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A B S T R A C T

Drought undermines the financial sustainability of farmers. While farmers have adopted various strategies to
mitigate some drought impacts, they remain exposed to substantial drought risk. Insurance could be useful in
managing climatic risks and for encouraging farmers to take sensible risks (e.g., changing their sowing date to
increase yield), but it can be costly. Here, we tested whether the integration of a change in sowing date with
rainfall index-based insurance could improve farmer profitability and income stability. We used the Agricultural
Production Systems Simulator (APSIM)-Cotton model to simulate cotton lint yields for various sowing dates,
taking into account different management strategies, across three dry-land cotton research farm sites – Dalby,
Goondiwindi, and Theodore – from 1940 to 2022. We designed the index-based insurance payout when the
average rainfall received during the growing season falls below a predefined level, such as the 5th, 10th, or 20th

percentile of rainfall. Our study, which involved 3.9 million cotton lint simulations and 3,000 rainfall index-
based insurance products, showed that combining a shift in sowing date with insurance can lead to an income
improvement of up to 21.5% at some study sites. Additionally, in drought years, the income improvement for
farmers who combined optimal sowing dates with rainfall index-based insurance was up to 48.0%. The frame-
work developed in this study could aid in devising financial strategies to enhance farming resilience during
climate extremes.

1. Introduction

Droughts pose a significant threat to agriculture by negatively
impacting crop yields, driving up production expenses, and reducing
profits. Climate change is predicted to alter climate patterns and in-
crease the frequency and intensity of extreme weather events, including
droughts [1]. With climate change, droughts are expected to exert a
sustained impact on the agricultural sector that influences world food
production [2]. Consequently, drought impacts on agriculture are
becoming increasingly difficult and important to manage.

Farmers adopt various technologies and management practices to
mitigate drought-related risks. For instance, when drought conditions

are forecasted, farmers may reduce the crop area planted and, thus,
inputs applied (e.g., fertilizers) to minimise the production costs [3],
spread their risk by operating across multiple locations [4], or skip the
cropping season. Shifting the sowing date is also an option to cope with
drought [5]. As for many crops, including cotton, yields are highly
correlated to initial environmental factors (e.g., rainfall, temperature,
sunshine hours) and soil conditions (e.g., soil moisture content) during
sowing dates. Thus, by adjusting the sowing time for better growing
conditions, drought effects can be minimised.

Nonetheless, shifting sowing dates means changing cropping win-
dows, which could expose farmers to risks later in the season, such as
insufficient rainfall during important crop stages, increased risk of hail
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or heatwave events, or increased prevalence of insect attacks and dis-
eases. Because of these risks, some farmers may be hesitant to shift
sowing dates and instead choose a ‘safer’ sowing date not exposed to
these risks, even if it results in lower overall yields on average. Agri-
cultural insurance schemes offer an option to enable farmers to take
‘acceptable risk’ by switching to a better sowing date that could achieve
higher yields that inherently they may be hesitant to undertake because
of those other risks later in the season. Previous studies have suggested
that agricultural insurance can influence farmers’ behaviours, for
instance, prompting shifts toward greener practices [6], fostering a
greater willingness to adopt technology [7], and mitigating risk-averse
tendencies that might otherwise lead to suboptimal input use due to
uncertainty [8]. In such cases, risk-averse farmers may behave more
akin to risk-neutral counterparts, optimising their input choices to
maximise profits [8].

In the context of agricultural index-based insurance, mainly weather
indices, satellite-based vegetation indices, and statistical models have
been used to quantify crop yield losses so far [9-12]. Yet, there is a
growing interest among governments and insurance companies in
process-based model assessments, as observed in India [13,14].
Process-based crop models offer a timely advantage by providing in-
sights into yield losses immediately after the harvest. This capability
makes them invaluable for conducting thorough risk assessments and
formulating adaptation strategies. The significance of this application is
particularly pronounced in developing countries, where the remote lo-
cations of fields exacerbate the unavailability or high cost of collecting
crop yield information. Moreover, the variable configuration of
process-based models allows discriminating between influences on crop
yields, attributing them to either weather or management factors. This
ability is crucial for the design of insurance indices, ensuring only losses
associated with weather should be covered by the insurance product
[13,14].

