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Abstract

Australian and Queensland Government’'s Reef 205@ uality Improvement Plan has set targets
for improving the water quality entering the GrBatrier Reef lagoon. Given the large public
investment and the deficit of data linking on-fdemd management to changes in environmental
outcomes, there is a need for a robust and effiorathods of quantifying links between land
management and water quality. This paper explopagmatic approach to making this link using
available data. We demonstrate that a simple pdeais&tion process is suitable for estimating
hydrology and water quality across a wide rangamd uses and management practices in
agricultural landscapes. However, a manually calégt model may still require the analysis of
parameters to reduce error variances and evalonatrtainties. Confidence in estimating hydrology
and water quality in descending order is: runafisent, nitrogen, phosphorous, and pesticide

losses, reflecting the availability of data andeirént error propagation.
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1. Introduction

Sediment, nutrients, and pesticides in runoff flemgncultural landscape have impacts on the water
guality and ecological functions of receiving eoviments (Wooldridge 2009, De'ath and Fabricius,
2010). For example, deteriorating water qualityoaiged with agricultural enterprises (sediment,
nitrogen, phosphorus, and pesticides) poses artsiglo the Great Barrier Reef (GBR), one of
Australia’s iconic natural assets (Waterhouse.eR8ll7). Thus, Australian and Queensland
Governments Reef 2050 Water Quality Improvemem Btagram (The State of Queensland
Government, 2018) has set water quality targetthimGreat Barrier Reef lagoon. Over 2005-2015, a
significant public investment, i.e. $A 2 billionas been spent to improve water quality entering the
GBR lagoon (Commonwealth of Australia, 2015). I lh@en suggested that this investment requires
an increase in the order of four times over 2018520 reach water quality targets set out by the
Water Quality Improvement Plan (The State of QuiegrisGovernment, 2018). A substantial portion
of this investment is targeted at better manageweagricultural landscapes and, considering the
current “deficit of information publicly availablefinking and quantifying on-farm management to

water quality improvement is critical for on-goiagpport.

Hydrological and water quality experimental dataseross Australian agriculture are sparse and in
most cases incomplete, causing difficulties in mglan assessment of linkages between management
and water quality based on empirical evidence. phigity of data is related to the high cost and
necessary long term observations from field stutiessmple the variable nature of climates

(Freebairn and Wockner, 1986a). However, the datae@eded to provide multiple studies over a

wide range of climatic and environmental conditifmsthe delivery of credible results. Systematic
storage of such data, which is readily accessiblglso a major limitation for any model testinglan

application.

Objective management of water quality leaving faretpiires robust linkages between soil and crop
practices and hydrology, sediment, and agri-chdniaasport processes. Modelling hydrology and
water quality within agricultural systems can benptex and should consider the main interactions
while keeping model complexity at a minimum witheompromising the reliability of model
estimates. Ideally, a model's complexity shouldbianced by the level of data available describing
the system and our understanding of how the sysfmmates (Grayson and Bloschl, 2000). In
addition, a highly parametrised model is likelyetalude the use of less than complete datasets in i
development, testing, and application, potentiadakening the empirical basis for the model.
Currently, such models e.g. HowLeaky (Queenslande@onent, 2019) are being used for evaluation

of management scenarios to guide policy and desigrstment portfolios.



In order to improve the credibility of models tdissmte changes in water quality associated witld lan
management changes across diverse environmentifarmd policymakers, a process was needed to
maximise the use of available data, regardlessmipteteness. This required a methodology that
could accommodate datasets that ranged from de:tdélidy records and site descriptions to sparse
and incomplete data. A model with too many paramsatan be endemic and models with too many

degrees of freedom incur serious risks (Jakemah,&006).

In this paper, we explore the use of a simple agpgrdor manual model parametrisation and the
impact of the level of detail in system specifioaton the model's ability to represent a range of
paddock scale land use. The paper presents asdtpsigmatic approach using a wide range of data
quality and detail. We use a daily water balancdehto explore how the level of detail in system
specification impacts on the model's ability toresgent a range of paddock scale land use and
management impacts on hydrology and water quaditygudiverse datasets with variable quality and
detail. We also compare this pragmatic approaatguskpert judgement with an automatic parameter
optimisation technique (PEST, Doherty, 2015) teedatne whether this might reduce error and

uncertainty associated with input specifications.

2. Methods
2.1 HowlLeaky model

HowLeaky is a water balance and water quality modgenvironment built on the foundations of the
PERFECT model (Littleboy et al., 1992). PERFECT hasn strongly influenced by the CREAMS
(Knisel et al., 1980) and EPIC (Williams, 1983) ratsd HowLeaky is a one dimensional, daily time
step, water balance model with sub-models of thanhjcs for soil erosion, phosphorus and pesticide
to simulate the quality of water leaving agricudtiusystems at the paddock or field scale. The
modelling environment is used extensively by the€hsland Government to estimate hydrology and
water quality in the Great Barrier Reef catchmeutihe paddock scale (Carroll et al. 2012). It has
also been used by other government agencies asdltamts in Australia, e.g. in Victoria (Vigiak et
al., 2011).

HowLeaky can be configured to describe sequencd#fefent crops and fallow (between crop
phases) management practices for a wide rang®ppicrg systems. It is also used as the modelling
engine for SoilWaterApp, a successful decision supgystem used by grain growers across
Australia (Freebairn et al., 2018). Numerous pualions describe the development, validation and
application of HowLeaky, including: defining erosiproductivity relationships (Littleboy et al.,
1992b, 1996); evaluating the effects of croppingteys on runoff, recharge, erosion and yield (e.g.
Carroll et al., 1992, Abbs and Littleboy 1998); leraing surface management options (e.g. Cogle et

al., 1996); evaluating the effects of crop and yr&stotations on runoff, erosion and recharge
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(Lawrence and Littleboy, 1990; Thornton et al., 208ilburn et al., 2007; Robinson et al., 2010;
Melland et al.,2010); quantitative land evaluatfery. Thomas et al., 1995); assessing risk of soil
compaction (Littleboy et al., 1998); estimating thy@lrological effects of tree clearing (Williams et
al., 1997) and design of land-based effluent diabsgstems (Gardner et al., 1995).

HowLeaky uses 244 input variables that can be nudattipd to varying degreeshe Queensland

Government, 201%lso see www.howleaky.net, this will become www.lreaky.com). These include

12-40 values to describe soil water holding cagatio for evaporation, four for runoff; two for
sediment delivery; a set of curves to describe tatigm (green and dead cover and root depth); and
several tillage parameters (Littleboy et al. 1988)wLeaky includes submodels to simulate water
balance, crop growth, crop residue balance, sodlien, nitrate, and pesticidEhesesub-models are

briefly explained below.

2.1.1 Water balance sub-model

The water balance model used in HowLeaky has eddheen CREAMS (Knisel, 1980) which
predicts soil water balance, runoff, and deep dgernfrom a combination of rainfall and evaporation
data using the runoff model of Williams and La SE1@76) and the soil evaporation model of Ritchie
(1972). CREAMS was influential in the developmehP&RFECT (Littleboy et al., 1992) and later
HowLeaky (McClymont et al., 2016). The latter ustes Williams-Ritchie water balance model
(Williams and La Seur, 1976; Ritchie, 1972) whistaione-dimensional mechanistic model, with
parameterisation strongly based on a wide rangengirical studies (Littleboy et al., 1992;

www.howleaky.net). Surface runoff is estimated &sration of daily rainfall using the SCS runoff

curve number model (Williams and LaSeur, 1976),water deficit, surface residue and crop cover.
The model uses a “cascading bucket” structure winéiteation is partitioned into soil layers from

the surface, filling subsequent layers to totabgiy. Water flux between layers is limited by a
specified daily maximum drainage rate and draingblesity. Soil water can be removed from the
profile by transpiration, soil evaporation and devands movement from the lowest layer as deep
drainage. Transpiration is a function of potergighporation (a climate input), leaf area or peragat
green cover and soil moisture. Soil evaporationonga soil water from the upper two layers. The
sum of transpiration and soil evaporation (evapmparation) cannot exceed potential evaporation on

any day.

2.1.2 Soil erosion sub-model

In cropping systems, soil erosion removes soilieats and reduces a soil’s water-holding capacity
and therefore causes damage to the receiving emuént. Movement of sediment off-site carries
nutrients such as nitrogen and phosphorus, asasglesticides and solutes. Empirical models have

been widely used and are considered appropriate fode range of agricultural systems, including



analysis of the state of erosion from paddocksmadicting the changes in erosion due to changed
land use. HowLeaky calculates soil erosion basedadly runoff amount and a sediment
concentration-cover relationship (Freebairn and kidec, 1986a). The model predicts soil erosion by
accounting for changes in ground cover and ruthofh factors that can be controlled through
management. Modified Universal Soil Loss EquatiiSLE) (Wischmeier and Smith 1978) factors
for erodibility (K, metric units), slope-length faxc (LS), practice (P) and a delivery ratio arduded

in estimating soil erosion.

