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A B S T R A C T

This paper presents a new non-boundary-fitted-grid numerical technique for solving partial differential
equations (PDEs) in multi-hole domains. A multiply-connected domain is converted into a simply-connected
domain of rectangular or non-rectangular shape that is discretised using a Cartesian grid. Compact radial basis
function (RBF) stencils, which are constructed through integration rather than the conventional differentiation,
are used to discretise the field variables. The imposition of inner boundary conditions is conducted by means
of body forces that are derived from satisfying the governing equations and prescribed boundary conditions in
small subregions. Salient features of the proposed method include: (i) simple pre-processing (Cartesian grid),
(ii) high rates of convergence of the solution accuracy with respect to grid refinement achieved with compact
integrated-RBF stencils, where both nodal function and derivative values are included in the approximations,
(iii) the system matrix kept unchanged for the case of moving holes, and (iv) no interpolation between
Lagrange and Euler meshes required. Several linear and nonlinear problems, including rotating-cylinder flows
and buoyancy-driven flows in eccentric and concentric annuli, are simulated to verify the proposed technique.
1. Introduction

In solving partial differential equations (PDEs), multiply-connected
domains (Fig. 1) can be discretised using boundary-fitted and non-
boundary-fitted grids/meshes. In the boundary-fitted-grid/mesh cate-
gory, unstructured meshes are typically used. Boundary fitted grids/
meshes can be used to accurately represent a geometrically-complex
domain. Furthermore, an unstructured grid/mesh can locally be im-
proved in selective regions to obtain refined information about the
variable fields. However, generating an unstructured mesh is a time-
consuming process. In the case of moving boundaries, the computa-
tional grid/mesh can be distorted. One needs to generate a new mesh;
the variable fields are then projected onto it, which is a sophisticated
task. Thus, the use of non-boundary-fitted grids/meshes to represent
a multi-hole domain has received a great deal of attention (e.g., [1–
14]). The basic idea of non-boundary-fitted-grid/mesh based methods
is to extend the problem defined on a multiply-connected domain to
that on a domain of simpler shape, where a regular grid/mesh and a
fast algebraic solver can be used. The non-boundary-fitted-grid methods
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have the ability to work with any complex domains. The task of con-
verting a multiply-connected domain into a simpler domain is relatively
straightforward. In the case of moving interior holes, the grid/mesh
may be kept unchanged and thus there is no need for carrying out the
task of projecting the variable fields. Consequently, the system matrix
needs to be determined once in the simulation process. In this category,
special attention to the imposition of given inner boundary conditions
is needed to match the solution on the extended domain, which is
composed of the original/physical region and regions of the inner holes,
with that on the original/physical domain. For this purpose, a body
force is commonly introduced into the governing equations to describe
the existence of the internal boundaries. Its main difficulty lies in a way
of obtaining the body force field.

Many non-boundary-fitted-grid/mesh based methods have been re-
ported in the literature. For example, Glowinski, Pan and Periaux [15,
16] proposed a class of fictitious-domain methods using Lagrange
multipliers for simulating incompressible fluid flows. The methods were
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Fig. 1. A multiply-connected domain.

uccessfully implemented to solve practical problems such as rigid-
ody/fluid interactions (e.g., [17,18]), fluid/flexible-body interactions
e.g., [19–21]), and particulate suspension flows (e.g., [6,22–24]).
nother approach is based on the immersed boundary method proposed

n [25]. In this approach, the body force was generated by the elasticity
f the material and then ‘‘spread out’’ to grid nodes using Dirac delta
unctions. In [26], the body force was calculated based on the desired
elocities at the interfaces. In [27], the body force was first obtained on
he immersed interfaces and was smoothly transferred to fixed grids by
irac delta functions. In [28], an interpolation scheme for evaluating

he velocities satisfying non-slip boundary conditions was proposed
nd the body force was then directly defined on grid nodes. Later on,
arvizian et al. [1] introduced a finite cell method for solving problems
f solid mechanics. Duster et al. [29] extended the finite cell method
o 3D-linear-elasticity problems. Maury [30] proposed a fat boundary
ethod (FBM) for solving PDEs in multi-hole domains. Bertoluzza

t al. [31] implemented a semi-discrete FBM in the framework of FEM.
os et al. [32] coupled the classic fictitious domain method and FBM

o constitute a method called the implicit FBM. Stein et al. [33,34]
roposed a high-order immersed boundary smooth extension (IBSE)
ethod, in which the solution is forced to be globally smooth on

he computational domain to achieve high-order accuracy. The IBSE
ethod needs to form and solve a high-order PDE outside the physical
omain to smoothly extend the solution from the physical domain to
he computational domain, from which the extension to the forcing is
erived. The greater the level of regularity, the higher the order of the
DE will be. As discussed in [33], special care is needed in solving the
igh-order PDE as the system matrix can become ill-conditioned.

RBF approximation schemes have the ability to represent any
mooth function to a prescribed degree of accuracy (e.g., [35–38]).
ogether with other meshless methods [39–41], they have rapidly been
eveloped for the approximation of functions and numerical solution
f PDEs. Several types of RBFs contain a free parameter. This class can
xhibit an exponential rate of convergence as either the fill distance
ecreases (an increase in the number of RBFs) or the RBF’s width
ncreases. One of the most widely used RBFs is the multiquadric (MQ)
unction, which has a deep history of theoretical development. The
tilisation of MQ-RBFs for solving PDEs was first introduced by Kansa
42], where the RBF approximations are constructed through differen-
iation (direct/differential approach, DRBFs). Later on, the utilisation
f integrated RBFs (IRBFs) for solving PDEs was reported by Mai-Duy
nd Tran-Cong [43]. For the integral approach, firstly, the highest order
erivatives in a given PDE are approximated by RBFs, and then lower
rder derivatives and the function itself are acquired by integrating
BFs. In this way, one can avoid a decrease in the convergence
ate induced by differentiation and obtain a more stable numerical
olution [43,44]. DRBFs and IRBFs were implemented with boundary-
2

itted grids for solution of the Navier–Stokes equation (e.g., [45–50]).
We note some recent RBF studies (e.g. [51]) on the use of polyhar-
monic splines with augmented polynomials for solving PDEs. The use
of polyharmonic splines helps overcome the issue of the RBF width
and also provides simple ways to estimate convergence rates. Like
the polyharmonic-spline-based methods, the integral approach also
involves some polynomials. However, these polynomials are produced
from integrating RBFs. Unlike the polyharmonic-spline-based methods,
nodal values of derivatives of the field variable are included in the RBF
approximations to form a determined interpolation system. It should
be pointed out that, with global approximations, their interpolation
matrices are entirely populated and become ill-conditioned when a
large number of nodes are used. Recent RBF research has concentrated
on resolving these shortcomings. An efficient way is to utilise local
RBF stencils, where only a small subset of nodes are activated for the
approximation of a function at a given point, and compact local RBF
stencils, where the approximations involve not only function values
but also derivative values at grid nodes. A sparse system matrix, which
saves computer storage space and promotes the use of a much larger
number of nodes, can be obtained with local schemes. Furthermore,
like compact finite-difference-based stencils (see [52] and references
therein), the inclusion of derivative values in the approximations here
can also significantly improve the accuracy of local approximation
schemes as shown in, e.g., [50,53]. Works reported in this research
direction include [50–64].

In this study, the compact local IRBF stencils [50,54,59] are in-
corporated into the non-boundary-fitted-grid (NBFG) framework for
solving PDEs. In our proposed method, the discretisation is based
on only RBF approximations, in contrast with the augmented forcing
method [12], where the discretisation is based on localised Hermite
RBF approximations for regions near the inner boundaries and finite
differences for regions far away from the inner boundaries. Unlike the
IBSE method, the inner boundary conditions are incorporated into the
body force by solving the same governing PDE on a small subregion
that contains the inner boundary of a hole. Our proposed method does
not require the use of regularised delta functions, and the system matrix
is kept unchanged in the case of moving holes. The solution procedure
for simulating fluid flows includes the following steps:

• Step 1: Estimate fluid velocities in local domains near inner
boundaries, where the forcing term is omitted.