Simulated crop yield from process-based (or bio-physical models) is
an alternative data source for analyses that require long-term historical
data where observed data are often unavailable. Process-based crop
growth models are commonly used to simulate potential crop yield re-
sponses to different management practices and environmental condi-
tions, uncovering relations that may not be fully explained empirically
[15-17]. Some crop models offering cotton simulations include the
Agricultural Production Systems Simulator (APSIM), Decision Support
System for Agrotechnology Transfer (DSSAT) [18,19], Environmental
Policy Integrated Climate (EPIC) [20], Simple and Universal Crop
Growth Simulator (SUCROS) [21], and CropSyst [22]. Simulated results
from these models serve as informative references to inform optimal
solutions for adapting to climate variability and change while max-
imising farmers’ profitability.

Recently, several relevant studies globally have focused on
enhancing insurance products in different scenarios and changes
through the application of bio-physical models. For instance, McNider
et al. [23] used the coupled GriDSSAT – WaSSI model to simulate the
water demand in watersheds stressed by irrigation. This work aims to
define actuarial information for water insurance in scenarios where
withdrawals may be reduced. In the U.S. Corn Belt region, Claassen et al.
[24] integrated economic and biophysical models to assess the impact of
federal crop revenue insurance programs on land use, cropping systems,
and environmental quality. Tartarini et al. [25] proposed leveraging the
WOFOST crop model and meta-modelling to reduce the basis risk in
agricultural index-based insurance for winter cereals in Italy. Arumu-
gam et al. [13] employed the DSSAT model to estimate rice yield and
yield anomalies, supporting crop insurance implementation in India.

Despite the potential for insurance to be used to help farmers take
‘productive’ risks, there has been little research into this possibility. To
our knowledge, there is no research on how to effectively combine
climate adaptation measures with insurance to ensure that (i) adapta-
tion remains economically viable and practical and (ii) insurance is
affordable. In theory, implementing measures to adapt to climate

change should lower the chances of losses caused by climate-related
issues. As a result, insurance costs should decrease, making it more
financially feasible. Moreover, insurance coverage can enable farmers to
take more risks in improving their yields, as risks will be covered by
insurance. However, this theory has yet to be tested. The lack of research
on the integration of adaptation and insurance is a knowledge gap that is
being addressed.

To improve income stability in response to drought and climate
variability and change, this study aims to test the effectiveness of
combining adaptation and insurance. Our strategy involves integrating
index-based insurance with changes to sowing dates for Australian
cotton producers. While the present study focuses on index-based in-
surance, the proposed approach can also apply to other types of insur-
ance, crops, and management practices globally.

Cotton is one of Australia’s most important agricultural exports,
contributing significantly to country’s rural income. The cotton growing
season lasts approximately six months, starting with sowing in
September through October and ending with harvest in March through
April [26]. Changes in weather patterns over the past two decades have
negatively impacted the productivity of Australian cotton farms [27].
Globally, climate impacts on cotton production are also anticipated to
worsen under climate change [2,28]. Consequently, identifying ways to
incorporate risk management and insurance to mitigate the effects of
climate variability and change on cotton production is a crucial problem
with global relevance.

2. Materials and methods

2.1. Study area and focus crop

Cotton is among Australia’s key agricultural exports, contributing
substantially to rural earnings [29]. Cotton is cultivated in the sub-
tropical regions of Australia, which are susceptible to the influence of
the northern monsoon and temperate soft-season rainfall. Over the past
decade, approximately 83% of cotton-producing farms in Australia have
relied on irrigation, highlighting the dependency on water resources
[30]. Consequently, cotton production is highly sensitive to water
availability, as evidenced by the significant decrease in cotton produc-
tion during the period of the Millennium Drought (2000-2010), which
reduced irrigation supplies and, in turn, greatly reduced cotton pro-
duction in 2009-2010 [29].