2.1.3 Phosphorus sub-model

Modelling soil phosphorus (P) losses at the paddeele as a source of pollution, and finding oggtion
for reducing P loss are key elements of water guaisessment. HowLeaky quantifies P exports
from the paddock in runoff and sediment. P in fionan be categorised as particulate, filterable an
dissolved. In agricultural systems with ample soWer, such as well grassed areas with minimal
grazing, exported P is usually dominated by soléb{8harpley et al., 1995, Sharpley, 2006), as high
soil cover conditions typically result in low sedint concentrations in runoff. The reverse is also
true; as the cover is reduced, sediment concemtrates, as does the contribution of particulaté P
losses can also be categorised based on readiviipavailability. Bioavailability of P in runofé

not simply defined as there are many biotic andrenmental factors that affect P availability and
uptake. HowLeaky estimates total P, dissolved Poémdvailable P (Queensland Government, 2019;
Robinson et al. 2009).

2.1.4 Nitrate sub-model

An estimation of the surplus nitrogen that leaxa@siing systems is required to manage nitrogen input
into the system. The nitrogen sub-model in HowL eigkstill under development and currently it can
only simulate the transport of nitrate as threeasstp transport processes from the system: dissolve
in the runoff, leaching in deep drainage, and fparting particulate nitrogen in runoff. There alsoa
multiple options for each method of transportingsdived nitrogen in runoff (and leaching and

particulate nitrogen in runoff) implemented in gwh-model (Queensland Government, 2019).

2.1.5 Pesticide/herbicide sub-model

The pesticide module (Shaw et al. 2011) in HowLeakgived from CREAMS/GLEAMS (Leonard
et al., 1987) with enhancements based on fieldrebBens in Australia (Silburn, 2003; Shaw et al.,
2011). Pesticides can be specified as appliedetpldnt canopy; crop residue; or the soil, with

subsequent “wash off” by rainfall to the soil belddegradation in each pool uses an exponential
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decay function dependent on temperature. Lossstigide in runoff is based on an empirical
relationship between pesticide concentration ihawi concentration in runoff (Silburn, 2003), vehil
the partitioning of each chemical into the wated aadiment phases is determined by a linear
isotherm. Application of chemicals below the soitface and losses due to leaching are not
considered.

2.2 Sites

A data collection summarising approximately 140exgjuality related studies across Australia
(http://howleaky.net/index.phpl/library) was aval@bs an empirical basis for this analysis. Fifteen
sites were used in this analysis, with 12 havirdinment data, seven with soil water data and four

with nutrient or pesticide data (Table 1, Fig $ome datasets only recorded average annual orlannua
values while other sites had time series of ddilgenvations for varying durations (3-35 years)sThi
collection of sites provided 46 observations of maanual runoff, based on 456 site-years of data

across a range of land uses, climate and soil types
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Fig 1. Location of fifteen sites used in this pafoetails are shown in Table 1).



Table 1. Summary of site conditions, data type spetial features of sites used in this analysisVEAPlant
available water capacity. L: slope length. Dataagtslable at www.howleaky.net (this will become
www.howleaky.com)

Annual Data in this paper used for
Site rainfall Soil Site descriptions/Dataset feature Data criod Location | Reference evaluation of
(mm) P
Contrasting
, Slope 6%, L=20 m, 12 bounded plots Cover, runoff, environments (sub-
Kairi Red Ferrosol . . . . S
. (20x5m): bare soil, peanuts, maize, anglsuspended sediment, 1998- Cogle etal| tropical); Diverse
Research 1230 |PAWC: 143 . . . Queensland . .
) pasture. Conventional & reduced tillage|/ total nitrogen and | 2001 2011 environments; Manual
Station mm L . ’ .
Semi-arid tropics total phosphorus calibration: runoff,
erosion, phosphorus.
Black Slope ~2%, L=130m. Nine contour bay Diverse environments;
Capella 535 Vertosol, catchments: Zero, reduced conventiongl Cover, runoff, 1984- Queensland Carroll et | Manual calibration:
P PAWC: 177 | tillage, wheat, sorghum, and sunflower | suspended sediment 1989 al. 1997 runoff, erosion.
mm Shallow soil, cropping
Cowie et al| Diverse environments;
Cover. runoff 2007, Manual calibration:
Brigalow Black Grey Slope 3%, L=100m, Four ~13 ha sus endéd sedi;nen [Thornton ei| runoff, erosion, DIN,
9 Vertosol, catchments: Brigalow scrub, buffel grasg P . ' 1965- al. 2007; Atrazine, 2,4,D.
Research 655 ) . - hosphoru, dissolved| Queensland
) PAWC: 138 | pasture, opportunity cropping, and legunie B current Thornton
Station : inorganic nitrogen,
mm pasture / three vegetation types . and
atrazine, 2,4-D
Elledge
2013
Contrasting
Rubyvale o | — environments (grazing
Keilambete 656 Red Sodosol SI;)F:i 4r.13a/:1’dLr;igirz’rnBStLillir;daTi(:)E?éa&?r?uh%ﬂgﬁ and total soil| 1994- Queensland Waters systems); Diverse
PAWC: 87 g . . 9 erosion 2000 2009 environments; Manual
study with extremes in management P
mm calibration: runoff,
erosion.
Brown Slope ~2%, L=100m, Four contour bay| Soil water. cover Soil details; Diverse
Wallumbillal 570 Vertosol, catchments (4-6 ha), Aggressive and runoff sus’ endea 1982- Queensland Freebairn | environments; Manual
PAWC: 188 | conservative tillage, wheat, pasture/tillage » SUSp 2000 et al. 2009 Vs Automated
sediment -
mm treatments and pasture calibration
Black Slope 6% L=60 m. Five contour bay Soil water, cover, Freebairn | Diverse environments;
Greenmount 793 Vertosol, catchments (~1.2ha): winter crop, burnt, runoff, soil 1976- Queensland and Manual calibration:
PAWC: 288 incorporated, mulch, no-till fallow, movement, suspend( 1990 Wockner runoff, erosion.
mm pastureftillage treatments and pasture sediment 1986a
Grey Slope ~5%, L = 35m. Five contour bay| Soil water, cover, Freebairn Vegetation
Greenwood| 657 Vertosol, catchments (~0.6ha): winter crop, burnt, runoff, soil 7 years Queensland and dynamic/semi-static.
PAWC: 243 |incorporated, mulch, I-till summer fallow/ |/movement, suspend| of data Wockner
mm Tillage treatments sediment. 1986a
ISlope 8%, L=30 m. Twelve bounded plo}s Contrasting
Black (3x3m), four treatments, 3 replicates: Soil water. cover and environments
Gatton Wheeled stubble mulch, Wheeled zero| e } Tullberg et| (Tillage/compaction);
Vertosol, . X runoff, detailed soil | 1995- S .
Research 732 ) tillage, Controlled traffic stubble muich, ) Queensland |al. 2001; Li| Diverse environments;
) PAWC: 195 , ) physical 1997 >
Station Controlled traffic, zero tillage / Controlled L etal. 2008| Applied for manual
mm ) . ] ) characterisation R
traffic (with and without compaction) and calibration: runoff.
tillage treatments
Slope 12%, L=10m, Bounded plots, pastmre,S . Silburn, Ve_getatlon &.SOII deta||;'
Sodosol, i oil water, cover, . Diverse environments;
. at three cover levels: bare, grazed, an 1993- 1994; .
Mt Mort. 768 PAWC: . runoff, suspended Queensland Applied for manual
excluded / Pasture study with extremes pf . 1999 Rattray et L
190mm - . ) sediment loss calibration: runoff,
management including bare soil al. 2006 }
erosion.
Goomboorig Fine sandy | Slope 5%, L=36m. Three treatments of| Ciesiolka . Diverse en_wror_]ments;
X X . et al. 1995;[Manual calibratior
n 1063 loam, pineapple management; bare soil, furroyv Soil water, runoff, | 1991- Queensland | Coughlan funoft, erosior
PAWC: 86 | mulching and conventional bare furrow { cover, sediment los§ 1995 and%ose ’
mm Horticulture (pineapples) on steep slopgs 1997
ISlope ~11%, L=100m, Paired paddock st Diverse environment:
Wagga Yellow catchments: Treated -good pasture Manual calibratior
Wagga 563 Sodosol, mana ement.contour rig in pfertilizer Runoff, suspended | 1952- | New South | Adamson unoff, erosior
Research PAWC: 280 | Manad » contour ripping, tert sediment 1973 | Wales 1974 :
) applied, Untreated -fixed heavy grazing, po
Station mm o h .
fertiliser two “paddock” scale catchment$
Holland et [Diverse environment:
Sodosol Slope <2%, L 100m, nine 0.2 ha plots (2Qm al. 2012; Manual calibratior
Mt Pollock 486 | PAWC: 169 x100m), three replicates, three treatmentsRunoff, sediment, | 2000- southern  |Wightman funoff, phosphorus
' Raisedbed, conventional cultivation and| atrazine, nutrients | 2004 Australia |et al. 2005;|Atrazine
mm S ) )
deep cultivation / raised beds, atrazine T Johnston
per. comm.
Esperance Sodosol Slope <1%, Waterlogging and poor soil Diverse environment:
p L | structure , L 130 m duplicate treatments [Runoff, intermittently| 2000- Western | Bakker et Manual calibratior
Research 1063 | PAWC: 67 ; - ; ; .
. rows each, treatments consisted of rais¢d over 3 winters 2001 Australia al. 2005 [runoff, erosior
Station mm -
beds and a normal no-till seed bed
Dermosol, | Slope <2%, L=130 m, nitrogen flows in| Soil water, deep Diverse environment:
) . ) - ) 1994- Western | Anderson I
Moora 430 PAWC:61 | pasture-wheat and lupin-wheat rotationddrainage and nitrogep ) Manual calibratior
) . ) . . 1996 Australia |etal. 1998 . }
mm Deep drainage and nitrate leaching | losses in drainage unoff, erosion, Nitrat:




2.3 Soil parameters and profile characterisation

Soil water holding characteristics were based dab#ses such as experimental site descriptions
where available, including APSoil (APSoil, 2012;I@&sh et al., 2006), soil surveys and qualitative
assessments of profile hydrology based on locaMi@dge. Model sensitivity to detail in soil
specification was compared using two, four andaypers. The parameter that determines partitioning
of rainfall into infiltration and runoff, curve numer (CN) was adjusted to best reflect observedffuno
patterns and amount. A default value for soil dviitly (K) was based on Loch and Rosewell (1992)
and Loch et al. (1998) and adjusted if soil erogiprediment data were available. A single value of
K was adopted for each site unless there was ewgdirat soil stability was grossly modified by land
use, such as thick swards of pasture and root arassl surface armouring associated with
weathering. This means we adjusted CN for soilk wiheavy pasture sward as they behaved
differently to cultivated soil beyond the changeCiN associated with cover, and may be considered
as a weakness in parameterisation. The deliveiywats assumed to be 0.15 for catchments where
sediment deposition occurred before water samglection, typical of some small catchment studies
(Freebairn and Wockner 1986b). This delivery ratitue was based on sediment size analysis of a
wide range of soil types (Mark Silburn pers. comwhjle a value of 1 was used if runoff was

sampled at the end of a slope before depositiotd amcur.

All soils require estimates of maximum daily drajeaate between each layer along with two
infiltration/runoff parameters: Curve number (CNitB) (SCS runoff curve number for moisture
condition Il bare soil); and CN response to 100%ecpand two evaporation parameters (Cona and
U) (Littleboy et al., 1992). The three soil spemfions require 9-29 input parameters to describe
water storage and movement into and within a sofile. The CNII bare and CN response to cover
were calibrated to observed runoff data subjeeat/ailability. A single soil type is used for each
experimental site unless there is a clear reasdp twherwise, such as deep swards or mats of roots

changing the nature of a soil or compaction chapgiternal drainage rates e.g. Li et al. (2001).

2.4 Parametrisation of Phosphorous and Nitrate models

Phosphorous availability for transport in runofbessed on the following soil phosphorus tests: [Tota
P; Colwell P (Moody, 2007); Phosphorus Bufferingd®r and an enrichment ratio based on clay
content or constant ratio function (Robinson et2007). Nitrification of soil organic matter is
dependent on complex interactions between soilnicgaatter, crop residues, soil texture, soll
biology, soil moisture content, and soil temperatdihe ephemeral nature of losses of nitrate to gas
or leaching and rapid uptake by crops and weed rsaik nitrate concentrations difficult to simulate
accurately. The inclusion of these processes imo@a@el comes with a large burden of model

specification above that desired for HowLeaky (Kwgaet al., 2003). The database of sites with



nitrogen in soil and runoff is limited, so a simppgocess for specifying soil nitrate leachinglaes t
main mobile nitrogen form was applied.

A monthly time series of soil profile nitrate wasnstructed, based on the knowledge of experts in
agronomy and soil nutrition who have a good undeding of soil nitrate accumulation over fallows
and fertiliser practice. The time series constmidtethis approach allows for average N processes
such as fertiliser and plant uptake but does nesider a year to year variation. Nitrate N (kg/isa)
assumed to be uniformly distributed in the plardikmble water capacity (PAWC) and when leaching
occurs, a proportion of the total nitrate is losséd on:

Nitrate N loss (kg/ha/day) = Deep drainage (mm)ittadtie concentration in soil water contributing to
leaching (mg/L) * efficiency coefficient * 0.001.

The efficiency coefficient was added to accommoeatgirical data as it became available. Deep
drainage is available from the water balance catmris and a value of 0.5 is assumed for the
efficiency coefficient. A coefficient less thanridicates preferential loss of moisture relative to
nitrate, for example, due to incomplete mixingahfall with the soil solution during transit thigiu

the profile.

2.5 Parametrisation of Pesticide model

The pesticide model implemented in HowLeaky (Shaal.e2011) requires date and rate of
application, placement (soil, residue, or cropyl pasticide properties including pesticide haklif
degradation activation energy, pesticide sorptmefficient, and a runoff extraction coefficient.
Parameter values were sourced from Kookana €1208)), Rattray et al. (2006), Silburn (2003), the
Footprint pesticides properties database (http:¥ven-footprint.org/ppdb.html) and pesticide labels.

Pesticide parameter values were not calibrated.

2.6 Approach to comparing detail in the model specification

To explore the impact of detail in model specificat we compared model performance where detail
in soil description (number of layers, treatmermtfpis. site average) and vegetation (semi-statrerco
specification vs. dynamic LAl based model) weredusespecify the model. Each land-use-
management system was described using availalblgygej crop, and pasture descriptions which in
some cases were incomplete. These comparisonsapglied to assess losses in model performance

when each system was specified in less detalil.
2.6.1 Setup of the soil profile

Three levels of soil description (Fig 2) were useéxplore the impact of detail of soil descriptimm

simulated runoff and sediment loss from two langlsud he three descriptions are:
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» Two-layers, with soil water holding specified bydh inputs: available soil water (%
volumetric) of the surface layer; depth of effeetavaporation; depth of soil water extraction;
and total porosity for both layers (specified pagtans n=5) (water between air dry and
wilting point is ignored);

* Four-layers with inputs: air dry content in the te layers, wilting point, drained upper
limit, saturated water content for all layers (nk26hd

» Six-layers with inputs: air dry content in the twg layers, wilting point, drained upper limit,
saturated water content for all layers (n=32);

Volumetrie water %) Volumetric water (%) Volumetric water (%)

0 20 40 50 0 0 40 50 0 20 a0 50
c - D : 0

3t : 30

60

Depth {cm)
Depth (cm)

Depth {em)

- i o R

—fiting pirt —\g:;‘ug
120 {--Crane
uaper iimi
—Gaturated
uaper imit

o Alrdry S
126 —Witing peint 120 ~-braned
Lpper fimi
—b‘%um\an
upper limit
150 () 150 i

150

Fig 2. Three levels of soil water description (dager using five soil water input variables (n=@)) 4 layers
(n=26), and (c) six layers (n=32). n is the nundiferariables describing water holding properties.

2.6.2 Vegetation growth model: Semi-static vs dynamic

Two approaches were used to describe the vegetattlmmodel: (i) a simple, semi-static cover
description, which typically is average monthlywes of plant cover and dead and root depth
repeated each year (Fig 3a) or a multi-year crappytle as shown in Fig 3b); (ii) Leaf Area Index
(LAI) (Fig 3c). The simpler cover model descriptiohgreen and dead cover reduces complexities
associated with land use and management speaficatiich require planting and tillage rules to deal
with common agronomic practices being evaluatedgBairn and Wockner 1986a). The simpler
cover model allows predefining annual or multi-ypesfiles of green cover (%), residue cover (%)
and root depth (mm). Information relating to builglthe simpler cover model is gained from local
expert agronomic knowledge. The LAl model explicgpecifies a crop’s potential growth pattern
including responses to heat sum and heat and stadss. The LAl model approach is used in a wide
variety of cropping systems models such as EPIQliafvis, 1983) and APSIM (Holzworth et al.,
2014) and hydrological models with cropping compuaesuch as SWAT (Neitsch et al., 2001). The
LAl model requires planting and tillage rules tawmig agronomic practices while a greater
understanding of crop physiology and agronomy chesgricultural system, similar to models such
as APSIM (Holzworth et al., 2014) is required whire focus may be on detailed crop specification
(Fig 3c). A practical difference in these two a@roes is that the semi-static cover descriptionbean
gleaned from local knowledge while the dynamic Imdddel requires an understanding of crop

physiology and agronomy, as codified within the elaahd requires a depth of experience. The cover
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model is easier to specify, transparent, stablé nam being controlled by arbitrary planting and
tillage rules.