• Step 2: Derive the forcing terms from the difference between the
desired velocities (i.e. velocities acquired taking into account the
inner boundary conditions) and the estimated velocities obtained
from Step 1. Note that the desired velocities are obtained by
solving the governing equations subject to non-slip boundary
conditions on local regions enclosing the inner boundaries.

• Step 3: Solve the governing equations in the extended domain
with the obtained forcing terms.

Since the compact local IRBF stencils can work on irregular grids, the
desired velocities and the forcing terms can be evaluated directly at
grid nodes without interpolation.

The remainder of the paper is organised as follows. Section 2
presents the governing equations. Section 3 gives a brief review of
integrated RBFs. In Section 4, the proposed IRBF-NBFG technique is
described with emphasis placed on the formulation of forcing func-
tions describing the influence of the interior interfaces on the solu-
tion. Details for the IRBF discretisation of the governing equations in
the extended (rectangular) domain are also included here. Numerical
solutions are reported in Section 5. Section 6 concludes the paper.

2. Governing equations

For an incompressible fluid, the conservation laws of momentum
and mass are
𝛁 ⋅ 𝐮 = 0, (1)
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𝜌𝐷𝐮
𝐷𝑡

= 𝜌𝒈 + 𝛁 ⋅ 𝝈, (2)

where 𝜌 is the fluid density, 𝐮 the velocity vector, 𝒈 a body acceleration
vector, 𝝈 the total stress tensor, and 𝐷[.]∕𝐷𝑡 the derivative following
the motion, which is defined as
𝐷[⋅]
𝐷𝑡

= 𝜕[⋅]
𝜕𝑡

+ (𝐮 ⋅ 𝛁)[⋅]. (3)

The stress tensor can be written as

𝝈 = −𝑝𝟏 + 2𝜂𝐃, (4)

for a Newtonian fluid, where 𝑝 is the hydrodynamic pressure, 𝟏 the unit
tensor, 𝐃 the strain rate tensor 𝐃 = 1

2 [𝛁𝐮 + (𝛁𝐮)𝑇 ] and 𝜂 the dynamic
viscosity. In non-boundary-fitted-grid methods, it is allowed to use body
force terms as a way to satisfy boundary conditions (i.e., as a way to
model the presence of internal boundaries) [65]. Substitution of (4) into
(2) yields the Navier–Stokes equation for isothermal fluid flows, and in
two dimensions, its dimensionless form can be shown as
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (5)

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+ 1
𝑅𝑒

(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

+ 𝑓𝑥, (6)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+ 1
𝑅𝑒

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

+ 𝑓𝑦, (7)

here 𝑢 and 𝑣 are the 𝑥 and 𝑦 components of velocity vector 𝐮, 𝑅𝑒 is the
eynolds number defined as 𝑅𝑒 = 𝑈 ̌∕𝜈 in which 𝑈 is a characteristic
elocity, 𝐿 a characteristic length and 𝜈 = 𝜂∕𝜌 the kinematic viscosity,
nd 𝒇 = (𝑓𝑥, 𝑓𝑦) the body force vector involving the body accelerations
and fluid density 𝜌. The reader is referred to [20] for further details.

Since it is a lack of a transport equation for the pressure in (5)–(7),
he velocity equations (6)–(7) need to be solved iteratively towards the
atisfaction of the continuity condition (5). There are several treatments
eported, including the semi-implicit scheme of pressure-linked equa-
ions (SIMPLE) (e.g., [66]), the projection method (e.g., [67]) and the
mplicit pressure with splitting of operators (PISO) (e.g., [68]).

For non-isothermal flows, with the Boussinesq approximation [69],
heir governing equations in two dimensions can be written as
𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (8)

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −
𝜕𝑝
𝜕𝑥

+
√

𝑃𝑟
𝑅𝑎

(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

+ 𝑓𝑥, (9)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −
𝜕𝑝
𝜕𝑦

+
√

𝑃𝑟
𝑅𝑎

(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

+ 𝑇 + 𝑓𝑦, (10)

𝜕𝑇
𝜕𝑡

+ 𝑢 𝜕𝑇
𝜕𝑥

+ 𝑣 𝜕𝑇
𝜕𝑦

= 1
√

𝑅𝑎𝑃𝑟

(

𝜕2𝑇
𝜕𝑥2

+ 𝜕2𝑇
𝜕𝑦2

)

, (11)

where 𝑇 is the temperature, and 𝑅𝑎 and 𝑃𝑟 the Rayleigh and Prandtl
numbers defined, respectively, as 𝑅𝑎 = 𝜅𝑔𝛥𝑇𝐿3∕𝛼𝜈 and 𝑃𝑟 = 𝜈∕𝛼 in
which 𝜅 is the thermal expansion coefficient, 𝛼 the thermal diffusivity
coefficient, 𝑔 the gravity and 𝛥𝑇 and 𝐿 the characteristic temperature
difference and length, respectively. Here, the velocity scaling 𝑈 =
√

𝑔𝐿𝛽𝛥𝑇 is used to balance the inertial and buoyancy forces. Both
isothermal flows and non-isothermal flows are to be considered in our
numerical verification.

3. Integrated RBFs

A system of RBFs enables a smooth function defined in a low-
dimensional space (e.g., 1D, 2D, and 3D) to be represented in a higher-
dimensional RBF space as follows

𝑦(𝐱) ≈ 𝑦𝑎(𝐱) =
𝑚
∑

𝑖=1
𝑤𝑖𝑔𝑖(𝐱), (12)

where 𝑦 is the function, 𝑦𝑎 the approximate function, 𝐱 the position
vector, 𝑚 the number of RBFs,

(

𝑔 (𝐱), 𝑔 (𝐱),… , 𝑔 (𝐱)
)

a set of RBFs,
3

1 2 𝑚
Table 1
Some common types of RBFs, where 𝐜𝑖 and 𝑎𝑖 are the centre and width
of the 𝑖th RBF, respectively.

Multiquadric function 𝑔𝑖(𝐱) =
√

∥ 𝐱 − 𝐜𝑖 ∥2 +𝑎2𝑖
Inverse multiquadric function 𝑔𝑖(𝐱) = 1∕

√

∥ 𝐱 − 𝐜𝑖 ∥2 +𝑎2𝑖
Gaussian function 𝑔𝑖(𝐱) = exp

(

∥𝐱−𝐜𝑖∥2

𝑎2𝑖

)

and
(

𝑤1, 𝑤2,… , 𝑤𝑚
)

a set of weights to be determined. Function 𝑦 is
now expressed as a linear combination of 𝑚 independent RBFs. In the
RBF space, 𝑦 is considered as a function in 𝑚 dimensions [35]. Table 1
presents some common types of RBFs. It is noted that 𝐜𝑖 and 𝑎𝑖 are the
centre and width of the 𝑖th RBF, respectively.

For several RBFs including those in Table 1, the interpolation ma-
trices derived from (12) on a set of discrete data points are shown to
be invertible (Micchelli’s theorem [70]). Moreover, following Cover’s
theorem [35], the larger the number of RBFs used (i.e. higher dimen-
sions of the hidden space), the more accurate the approximation will
be, showing the characteristic of ‘‘mesh convergence’’ of RBFs.