Fig. 1 depicts the study sites, including Dalby, Goondiwindi, and
Theodore, within Australian agro-environmental zones, selected for
cotton yield simulations and insurance analysis. Goondiwindi and Dalby
sites have subtropical climate patterns, while Theodore belongs to the
savanna zone. The average rainfall during cotton growing seasons cor-
responding to different sowing dates is shown in Fig. 2. The amount of
rainfall received at each site over the growing season differs and varies
within each site according to the sowing date. The rainfall distributions
show that the interquartile ranges (IQR, i.e., 25th percentile below (Q1)
and above (Q3) the median) at each cotton site vary slightly. Among the
cotton sites, Dalby generally experiences the highest median rainfall,
followed by Theodore, then Goondiwindi. Particularly, Goondiwindi
exhibits the lowest values of Q1 and minimum (Q1 – 1.5*IQR), followed
by Theodore and Dalby.

2.2. Crop simulations with drought adaptation strategies

Process-based crop models, which are equipped with advanced plant
physiological algorithms, can capture the effects of unprecedented
events (e.g., extreme temperatures) in the growing seasons or manage-
ment shifts, which have not been observed in the past, on yield. These
models can provide insights into yield losses or anomalies influenced by
various weather conditions andmanagement practices. This information
is crucial for risk assessments, adaptation planning, and the develop-
ment of risk transfer strategies. Here, we tested an approach that
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Fig. 1. Three study sites selected for cotton simulations including Dalby, Goondiwindi, and Theodore within Australian agro-environmental zones.

Fig. 2. Average rainfall during cotton growing seasons at different sowing dates across study sites over the period 1940-2022.

Table 1
Simulation configurations for cotton crops at the three study sites. The initial soil moisture is relative to 40-100% PAWC (mm). The baseline parameter values are
underlined.

Site Soil type PAWC
(mm)

Sowing
dates

Sowing depths
(mm)

Row spacing Sowing densities
(plants/m2)

Initial soil moisture Fertilizer

Dalby Black
Vertosol

301 22-sep
29-sep
01-oct
08-oct
15-oct
22-oct
29-oct
01-nov
08-nov
15-nov
22-nov
29-nov

25
35
45
55

Solid line
Single skip
row
Double skip
row

4
6
8
10

120, 150, 181, 211,
241, 271, 301

Soil available nitrogen at
sowing (kg N/ha):
50, 60, 70, 80
Starter fertilizer:
30 kg MAP at sowing

Goondiwindi Grey
Vertosol

174 70, 87, 104, 122, 139,
157, 174

Theodore Black
Vertosol

138 55, 69, 83, 97, 110,
124, 138

T. Nguyen-Huy et al.
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leverages the benefits of combining adaptation options, simulated
through a process-based model, with index-based insurance. This inte-
grated approach aims to enhance the income stability of cotton pro-
ducers in response to the challenges posed by drought and climate
variability and change.

To assess drought adaptation strategies, this study used the APSIM-
Cotton model (version 7.10) [31,32] to simulate cotton yield at three
different sites within Queensland, Australia during the 1940-2022
period. Different combinations of agricultural practices and soil mois-
ture levels (i.e., initial plant available water capacity at sowing), defined
based on expert knowledge, were employed. Because the crop yield
simulations represent a range of climatic conditions, farming tech-
niques, and soil conditions, they offer insightful information into the
most effective strategies for managing crops under varying climate
conditions and agricultural practices. The simulated outputs served as
the basis for integrating and optimising best management practices with
insurance solutions. Summaries of the simulation configurations are
presented in Table 1.

Crop failures were observed in some combinations of strategies and
years, resulting in no simulated yields. These failures occurred when
germination conditions specified within APSIM-Cotton were not met or
when there were severe and prolonged adverse conditions during the
cropping season, such as frost or heat waves. Furthermore, soil tem-
perature played a crucial role in determining the planting dates for
cotton crops in September. In real farming scenarios, farmers have the
option to replant if seeds fail to germinate, but this process was not
simulated. Combinations/years with no simulated yields were excluded
from subsequent analyses.

The baseline biophysical parameters for simulations involved:

• Sowing depth: 35 mm
• Row spacing; solid line
• Planting density: 6 plants/m2

• Available soil nitrogen at sowing: 80 kg N/ha

For each site, the simulations were carried out for seven levels of soil
moisture at planting, which were expressed as a percentage of the
plant’s available water capacity (PAWC). PAWC is the maximum
amount of water that can be stored in a soil profile and used by plants.
The simulations were conducted for the variety S71BR and for all
possible combinations for the period of 1940-2022. This resulted in
16128 times 82 years per site, leading to a total of 1,322,496 simulations
per site.