In specifying a static cover model, “% green cowagiitrols transpiration while total cover (gree an

dead) influences runoff, evaporation and soil enosi his approach also supports specification of a

wide range of land use and management options witieberence to databases of model parameters
such as used in EPIC (Williams, 1983).

o0 (b) ‘ (©)

Maximum LAl

~~~~~~~~~~~~

LAl

40

senescence

Cover (%)

i
Proportion of |
growing season |

"
LN

o B P S St 0123458 7

Month Year of rotation Heat Sum

Fig 3. Example of vegetation cover models (a) statgetation, showing average monthly crop andlvescover over a
two-year wheat-canola rotation with three levels oparesidue management; (b) static vegetation foyear banana
rotation including annual harvests and a replayear 6; and (c) a typical LAl development mog®dified by twenty one

parameters. Legend of (a): B= Best management, C=1@uymractice, average management practice and D= poo
management

2.6.3 Soil setup & Vegetation cover

Case study 1: pasture

The impact of detail in specifying vegetation and description was explored using data from a
pasture study near Mt Mort in SE Queensland (Silb1i®94, Rattray et al., 2006) where runoff and
soil erosion were monitored on three land treatmémazing excluded, grazed and bare soil). Three
levels of system specification were compared:

» L1 - observed green and residue cover levelssaitdiescriptions of individual plots for each
treatment were used to describe the three land-ustteral re-enactment of experimental condiion
» L2 - observed green and residue cover levelsaasidgle soil description for all treatments -
assuming uniform soil across the site; and

» L3 — a generalised monthly distribution of gresr residue cover reflecting treatments and aesing|

soil description - a broad description of threetp@smanagement systems.

Case study 2: tillage

We compared two approaches to crop and managepegifisation for a tillage study at Greenwood
experimental site (see Table 1 for details of ite:sa semi-static representation of green anidues

cover; and a dynamic LAI model where the model stdjgover (green and residue) on a daily basis
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through feedbacks from soil water, temperaturgy growth and tillage. Both models specify ~30-40

variables but the static model’s input is more sgarent to the non-specialist (i.e. non-modeller).

2.7 Manual and automatic calibration

In this paper, we have performed a manual califmatind an automatic calibration approach. An
experienced modeller who is familiar with each gtaile generally conducts manual calibration. It is
a process to adjust the value of the model parametanually to match the outputs to the observation
visually (Pechlivanidis et al., 2011) or to evatulie performance by using statistical measurgs, e.
Nash Sutcliff Efficiency and percent bias (Moriasial, 2007; Wang et al., 2012). This method can be
time-consuming and is best suited to experiencedetters while it is difficult or even impossible to
use for watershed models (Sorooshian and Gupt®) 12 not necessarily the case for a paddock
scale models, such as HowLeaky, which has a relgtsmaller number of parameters as described in
section 2.1 (Queensland Government, 2019). Autanzd@bration is performed using algorithms,
which in general, include objective functions thegasure differences between observation and
simulation values, with control variables whichphes decide on the range of each parameter and an
algorithm to optimise parameters (Efstratiadis Bfedratiadis, 2010). This method offers consistency
in performance by removing likely biases associatitd modellers’ skills (Boyle et al., 2000) but
nevertheless requires a well-trained modeller festise the process and perform judgment of the

modelling outputs (Gupta et al., 1999).

2.7.1 Manual calibration strategy

The database of field studies had a range of debail daily observations and detailed experimental
descriptions to annual values with little detdilpg duration and incomplete records. In tuning the
model with observed data, estimates of runoff veerapared with the observed event, annual or
cumulative values, depending on data quality. éxample, some sites reported annual runoff and
soil loss values, while six sites had daily obseoves (Table 1). While data completeness varied
across studies, all sites were given a similarllefveffort after available data was compiled.

The model was calibrated for each site by:

* Using any readily available hydrologic and sitealiggive data. If site rainfall data was not
available, weather data for the closest site wasssed from Silo
(www.longpaddock.gld.gov.au) (Jeffrey et al. 20(H9il and land management descriptions
were estimated from local knowledge and data ciestedf site-specific information was not
available;

» Adjusting CNlIbare to achieve a visual fit of curative predicted and observed runoff using
one value of CNIlbare to describe all treatments site (e.g. Figure 5b);

* Adjusting soil erodibility (K) value to match esttes of long-term sediment loads;
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» Applying published values for phosphorous and pilgiparameter values and expert

opinion to describe soil nitrate time series.

The models were not calibrated beyond an initiateay specification, allowing algorithms within the
model to deal with treatment impacts (crop anddigsicover, pesticide application rates and dates)
without further calibration. This qualitative “reasable fit” approach allowed for an efficient
examination of model performance for each experaieite. Cumulative plots of observation and
model estimates were used to minimise errors asgacwith timing errors common in rainfall-runoff
records and applying a pragmatic view that a meldelld capture the main processes, accepting that
hydrology and erosion are impacted by rainfallgatesub-daily time intervals. For example, a daily
model cannot distinguish between a runoff event eegeral hours and an event with similar total
rainfall over several days. The data manager iestgged by allocating runoff and soil erosion when
arbitrary cut-off times are allocated to a day igatly 9:00 am). As models must conserve mass,
viewing model performance using a cumulative pdoiognises these necessary shortcoming in the
model and data collection and recording practiceaAheck for serious data and interpretation grror
a draft of most site’s (Table 1) model performanee reviewed by data custodians and adjustments

made if more information became available. Thepente are placed on www.howleaky.net). Once

data was assembled, model assessment typicallylt@dkours per site to complete. Little attempt
was made to improve model performance if modeiegs were visually similar in pattern and
amount to observed cumulative values. If model aiutiescribing the main hydrologic processes
survived a visual inspection for sensibility (ahgelvalues and trends), parameter sets were

accepted.

While a further iteration of parameter values wdikdly improve the coincidence of modelled and
measured values, the aim of the study was to genarset of useful parameter values to be applied
with fair confidence in other applications, esplgim allocating hydrology and water quality
signatures to a range of land use and managenestiges to estimate their performance toward
water quality targets (The State of Queensland38p01

Details of the manual calibration strategy:

1. Create a soil description based on an observed glaiable water (PAW), estimated using a
site lower limit (LL), drained upper limit (DUL) ahsoil bulk density to estimate Plant
Available Water Capacity (PAWC);

2. Afixed plant date was applied to cropping studatker than year specific dates with a mid-
maturity crop selected to avoid uncertainties assed with planting rules and varieties,
aiming to provide a generalised description of atern cereal crop. LAl model parameters
were based on literature (Kiniry et al., 1995) &altl observations;

3. Available observations of soil cover were useddnwe tillage and stubble decay parameters;
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4. Plant available soil water (PAW) observations wesed to check that the model was
predicting the water balance sensibly (Freebaial.e2018);

5. Cumulative predicted and observed runoff were caagand CNIlbare and Cover-CN were
calibrated to achieve Observed: Predicted (O: ) near 1; and

6. Cumulative predicted and observed sediment losses gompared and soil erodibility (K)

and the delivery ratio were calibrated to achiav&®aP ratio near 1.

2.7.2 Multi-parameter calibration using PEST

When calibration is performed without prior knowgedof the parameters and their associated
bounds, manual calibration can be associated witkrtainties in the parametrisation of some
parameters e.g. degree days from planting to hiavassest index; while parameters such as PAWC
(if measured) are known with reasonable certainty.

Interactions between parameters add further unosrigShahramani et al., 2011) leading to the
propagation of errors through the process pathwhge/n in Fig 4. Inherent error shifts to the next
sub-model through model input while adding to ingrerrors within each sub-model (Fig 4). The
output of each sub-model provides input to the sektmodel through the modelling process. This
cascading of errors adds uncertainty to each strool@cMillan et al., 2011). Further, there are
inherent limitations of handling simultaneous andltiple variable observations at once using
traditional manual calibration processes as intemas between parameters are seldom understood
and difficult to trace. Over recent decades, tienee been efforts to substitute manual calibration
approaches with unbiased and potentially moreiefftautomated mathematical procedures.
Bounds for parameter values can be defined by ejmigement and then complimented further by
establishing posterior distribution ranges builtumgertainty analysis. Without completing a
parametric uncertainty investigation, a well-caliied model may have uncertain outputs when used
for predicting outcomes of partially understoodtegss and interactions. Fine manual calibration
based solely on expert knowledge may also requsemnaitivity analysis and calibration of parameters

to reduce the error variances associated with {ioherty, 2015).
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Fig 4. Schematic view for inherent error propagain modelling water quality. Inherent error shifb the next
