, GGAN can
achieve IS and FID scores close to the score we achieved
with 100% labelled data. Therefore, we compare the score of
GGAN achieved with 5% of the labelled data with the results
from other models.

B. Conditional Audio Generation Based on Guidance from the
Same Dataset

1) Setup: In this section, we evaluate the quality of the
generated samples with the FID, IS, Classification Accuracy,



(a) (b)

(c) (d)

Fig. 2: The figure shows the relationship between the scores (IS and FID) and the percentage of data used as guidance for
training GGAN model. Here, Left columns (a, c) show the comparison for the S09 dataset, and the right columns (b, d) show
the comparison for the Nsynth dataset.

Fig. 3: This figure shows the generated samples from the GGAN and the real samples for both the S09 and the Nsynth dataset.
Here, the left part shows the samples for the S09 dataset (ten digits categories), and the right part shows the samples for
Nsynth dataset (three categories). The first row exhibits the real samples, and the second row exhibits the generated sample
from GGAN.

and MOS Score. Moreover, Classification Accuracy and a
manual hearing test of the authors are used to evaluate the
correctness of the conditional audio generation according to
the given guidance from 5% labelled samples from the same
dataset. For different categories, we generate audio samples

and check manually to verify the quality of the conditional
generation. For large-scale validation, we use classification
accuracy from the CNN models trained on the generated audio
samples.

We train the Supervised BigGAN, and an Unsupervised



TABLE VI: Comparison between the performance of the
GGAN model and the other models on both the S09 and the
Nsynth dataset, in terms of MOS score with 95% confidence
interval.

Model Name MOS (S09) MOS (Nsynth)
Real Data 4.1 ± 0.26 4.6 ± 0.24
Supervised BigGAN 3.4 ± 0.47 4.1 ± 0.30
GGAN 3.2 ± 0.33 3.9 ± 0.38
Unsupervised BigGAN 2.9 ± 0.50 3.5 ± 0.42
TiFGAN 2.7 ± 0.51 -
WaveGAN 1.3 ± 0.20 -
SpecGAN 1.1 ± 0.14 -

BigGAN [4] model from scratch for both of the datasets for
comparison. Moreover, we compare our GGAN model with
other existing models from the literature.

2) Results and Discussions: Test for the Quality of the Gen-
erated Samples: For the S09 dataset, using an unsupervised
BigGAN model, we achieve an IS score of 6.17 ± 0.2, and
an FID score of 24.72 ± 0.05, whereas we receive an IS
score of 7.3 ± 0.01, and FID score of 24.40 ± 0.5 for the
supervised BigGAN. For our GGAN model, with 5% labelled
data as guidance, we achieve an IS score of 7.24 ± 0.05,
and an FID score of 25.75 ± 0.1 for the generated samples,
which is very close to the performance of the fully supervised
BigGAN model and considerably better than unsupervised
BigGAN model in terms of the IS score. For the FID score, the
performance of the GGAN seems similar to the Unsupervised
BigGAN. Comparison of the IS score and FID scores between
different models are shown in the Table IV. We observe that
the performance of the proposed GGAN is better than that
of other models reported in Table IV. We also note similar
performance for the Nsynth dataset in Table V. Note that the
Nsynth dataset is being relatively new — many studies have
not used it. Hence, we compare the performance of GGAN
only with Supervised and Unsupervised BigGAN.

We present the comparison of the MOS score between
different models in Table VI. We observe that the GGAN
model outperforms the Unsupervised BigGAN and achieves
a score close to the score given by the Supervised BigGAN.

The spectrogram of the generated samples from the S09
and Nsynth dataset are reported in Fig. 3. We observe some
similarities between the generated samples and the real sam-
ples in the spectrogram space. As there is no one-to-one
mapping relationship between the generated and real samples,
the visual observation of the spectrogram cannot verify the
quality of the spectrogram. Therefore, we have conducted
further evaluations.