2.3. Integrating drought adaptation and insurance options

We hypothesised that farmers could enhance their yield outcomes by
implementing strategies made possible through insurance accessibility.
Monthly rainfall averaged over the growing season (i.e., from sowing to
harvesting) each year was selected as the index for the design of insur-
ance options, denoted as RI. Index insurance production premiums
PRIwere calculated for three different levels of insurance (5th, 10th, and
20th percentile options). The percentile level, or predefined trigger
levelKRI, corresponds to when insurance pays out. For example, for the
10th percentile index-insurance option, when monthly averaged
growing season rainfall falls below the historical 10th percentile, then
the insurance begins to payout.

The premiums for each insurance were calculated by simulating
50,000 random values generated using the empirical density non-
parametric distribution function. The edfun [33] package in R [34]
was used to simulate the rainfall distribution. Rainfall in Australia shows
a highly positively skewed and non-normal distribution, so a
non-parametric distribution is best for simulating its distribution. From
the simulated non-parametric rainfall distribution, premium costs were
then calculated as the probability of falling below the 5th, 10th, and 20th

percentiles, respectively, multiplied by the costs of payouts that occur

once that percentile threshold is reached.
Here, the insurance indemnity IND is paid if the average rainfall RI

received during the growing season falls below a predefined trigger level
for rainfall KRI as:

IND = max(0,KRI − RI) × V (1)

Here, Vis the tick size converting physical units into monetary terms.
To assess the effectiveness of integrating shifts in sowing time with
different levels of insurance, we analysed the difference between the net
incomes with and without insurance as:

NICins = NIC − PRI + IND (2)

Here, we calculated the net income NIC using a fixed price Pr
multiplying the simulated yield Y, i.e., NIC = Pr× Y. Therefore, the
percentage change in net incomes between those with and without in-
surance is derived as ΔNIC = 100× (NICins − NIC)/NIC. The premium
was calculated as a fair premium (i.e. the volatility and processing costs
were not included) (adapted from Vedenov and Barnett, 2004 & Chen,
2011).

3. Results

3.1. Evaluation of drought adaptation strategies

This section represents the results of crop simulations that consid-
ered a range of climatic conditions, crop management practices, and soil
moisture levels. While the main focuses are highlighted here, detailed
analyses and results for cotton simulations can be found in Figure S1 in
Supplementary information. Fig. 3 depicts the relationship between
rainfall during growing seasons and simulated potential cotton lint
yields at different sowing dates averaged over all combinations of crop
management practices and soil moisture levels across the study sites
over the period 1940-2022. The results indicate that the cotton yield
generally has a positive relationship with rainfall amount during
growing seasons. This finding is consistent with published research, such
as Sultan et al. [35], who also found a positive correlation between
annual rainfall and cotton yield in West Africa.

Fig. 4 shows the predicted potential cotton lint yield at different
sowing dates averaged over all combinations of crop management
practices and soil moisture levels over the period 1940-2022. The
simulated lint yield at the Dalby site is generally higher than Goondi-
windi and Theodore, irrespective of the sowing date. The yield varia-
tions within the site on different sowing dates are minor. However,
sowing cotton late on 22nd October generally produces a better yield
relative to other dates. A similar pattern can be observed when changing
planting depth and planting density (see Figure S1 in Supplementary).
By contrast, changing row spacing and soil moisture level have a sub-
stantial influence on cotton yield within the sites. More specifically,
cotton yield is drastically reduced by planting with double skip row
practice, followed by single skip row in comparison with solid line.
Additionally, within sites, increasing initial soil moisture level increases
cotton yield.

Our main objective was to showcase the potential benefits of inte-
grating risk management and insurance, specifically indexed-based
rainfall insurance and optimal sowing dates. Therefore, we restricted
our analysis to only the integration of insurance with optimal sowing
dates. Cotton producers can adjust their sowing date to select an optimal
sowing window, which can impact both insurance premiums and the
level of risk they are willing to take. Although other adaptation methods
may lessen the risk, they do not have an impact on the risk window of the
index insurance product.

