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Abstract This paper presents improved ways of constructing compact integrated radial
basis function (CIRBF) stencils, based on extended precision, definite integrals, higher-order
IRBF's and minimum number of derivative equations, to enhance their performance over large
values of the RBF width. The proposed approaches are numerically verified through second-
order linear differential equations in one and two variables. Significant improvements in the
matrix condition number, solution accuracy and convergence rate with grid refinement over

the usual approaches are achieved.
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1 Introduction

Radial basis functions (RBFs) have become one of the main fields of research in numerical
analysis. It is theoretically proved that RBF networks having one hidden layer are capable
of universal approximation [22]. They can represent an arbitrary continuous function within

an arbitrarily small error bound. The application of RBFs for the numerical solution of
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ordinary/partial differential equations (ODEs/PDEs) has received a great deal of attention.
In RBF methods, the field variables/their derivatives are represented by linear combinations
of RBFs, while the differential equations can be discretised by means of point collocation

6,7,23,26,9,8,21], subregion collocation [20,16], weak form [30,15] or inverse form [19].

Several types of RBFs contain a free parameter. This class can exhibit an exponential rate
of convergence with the number of RBFs and the RBF’s width [11]. One of the most widely

used RBFs is the multiquadric (MQ) function defined as

where c¢; and a; are the centre and width of the ith MQ), or

Gi(x) = Ve(x—c)l(x—c;) + 1 (2)

where ¢; is the shape parameter. The M(Q function becomes increasingly flat when a; — oo

or ¢, — 0.

RBF approximations for the field variable and its derivatives can be constructed through
the differentiation (DRBF) [6] or integration (IRBF) [13,24,10,7,25] process. The latter was
developed with the aim of avoiding the reduction in convergence rate caused by differen-
tiation. It was also found that integration constants provide effective mechanisms for the
implementation of multiple boundary conditions [12] and compact approximations [27], and
the enhancement of continuity order of the approximate solution across subdomain inter-
faces [14]. Numerical experiments indicated that IRBFs converge faster, but produce the

interpolation matrix with larger condition number than those by DRBF's.

When all RBF's are employed for the approximation at a point, the RBF method is regarded
as a global method. It is easy to implement global RBF methods since no mesh (i.e. no
connection between nodes) is involved. A highly accurate solution is typically obtained. On
the other hand, the system matrix is fully populated and as a result, only a relatively low
number of nodes can be employed in practice. Global approximations can work with small

values of a; only, typically the minimum distance between the ith RBF and its neighbours.



When only a few RBF's are activated for the approximation at a point (local approximation),
there is a significant improvement in the matrix condition number but the solution accuracy
is significantly reduced. The latter can be overcome by using compact approximations, where
the approximation involves nodal values of not only the field variable but also its derivatives
28,29,31,17,27]. With compact RBF approximations, high levels of the solution accuracy
and sparseness of the system matrix can be achieved together. They are capable of providing
a very efficient solution to a differential problem. In contrast to global RBF methods, larger
values of a; can be employed here. It was shown in [3,2] that the RBF approximation is more
accurate when a; is increased (or ¢; is reduced) and the most accurate approximation occurs
before a; approaches infinity (or ¢, — 0). Furthermore, in the limit of ¢, — 0, the RBF
approximation for a set of centres in one dimension reduces to the Largrange interpolating
polynomial on that set of nodes [1]. Numerical experiments indicated that the interpolation
matrices for local RBF and compact RBF stencils at large values of the RBF width are
ill-conditioned and special treatments are needed. Effective treatments for compact RBF
Hermite interpolation schemes (differentiated) were reported in, e.g. [31], where the Contour-
Pade algorithm is employed. This work presents several simple but effective approaches to

extend the working range of a; for compact integrated RBF approximations.

The paper is organised as follows. A brief overview of CIRBF stencils is given in Section 2.
In section 3, some numerical investigations are conducted to identify numerical issues due
to the use of large values of a;. In section 4, improved constructions for CIRBF stencils to
extend the working range of a; are presented and then numerically verified in analytic tests.

Section 5 gives some concluding remarks.

2 Compact local integrated RBF stencils

Consider a 3-point stencil [x1, z9, 23]. On the stencil, the second derivative of the dependent

variable u is decomposed into

d2u(CL‘) _ Z wZGl(:c) (3>



where {G;(z)}?_; is the set of RBFs and {w;}?_, the set of weights to be found. In one
dimension, the multiquadric (MQ) function takes the form G;(x) = /(x —¢;)? + a?. We
choose the width according to a; = fd;, where § is a scalar and d; is the smallest distance

between ¢; and its neighbours.