In the integral approach [43], the highest order derivatives are first
approximated by RBFs through (12), and lower-order derivatives and
the function itself are then acquired by integrating (12). For example,
considering a univariate function 𝜉(𝑥), the integral approach can be
mathematically expressed as

𝑑𝛾𝜉(𝑥)
𝑑𝑥𝛾

=
𝑚
∑

𝑖=1
𝑤𝑖𝑔𝑖(𝑥) =

𝑚
∑

𝑖=1
𝑤𝑖𝜑[𝛾]𝑖(𝑥), (13)

𝑑𝛾−1𝜉(𝑥)
𝑑𝑥𝛾−1

=
𝑚
∑

𝑖=1
𝑤𝑖𝜑[𝛾−1]𝑖(𝑥) + 𝑐1, (14)

𝑑𝛾−2𝜉(𝑥)
𝑑𝑥𝛾−2

=
𝑚
∑

𝑖=1
𝑤𝑖𝜑[𝛾−2]𝑖(𝑥) + 𝑐1𝑥 + 𝑐2, (15)

⋯ ⋯ ⋯ ⋯ ⋯

𝑑𝜉(𝑥)
𝑑𝑥

=
𝑚
∑

𝑖=1
𝑤𝑖𝜑[1]𝑖(𝑥) + 𝑐1

𝑥𝛾−2

(𝛾 − 2)!
+ 𝑐2

𝑥𝛾−3

(𝛾 − 3)!
+⋯ + 𝑐𝛾−2𝑥 + 𝑐𝛾−1,

(16)

𝜉(𝑥) =
𝑚
∑

𝑖=1
𝑤𝑖𝜑[0]𝑖(𝑥) + 𝑐1

𝑥𝛾−1

(𝛾 − 1)!
+ 𝑐2

𝑥𝛾−2

(𝛾 − 2)!
+⋯ + 𝑐𝛾−1𝑥 + 𝑐𝛾 ,

(17)

here 𝛾 is the highest-order of derivative terms in a PDE, 𝜑[𝛾−1]𝑖(𝑥) =
𝜑[𝛾]𝑖(𝑥)𝑑𝑥, 𝜑[𝛾−2]𝑖(𝑥) = ∫ 𝜑[𝛾−1]𝑖(𝑥)𝑑𝑥, ⋯, 𝜑[0]𝑖(𝑥) = ∫ 𝜑[1]𝑖(𝑥)𝑑𝑥, and
𝑐1, 𝑐2,… , 𝑐𝛾} the constants of integration. With the presence of integra-
ion constants, there are more unknown coefficients in the interpolation
ystem and some extra equations can thus be added. This provides an
ffective way of constructing compact approximations.

. Proposed IRBF-NBFG technique

Consider a rectangular domain containing holes such as the one
hown in Fig. 2. The real domain D𝑅 is extended to a regular domain

which is used for numerical simulation. The computational domain
thus comprises two sets of sub-regions: the holes and the multiply-

onnected domain (i.e. original domain). A Cartesian grid is employed
o discretise the extended/computational domain, and compact IRBF
tencils are then applied for approximating the field variables. It is
traightforward to implement the outer boundary conditions. Never-
heless, appropriate schemes are needed to enforce the inner boundary
onditions as, generally, grid nodes do not lie on the inner boundaries.
ere, the momentum Eq. (2) is semi-discretised with respect to time by
first-order finite-difference scheme

𝐮𝑛+1 − 𝐮𝑛 + 𝛁𝑝𝑛 = −𝛁 ⋅ (𝐮𝑛 ⋅ 𝐮𝑛) + 1 𝛁2𝐮𝑛 +𝜦, (18)

𝛥𝑡 𝑅𝑒
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Fig. 2. A physical domain (D𝑅), its extended domain (D) and a forcing domain of 𝑘th hole (D𝐹 |𝑘). The forcing domain is discretised using an irregular grid, where open circles
are used to mark the forcing points of the 𝑘th hole, filled squares to indicate the inner boundary 𝜕𝑃𝑘, and filled circles to indicate the boundary points of the frame 𝛤

|𝑘.
Fig. 3. Points on a grid line of the extended domain D.

where the superscript denotes the time level and 𝜦 is used to denote the
body force 𝐟 in discrete form. The body force 𝜦 is included to enforce
the flow field to satisfy non-slip conditions at the inner boundaries. The
computation of 𝜦 and the imposition of non-slip boundary conditions
on the internal interfaces will be presented in Section 4.2. In the
remaining parts, we will use the notation

• [̃ ] to represent a vector/matrix [ ] which is associated with the
whole computational domain D,

• [̂ ] to represent a vector/matrix [ ] which is associated with a grid
line of D,

• [ ]
|𝑘 to represent a vector/matrix [ ] which is associated with the

forcing domain DF of the 𝑘th hole,
• [ ]

|𝑘 to represent a vector/matrix [ ] which is associated with a set
of forcing points in a segment of DF of the 𝑘th hole,

• ([ ])𝑖𝑓 |𝑘 to denote the selected indexes (of the extended computa-
tional domain) which are associated with the set of forcing points
of the 𝑘th hole.

4.1. Compact IRBF stencils

Eqs. (6)–(7) involve the first- and second-order derivative terms.
Consider an 𝑥-grid line (Fig. 3). Making use of (13)–(17) with the
integer 𝛾 set to 2, 𝜕2𝑢∕𝜕𝑥2 can be expressed as

𝜕2𝑢(𝑥)
2

=
𝑚
∑

𝑤𝑖𝑔𝑖(𝑥) =
𝑚
∑

𝑤𝑖𝜑[2]𝑖(𝑥). (19)
4

𝜕𝑥 𝑖=1 𝑖=1
Expressions for the first-order derivative and the function (field vari-
able) are then found through integration

𝜕𝑢(𝑥)
𝜕𝑥

=
𝑚
∑

𝑖=1
𝑤𝑖𝜑[1]𝑖(𝑥) + 𝑐1, (20)

𝑢(𝑥) =
𝑚
∑

𝑖=1
𝑤𝑖𝜑[0]𝑖(𝑥) + 𝑐1𝑥 + 𝑐2. (21)

We implement the multiquadric (MQ) function and thus have

𝜑[2]𝑖(𝑥) =
√

(𝑥 − 𝑐𝑖)2 + 𝑎2𝑖 ,

𝜑[1]𝑖(𝑥) =
(𝑥 − 𝑐𝑖)

2
𝐴 +

𝑎2𝑖
2
𝐵,

𝜑[0]𝑖(𝑥) =

(

−𝑎2𝑖
3

+
(𝑥 − 𝑐𝑖)2

6

)

𝐴 +
𝑎2𝑖 (𝑥 − 𝑐𝑖)

2
𝐵,

where 𝑐𝑖 and 𝑎𝑖 are the centre and the width of the 𝑖th MQ, respectively,
and 𝐴 and 𝐵 are functions of 𝑥 defined as 𝐴 =

√

(𝑥 − 𝑐𝑖)2 + 𝑎2𝑖 and

𝐵 = ln
(

(𝑥 − 𝑐𝑖) +
√

(𝑥 − 𝑐𝑖)2 + 𝑎2𝑖

)

. The width is chosen according to
𝑎𝑖 = 𝛽𝑑𝑖, where 𝑑𝑖 is the shortest distance between 𝑐𝑖 and its neighbours,
and 𝛽 is a scalar. For local approximations, large values of 𝛽 can be
employed. The reader is referred to [54] for a detailed study of the
effect of 𝛽 on the solution accuracy. A set of collocation points is chosen
to coincide with the RBF centres. The influence domain used is a three-
node stencil [𝑥𝑖−1, 𝑥𝑖, 𝑥𝑖+1] which is shifted along the grid line. The
presence of two integration constants enables the addition of two extra
equations to the conversion of the RBF coefficients into the physical
space. We utilise these equations to impose derivatives at the two end-
nodes. With compact approximations, we evaluate (21) at 𝑥 , 𝑥 and
𝑖−1 𝑖
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𝑥𝑖+1, and (19) at 𝑥𝑖−1 and 𝑥𝑖+1, resulting in

𝑢(𝑥𝑖−1)

𝑢(𝑥𝑖)

𝑢(𝑥𝑖+1)
𝜕2𝑢(𝑥𝑖−1)
𝜕𝑥2

𝜕2𝑢(𝑥𝑖+1)
𝜕𝑥2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

[




]