3.2. Evaluation of index-based insurance options

3.2.1. The frequency of average payouts
This section presents the findings on the frequency of average
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payouts for each year across the three cotton sites. We used a tick size of
AUD 20 per mm of rainfall to determine the payouts. This tick size helps
to convert physical units into monetary terms, as explained in Eq. (1). In
simpler terms, if the rainfall is below the set threshold, farmers will
receive a payout of the tick value (AUD 20) multiplied by the amount of
rainfall (mm) below the threshold (see the Dalby example below).

The fair premiums calculated at the 5th percentile level of drought
insurance coverage for Dalby, Goondiwindi, and Theodore amounted to
AUD 47.8, 28.7, and 30.4 per hectare, respectively (refer to Section 2.3
for calculation details). For example, the rainfall during the growing
season (sowing on 29th September 1st or 8th October and harvesting on
27th January or 4th February) in Dalby in 2020 was 120mm, which is
below the threshold (or trigger) level of 201mm by 81mm. The Dalby
farmers will receive a payment of AUD 1620 (trigger rainfall * tick
value) per hectare. The frequency of payouts at the 10th and 20th

percentile levels of insurance coverage representing severe and moder-
ate drought conditions are described in Figures S2 and S3 in the Sup-
plementary materials.

Fig. 5 depicts the frequency of payouts across all simulations at the
5th percentile level of insurance coverage, averaged across different
sowing dates for each year. The results of the analysis reveal that, over
83 years (1940-2022), Dalby and Goondiwindi exhibit the same fre-
quency of payouts (18 events) compared to Theodore (14 events). It is
worth noting that Dalby and Goondiwindi are geographically close to
each other and have the same climate zone, as shown in Fig. 1. The
maximum payout is AUD 2120 per hectare, which occurred in a drought
event in 2014 in Dalby. Moreover, the payouts for Dalby are generally
higher than those of the other locations. For example, an impressive
22.2% of Dalby’s payouts exceed AUD 1000 per hectare, compared to
5.6% for Goondiwindi and 14.3% for Theodore. In terms of cumulative

Fig. 3. Relationship between rainfall during growing seasons and simulated potential cotton lint yields at different sowing dates averaged over all combinations of
crop management practices and soil moisture levels across the study sites over the period 1940-2022.

Fig. 4. Simulated potential cotton lint yield at different sowing dates averaged over all combinations of crop management practices and soil moisture levels across
the study sites over the period 1940-2022.

T. Nguyen-Huy et al.
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Fig. 5. The average payouts across all simulations at the 5th percentile level of insurance coverage for each year across cotton sites. The numbers in brackets show the
frequency of payouts over 83 years (1940-2022).

T. Nguyen-Huy et al.
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payouts, Dalby, Goondiwindi, and Theodore amount to AUD 10445,
8334, and 7745 per hectare, respectively.

3.2.2. Comparison between incomes with and without insurance

3.2.2.1. All-year analysis. This section compares the income of cotton
farmers with and without insurance coverage across three sites,
considering the weather variations of all years. In addition, this section
examines the impact of extreme drought conditions, when the farmer is
most likely to suffer losses and rely on insurance, with a focus on farmers
with insurance coverage at the 5th percentile level. Comparative ana-
lyses between farmers with and without rainfall index-based insurance,
considering different sowing dates at 10th and 20th percentile levels of
insurance coverage representing severe and moderate drought condi-
tions, respectively, are reported in Figures S4 and S5 in the Supple-
mentary materials.

In Fig. 6, a comparison is made between the income of cotton farmers
who bought rainfall index-based insurance and those who did not. The
comparison is based on different sowing dates and extreme drought
conditions at the 5th percentile level of insurance coverage. Each
element in the matrix shows the percentage change in income between
insured farmers on the vertical axis and uninsured farmers on the hor-
izontal axis for each sowing date. For example, in Fig. 6 (a), if farmers
sow cotton on the 22nd of September and purchase rainfall index-based
insurance, they could potentially earn around 1.4% more income
compared to those who sow at the same time without insurance.