sub-model through model input while added to therimal error of the sub-model. Each arrow showsthiput
of a module (model component). The arrow below aul®is the output of the module and the size ef th
arrow represents the magnitude of the likely asdedierror with sub-model output.

To calibrate model parameters, we used the paramgtieation software tool, PEST++ (Welter et
al., 2012) and utilities of PEST v 15.0 (Dohert@18 a,b). To demonstrate the effect of uncertdimty
the model application, PEST was applied to a dafdsdy data during 1983-1991) with reliable
observations of soil water, hydrology, crop managetncrop and crop residue cover and sediment
loss from a 3-4 ha agricultural catchments neardWddilla, representing a spectrum of field
conditions associated with alternative tillage negg (Freebairn et al., 2018). PEST was used ts@dju
parameters with expert defined upper and lower dstnrased on judgement and literature (Freebairn
et al., 2009).

The HowLeaky model was linked with PEST++/ PESDtigh a series of intermediate files and
compatible code scripts, allowing for an iteratiltalogue between model simulations and PEST.
Multiple observation databases were grouped tallauil objective or loss function and each of the
observed variables was assigned a preferred wéightloss function employs the Least Square
technique to minimise the difference between olexkand predicted variables (Doherty, 2016a).
Available multiple observations representing vagyamvironmental and management conditions were
used to ensure that the system parameters conengar field conditions with minimum error
variances. Each simulation was allowed a “warm{ugriod of one year (1982) to provide initial
conditions (Ghahramani et al., 2015). Sequencesasfagement practices were set to those from the
field study. Calibrations were performed from theltiple observed data samples from Wallumbilla
for an eight-year period (1983-1991) followed biidation with four years of observations (1992-
95).
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An identifiability analysis of the parameters wasried out to analyse whether it is possible tagass
unique values to the parameters from datasetsl@@oik et al., 2019). Identifiability is a defined
scalar term for relative estimability that rangesf 0 to 1 (Doherty 2015). In other words, it is a
method to restrict the search for a nearly uniaetion to the inverse problem by sampling a
parameter set to a number that allows the modefféatively reproduce the observations. If the
identifiability of a parameter is 1.0, then thatgraeter is completely estimable on the basis of the
current calibration dataset. This does not meanithastimation is without error; however it means
that measurement noise, and not an informatiorcitiefithe calibration dataset, is responsibletfis
error. Alternatively, if a parameter has an idealdility of 0.0, then the calibration dataset is
completely uninformative of that parameter; thues plarameter is completely insensitive as far as the
calibration dataset is concerned. On the other hitite identifiability of a parameter is betwe@®
and 1.0 then information within the calibrationatadt that pertains to that parameter is shared
between it and other parameters; the parametaheasfore not be resolved uniquely (Guillaume et
al., 2019).

2.8 Mode validation

2.8.1 Satistical validation

Two statistical techniques were applied to caleutatodness of fit and to evaluate modelling
performance. These statistical evaluations of itnéllation performance included Nash Sutcliff
Efficiency (NSE) (Nash and Sutcliffe 1970) and RatdBias (PBIAS) (Moriasi et al., 2007).

Equations and performance ratings are presentédbte 2.

Table 2 General model performance rating approael in this paper

Performance rating

Equation Very good Good Satisfactory Unsatisfactory

(1 — v

et S S 0.75-1.00 0.65-0.74 0.50 - 0.64 <0.50
Z?=1(Yi0b5 — Ymean)z

NSE=1-—

Z?:l(yiabs _ Yisim) x 100

<+10% +10% — +£15%  +15% — +25% > +25%
T ()
1= L

PBIAS =

Yi"bs is the observed dat&fim is the simulated data, aifd*¢?" is the mean of observed data. PBIAS values of
greater than O indicates model overestimation &gative values indicate model underestimation bias.

2.8.2 Temporal resolution of the model output
Issues of temporal scale (e.g. daily, monthly) afiect how observed data are compared against
simulation results (Daggupati et al., 2019). Figbdervations of runoff, soil erosion, and suspended

sediment from two long-term experimental sites cdghmount and Greenwood (Table 1) were used
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to explore effect of temporal resolution in the laation of the model performance. This evaluation
was performed for catchments with relatively lorgat observations for different management and

land use i.e. cropping with stubble burnt afterwbat with little soil cover.

2.9 Response to land use and management

A key application of simulation models is to exgl@nd quantify management options for improving
water quality. Models aim to add value to empirgtaidies by stretching short records of observation
and exploring the effect of variations in managenognions on the hydrological responses that are
beyond the resources of any one research prograntrasting land uses and a range of management
conditions for cropping and pasture are used tesashie model’s robustness in describing the impact
of management on hydrology and water quality. Icates, the model’s internal management
algorithms were used to estimate management impaitksno “treatment” specific model calibration

being applied.

3. Results and discussion

3.1 Comparison of model input details and resolutionsin the model specification

3.1.1 Effect of Soil description

Applying the model with three levels of soil prefiliefinition (2, 4 and 6 layers) resulted in simila
estimates of runoff and erosion at Wallumbilla,baing in reasonable agreement with measured
values; however, the soil profile with 2 layers vaasexception, showing that simulation results were
underestimated (Table 3). The three levels ofdsslcription also provide similar estimates in terms
of absolute values and rankings for two contradtimgl uses — crop and pasture. On reflectionjshis
not a surprise as runoff is mainly triggered whemngoil is wet and runoff is dominated by a fevgéar
rainfall events in these semi-arid environmentse distribution of water in the soil (i.e. number of
layers) is less likely to impact on runoff, withetieN value dominating runoff prediction. We
arbitrarily used a four-layer soil description adedault specification, even when high resolution
(more detailed) soil descriptions were availablsahe sites, while other sites did not have a
specified plant available water capacity (PAWC)fieoThe number of parameters required to
describe a soil profile were 5, 26, and 32 for 4,3nd 6-layer soil respectively, representingosina
6-fold increase in values with no apparent improgetin predictive capacity. From an operational
viewpoint, it is simpler and less error-prone te @swer variables describing a soil’'s water holding
properties as long as the PAWC value is represeetat the site. Conversely, there is no
disadvantage in using more detailed descriptioasaflable. However, this can be still dependent on

the expert knowledge of the modeller who is famiiéth the site and experimental data.

18



3.1.3 Effects of semi-static vs. dynamic vegetation

Predictions of runoff and soil erosion from two rebdpproaches, dynamic and semi-static, are
compared with observations comparing alternatilleMamanagement strategies between annual
wheat crops at Greenwood (Table 3). Both calibradipproaches capture treatment differences with
absolute values varying between sets of simulatidfisle a statistical comparison of the two
approaches might suggest a more refined optimuwifsgaion, further calibration 30+ parameter
values is unlikely to inform the basic propositim#ing explored that relatively simple system
descriptions are adequate for estimating hydrobogywater quality at the paddock scale. From an
operational viewpoint, we found that capturing dstailar to that shown in Fig 3 from local experts
was efficient and reliable. On the other hand,eyrerience with the implementation of a dynamic
model with detailed crop specifications, includpignting and tillage rules, is prone to model
instability, especially when planting rules ainmtamic farmer behaviour. Given this result, static

cover descriptions were used for all other analysésis study.

Table 3. Comparison of observed and predicted ruaraffsoil erosion for three sites with a rangeegblution in soil and
vegetation specification.

Location/ Average Annual Average Annual
Management runoff (mm) sail erosion (t/ha)
Observed Prediction Observed Prediction
Soil resolutiont 2 layer 4 layer 6 layer 2 4 layer 6 layer
(Wallumbilla, SW QId) layer
Winter crop, tilled 55 44 54 57 3.3 25 3.4 3.6
Pasture, light grazing 14 27 18 17 0.3 0.2 0.2 20
Vegetation/soil resolutioh L1 L2 L3 L1 L2 L3
(Mt Mort, SE QId)
Bare soll 136 159 147 142 46 50 65 54
Grazed pasture 22 18 15 20 0.5 0.7 0.4 0.7
Un-grazed pasture S 4 12 17 0.06 0.1 0.2 0.2
Vegetation dynamic/semi- Static Dynamic Static  Dynamic
static (Greenwood, South QId)
Stubble burnt 85 86 95 39 37 39
Disc tillage 71 80 81 10 15 24
Blade tillage 65 70 65 5 7 5
No tillage 66 63 60 3 3 4
Notes:

1. 5 ha catchments, 3-15 years data, Brown Sodosduwihilla, Queensland (Freebairn et al. 2009). 2, 4
and 6 layer soil descriptions are shown in Fig 2.

2. 10 m long bounded plots, 6 years of data, grazingdys three levels of vegetation description (L2, L
L3) (Silburn, 1994).

3. 0.8 ha catchments, 6 years data, winter cropsaviinge of stubble management: model specified as
a) static annual cover pattern, and b) dynamicpg tAl and residue cover, tillage and planting dates
specified (Freebairn and Wockner 1986a).

3.1.4 Effects of Vegetation and soil type

In comparing the impact of resolution (and effamtflescribing a grazing trial at Mt Mort, Table 3
presents observed and predicted runoff and sai@noalues with three levels of soil profile
description. Agreement between observations andigirens was variable, with no one specification

being superior, with over-prediction in the runoff4-16% and soil erosion of 8-41%, for 2 and 6
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layer models. The most generalised model spedificdi.e. L3) captured the influence of