⏟⏟⏟



⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑤𝑖−1
𝑤𝑖
𝑤𝑖+1
𝑐1
𝑐2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (22)

where the two nodal derivatives on LHS are known values, obtained
from the previous time level,

 =

⎡

⎢

⎢

⎢

⎣

𝜑[0]𝑖−1(𝑥𝑖−1) 𝜑[0]𝑖(𝑥𝑖−1) 𝜑[0]𝑖+1(𝑥𝑖−1) 𝑥𝑖−1 1

𝜑[0]𝑖−1(𝑥𝑖) 𝜑[0]𝑖(𝑥𝑖) 𝜑[0]𝑖+1(𝑥𝑖) 𝑥𝑖 1

𝜑[0]𝑖−1(𝑥𝑖+1) 𝜑[0]𝑖(𝑥𝑖+1) 𝜑[0]𝑖+1(𝑥𝑖+1) 𝑥𝑖+1 1

⎤

⎥

⎥

⎥

⎦

,

nd

=

[

𝜑[2]𝑖−1(𝑥𝑖−1) 𝜑[2]𝑖(𝑥𝑖−1) 𝜑[2]𝑖+1(𝑥𝑖−1) 0 0

𝜑[2]𝑖−1(𝑥𝑖+1) 𝜑[2]𝑖(𝑥𝑖+1) 𝜑[2]𝑖+1(𝑥𝑖+1) 0 0

]

.

his system can be solved for the IRBF weights and two integration
onstants

𝑤𝑖−1
𝑤𝑖
𝑤𝑖+1
𝑐1
𝑐2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= −1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢(𝑥𝑖−1)

𝑢(𝑥𝑖)

𝑢(𝑥𝑖+1)
𝜕2𝑢(𝑥𝑖−1)
𝜕𝑥2

𝜕2𝑢(𝑥𝑖+1)
𝜕𝑥2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (23)

here −1 is the inverse of . Making use of (23), (20) and (19), one
an obtain the first and second derivatives of 𝑢 at 𝑥𝑖 as

𝜕𝑢(𝑥𝑖)
𝜕𝑥

=
[

𝜑[1]𝑖−1(𝑥𝑖) 𝜑[1]𝑖(𝑥𝑖) 𝜑[1]𝑖+1(𝑥𝑖) 1 0
]

−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
1𝑥(𝑥𝑖)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢(𝑥𝑖−1)

𝑢(𝑥𝑖)

𝑢(𝑥𝑖+1)
𝜕2𝑢(𝑥𝑖−1)
𝜕𝑥2

𝜕2𝑢(𝑥𝑖+1)
𝜕𝑥2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

(24)

nd

𝜕2𝑢(𝑥𝑖)
𝜕𝑥2

=
[

𝜑[2]𝑖−1(𝑥𝑖) 𝜑[2]𝑖(𝑥𝑖) 𝜑[1]𝑖+1(𝑥𝑖) 0 0
]

−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2𝑥(𝑥𝑖)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑢(𝑥𝑖−1)

𝑢(𝑥𝑖)

𝑢(𝑥𝑖+1)
𝜕2𝑢(𝑥𝑖−1)
𝜕𝑥2

𝜕2𝑢(𝑥𝑖+1)
𝜕𝑥2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(25)

Similar to finite-difference and finite-element techniques, one will as-
semble these IRBF approximations to construct the global matrices ̃2𝑥
and ̃2𝑦. This task is fairly simple since the grid adopted here is regular.
Expressions for computing derivatives of 𝑢 at the interior grid nodes can
be written as �̃�𝑢

𝜕𝑥 = ̃1𝑥�̃� + �̃�1𝑥 and �̃�2𝑢
𝜕𝑥2

= ̃2𝑥�̃� + �̃�2𝑥. The two vectors
1𝑥 and �̃�2𝑥 are related to the boundary conditions and the imposed
econd derivative values. In a similar manner, one can obtain compact
RBF discretisations for �̃�𝑢

𝜕𝑦 , 𝜕2𝑢
𝜕𝑦2

, �̃�𝑣
𝜕𝑥 , �̃�2𝑣

𝜕𝑥2
, �̃�𝑣
𝜕𝑦 , 𝜕2𝑣

𝜕𝑦2
, �̃�𝑝
𝜕𝑥 and �̃�𝑝

𝜕𝑦 .

.2. Imposition of inner boundary conditions

To impose boundary conditions on the inner boundaries, we use
ome iteration steps which are similar to those in the direct forcing im-
ersed boundary [26,65]. The inner boundary conditions are imposed
5

a

Fig. 4. Points on a segment of the forcing domain D𝐹 of a hole.

by using the term 𝜦 to force the solution in the extended domain D to
match the solution in the real domain D𝑅. At grid nodes that are close
to an inner boundary, the forcing term is defined as

𝜦 =
𝐮𝑑 − 𝐮𝑒
𝛥𝑡

, (26)

where 𝐮𝑑 = (𝑢𝑑 , 𝑣𝑑 ) are the desired values of the velocity when the non-
slip conditions at the inner boundaries are imposed, and 𝐮𝑒(𝑢𝑒, 𝑣𝑒) the
estimated values of the velocity, where the inner boundary conditions
have not been taken into account

𝐮𝑒 = 𝐮𝑛 − 𝛥𝑡
(

𝛁𝑝𝑛 + 𝛁 ⋅ (𝐮𝑛 ⋅ 𝐮𝑛) − 1
𝑅𝑒

𝛁2𝐮𝑛
)

. (27)

To calculate 𝜦, the desired velocities 𝐮𝑑 must be determined in ad-
vance. For boundary points that coincide with the grid nodes (regular
boundary points), one can apply (26) directly with 𝐮𝑑 = 𝐮𝑏, where
𝑏 = (𝑢𝑏, 𝑣𝑏) are given boundary values. Yet, in common, boundary

points do not coincide with the grid nodes and thus 𝐮𝑑 are unknowns.
A new computational scheme to resolve this problem is suggested as
follows.

Imagine that a virtual staircase-shaped frame 𝛤 encloses a 𝑘th hole
s shown in Fig. 2. A region lying between the 𝑘th hole and the
rame 𝛤 is considered to be a forcing domain, denoted by D𝐹 |𝑘, which
s employed to match the estimated solution (in the computational
omain D) with the real solution (in the physical domain D𝑅). In Fig. 2,
𝑝(𝑥𝑝, 𝑦𝑝) are boundary points of the 𝑘th hole (𝐱𝑝 ∈ 𝜕𝑃𝑘), 𝐱𝛤𝑐 (𝑥𝛤𝑐 , 𝑦𝛤𝑐 )
oundary points of 𝛤 , and 𝐱𝑓 (𝑥𝑓 , 𝑦𝑓 ) interior nodes of the forcing zone.
t can be seen that the forcing domain D𝐹 |𝑘 has an irregular shape.
ompact IRBF stencils can work with irregular grids and they are
pplied here. For 𝐱𝑝, the IRBF centres lie on the real boundary of the
th hole, while for 𝐱𝑓 and 𝐱𝛤𝑐 , they are taken at the grid nodes of the
artesian grid representing the extended domain D.

Consider a segment in the 𝑥 direction. A segment can be bounded
y two faces of the frame (Fig. 4a) or by the boundary of the hole and
he boundary of the frame (Fig. 4b). There are two sets of points on

segment. The first set consists of 𝑛𝑑 interior points (regular nodes)
hich are forcing points. The desired values 𝑢𝑑 at the forcing points
𝑥𝑓 =

{

𝑥𝑓 (𝑖)
}𝑛𝑑
𝑖=1) are unknown. The second set is constituted by the two

boundary nodes 𝑥𝑏1 and 𝑥𝑏2. Depending on how a segment is bounded,
the boundary points 𝑥𝑏1 and 𝑥𝑏2 have specific locations. For example,
one has (𝑥𝑏1 ≡ 𝑥𝛤𝑎) and (𝑥𝑏2 ≡ 𝑥𝛤𝑏) if a grid line is bounded by the two
ides of the frame (𝑥𝑏1 ∈ 𝛤 and 𝑥𝑏2 ∈ 𝛤 ), and (𝑥𝑏1 ≡ 𝑥𝛤𝑐 ) and (𝑥𝑏2 ≡ 𝑥𝑝)
f the bounding surfaces are the left side of 𝛤 and the 𝑘th hole (𝑥𝑏1 ∈ 𝛤
nd 𝑥𝑏2 ∈ 𝜕𝑃𝑘).