In general, by integrating sowing date and rainfall index-based in-
surance, income can increase by up to 10% in Dalby and Theodore, and
as much as 21.5% in Goondiwindi. The analysis shows that insurance is
beneficial between September 22nd and October 22nd in Dalby and from
September 22nd to October 15th, as well as on November 29th, in

Goondiwindi. However, in Theodore, insurance benefits are only
evident on September 22nd, as well as on November 22nd and 29th using
the same sowing dates.

Further analysis reveals that at Theodore, planting cotton on
September 22nd and having insurance coverage will result in a higher
income compared to planting on any other date without insurance. In
other words, sowing cotton on any date with insurance results in higher
income than sowing on 22nd September without insurance. This pattern
is also observed at Dalby and Goondiwindi, for sowing cotton on 22nd

October when insurance generates better income than sowing on any
other dates without insurance, except for 22nd October at Goondiwindi.
Notably, sowing cotton at Goondiwindi on 22nd October with insurance
significantly increases income, up to 21.5%, in comparison with other
sowing dates (before and after 22nd October) without insurance. At the
Theodore site, sowing cotton with insurance coverage also often leads to
better income compared to sowing later without insurance, although the
differences are less remarkable. However, it is noted that sowing cotton
between 22nd October and 1st November with insurance results in lower
income than sowing on any other dates without insurance.

3.2.2.2. Drought-year analysis. In this section, we focussed only on
years with rainfall level below the 20th percentile during the growing
season to evaluate the extent to which a contract reduces downside risk
(i.e., whether insurance minimises loss in poor years).

Fig. 7 illustrates comparative income differences between farmers
with and without insurance, focusing on drought years only. The results
are calculated for different sowing dates at the 5th percentile level of
insurance coverage (extreme drought conditions). It is worth high-
lighting that over drought years, at Dalby, cotton farmers who purchase
insurance experience considerably higher income compared to those
without insurance, regardless of the sowing dates. Such benefits of

Fig. 6. Comparison of income percentage change between cotton farmers with and without rainfall index-based insurance given different sowing dates at the 5th

percentile level (extreme drought) of insurance coverage for the three study sites (a) Dalby, (b) Goondiwindi, and (c) Theodore.

T. Nguyen-Huy et al.
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integrating rainfall index-based insurance are also evident at Goondi-
windi and Theodore, except for a few scenarios. In particular, the in-
come improvement by combining the optimal sowing dates with rainfall
index-based insurance can reach up to 24.4%, 48.0%, and 39.8%
compared to those without insurance at Dalby, Goondiwindi, and The-
odore, respectively.

4. Discussion

Shifting sowing windows is an effective management practice for
adapting cotton production to climate change. The timing of when
cotton is planted is largely determined by climate factors that affect soil
temperature [36]. The timing can also impact plant disease [37], weed
encroachment [38], carbon export [39], as well as germination and
plant growth [40]. By changing the date when cotton is sown, the risks it
faces throughout its life cycle can be altered. In Australia’s cotton in-
dustry, the shift towards earlier planting has been driven by changing
climate conditions [36]. However, due to increased variability, adap-
tation responses regarding the planting date have become more dy-
namic, with the best time to plant changing yearly depending on
seasonal conditions [36].

Since cotton is responsive to its surrounding environments, farmers
adopt a variety of strategies to cope with unfavourable climate condi-
tions and weather variability. According to a study by Afzal et al. [41] on
managing planting time for cotton production, adjusting planting dates
may play an effective role as an adaptation strategy to match the fruiting
phase to favourable climatic conditions. Moreover, altering the planting
time and other options like augmenting irrigation usage or transitioning
to crops that can endure drought proves advantageous for farmers with
limited access to irrigation and financial resources [42].