management adequately and represents a geneaonsgisscription which is applicable to a wider
range of conditions compared to the highly spedifieodel re-enactment” of experimental
conditions described by L1. This result supporésptoposition that a generic system specificaton i
well suited for application across a wide rangemfironments (with specified climate and soils),
providing a broad environmental assessment of itspEfananagement on environmental flows
(water, sediment, pesticides and nutrients). Thayasis demonstrates that if green and residuercove
distributions are in agreement with average fi@ldditions, a water balance model estimates runoff
and resultant soil erosion in agreement with fadervations without tuning each “treatment”,

allowing the models algorithms to deal with chanigesoil and cover conditions.

3.2 Contrasting environments and land uses

This section describes the HowLeaky model’s peréoroe across a wide range of environments and
management scenarios using daily observed datagpiding a pragmatic and manual calibration
approach described above. Some sites were evalusitgglcoarser model outputs from published
studies (Waters 2009; Tullberg et al. 2001; Cogke,£2011).

3.2.1 Sub-tropical landscapes (crops and pasture)

Observed and estimated runoff, sediment and tbtzdghorus loss in runoff from small plots at the
Kairi Research Station (Cogle et al., 2011) ovgears for four soil management conditions: bare
soil; cropping aggressive tillage, cropping wigllluced tillage; and pasture are shown in Table 5.
Generic system descriptions (soil, green and resitdwer) were used to describe field conditions.
The model simulated three-fold differences in réiaoid four-fold differences in soil erosion for
contrasting soil conditions in a semi-arid tropieavironment where data of this type is scarcee Th
model captured the effects of different land managya well. It also predicted the sediment and

phosphorous runoff losses without an increaserir &eing pasted along.

3.2.2 Tillage, stubble, and compaction management of cropping lands (Southern Queensand)

Three tillage systems: stubble mulch; minimumatit zero till; with and without wheel track
compaction created a range of soil cover and cotigpaconditions on small plots near Gatton
(Tullberg et al., 2001). Within the model, tillagas described in terms of residue cover while
compaction was described by adjusting the intedraihage rate of layer 2, based on disk
permeameter measurements in this study (McHugh, &0®9; Li et al., 2001). Observed and
predicted daily runoffs are shown in Fig 5. Minincalibration using two model parameters (CN and
internal drainage rates) resulted in a reasonapkeaent with field observations. Table 4 shows
model performance was either very good or satigfactlthough estimates for no compaction and no

tillage were over-predicted although this is ndtewt in Figure 5b. Daily runoff predictions are
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poorer for the no wheel traffic treatments, witldenprediction of large events and over predictibn

many small events.
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Fig 5. (a) Observed Vs predicted daily runoff fouf compactionftillage treatments, (b) Observeds)dand predicted
(lines) cumulative runoff for four tillage/compamti treatments at Gatton (data from Tullberg et24101)

Table 4. Model performance for daily simulationpuuts presented in Fig 5a

Wheeled, no tillage Wheeled, reduced No wheel, reduced No wheel, no tillage
tillage tillage
Method value Agreement value Agreement value Agesem  value Agreement
NSE 0.86 Very good 0.78 Very good 0.75 Very good 570. Satisfactory
PBIAS 221  Verygood -1.39  Verygood 027  Verydoo -051  Verygeod
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3.2.3 Grazing landscapes

Runoff and soil erosion from plots with three lesvef pasture utilisation were monitored in central

Queensland (Fraser and Waters 2004, Waters 2008)mbdel developed for this site used a static

cover description and a common four-layer soil dption. Table 5 summarises model predictions

using CN/cover reduction values (95/10) and saitidility (K = 0.22) for all conditions. The model

captured the essence of hydrology and water qualggonses to grazing management and climate

with minimal adjustment.

Table 5 Average annual observed and predicted fiusediment and total phosphorus loss from thregiss with
a range of land use and management conditions.

Site and Management description Runoff (mm) Sedir(téma) Phosphorus (kg/ha)
Observed Predicted Observed Predicted Observed icf@d

Crop, pasture, north Queensland,

Kairi Research Station
(Cogle et al, 2011)

Bare soil 282 269 21 17 23 31
Cropped & tilled 116 93 5 4 7 8
Cropped & reduced tillage 93 91 3 3 6 6
Pasture, high cover 77 78 0.8 0.5 2 2
Crop, southern Queensland,

Gatton Research Station*

(Tullberg et al. 2001)

Wheeled, reduced tillage 237 240

Wheeled, no tillage 217 206

No wheel, reduced tillage 154 150

No wheel, no-tillage 134 134

Pasture, central Queensland

Keilambete site

(Waters 2009)

Heavy grazing 171 171 5 6

Moderate grazing 81 80 2 2

No grazing 42 42 0.5 0.2

* Daily modelling results of this site is presentedrig 5.

3.3 Temporal resolutions effect on model uncertainty

Model artefacts, data error and parameter uncéytaie inherent in modelling hydrology and water
guality, particularly across multiple experimergaés, as shown in Figs 4, 5. Additionally,
uncertainty increases when processes are lessatooémor insufficient data are available for
developing robust empirical relationships. For egkanconfidence in estimating transport of
sediment and chemicals can be lower compareditoasig well known processes such as soil water
balance (Daggupati et al., 2019), although thisisthe case in many for the simulations presented

here.

Uncertainty in model prediction typically increasben simulating longer time series as long sample
periods naturally include more extremes such asggits and intense storms that may trigger
additional processes (Baffaut et al., 2015). Howetis was not a case in our manual calibration as
we have used the full range of observations tdcaie the model to be stationary, this means,

hydrological responses of simulations against alagens were evaluated without changes in system
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conditions e.g. no changes in the land managerhastthe model structure could capture the
processes.

The HowLeaky model uses a daily time step, thusrgs the impact of rainfall intensity (within a 24
hour period) on runoff, soil erosion, nutrient areemical generation and transport. HowLeaky has
been used at a daily temporal resolution at a felldle as the modelling engine for SoilWaterApp
(Freebairn et al., 2018), with soil water beingktively stable predictor in non-rain periods. In
contrast, water quality improvement indices reqteéraporal resolution of the model outputs at
monthly or yearly intervals when used in a polieting (Carroll et al. 2012; Commonwealth of
Australia, 2015).

Fig 6 and Table 6 shows that statistical modelqrernce improves when output at a monthly time
step is used, relieving timing errors associatdt thie somewhat arbitrary partitioning runoff t84
hour period (9am to 9am) and also timing errorsroomin datasets such used here.
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Fig 6 Observed Vs predicted daily and monthly rfiredil erosion, and suspended sediment at twdosats:
Greenmount, Greenwood.

Table 6. Model performance for data showing in&ign overall improvement in monthly simulationswqmared to daily.

Daily Monthly
NSE PBIAS NSE PBIAS
Site Simulated item Value Agreement Value AgreementValue  Agreement Value Agreement
Runoff 0.67 Good -16.82 Satisfactor 0.83 Very good -10.50 Good
Greenmount  Soil erosion 0.47  Unsatisfactory  -26.78nsatisfactory| 0.61  Satisfactory -15.64 Satisfactor
Suspended sediment 0.62 Satisfactory -13.46 Good 74 0. Good 0.81 Very good
Runoff 0.69 Good -9.64 Very good 0.93 Verygood 025. Verygood
Greenwood Soil erosion 0.60 Satisfactory -14.90 d500 0.70  Satisfactory -10.20 Good
Suspended sediment 0.56 Satisfactory -21.08 Setisfa | 0.64  Satisfactory -17.37 Satisfactory

3.4 Manual and automatic calibration, parametric sensitivity and modd uncertainty

In addition to model performance measures as destabove, here we used model sensitivity and
uncertainty analysis to compare performance betwestual and auto-calibration. The main
comparison was to identify undetected aspects manpeter interaction that may be better described
by an automatic calibration and identify the rolggarameter contributions to error and uncertainty.
This approach also identifies the optimum numbgrashmeters that are sufficiently sensitive for use
in model calibration, instead of choosing a largec$ parameters that consume computational

resources.

A total of 21 parameters (Table 7) describing vatjen, soil, and tillage conditions were used to
explore sensitivities of parameters and their atttons at the Wallumbilla site (Table 1). Paramgete
were grouped into 5 classes (Table 7) owing ta timeimbership to various structural modules of the
model. Parameters were manually calibrated usieggtl21 parameters in an expert defined
parameters’ bound which was used asiar information on parametric ranges during automatic
calibration using PEST. Automatic calibration intvgated the level of uncertainty over those five
groups of observation time series, i.e. runoffl smsion, plant available soil water (PAW) in 0015
cm depth and crop and residue cover %. This caltoraised data for an 8 year period (1983 — 1990
with 1982 as a “warm-up” year.

The weight of observation groups assigned wererdoapto the relative contribution to the loss
function derived using the parameters from manabb@tion. Once the model was auto calibrated
using PEST/PEST++, tiposterior standard deviatiorof,s) was calculated to define tipesterior
parameter bound using the equatiQRt2.0,0s Where o is theposterior best fit parameters

estimated by automatic calibration. Furtherpbgterior parameter range along with best fit
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parameters were used to analyse the sensitivitpaoertainty in the model with a final adjustment
made to the weights of the observation groups ddrikom their relative contribution to objective/
loss function.

Among those parameters assessed by PEST over thexhtalibration, the solution space confirmed