In Fig. 4, for the segment (𝑎), one can directly apply the IRBF
pproximations (24) and (25). For the segment (𝑏), there are one
nterior grid node (𝑛𝑑 = 1) and one boundary point that is not located
n the global grid nodes. In this case, we employ the following IRBF
pproximations.
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Evaluation of (21) at nodal points 𝑥𝛤𝑐 , 𝑥𝑓 and 𝑥𝑝 results in

𝑢(𝑥𝛤𝑐 )

𝑢(𝑥𝑓 )

𝑢(𝑥𝑝)

⎤

⎥

⎥

⎥

⎦

= 𝜑[0]
|𝑘

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1

𝑤2

𝑤3

𝑐1
𝑐2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (28)

here

𝜑[0]
|𝑘 =

⎡

⎢

⎢

⎢

⎣

𝜑[0]1(𝑥𝛤 ) 𝜑[0]2(𝑥𝛤 ) 𝜑[0]3(𝑥𝛤 ) 𝑥𝛤 1

𝜑[0]1(𝑥𝑓 ) 𝜑[0]2(𝑥𝑓 ) 𝜑[0]3(𝑥𝑓 ) 𝑥𝑓 1

𝜑[0]1(𝑥𝑝) 𝜑[0]2(𝑥𝑝) 𝜑[0]3(𝑥𝑝) 𝑥𝑝 1

⎤

⎥

⎥

⎥

⎦

.

It should be emphasised that the function values at two boundary nodes
are known. One has 𝑢(𝑥𝛤𝑐 ) = 𝑢𝑒(𝑥𝛤𝑐 ) using Eq. (27) and 𝑢(𝑥𝑝) = 𝑢𝑏 using
the given boundary condition.

The coefficients in (28) can then be computed in the form

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑤1

𝑤2

𝑤3

𝑐1
𝑐2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
(

𝜑[0]
)−1
|𝑘

⎡

⎢

⎢

⎢

⎣

𝑢(𝑥𝛤𝑐 )

𝑢(𝑥𝑓 )

𝑢(𝑥𝑝)

⎤

⎥

⎥

⎥

⎦

, (29)

where
(

𝜑[0]
)−1
|𝑘 is the inverse of 𝜑[0]

|𝑘.
Taking (29) into account, the values of the second derivative of 𝑢 in

(19) at the forcing point 𝑥𝑓 are given by

𝜕2𝑢(𝑥𝑓 )
𝜕𝑥2

=
[

𝜑[2]1(𝑥𝑓 ) 𝜑[2]2(𝑥𝑓 ) 𝜑[2]3(𝑥𝑓 ) 0 0
]

(

𝜑[0]
)−1
|𝑘

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
2𝑥|𝑘=

[

𝐷1 𝐷2 𝐷3
]

⎡

⎢

⎢

⎢

⎣

𝑢(𝑥𝛤𝑐 )

𝑢(𝑥𝑓 )

𝑢(𝑥𝑝)

⎤

⎥

⎥

⎥

⎦

.

(30)

r
𝜕2𝑢(𝑥𝑓 )

𝜕𝑥2
= 𝐷2𝑢(𝑥𝑓 ) +𝐷1𝑢(𝑥𝛤𝑐 ) +𝐷3𝑢(𝑥𝑝)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑑2𝑥|𝑘

, (31)

here the last two terms, denoted by 𝑑2𝑥|𝑘, are known as 𝑢(𝑥𝛤𝑐 ), and
(𝑥𝑝) are given.

The IRBF approximations for the derivatives now take into account
he boundary conditions 𝑢𝑏 and they are expressed in terms of nodal
ariable values 𝑢(𝑥𝑓 ). Assembling the obtained matrices on each seg-
ent for the whole forcing domain D𝐹 |𝑘 leads to the following form

or the 𝑘th hole.

𝜕2𝑢𝑑
𝜕𝑥2 |𝑘

= 2𝑥|𝑘𝑢𝑑|𝑘 + 𝑑2𝑥|𝑘, (32)

here 𝜕2𝑢𝑑
𝜕𝑥2 |𝑘

= 𝜕2𝑢(𝑥(𝑖𝑓 |𝑘))
𝜕𝑥2

.

The desired solution 𝑢𝑑|𝑘 and 𝑣𝑑|𝑘 around the 𝑘th hole is then
determined by

𝑢𝑑|𝑘 =
(


|𝑘

)−1 ⎛
⎜

⎜

⎝

(

�̃�𝑛
)

𝑖𝑓 |𝑘 − 𝛥𝑡

(

�̃�𝑛 𝜕𝑢
𝜕𝑥

𝑛

+ 𝑣𝑛 𝜕𝑢
𝜕𝑦

𝑛)

𝑖𝑓 |𝑘

−𝛥𝑡

(

𝜕𝑝
𝜕𝑥

𝑛)

𝑖𝑓 |𝑘

− 𝛥𝑡
𝑅𝑒

(

𝑑2𝑥|𝑘 + 𝑑2𝑦|𝑘

)

⎞

⎟

⎟

⎠

, (33)

nd

𝑣𝑑|𝑘 =
(


|𝑘

)−1 ⎛
⎜

⎜

(

𝑣𝑛
)

𝑖𝑓 |𝑘 − 𝛥𝑡

(

�̃�𝑛 𝜕𝑣
𝜕𝑥

𝑛

+ 𝑣𝑛 𝜕𝑣
𝜕𝑦

𝑛)
6

⎝ 𝑖𝑓 |𝑘
− 𝛥𝑡

(

𝜕𝑝
𝜕𝑦

𝑛)

𝑖𝑓 |𝑘

− 𝛥𝑡
𝑅𝑒

(

𝑑2𝑥|𝑘 + 𝑑2𝑦|𝑘

)

⎞

⎟

⎟

⎠

, (34)

where 
|𝑘 =

(

𝟏 − 𝛥𝑡
𝑅𝑒

(

2𝑥|𝑘 +2𝑦|𝑘

))

. The desired values 𝑢𝑑|𝑘 and

𝑣𝑑|𝑘 are thus derived from the satisfaction of the governing equation in
a forcing domain and the imposition of non-slip conditions at the inner
boundaries 𝜕𝑃𝑘. In a similar manner, one can gather the desired values
{

𝑢𝑑|𝑘
}𝑛𝑝

𝑘=1
and

{

𝑣𝑑|𝑘
}𝑛𝑝

𝑘=1
for 𝑛𝑝 holes.

4.3. Solution procedure

Step 1: Estimate the fluid velocities �̃�𝑒 and 𝑣𝑒 using Eq. (27), where
the inner boundary conditions are omitted.

Step 2: Compute the forcing term 𝜦

�̃� =
𝑢𝑑 − 𝑢𝑒
𝛥𝑡

, (35)

𝛬𝑦 =
𝑣𝑑 − 𝑣𝑒
𝛥𝑡

, (36)

where 𝑢𝑑 and 𝑣𝑑 are obtained by assembling
{

𝑢𝑑|𝑘
}𝑛𝑝

𝑘=1
and

{

𝑣𝑑|𝑘
}𝑛𝑝

𝑘=1
in Eqs. (33) and (34). It is noted that the forcing term is zeros in D⧵D𝐹 .