3) Results and Discussions: Manual Hearing Test: We
manually checked the generated audios for different cate-
gories/condition. After reviewing 50 samples from each cat-
egory, we note that the GGAN model can generate audio
samples almost correctly for different categories for both the
Nsynth and the S09 datasets. For the S09 dataset, we check the
zero to nine categories and for the Nsynth dataset, we check
three categories: Guitar, Strings, and Mallet.

TABLE VII: The comparison between different CNN classi-
fiers based on the test data classification accuracy from the
S09 dataset. The CNN models are trained with the generated
samples from different models.

Sample for Training
Test
Accuracy
(in %)

Train Data 95.52 ± 0.50
Supervised BigGAN 86.58 ± 0.56
GGAN 86.72 ± 0.47
Supervised BigGAN + Train Data 96.21 ± 1.34
GGAN + Train Data 96.36 ± 1.07

TABLE VIII: The comparison between different CNN clas-
sifiers based on the test data classification accuracy from
the Nsynth dataset. The CNN models are trained with the
generated samples from different models.

Sample for Training
Test
Accuracy
(in %)

Train Data 92.01 ± 0.94
Supervised BigGAN 83.50 ± 0.62
GGAN 81.40 ± 0.48
Supervised BigGAN + Train Data 93.91 ± 0.37
GGAN + Train Data 93.82 ± 0.24

4) Results and Discussions: CNN Based Classification Ac-
curacy: For the S09 dataset, the classification accuracy for the
CNN model is 95.52% ± 0.50 when it is trained on the whole
training dataset. We receive an accuracy of 86.72% ± 0.47
for the CNN model trained on the generated samples from the
GGAN model (with 5% labelled data). Table VII shows the
comparison with other models.

The GGAN generated samples belong to the training data
distribution, and are not exactly the same as the available
training data. Therefore, we can use these generated samples
to augment the training dataset. To test the feasibility of data
augmentation using the generated samples from GGAN, we
mix together the train data and the generated data from GGAN
and train another simple CNN model. The accuracy of the
CNN model increases from 95.52% ± 0.50 to 96.36% ± 1.07.
Therefore, the generated samples from the GGAN model can
be useful at augmenting a dataset. We observe similar results
for the Nsynth dataset (Table VIII). These results show that
our GGAN model achieves superior performance in terms of
generating correct samples for different categories.

C. Conditional Audio Generation Based on Guidance from
Different Dataset

1) Setup: We also test the possibility of using the GGAN
model to generate based on a given condition, where the guid-
ance categories/condition comes from a non-related dataset.
We use the whole S09 training data as the unlabelled dataset
and the Librispeech as the labelled dataset for guidance on
the gender categories. Note that gender information is not



TABLE IX: Comparison between the performance of the
GGAN model (trained with gender guidance) and the other
models on the S09 dataset. The quality of the generated
samples based on the gender attributes of the speaker is
measured with the IS and the FID score.

Model Name IS Score FID Score
Train Data 1.92 ± 0.04 -
Test Data 1.91 ± 0.05 -
Unsupervised BigGAN 1.13 ± 0.89 56.01 ± 0.85
Supervised BigGAN 1.48 ± 0.56 35.22 ± 0.50
GGAN (Digit Guided) 1.58 ± 0.05 37.75 ± 0.10
GGAN (Gender Guided) 1.73 ± 0.08 23.72 ± 0.04

available for the S09 dataset. We take 10 male and 10
female speakers from the Librispeech dataset with labels.
Our expected output from the GGAN is to produce the male
and female spoken digits based on the guidance from the
Librispeech dataset.

The pretrained network used before to calculate the IS and
FID scores is no longer effective, as it was trained on the digit
classification task. So, we train another simple CNN model for
the gender classification task as we want to evaluate gender-
based generation. This pretrained model is used for calculating
IS and FID scores. To achieve this goal, we randomly select
15 male and 15 female speakers from the Librispeech dataset.
We use ten males and ten females to train the CNN model
and the others for testing. We achieve an accuracy of 98.3 ±
0.50. This pretrained model can be used for calculating the
IS and FID scores for different models to evaluate the sample
generation quality for gender attributes.