that seven parameters were identifiable in rangy@d®n 0.5 and 0.94 (Fig 7 and Table 7) with 14
referred to thewll space. None of the parameters were entirely unique écctilibration dataset
suggesting that the model parameters were striigtioeally identifiable with data i.e. not unique
globally (Kreutz, 2018).

Identifiability - == Relative uncertainty variance reduction

theta_fc1

cn_red_till_..1.0-----—..___theta_wp4

theta_fc5 .-~ . on_red_ovr
lhela_wpsl/" U
theta_fc6 ’ * theta_wp2
theta_d1 |  theta_fc3
: 008 :
i ey i
theta_wp5 *, L («’ / theta_fc2
theta_fcd -, e u ./ usle_k
cnibare"‘\\ ’,.v"'seddelralio
riII_raliB"‘*-\_ “'iheta_wp1

cona theta_wp3
Fig 7. Identifiability and uncertainty of the mogerameters post automatic calibration. (The
parameter codes were as defined in Table 7)
The relative uncertainty variance reduction (Tab)les a similar statistic that suggests the rola of
parameter in reducing uncertainty errors in vamsafrelative contribution from structural and
measurement errors) in the overall estimates qfutsitcorresponding to a set of measured
observations. In this case, parameters U, fieldc@pof layer 1 and 2 (Table 7) are very important
terms of their contribution in reducing the totakartainty error variance. Thus the inclusion @fsth
parameters for model calibration with the availadidserved data is likely to reduce the variances in
uncertainty. The reduction in the prediction uraety accrued through calibration is primarily doe
the reduction in uncertainty in those parametemvéver, as mentioned in the analysis of
identifiability, a non-unique nature of a parameésmhnically share its contribution to the error
uncertainty with other sets of parameters (Guillawgnal., 2019).
To describe uncertainty, we investigated the r6lEM values in uncertainty analysis which is nearly
non-identifiable. Table 8 shows that the uncenya@mtor contribution of various parameter groups
was due to the inclusion of CN as a calibratiorapseter. In manual calibration, the predictive
uncertainty variance was only detected from theffugroup. It failed to detect contributions from
the other groups in the uncertainty reduction. Wigbject to PEST calibration, predictive

uncertainty variance has come down to 0.00036 aoley from 0.1744 with apportioned
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contributions from other parameter groups. Thisaupiths the structural interaction of a non-unique

parameter within the model while operating overphmcess modules. These parameters are

interdependent and contribute jointly to varianeguction, a fact that often remains undetected in

manual calibration.

Table 7. Parameter values before and after autonfRteST) calibration, and their relative sensiiggf and relative

uncertainty reduction.

Parameter PEST ‘ Rank IFJentifiabi Relativg Rank

Parameter group Manual  calibrati L."We’ Upppr Relatll\{e‘ (Sensit lity uncertamt (uncert
on Limit Limit Sensitivity ivity) y variance ainty)
reduction

Bare soil Curve Number Runoff 85.00 88.50 87.14 89.86 1.000 1 0.068 0.406 9
(CN)
Field Capacity, layer 2 Soil water 39.00 40.00 87.8 42.20 0.176 2 0.522 0.571 6
Field Capacity, layer 3 Soil water 36.50 39.71 26.9 4250 0.157 3 0.673 0.682 3
Field Capacity, layer 1 Soil water 32.30 40.00 374 4259 0.115 4 0.939 0.719 2
Stage 2 soil evap. (CONA) Evaporation 4.00 3.20 529 3.45 0.105 5 0.087 0.276 13
Wilting point, layer 3 Soil water 21.80 27.00 24.24 29.76 0.059 6 0.142 0.265 14
Stage 1 soil evaporation (U) Evaporation 4.00 3.09 2.68 351 0.048 7 0.806 0.806 1
Airdry, layer 1 Soil water 7.00 10.00 7.72 12.28 042 8 0.001 0.025 17
Field Capacity, layer 4 Soil water 35.80 36.69 82.3 40.99 0.034 9 0.067 0.425 8
Field Capacity, layer 6 Soil water 35.60 36.42 81.4 41.36 0.034 10 0.000 0.024 18
Wilting point, layer 5 Soil water 26.60 27.00 24.03 29.97 0.033 11 0.002 0.069 15
Wilting point, layer 6 Soil water 26.00 21.00 18.03 23.97 0.029 12 0.000 0.013 20
Wilting point, layer 1 Soil water 15.70 15.44 13.14 17.75 0.026 13 0.188 0.391 11
Wilting point, layer 2 Soil water 18.90 18.76 16.40 21.13 0.026 14 0715 0.591 5
Field Capacity, layer 5 Soil water 35.60 36.91 32.0 41.80 0.021 15 0.000 0.021 19
Wilting point, layer 4 Soil water 24.60 25.62 22.79 28.45 0.020 16 0.908 0.607 4
Reduction in CN by cover Runoff 10.00 5.11 2.07 58.1 0.013 17 0.883 0.544 7
Soil erodibility of USLE Erosion 0.40 0.20 0.10 0.30 0.000 18 0.487 0.401 10
(K)
Sediment Delivery Ratio Erosion 0.50 0.50 0.31 0.69 0.000 19 0.431 0.354 12
Rill ratio Erosion 1.00 1.00 0.55 1.45 0.000 20 81.0 0.066 16
Max CN reduction by Tillage 10.00 10.00 7.50 12.50 0.000 21 0.000 0.000 21

tillage

Note: HowLeaky uses metric units for soil erodtpitather than SI. Metric K is 9.81 times larglean K in S| system
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Table 8. Predictive uncertainty variance of diffarparameter groups due to the inclusion of CN ealibration parameter

Parameter group Manual Calibration PEST calibration
Runoff 0.174429 1.766E-04
Erosion 0 6.100E-10

Soil water 0 1.273E-04
Evaporation 0 5.733E-05
Tillage 0 2.000E-11

Daily time series of measured runoff, soil erosiglant available water, and cover with their
predictions through manual and automated calibmatare presented in Fig 8. The comparison of
results from manual calibration to those from awted PEST calibration accounts for a subtle
statistical departure in the performance in repcotiuithe observed data sets (Fig 9). At first gianc
this comparison favours the pragmatic approach.d¥ew a given set of parameters that immediately
satisfies a complex environmental variable usingumaécalibration may not be perceived to be free
from the problem of equifinality, an issue wheratent parameter sets within a model can
reproduce the observations (Beven and Freer, 200i9.is because complex environmental
problems are illposed (Doherty, 2015) without aquei parameter set and inverse modelling that
yields an alternative set of parameters. Figs 8%sitbws that PEST provided a superior calibration
for runoff, PAW, soil erosion and cover comparedn@nual calibration. A reasonably poor
prediction of event soil loss and total cover dicated in Fig 9, for both manual and PEST
calibration. This would appear to indicate that ofse static temporal cover pattern has failed to
capture the variation in total cover over time whiied, in part, to the poor estimates of soil loBsr
instance, in at least one year no wheat crop waaged and the ground cover was low for the
following summer even though the simplistic modetlug ignored this extreme physical outcome.
This poor performance can also be related to ttietiat a model with a daily time step does not
consider the impact of rainfall intensity on runaffe and subsequent soil erosion. The structuae of
static cover model thus prevented PEST from optitgithe results; no amount of calibration could
overcome this defect in the model structure. Alke,validation period coincided with the worst soil
erosion predictions (in part due to the poor cgrediction). If periods were resampled at random
(multiple times) a clearer result might be obtairddwever, the results presented in Table 3 and 4

indicate that the model did capture the averagearsoil loss and the management effects on them.
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during calibration (1983-1991) (both manual and PEShd validation (1992-95).
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Wallumbilla. PAW: plant available water. Calibratiarmas performed for daily data from 1983-1991 anéda#ions (this
figure) for daily data of 1992-1995.

3.5 Diverse environments, applying manual calibration at other locations

In order to demonstrate the robustness of manlidlaton in estimating water quality signatures
across a range of land uses, management practidenaironments, observed hydrology, sediment,
nutrient and pesticide losses are compared to nestiehates for all available datasets on an average
annual basis (Fig 10). While the number of data@eadable in southern and Western Australia is
less than in north-eastern Australia, each datakig to the confidence in model application across
environments, even when data is incomplete. What& id sparse, there is an opportunity to fill
knowledge gaps when empirical data is added. tdhidy, 46 average annual hydrology, 37
sediment and 12 nutrient or pesticide observaticere available. This represents many site-years of
data from 14 sites described in Table 1 (~2500y#ats of field monitoring).

The plot of observed and predicted runoff (Fig ftd)the available studies demonstrates the models’
general applicability for describing water balanaesoss diverse environments, soil types and
management practices. At each site, estimated geveranual runoff values were calibrated to
observations, with the impact of management widaoh site described by HowLeaky's runoff

algorithm which are sensitive to soil type, cropl aasidue cover and driven by local daily weather
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data. All treatments within a site had shareda&oil crop parameters except those variables exyplicit
describing management (i.e. crop type, tillagezio@. Where available, soil and site descriptions
were used without modification. Hydrology caliboats were restricted to two parameters: CN and
CN response to cover, and one soil descriptionappsied across each site (rather than treatment by
treatment calibration) and management conditiorre wignply described by a generic crop and

residue cover distribution.

Fig 10 presents predicted and observed values af menual sediment loss for 45 diverse
catchments. Sediment loss was calibrated usingdiherodibility factor, K, and a default delivery
ratio (0.15 where water was sampled after someipgrsiich as at the end of a graded channel or 1 if
water was collected immediately below a slope sicin plot studies). Table 5 and Fig 10 show that
for any one site, the model captures differencexbserved soil erosion associated with various
management practices and land treatment.

The observed and predicted mean annual nutrienpestitide losses for six available data sets are
shown in Fig 10. The estimates of phosphorus astigse losses were in broad agreement with
measured values (absolute values and responsesagement) as shown in Table 9 but it is
acknowledged that the empirical database is smdlkarors are larger than for runoff and sediment
losses.

Estimates of nitrate in drainage and total N logssesudimentary at this stage as the databaee is t