Step 3: Calculate the velocity fields �̃�∗ and 𝑣∗ by solving the momen-
tum equations (18) with the obtained forcing term 𝜦 in D. To improve
the stability, the diffusion term 𝛁2𝐮 is treated implicitly. It is noted
that �̃�∗ and 𝑣∗ are velocity components which have not satisfied Eq. (1)
et. The pseudo pressure variable is obtained by solving the following
oisson’s equation

𝜕2𝜙
𝜕𝑥2

+
𝜕2𝜙
𝜕𝑦2

)

= 1
𝛥𝑡

(

𝜕𝑢
𝜕𝑥

∗

+ 𝜕𝑣
𝜕𝑦

∗)

. (37)

The velocity variables are corrected by the pseudo pressure gradient
term 𝜙 to satisfy the incompressibility constraint

𝑛+1 = �̃�∗ − 𝛥𝑡
𝜕𝜙
𝜕𝑥
, (38)

𝑣𝑛+1 = 𝑣∗ − 𝛥𝑡
𝜕𝜙
𝜕𝑦
. (39)

For problems with moving inner boundaries, the system matrices can
remain unchanged during the solving process. The above solution pro-
cedure is for the Navier–Stokes equation. For parabolic PDEs (e.g., the
diffusion equation), the proposed solution procedure becomes simpler
as there are no pressure terms involved. Notice that, with one depen-
dent variable, the term 𝜦 in (26) has only one component. For elliptic
PDEs (e.g. the Poisson equation), the elliptic equation is transformed
into a parabolic PDE by adding a pseudo time derivative. For this mod-
ified form, one is interested in the solution that becomes independent
with respect to time.

5. Numerical examples

For all examples studied here, compact IRBF stencils are imple-
mented with the MQ function. The solution accuracy is estimated
through the discrete relative 𝐿2 norm

𝑁𝑒 =

√

∑𝑛𝑖𝑝
𝑖=1(𝑢

(𝑒)
𝑖 − 𝑢𝑖)2

√

∑𝑛𝑖𝑝
𝑖=1(𝑢

(𝑒)
𝑖 )2

, (40)

where 𝑛𝑖𝑝 is the number of interior points in the real domain, and 𝑢(𝑒)

and 𝑢 are the exact and numerical solutions, respectively.
For grid refinement study, the convergence rate of the solution is

measured in the form
𝛼 𝛼
𝑁𝑒(ℎ) ≈ 𝛽ℎ = 𝑂(ℎ ), (41)
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Fig. 5. Example 1 (elliptic PDE in three-hole domain): Forcing point areas used in the
present IRBF-NBFG technique method (bottom) and Peskin interpolation (top).

where ℎ is the average grid size, and 𝛽 and 𝛼 are exponential model’s
parameters that can be found by means of the linear least-squares
method.

5.1. Example 1 - elliptic PDE

The proposed method is first tested with Poisson’s equation

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

= 𝑏(𝑥, 𝑦), (42)

where 𝑏(𝑥, 𝑦) is the driving function. Two domains are considered. A

domain with three holes
Here, we are interested in a square domain, [0, 1]× [0, 1], with three

circular holes of radius 𝑅 = 0.2 and their centres located at positions
(0.65,0.4), (0.4,0.8) and (0.25,0.25) as shown in Fig. 5. The exact
7

Table 2
Example 1 (elliptic PDE in three-hole domain): Solution accuracy ob-
tained by the Peskin interpolation method and the proposed IRBF-NBFG
method for different grid sizes. It is noted that 𝑎(𝑏) represents 𝑎 × 10𝑏.
𝑛𝑥 = 𝑛𝑦 Peskin interpolation Proposed scheme

10 2.56(−1) 7.32(−3)
20 4.42(−2) 8.50(−4)
30 1.76(−2) 1.43(−4)
40 9.43(−3) 5.80(−5)
50 5.86(−3) 2.89(−5)
60 3.99(−3) 1.63(−5)
70 2.08(−3) 1.00(−5)
80 1.72(−3) 6.60(−6)
90 9.09(−4) 4.53(−6)
100 8.09(−4) 1.22(−6)

solution of this example is

𝑢(𝑒)(𝑥, 𝑦) = sin(2𝜋𝑥) sin(2𝜋𝑦), (43)

from which the driving function 𝑏(𝑥, 𝑦) and Dirichlet boundary con-
ditions can be derived in an exact manner. The problem domain
can now be embedded in a square one which is simply discretised
using a uniform Cartesian grid. Both Dirac Delta functions (Fig. 5 -
Top) and RBFs (Fig. 5 - Bottom) are employed here for coupling the
inner boundaries. Table 2 displays the solution accuracy obtained by
the IRBF-NBFG method and Dirac Delta interpolations. The proposed
scheme outperforms the Dirac Delta interpolations with respect to both
convergence rate and accuracy. For example, to reach the accuracy of
8.50× 10−4, the Dirac Delta interpolations need a grid of 90 × 90 while
only 20 × 20 with the IRBF-NBFG method. The proposed scheme yields
a fast rate of convergence, 𝑂(ℎ3.40).

A domain with more than 3 holes
In this case, the driving function is taken to be 𝑏(𝑥, 𝑦) = −1,

and homogeneous Dirichlet boundary conditions are imposed. The
interested domain is a unit square with 9 holes of radius 0.0625.
This example provides a good means of testing the ability of the
IRBF-NBFG method in dealing with problems with multi-hole domains.
It is known that these geometrically-complex-domains can be found
in numerous practical situations such as the thermal conductivity of
composite materials, fluid flows in a porous medium and particulate
suspensions. As the exact solution to this problem is unavailable, the
FEM is also employed here. Fig. 6 displays discretisations used in the
IRBF-NBFG technique and FEM. It can be seen that the pre-processing
process of the present technique is much simpler than that of FEM. We
plot a visual comparison of the contours of the solution 𝑢 between the
IRBF-NBFG technique (a grid of 100 × 100) and FEM (the MATLAB
PDE Toolbox). Figs. 7–8 show the two solutions. Overall, they have
comparable variations. However, the display of the solution near inner
boundaries by the proposed method can be seen to be slightly different
from that by the FEM. The reason for it could be that the IRBF
solution is directly obtained at only the grid nodes that generally do
not lie on the boundaries of the internal holes. In general, for a given
number of points, grid resolutions near inner boundaries by the non-
boundary-fitted-grid methods are typically lower than those by the
boundary-fitted-grid methods.

5.2. Example 2 - Parabolic equation

Here, we are interested in the following parabolic PDE

𝜕𝑢
𝜕𝑡

−
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

= sin(𝜋𝑥) sin(𝜋𝑦)
(

1000𝑒−1000𝑡 + 2𝑘2𝜋2
(

1 − 𝑒−1000𝑡
))

,

(44)

in which 𝑘 is a given value. Fig. 9 shows the problem domain which is
the region between a circle with radius of 1 and three smaller circles
of radius 0.125.
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Fig. 6. Example 1 (elliptic PDE in multi-hole domain): Discretisation by the present
IRBF-NBFG technique (top) and FEM (bottom).

The initial solution, Dirichlet boundary conditions on the inner
circular boundaries and Neumann boundary conditions on the exter-
nal boundary can be computed exactly from the following analytical
solution

𝑢(𝑒)(𝑥, 𝑦, 𝑡) = sin(𝑘𝜋𝑥) sin(𝑘𝜋𝑦)𝑡. (45)

Results concerning 𝑁𝑒 for several time steps and grid densities with
𝑘 = 3 are listed in Table 3. The condition number of the system matrix
is 3.50 × 103 for a grid of 40 × 40 and 5.40 × 103 for 80 × 80. It can be
seen that the proposed IRBF-NBFG technique can accurately capture
the problem solution.