2) Results and Discussions: After evaluating the generated
samples of GGAN, we successfully generate samples of the 0-
9 digits for male and female speakers. We achieve an IS score
of 1.73± 0.08, and an FID score of 23.72± 0.04. From Table
IX, we observe that GGAN performs well when it was guided
with gender categories. These results prove that guidance from
another dataset is effective for the GGAN model.

D. Guided Representation Learning
1) Setup: For representation learning, we compare the

GGAN model with unsupervised the BigGAN and a super-
vised Convolutional Neural Network (CNN). Our primary goal
is to learn representation from the unlabelled S09 training
dataset so that we can get better classification result on the
S09 test dataset. For any unsupervised GAN model, the latent
space captures the representation of the training dataset. To
map the real data samples to that latent space, we follow the
strategy from the BiGAN study [61].

After training the unsupervised BigGAN, we train a feature
extraction network to reverse map the sample to a latent
distribution to get the representation for real samples. Then,
we train a simple classifier at the top of the feature extraction
network with different percentage of the randomly sampled
labelled dataset (1% to 5%, 50%, 75%, 100%) from the
training dataset and evaluate on the test dataset. The sampling
of the training dataset is repeated three times, and the results

TABLE X: Relationship between the percentage of the data
used as the guidance during the training and the S09 test
dataset classification accuracy of the GGAN model.

Training
Data Size
(Percentage)

CNN
Network BiGAN GGAN

1 82.21 ± 1.20 73.01 ± 1.02 84.21 ± 2.24
2 83.04 ± 0.34 75.56 ± 0.41 85.39 ± 1.24
3 83.78 ± 0.23 78.33 ± 0.07 88.25 ± 0.10
4 84.11 ± 0.34 80.03 ± 0.01 91.02 ± 0.50
5 84.50 ± 1.02 80.84 ± 1.72 92.00 ± 0.87
50 89.50 ± 0.68 83.25 ± 2.10 94.78 ± 0.32
75 93.50 ± 0.45 85.14 ± 0.94 95.03 ± 0.11
100 95.52 ± 0.50 86.77 ± 2.61 96.51 ± 0.07

TABLE XI: Relationship between the percentage of the data
used as the guidance during the training and the Nsynth test
dataset classification accuracy of the GGAN model.

Training
Data Size
(Percentage)

CNN
Network BiGAN GGAN

1 85.76 ± 1.10 82.21 ± 0.84 88.52 ± 0.32
2 89.79 ± 0.51 86.65 ± 0.57 91.69 ± 0.24
3 89.83 ± 0.49 87.21 ± 0.46 91.95 ± 0.20
4 90.52 ± 0.25 87.59 ± 0.41 92.16 ± 0.19
5 91.07 ± 0.31 87.95 ± 0.39 92.45 ± 0.14
50 91.31 ± 0.53 87.97 ± 0.31 92.61 ± 0.12
75 91.93 ± 0.78 88.03 ± 0.29 93.09 ± 0.11
100 92.01 ± 0.94 88.09 ± 0.24 93.56 ± 0.09

are averaged. We use the same percentage of labelled data (1%
to 5%,50%,75%, 100%) for the training of a CNN network and
use the same CNN architecture as of the feature extraction
network.

We take the pretrained D, F , and Cx networks from
the GGAN models, and pass the test dataset through
those pretrained networks to get the prediction for classes
Cx(F (D(xtest))). Then we compute the classification accu-
racy on the test dataset. The C network is built on top of
the F network. Therefore, if the F network of the GGAN
model cannot learn the representation according to the given
guidance, the C network will not perform better on the test
dataset.

To investigate the quality of the learnt latent/representation
space by the generator, we conduct a linear interpolation
between two random points in the latent space as in the
DCGAN work [11]. Furthermore, if the F network of the
GGAN model can learn a representation according to the
guidance, the guided categories should be easily separable in
the latent space. To investigate this scenario, we visualise the
learnt representation in the 2D plain. We take the represen-
tation/feature F (D(xtest)) of the test dataset passing through
the trained D and F networks. Then, the higher dimensional
features are visualised with the t-distributed stochastic neigh-
bour embedding (t-SNE) [76] visualisation technique.

