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Problem set 7

Oleksiy Yevdokimov
University of Southern Queensland

<oleksiy.yevdokimov@usq.edu.au>

Solutions to this set of problems for publication should be submitted to:
Oleksiy Yevdokimov, Department of Mathematics and Computing, 

University of Southern Queensland, Baker Street, Toowoomba, QLD 4350 
or by email to yevdokim@usq.edu.au.

Solutions to this set will be made available on the AAMT website (www.aamt.edu.au) after 1 October 2011.
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The purpose of the section is to provide teachers and students with inter-
esting problems. The topic of this issue is equations that are solvable/not

solvable over integers. Such equations are called Diophantine equations in
the honour of Diophantus who studied them many centuries ago. One of the
famous equations that can be traced back to the Greeks (Theon of Smyrna)
is an equation of Pell type. 

It was Euler who controversially attributed the study of non-trivial solutions
of the equation x 2 – Dy = 1, where D is a positive integer and not a perfect
square, to John Pell whose 400 year anniversary since his birth took place on
the 1 March 2011. The equation x 2 – Dy = 1 which appeared in Rahn (1659)
was certainly written with Pell’s help. Some historians assume it was written
entirely by Pell (Scriba, 1974). Perhaps Euler knew what he was doing in
naming the equation. The general solution to Pell’s equation was first
obtained by Lagrange who presented a number of papers on this topic to the
Berlin Academy between 1768 and 1770. 

One more famous equation is Archimedes’ problema bovinum (cattle
problem) posed as a challenge to Apollonius, which took until the twentieth
century before a complete solution was found (Gelca, & Andreescu, 2007).
Questions in the problem set below are less famous. However, a four of these
were considered by Euler consideration over 200 years ago. 

[Problems 1–4 from Euler]
1. Find all triples (x, y, z) of positive integers such that x – y, x + y, x – z, 

x + z, y – z, y + z are perfect squares.
2. Prove that the equation x 3 + y 3 + z 3 = t 2 has infinite number of solutions

over integers.
3. Prove that the equation x 2 + y 3 + z 4 = t 2 has infinite number of solutions

over integers..
4. Solve in integers x 2 + y 2 = zn where n > 1 and x, y are relatively prime.
5. Solve in positive integers x 2 + y2 = 1997(x – y).
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