5.3. Example 3: Cylinder-driven flows

Case 1: Rotating cylinder
This test problem is concerned with the simulation of a steady

incompressible viscous flow in an annulus between two concentric
8

Fig. 7. Example 1 (elliptic PDE in multi-hole domain): A contour plot of 𝑢 by the
present IRBF-NBFG technique using a grid of 100 × 100 (top) and FEM (the MATLAB
PDE Toolbox, bottom).

cylinders. The inner and outer cylinders are of circular and square
shapes, respectively. The domain and its discretisation are shown in
Figs. 10 and 11, respectively. The flow is induced by assigning a
constant angular velocity 𝛺 to the inner cylinder. The values of 𝑢 and
𝑣 on the outer wall are simply fixed to zero, while the value of 𝑢 and 𝑣
on the inner wall are set as 𝑢 = −𝛺𝑦 and 𝑣 = 𝛺𝑥.

The problem domain is extended to a rectangular one which is
discretised by uniform Cartesian grids. We treat the diffusion term
implicitly and the convection term explicitly. Furthermore, the first-
order finite-difference scheme is used to discretise the solution with
respect to time. At the initial time (𝑡 = 0), one is required to choose
initial values for all the field variables. An effective way is to use a
lower-𝑅𝑒 solution. For 𝑅𝑒 = 100, the initial values can be set to zero.
Then, the problem solution is computed and updated till a steady-state
is reached.
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Fig. 8. Example 1 (elliptic PDE in multi-hole domain): The variation of 𝑢 by the present
IRBF-NBFG technique using a grid of 100 × 100 (top) and FEM (the MATLAB PDE
Toolbox, bottom).

Fig. 9. Example 2 (parabolic PDE in three-hole domain): A discretisation using a grid
of 50 × 50.
9

Fig. 10. Example 3 (rotating cylinder): geometry.

Fig. 11. Computational domain and its discretisation. It is noted that a real domain
is the region between an inner circular cylinder and an outer square cylinder.

The governing equations (5)–(7) need be solved simultaneously to
determine values of the two components of the velocity and pressure at
grid nodes within the domain. First derivatives of the pseudo pressure
on boundaries are utilised to derive Dirichlet boundary conditions for
Poisson equation (37) [57]. Consequently, all the boundary conditions
are of Dirichlet type. The projection method is employed for solving
fluid variables. The solution procedure involves the following main
steps:

a. Guessing the initial values for the field variables 𝑢, 𝑣 and 𝑝.
b. Discretising equations (5)–(7) with respect to time using a finite-

difference scheme.
c. Discretising equations (5)–(7) with respect to space using compact

IRBF stencils. Because the interpolation matrices are identical
for all the field variables, the matrix establishment process only
need to be carried out once. The system matrices, which in-
clude the IRBF approximations for the first and second derivative
terms in the governing equations, are kept unchanged during the
computational loop.
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Table 3
Example 2 (parabolic PDE in three-hole domain): Solution accuracy obtained by proposed IRBF-NBFG for different time steps and grid sizes. It
is noted that 𝑎(𝑏) represents 𝑎 × 10𝑏.
t 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50 60 × 60 70 × 70 80 × 80

0.01 1.84(−3) 3.16(−4) 9.99(−5) 3.90(−5) 1.92(−5) 1.77(−5) 1.03(−5) 6.01(−6)
0.11 6.35(−4) 7.34(−5) 2.14(−5) 8.88(−6) 5.67(−6) 3.39(−6) 2.00(−6) 1.25(−6)
0.21 6.28(−4) 4.72(−5) 1.36(−5) 6.73(−6) 5.93(−6) 1.98(−6) 1.00(−6) 7.12(−7)
0.31 6.55(−4) 5.19(−5) 1.46(−5) 7.29(−6) 6.36(−6) 1.90(−6) 9.09(−7) 6.84(−7)
0.41 6.73(−4) 5.33(−5) 1.51(−5) 7.52(−6) 6.57(−6) 1.94(−6) 8.89(−7) 7.00(−7)
0.51 6.74(−4) 5.44(−5) 1.53(−5) 7.58(−6) 6.59(−6) 1.89(−6) 8.68(−7) 6.83(−7)
0.61 6.78(−4) 5.43(−5) 1.54(−5) 7.62(−6) 6.63(−6) 1.91(−6) 8.69(−7) 6.92(−7)
0.71 6.76(−4) 5.46(−5) 1.54(−5) 7.62(−6) 6.62(−6) 1.88(−6) 8.64(−7) 6.84(−7)
0.81 6.78(−4) 5.45(−5) 1.54(−5) 7.63(−6) 6.63(−6) 1.89(−6) 8.63(−7) 6.89(−7)
0.91 6.77(−4) 5.46(−5) 1.54(−5) 7.62(−6) 6.63(−6) 1.88(−6) 8.64(−7) 6.86(−7)
c
t

d. Computing the desired values 𝑢𝑑 and 𝑣𝑑 using Eqs. (33) and (34),
respectively.

e. Obtaining the forcing terms 𝜦 by Eqs. (35) and (36).
f. Solving the momentum equations with the obtained forcing term

𝜦 to get �̃�∗ and 𝑣∗.
g. Deriving the boundary conditions for 𝜙 and solving the pressure

Poisson’s Eq. (37) for 𝜙.
h. Correcting the velocity fields in Eqs. (38)–(39) to satisfy the

incompressibility constraint (1).
i. Checking the steady state through the convergence measure (𝐶𝑀)

defined as

𝐶𝑀[.] =

√

∑𝑛𝑖𝑝
𝑖=1

(

[.](𝑙+1)𝑖 − [.](𝑙)𝑖
)2

√

∑𝑛𝑖𝑝
𝑖=1

(

[.](𝑙+1)𝑖

)2
< 𝜖, (46)

where [.] can be 𝑢, 𝑣, or 𝑝, 𝑛 is the number of interior points in the
real domain, 𝑙 the time level, and 𝜖 the tolerance. In this study, 𝜖
is chosen to be 10−10.

he flow is simulated with 𝛺 = 1.0 using a uniform grid of 100 × 100.
everal values of the Reynolds number, including {100, 200, 500, 700},
re studied. For comparison purposes, the stream function and vorticity
ariables can also be derived from solving the following equation

𝜕2𝜓
𝜕𝑥2

+
𝜕2𝜓
𝜕𝑦2

= 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥
. (47)

Results concerning the maximum value of stream function (𝜓𝑚𝑎𝑥) and
vorticity (𝜔𝑚𝑎𝑥) by the IRBF-NBFG scheme and the finite-difference
scheme [71] are displayed in Tables 4–5, showing a good agreement. In
Fig. 12, the variation of the convergence measure 𝐶𝑀 is plotted against
the total number of time steps. It can be observed that the calculation
of high-𝑅𝑒 number flows needs a higher number of steps. Plots of the
velocity vector field and pressure field for the cases of 𝑅𝑒 = {200, 700}
are presented in Fig. 13.

Case 2: Moving cylinder
The second case is the same as the first one, except that the cylinder

is repositioned after a certain number of time steps. The flow geometry
is similar to that in Fig. 10. The cylinder’s radius is 0.1 and the angular
velocity 𝛺 is set to 1. Fig. 14 displays the velocity vector fields for four
𝑦−positions of the cylinder, 𝑦𝑒 = {0.15, 0.1, 0.05,−0.02}, for 𝑅𝑒 = 10.

Case 3: Multiple cylinders
This case is studied to verify the proposed technique in dealing with

fluid flows in geometrically-complex domains. The rotating cylinder
problem is extended to the case of many cylinders which are fixed and
rotated at the same angular velocity. Here, the domain of interest is a
unit square containing 9 circular cylinders of radius 0.02. The cylinders
are located at (0.15,−0.1), (−0.1,0.35), (−0.25,-0.25), (−0.1,+0.1),
(−0.3,0.3), (−0.05,-0.3), (0.35,+0.1), (0.1,+0.3) and (0.3,−0.25). The
discretisation of the IRBF-NBFG technique is similar to that of Example
1 (Fig. 6). Since these radii are uniform, one just needs to update the
10
Fig. 12. Example 3 (rotating cylinders): Iterative convergence. The value of CM that
is defined in (46) becomes less than 10−10 (or the natural logarithm of 𝐶𝑀 is less than
about 23) when the number of iterations reaches 13308, 23659, 53974, and 73086 for
𝑅𝑒 = {100, 200, 500, 700}, respectively. Using the last point on the curves as a positional
indicator, from left to right, the curves correspond to 𝑅𝑒 = {100, 200, 500, 700}.

location of forcing points by an amount of eccentricity (𝑥𝑒, 𝑦𝑒). The pre-
processing for this case is thus quite convenient. We present a visual
distribution of 𝑢 and 𝜓 using a grid of 100 × 100 in Figs. 15 and 16,
respectively.