2) Results and Discussions: Classification Accuracy: A
comparison on the test accuracy between the CNN, BiGAN,
and GGAN is shown in Table X and XI. For the S09, with 5%
labelled data, GGAN achieves an accuracy of 92.00± 0.87%,



which is close to the accuracy of the fully supervised CNN
model (95.52 ± 0.50%). For the Nsynth dataset, the GGAN
(92.45±0.14%) outperforms the fully supervised CNN model
(92.01± 0.94,%).

3) Results and Discussions: Linear Interpolation of the
Latent Space: After the linear interpolation in the S09 dataset,
we observe a smooth transition in the generated spectrogram
space and the audio after converting the spectrogram to
audio. Here, if the interpolation is conducted between the
same digits from different speakers, we notice the changes
in voice characteristics. Moreover, if we interpolate between
two different digits and different speakers, we notice changes
in the voice characteristics. In the middle point, it sounds like
mixed digits. The more we approach towards a digit in the
interpolation space, the more it sounds like that digit.

For the unsupervised BigGAN, during the linear interpola-
tion, we notice a smooth transition in the generated spectro-
gram space, but after converting them to the audio, we find
that the transition becomes non-smooth. As the Unsupervised
BigGAN is trained independent of any condition on the cate-
gorical distribution, it does not learn the relationship between
different audio data categories. In contrast, our GGAN model
can learn the categorical distribution of the dataset given
guidance from a fewer percentage of labelled data; it learns
the attributes related to categories in the latent space. This
results in a smooth transition in both the spectrogram and the
(temporal) audio space. For the Nsynth dataset, we observe
similar results.

In Fig. 4, we show the linear interpolation for both the
unsupervised BigGAN and the proposed GGAN. We avoid
the latent space interpolation for the supervised BigGAN. The
generator of the supervised BigGAN uses both conditions, c,
and the latent space, z, during the sample generation, G(z, c).
As the condition code is given during the training, it makes
the supervised BigGAN condition-independent, discouraging
the Generator from learning any conditional characteristics in
the latent space. It instead learns the common attributes in the
latent space. In our S09 dataset experiment, the supervised
BigGAN does not disentangle the digit categories (condition)
in the latent space. It learns the common characteristics like
gender, pitch, volume, noise, etc. in the latent space, and
generates different digits for the same latent space given
different conditions.

4) Results and Discussions: t-SNE visualisation: In Fig.
5, we observe that the features of the similar categories are
clustered together, and they are easily separable. This implies
that in the latent space, the GGAN disentangles the categories
successfully. We also observe similar behaviour for the Nsynth
dataset.

E. Impact of the Hyperparameter

In the GGAN model, the Encoder E, Classifier C, and Gen-
erator G are core networks, and the weights of these networks
are updated together based on equation 6. In this equation, we
have losses Gloss1, Gloss2, and MGloss responsible for sample
generation. To give equal importance to each of the losses, we
average these three losses (divided by three). We also have

TABLE XII: Ablation Study of the GGAN model. A score (IS,
FID, and Classification Accuracy) is calculated after removing
any component from the model keeping other components
unchanged.

Removed Parts IS FID Classification
Accuracy

None (Full Model) 7.24 25.75 92.00
E and Ce 6.36 41.89 76.25
F and Cx 5.98 34.50 -
D2 6.97 28.22 91.29
Df 7.27 24.57 87.16

ECloss and GCloss in the equation. ECloss ensures that the
latent space is divided according to the given category, and
GCloss makes sure that the samples are generated according
to the correct category.

We have three hyperparameters; ↵, �, and �. The hyper-
parameter ↵ is the weight for the overall Gloss1, Gloss2,
and MGloss losses in the context of the whole Equation 6.
Therefore, ↵ controls the generation quality of the GGAN
model. If we increase the value of ↵, the model will reduce
its focus on ECloss and GCloss and vice versa. Increasing
the value of � will increase the focus of GGAN on the latent
classification, and the purpose of the latent space for gener-
ating diverse samples will be lost. A higher � value forces
the latent space to converge into a single point for any given
condition. Lowering the � value will reduce the quality of
encoding categorical distribution in the learnt latent space from
the Encoder E. Finally, � is responsible for generating samples
according to the given category/condition. If the value of � is
increased, the Generator will focus on sample classification
rather than diversity. The model will, therefore, not be able to
produce diverse samples for each category. If the value of �
is reduced, then the Generator will not be forced to generate
samples according to the given categories. Considering these
scenarios, we want to give equal weights to ↵, �, and �, and
we use a value 1 for all of these three hyperparameters. This
essentially confirms that we provide equal weight to the losses,
while considering (Gloss1 + Gloss2 + MGloss)/3 as a single
loss.