The impact of different sowing dates on cotton development and lint

yield under various management practices was assessed based on crop
model simulations. While crop models can serve as valuable tools to
predict crop yield and estimate the extent of potential crop losses caused
by specific climate events, their effectiveness in informing operational
decisions for improved climate risk management is constrained by some
limitations [43,44]. Such limitations include the simplification of com-
plex processes and environmental interactions (e.g., biochemical pro-
cesses at the leaf level, phosphorus response in crops, pests, diseases, and
weeds dynamics, soil health), which cannot be fully accounted for in
models but could noticeably impact crop yields [45]. Additionally,
variations in farm management practices and technology adoption are
not adequately integrated into the model, resulting in discrepancies
between model predictions and actual outcomes. It is noteworthy to
mention that management strategies that are optimised for present-day
climates may not necessarily be optimal for future climates [46]. Will
et al. [14] proposed the potential benefits of combining empirically
parameterised agent-based models (ABMs) into process-based crop
models to enhance the capture and reproduction of accurate crop yields.
This combined approach would ultimately improve the design of
index-based insurance and contribute to ongoing discussions on the
reduction of basis risk [14,47].

This suggests that it is worthwhile exploring optimal strategies for
risk reduction under different climate scenarios. Furthermore, an inte-
grated approach that synergies the strengths of several approaches could
be beneficial to overcome some of the individual limitations of the
different approaches used in climate-related risk reduction. This study
demonstrated that index-based insurance coupled with shifting sowing
dates as a drought adaptation strategy could improve the farmers’
income.

Insurance can also be used proactively in combination with optimal
crop management strategies, instead of just being viewed as a reactive

Fig. 7. Comparison of income percentage change under drought years between cotton farmers with and without rainfall index-based insurance given different
sowing dates at the 5th percentile level (extreme drought) of insurance coverage, which is considered as under extreme drought condition for the three study sites (a)
Dalby, (b) Goondiwindi, and (c) Theodore.

T. Nguyen-Huy et al.
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tool for risk management where payouts are made after an event. Based
on our findings, farmers who change their sowing schedule and use in-
surance can experience benefits of up to 21.5% in certain study loca-
tions. These benefits are higher when our assessment is focused on
drought conditions. This suggests that the strategic linking of manage-
ment and insurance to help farmers take productive risks could be an
important area of climate adaptation research that remains largely un-
explored. Importantly, the approach we outline has wider implications
and suggests that insurance could potentially be used to give farmers
financial security and help facilitate the shifting of cropping activities
and management actions to more profitable windows – an important
adaptation option in a shifting climate.

Although index-based insurance has the potential to enhance the
resilience and income of rural communities, the development of insur-
ance markets is still limited. There have been multiple instances of in-
surance programs failing due to high costs or farmers not receiving
compensation when they needed it most. These issues are often associ-
ated with basis risks. Improving index insurance has been challenging
due to the lack of a conceptually sound standard for measuring and
recognizing the quality of index insurance [48].

To combat the effects of climate change, integrating management
practices with index insurance could provide a more affordable and cost-
effective adaptation strategy. In general, index insurance can elevate
crop yield and income, increasing farming resilience under a suitable
agro-environment and ideal crop management strategies. However, it is
not a one-size-fits-all remedy for all agro-environments and crop man-
agement practices. The efficacy of index insurance relies on a meticu-
lously crafted index that addresses a significant portion of the risks
farmers face. Future research may assess the effectiveness of combining
insurance schemes with other practices, such as soil moisture level or
crop diversification.

5. Conclusion

This study proposed an innovative framework that integrates index-
based insurance and optimal crop management strategies to reduce
financial risk related to droughts. The simulation findings for cotton
crops across the three study sites within Australia indicated that farmers
could improve their income stability by optimising the sowing date
combined with insurance coverage. An essential insight from the study is
that insurance can be a powerful tool for proactively mitigating risks in
agriculture. Our research demonstrates that insurance can be utilised as
a proactive tool alongside optimal crop management strategies, rather
than just as a reactive measure for risk management payouts. In
particular, our analysis highlights the effective integration of insurance
with ideal planting windows. Our suggested integrated approach has
other promising applications such as assisting farmers in selecting crops
based on soil moisture levels.

In conclusion, the integrated approach developed in this study will
facilitate the financial transformation of farming during extreme climate
conditions by providing integrated crop management and insurance
options that i) provide information about the crop management actions
that will increase farmer profitability and ii) give farmers the confidence
to invest in the profitable and resilience increasing management actions
without suffering financial losses if severe drought conditions occur.
This will help improve farmers’ comprehension and knowledge of using
insurance as a means of managing drought in their farm businesses.
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