Its first derivative and function are then obtained through integration

Zw, i —I— Ch (4)

Z w;H(z) + Ciz + Cy (5)

where H;(z) = [ Gi(x)dz and H;(z) = [ H;(z)dx are integrated basis functions and C; and

C5 the constants of integration.

For compact approximations, nodal values of the derivative (or the differential equation) at
the side nodes of the stencil are also incorporated in the process of converting the RBF space
into the physical space. Assuming that the differential equation takes the form d*u(z)/dz? =

f(z) (f(z) is a prescribed function), the mapping can be constructed as

Uy Hi(z1), Hs

x1), Hs(xi), 1, 1 wq

, L2, 1 W

d?u
e Gi(z1), Ga(x1), Gs(z1), 0, O Ch
d?u;
e Gi(z3), Ga(xs), Gs(zs), 0, O Cy

where C is a 5 x 5 matrix that will hereafter be called the conversion matrix. Solving (6)

leads to
wy Uy
% U2
_ C— 1 (7)
w3 - us
d?u
(jl dx;
d?us
(72 dz2




The second derivative of function u at the middle node is thus computed as

d2
T2 [G1(x2), Ga(x2), Gs(x2),0,0]C" <U1=U2,U3,

dx?

d2u1 d2U3> T

dx?’ dx?

or

d2U2 + i + d2U1 + d2U3 (9)
= mu u u —
dp2 IRty T sts T e T

where d?uy/dx? = f(x1), d*us/dz® = f(xs) and {n;}7_, are known values. In the case
of Dirichlet boundary conditions and the domain represented by a set of N mnodes, the

collocation of the differential equation at the interior nodes results in the following system
%
Ad = b (10)

where A is the system matrix of dimensions (N — 2) x (N — 2), i the vector consisting of
%

values of u at interior nodes and b the vector formed by the RHS of the differential equation

and the boundary conditions. Like the central finite-difference method, the structure of A

is tri-diagonal and the system can be efficiently solved for the nodal variable values.

3 Numerical investigation

We apply the CIRBF solution procedure to the following second-order ODE

d2
d—z = —exp(—Hz) (9975 sin(100x) + 1000 cos(100z)), 0<z <1 (11)
x

subject to Dirichlet boundary conditions. The exact solution can be verified to be
ue(x) = sin(100x) exp(—5x) (12)

and is displayed in Figure 1.

Two 3-point stencils, IRBF and compact IRBF (CIRBF), are implemented. The two system
matrices have the same structure (tri-diagonal), but as shown in Figure 2 the latter is much

more accurate than the former. The RBF solution converges as O(h*™) for CIRBF and



O(h'9) for IRBF, indicating that the inclusion of nodal second derivative values significantly

enhances the performance of local IRBF stencils.

Figure 3 shows variations in the condition number of the conversion and system matrices
against the MQ width represented by [ for a fixed grid size (N, = 1001). For the system
matrix A, the condition number is rather low (O(10°)) and it has similar values over a wide
range of 4. In contrast, the condition number of the conversion matrix C grows fast at a
rate of 4.5 and the matrix becomes ill-conditioned at large values of 5. Therefore, in using
CIRBF stencils, attention should be paid to the handling of matrix C' resulting from flat

MQ functions.

4 Improved constructions for CIRBF stencils

Below are several treatments proposed to stably compute C at large values of (.

4.1 Approach 1: Extended precision

As shown in [3], by constructing the RBF interpolation with the Contour-Pade algorithm,
the numerical solution still behaves stably when the basis functions become increasingly
flat. The trade-off between accuracy and stability, which was reported widely in the RBF
literature, is due to the use of finite (double) precision in computation. In this regard, the
employment of higher precision is expected to improve the stability of the RBF solution,
which was verified in [4,5]. Our program is written in Matlab and we employ function vpa
(variable-precision arithmetic) to increase the number of significant decimal digits from 16 to
50 in constructing the conversion matrix C and computing its inverse. Higher computational
cost is required. On the other hand, as shown in Figure 4, the IRBF solution is stable at
large values of § and the optimal value of 3 is also clearly detected. It is noted that (i) by
defining a stencil on the unit length, one may need to compute the inversion of the conversion
matrix once and the result can be applied for any grid size to be employed; and (ii) in the

present code, parts other than the computation of C are carried out using double precision,



and numerical results indicate that the same level of accuracy is obtained as in the case of

using extended precision for the entire computation.