VI. ABLATION STUDY

We conduct an ablation study to understand the significance
of the components of the GGAN model. The study is con-
ducted on the S09 dataset with 5% labelled data as guidance.
Table XII shows the IS score, FID score, and Classification
Accuracy after removing related components from the GGAN
model. After removing Df , we notice that the IS and FID
scores improve, but the classification accuracy decreases. Note
that, the third discriminator Df forces to reverse map the
generated sample to the latent space. Also note, the Feature
Extractor F is built on top of the Discriminator D1, which
focuses on both feature learning and discriminating real or
fake samples from the Generator. When Df is removed, D1

can only focus on the generated samples to discriminate, thus
improving the generation of the Generator. However, when
Df is removed, the Feature Extractor F cannot utilise the
learnt latent space from Encoder E and thus, the classification



Fig. 4: Generated spectrogram from the interpolation of the latent space from the male sound of digit 2 to the female sound
of digit 2 (left to right). The top row is the linear interpolation for the unsupervised BigGAN, and the bottom row represents
the linear interpolation for the proposed GGAN.

Fig. 5: t-SNE visualisation of the learnt representation of
the test data of the S09 dataset. Here, different colours of
points represent different digit categories. Representations of
the different digit categories are clustered together.

accuracy drops. Here, we use the extra discriminator D2 in our
model because D1 cannot focus only on discrimination only.
Without D2, the performance of our model drops significantly,
which is evident from table XII.

VII. CONCLUSION AND LESSON LEARNT

In this paper, we proposed the novel Guided Generative
Adversarial Neural network (GGAN), where we guide an
unsupervised GAN network with only 5% of the labelled data.
This method allows the network to learn specific class depen-
dent attributes while learning the representation of the dataset.
We showed that the GGAN can learn powerful representations
as well as generate good-quality samples given a small amount

of labelled data as guidance. As we guide the model during the
training process according to a post-task, the proposed GGAN
can be used to learn task-specific representations.

The key challenge we faced is related to the sample genera-
tion of the model. In particular, there was an issue of mode col-
lapse, which we could not sufficiently address implementing
different techniques in the literature [67]. However, inspired by
the Mode Seeking GAN [62], we modified the loss function
and created a unique feature loss, which immediately fixed
the mode collapse problem. The feature loss calculates the
ratio of the difference between the two real samples and two
generated samples. If the generator creates very similar or the
same samples, it gets penalised and tries to find more modes.
The Audio samples discussed in this paper can be found under
the GitHub link https://knhuq.github.io/GGAN.html.

We used one-second audio following the current literature
[10], [8]. One-second audio provides a good trade-off between
complexity and information contained. Less than one-second
audio might reduce the complexity but can cause information
sparsity, impacting the generation and representation per-
formance [77]. Usually, GAN-based frameworks show good
performance with low-resolution data [1], [4]. Therefore, our
GGAN model should work well for any audio dataset with
lower temporal resolution (less than one second). However,
it remains a challenge to make it useful for long audio with
higher complexity. Nevertheless, any long audio can be divided
into one-second audio and used with the GGAN model.

Our GGAN model is not likely to perform well at generating
continuous speech audio where it is not conditioned on the
speech-related features. To obtain good quality continuous
speech generation with GGAN, different techniques from the
recent literature can be used [14], [6], [78], [27], [28]. In the
future, one should aim to explore the impact of using other



high-performing GAN architectures such as progressive GAN
[2] or the StyleGAN [3] within GGAN framework replacing
the BigGAN architecture.
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