5.4. Example 4: Buoyancy-driven flows in doubly-connected domains

For this example, buoyancy-driven flows between a heated internal
circular cylinder and a cooled external square enclosure are studied
(Fig. 17). These flows have been widely investigated by both exper-
imental and numerical simulations. For the latter, many numerical
methods were carried out such as FDM (e.g., [72,73]), FEM (e.g., [74,
75]), FVM (e.g., [76,77]), RBF (e.g., [78,79]) and spectral techniques
(e.g., [80,81]).

The governing equations (8)–(11) include one Poisson equation for
the pressure field and three parabolic equations for the velocity and
temperature fields. Similar to Example 3, a Cartesian grid (Fig. 11) is
utilised to discretise the annulus domain. Parameters for the simulation
include an aspect ratio of 𝐻∕𝐷𝑖 = 2.5 (𝐷𝑖: the diameter of the internal
hole and 𝐻 : the length of the external square) and 𝑃𝑟 = 0.71. For
omparison purposes, the stream function can be derived by solving
he following equation

𝜕2𝜓
+
𝜕2𝜓

= 𝜕𝑢 + 𝜕𝑣 . (48)

𝜕𝑥2 𝜕𝑦2 𝜕𝑦 𝜕𝑥
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Fig. 13. Example 3 (rotating cylinder): Velocity vector field (left) and pseudo pressure field (right) for the flow at 𝑅𝑒 = {200, 700}.

Fig. 14. Example 3 (rotating cylinder): Velocity vector field of the viscous flow for the moving cylinder with predefined velocity.
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Fig. 15. Example 3 with 9 rotating cylinders: Velocity vector field.

Fig. 16. Example 3 with 9 rotating cylinders: Stream-function contours.

The local heat transfer coefficient and the average Nusselt number are
determined by ( [77])

𝜃 = −𝑘𝜕𝑇
𝜕𝑛
, (49)

where 𝑘 the thermal conductivity, and

𝑁𝑢 = 𝜃
𝑘
, (50)

where 𝜃 = − ∮ 𝜕𝑇
𝜕𝑛 𝑑𝑠.

Results concerning the maximum value of the stream function
(𝜓𝑚𝑎𝑥) and the average Nusselt number for five values of 𝑅𝑎, namely
{104, 5× 104} (uniform grid of 60 × 60) and {105, 5× 105, 106} (uniform
grids of 84 × 84), with a time step of 0.0001 are presented in Table 6
and Table 7, respectively. For 𝑅𝑎 = 104, the initial solution is set to
12
Fig. 17. Example 4 (buoyancy-driven flows in square-circular annulus): geometry.

Table 4
Example 3 (rotating cylinder): Comparison of the maximum values of the stream
function 𝜓 between the present IRBF-NBFG technique (a grid of 100 × 100) and finite
difference technique for several values of 𝑅𝑒.
𝑅𝑒 100 200 500 700

𝜓

Present 0.4520 0.4546 0.4553 0.4550
FDM ([71]) 0.4656 0.4539 0.4465 0.4423

Table 5
Example 3 (rotating cylinder): Comparison of the maximum values of the vorticity 𝜔
between the present IRBF-NBFG technique (a grid of 100 × 100) and finite difference
technique for several values of 𝑅𝑒.
𝑅𝑒 100 200 500 700

𝜔

Present 1.1154 1.2660 1.3717 1.3937
FDM ([71]) 1.0186 1.2559 1.3430 1.3693

Table 6
Example 4 (buoyancy flows in square-circular annulus): Comparison of the maximum
value of the stream function 𝜓 for 𝑅𝑎 from 104 to 106 between the present technique
and some other techniques.
𝑅𝑎 104 5 × 104 105 5 × 105 1 × 106

𝜓𝑚𝑎𝑥
Present method 1.04 5.13 8.34 19.94 24.29
1D-IRBFN ([46]) 1.00 5.03 8.37 20.00 24.34
MQ-DQ ([82]) 1.00 8.32 24.13
FVM ([77]) 1.02 8.38 24.07

Table 7
Example 4 (buoyancy flows in square-circular annulus): Comparison of the average
Nusselt number, 𝑁𝑢, for 𝑅𝑎 from 104 to 106 between the present technique and some
other techniques.
𝑅𝑎 104 5 × 104 105 5 × 105 106

𝑁𝑢

Present method 3.13 4.23 5.35 7.11 9.30
1D-IRBFN ([46]) 3.22 4.04 4.89 7.43 8.70
DQM [81] 3.24 4.02 4.86 7.53 8.90
FDM [72] 3.33 5.08 9.37
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Table 8
Example 4 (buoyancy flows in square-circular annulus): Comparison of the maximum
stream-function values, 𝜓𝑚𝑎𝑥, for special cases 𝜑 = {−900 , 900} between the present
technique and MQ-DQ technique.
𝑒 0.25 0.5 0.75 0.95

𝜑 −900

𝜓𝑚𝑎𝑥
Present method 17.8 20.75 22.0 22.97
MQ-DQ [82] 18.64 21.29 23.52

𝜑 900

𝜓𝑚𝑎𝑥
Present method 12.7 11.06 10.90 9.57
MQ-DQ [82] 12.39 11.38 10.09

Fig. 18. Example 4 (buoyancy-driven flows): streamlines and isotherms for three
different eccentric configurations.

zero and for higher values of 𝑅𝑎, the initial solution is taken from
the solution at the most next lower 𝑅𝑎. These results agree well
with those in [46,72,77,81,82]. We also consider the shifting circular
boundary, where the centre of the internal cylinder moves inside the
external square. Varying amounts of position of the cylinder centre
(𝑒), {0.25, 0.5, 0.75 and 0.95}, are considered. Results concerning 𝜓𝑚𝑎𝑥
together with those of [82] for 𝑅𝑎 = 3 × 105 are displayed in Table 8.
A good agreement between the results obtained by IRBF-NBFG scheme
and those of the boundary fitted grid methods can be observed. The
streamlines and isotherms of the flow for 𝑅𝑎 = 3 × 105 using a grid of
13
Fig. 19. Example 4 (buoyancy-driven flows): Isotherms and velocity vector fields for
three different sizes of the inner cylinder.

60 × 60 are plotted in Fig. 18. Each plot comprises 24 contour lines
which have levels varying linearly from the lowest to highest values.
We also study flow fields for different sizes of the inner cylinder. Fig. 19
shows the distribution of the temperature and velocity vector fields
for 𝐻∕𝐷𝑖 = {5, 2.5, 1.67} at 𝑅𝑎 = 106. It can be seen that the present
IRBF-NBFG results are in good agreement with those presented in [82].

6. Concluding remarks

In this work, a new non-boundary-fitted-grid method is reported.
Compact integrated RBF stencils are utilised to discretise the field vari-
ables on the computational domain, and the forcing terms are directly
estimated from the local satisfaction of the governing equations. Unlike
other immersed boundary methods, no interpolation between Lagrange
and Euler meshes is required here. The proposed method is successfully
verified in several practical problems. Numerical results show that a
high convergence rate is achieved and the matrix condition number is
relatively low. These attractive features together with the advantages
of using non-boundary-fitted grids allow an efficient scheme to be
developed for simulating 2D and 3D flows of complex structure fluids
such as particulate flows.
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