small for any confidence to be given to model prtains, but the simple model structure and system
description is well suited to accommodate new dditen it becomes available. In all cases, errors in
estimated runoff lead to errors in water qualityyever, it should be noted that parameters for
nutrients and pesticide losses were not calibr@ted to limited observations) while parameters for
runoff and sediment were calibrated. This wateaibed based approach to estimating water quality
attributes of various land use and managementmpti@s able to integrate wide variations in

climate, soil type, vegetation, and agronomic manaent.

30



8cs 8ce
300 Runoff ® Soil erosion caoeta

Dumbleyung

y=11+0.97-x, =099 200

@ esoerance

y=0.39+0.96-x,  =0.993
200

100

Predicted

50

Wallumbilla

0
anm
0 100 200 300 0 = T T
80 y=-0981+12.x, *=0961 .w -
' Kari :
@ o Herbicide @ irroioc
MtPolock
€0 ® 100
g y=-254+0.41-x, ¥ =0.932
2
K
T 4
5
* 50 »
i /
0 ¢ N&P 0 v
0 20 40 60 80 ) N w50
Observed Observed
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Table 9 Model performance for data presented inlBig

Runoff Soil erosion N&P Pesticide

value Agreement value Agreement value Agreement ueval Agreement

NSE 0.99 Very good 0.99 Very good 0.90 Verygood .010 Unsatisfactory

PBIAS -1.59 Verygood -1.09 Verygood 8.22 Verydoo -62.92 Unsatisfactory

3.6 How pragmatic was an expert calibration?

We used a relatively simple water balance moddEszribe the general characteristics of each sites
hydrology and water quality and importantly, thepant of management for a wide range of
environments and management conditions. A simdlifipproach to describing site conditions was
sufficient to allow for model-based estimates dfydand annual patterns of runoff for a wide range
of climates (annual average rainfall of 1230 mrKaiti catchment in north Queensland to 430 mm at
Moora in Western Australia). Land uses includeduahierops, pastures and horticulture, all with
varying soil conditions while soil types rangednfrieavy clays to deep sands. This diversity of
conditions was described using a simple and effiqggeocess. To evaluate the performance of the
manually calibrated method using expert judgemeestablish the parameter range, the modelling
results were compared to those using a more sagate mathematical calibration approach with
minimum user intervention. Model performances venailar and at an acceptable level suggesting
visually observed history matching is a good akéwe to the more sophisticated PEST parameter
estimation.
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The manual calibration approach to each datasetovase data that was readily available, knowing
the time-consuming nature of data extraction wiheng was no structured database available. Data
collation generally involved contacting data moniitg teams and “custodians”, discussing data

management, site conditions and the exchange ofteepnd spreadsheets.

A large number of datasets and variable compleseresgiired an efficient process. Vegetation
patterns were described using an average monthé/series of green and residue cover, well suited
to engaging non-modellers using common languagesgstém descriptions. A “generic” description
of vegetation (green and residue cover) and spé tyas adequate in specifying water balance rather
than a traditional literal description of specifienditions during an experimental period. Adoptdn
generic soil and vegetation descriptions resul&eis of parameter values that have broader
application beyond the experimental sites.

Predicted runoff and deep drainage patterns weidasito observed values without major
adjustments to the model, while a single CN valas generally used for each site. The model dealt
with the dynamics of soil water and cover impactsgdrology while the relatively simple water

guality algorithms were able to capture site andagament impacts.

While data for phosphorus and nitrogen loss data wearce, estimates from the model were in
reasonable agreement with observed values andnespto management in agreement with
observations. Cook et al. (2005) and Grayson adddBl (2000) discussed the trade-offs between
model complexity and data availability, indicatitihgit a balance needs to be found between model
resolution and data availability. In this case, affert to tune a model using observed values acaos

wide range of datasets required a degree of pragmat

While there were differences in the runoff, sodson and water quality estimates from a model with
a range of detail in system description, the dififees between model estimates are generally small
compared to the differences associated with managert has been demonstrated that simpler or
more generic model inputs will result in similatiestes of water quality compared to high
resolution system specifications, in particular,danual predictions which are being used for polic

making in GBR catchments.

A caveat would be that the model practitioner stidialve a good understanding of the real world and
expected results. Certainly, a model with fewenisps easier to set-up, diagnose, and apply. More
importantly, in here, the expert knowledge of thededler, and their understanding of the interaction
between the site’s hydrologic, land use, soil Erss nutrient behaviours under storm conditions and

management use is a significant pillar. In the absef this expertise, the pragmatic approach could
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be at risk. This requirement is a fundamentalqaeisite to apply pragmatic approaches for

successful modelling.

This study has demonstrated that this water balappeoach, with a pragmatic method of system
specification, was able to add value to datasetgrdless of resolution. The ability to estimateofti

for a representative period of climate record usseful starting point for adding value to a short
record of observations. For example, an understgnafi daily volumes and seasonal distribution of
runoff can be a guide for when management intermesitare most likely to be effective. When
knowledge of hydrology is combined with simple smibsion and water quality models, water quality
can be estimated in absolute terms with “reasonhablefidence and impact of management can be

determined with confidence.

Confidence in the estimation of the various compisef water quality at the average annual scale,
discussed in this paper in descending order isidiggy, soil erosion and suspended sediment loss,
phosphorus loss, pesticide loss and finally niteate total nitrogen losses. This order of confideisc
roughly in the same order as data availabilityidating that our confidence in model performance is
limited by data as much as the model itself. Asexdata becomes available, we would expect to

refine algorithms.

3.7 Complexity ver sus simplicity

This process of land use and management speaifichtis facilitated the capture of knowledge from
technical experts and farmers alike. Static desorip of vegetation systems are compared to more
dynamic descriptions common to most simulation ngdene static descriptions of crop, pasture or
tree crops avoid much of the complexities assodiaieh specifying land use systems in models such
as planting and tillage rules, detail in crop riat@$ and pasture grazing and crop physiology
descriptors, a feature of cropping system models grieater complexities such as APSIM

(Holzworth et al., 2014).

This analysis shows that relying on existing, retdy simple models (e.g. HowLeaky) can be
sufficient for decision making, at least for thegmse of estimating water quality signatures for
various management options, e.g. in the Great &aReef catchments. But a requirement for
reducing uncertainties may push the user to agodatti approach suited to the model i.e. a more
complex parameter calibration procedure.

This result does not reject requirements for comptedelling when complexities are unavoidable,
e.g. mixed farming systems that include physicdll@inphysical, cropping, animal, and economic
structures (e.g. Ghahramani and Bowran, 2018) elidence is presented here to show that a simple

model configuration can be reliably compared toemmmplex setups over a wide range of
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environments regardless of the complexities ofpingsical system. Greater complexity may only
increase the uncertainties related to the overapetrésations or use of the models by people with
insufficient skills (Jakeman et al., 2006). Alsimpler modelling approach is better suited to

simulating datasets that have poorly describedrésquéal conditions and incomplete data.

4. Conclusion

A pragmatic approach for applying water balanceutation for a wide range of data qualities is
demonstrated. This process produced sets of pagesragscribing soil type, vegetation, nutrient and
pesticide behaviour which can be used with readera@infidence to further explore the impact of
management practices and land treatment on hydralod water quality for simply specified
management practices. Water balance as a methgdsldgmonstrated to be robust in that water-
flows (runoff and deep drainage) can be estimatéabwt detailed measurements of soil properties as
long as there are some estimates of hydrologyadzd or regional scale. Parameter values based on
similar soil-land use-vegetation combinations inygraonfidence in model estimates. Model
estimates of average annuahoff, sediment, and nutrients were similar to stgaments from
catchment studies in both magnitude and respongaanagement. Empirical studies are
fundamental to ensuring credible analysis of hyatyg) sediment, phosphorus, nitrogen and pesticide
movement at the paddock scale. Given the curradrolggy and water quality database of field
studies at the paddock scale, the current watditygjabgorithms are probably of sufficient

complexity (or simplicity) to deal with this avdilke data. However, there are gaps (in data and
algorithms), such as for modelling dissolved nitogunoff. Ideally, more data dealing with
hydrology, soil erosion, sediment loss, and nutréatd pesticide movement will become available to

inform the development of more reliable models.
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e A pragmatic modelling by Howleaky is suitable to link management to water quality
* A manually calibrated model may still require areduction in error variances
» Dataavailability and inherent error propagation determined confidence in modelling