4.2 Approach 2: Definite integral

We propose to compute the integrals in their definite form rather than indefinite in con-
structing the conversion matrix C. The advantage of this approach is that the size of C is

reduced from 5 x 5 to 3 x 3, and the numerical stability is thus expected to be improved.

The integrals in (4)-(5) can be rewritten as

du - Z/wz

= sz [Hi(x) — Hi(z1)] (13)

- sz’ [Hi(w) — Hi(1) — (¢ — 21) Hi(2:1)] (14)

Letting HY(x) = H;(x)—H;(z1), F? = H(z)—H;(z))—(x—z1)H;(21) and v'(z) = du(z)/dx,

expressions (13) and (14) reduce to

—uy = ZwZHd (15)
( ) — Uy — .CL’ — I ul sz_d (16)

Our objective now is to express the weights wy, wy and ws in terms of uy, ug, us, v} and uj.

The conversion system is generated by collocating the function expression (16) at x = x9



and x = x3, and the second-derivative expression (3) at = a4

up —up — (22 — 21)uj Hy(1), Hy(w1), Hy(x1) wy
—d —d —d
us —uy — (x3 —a)uy | = | Hi(za), Hy(xz), Hs(2) Wy (17)
uyf Gi(r1), Ga(z1), Gs(r) w3
c
Solving this system for the weights yields
w1 Ug — U1 — (213'2 — 1’1>U/1
wy | =CT | ug — g — (w3 — @) (18)
ws uf

A next step is to incorporate v} into the vector on the RHS of (18). We first collocate the

second-derivative expression (3) at x = x3

U — uy — (xg — 1))
uf = [G1(w3), Ga(ws), Gs(23)] C™ | g — iy — (25 — 7)1 (19)

"
Uy

and then solving this equation for u}. Making substitution into the RHS of (18), the mapping

of the RBF space into the physical space takes the form

Uy
w1 U2
wy, | =C'T | wuy (20)

d%uy
dz?
d%us
dz?

w3

where C is of dimension 3 x 3 and 7T is of 3 x 5, which is constructed using results from

solving equation (19).

Figure 5 concerning the conversion matrix C shows a significant improvement in the condition
number of the present definite-integral approach over the usual indefinite-integral approach.

The former grows as O(3%®) only while the rate of the latter is much higher, up to 6.32.



Figure 6 indicates that the present approach makes the solution accuracy significantly less

fluctuating over large values of 5.

4.3 Approach 3: Higher-order IRBF approximations

The MQ function G; (x) is now integrated 4 times (IRBF4) instead of twice (IRBF2). Let
= [ H;(z)dx, Hi(z = [ H;(x)dz and H;(z =/ H;(z)dz. We employ the integrated

basis function H;(x) instead of G;(z) to approximate the second-order derivative

du
%_;wz i(z) + C (22)
3 ~
u:ZwZH( )+ Ciz + Cy (23)
i=1
where H f H x)dx and H f H

It was reported in [24] that the matrix condition number of IRBF4 is higher than that
of IRBF2. However, with only three RBFs involved, the trend is reversed. As RBFs are
integrated, the corresponding interpolation matrix has a lower condition number, particularly
over a large range of § (Figure 7). When second-derivative values are added, as shown in
Figure 8, the observation is similar. CIRBF4 is more stable than CIRBF2. This interesting
property of higher-order IRBFs with 3 centres will be utilised here to construct compact

IRBF stencils.
The conversion system in this approach is formed as

x1), &1, 1 w1

Za), T2, 1 W

&u -7 -7 -7
el Hy(x1), Ho(x1), Hs(x1), 0, 0 Gy
du -7 - -7

dw23 L Hl x3), H2 x3), H3 x3), Oa 0 | C12




It can be seen from Figure 9 that, for a given §, a much more stable solution is obtained
with the present approach as the grid size is reduced. At a very small grid size, the present
approach is much more accurate and more stable over a large value range of g than the usual

approach (Figure 10).

These improved 3-point CIRBF stencils can be extended to construct 5-point stencils for
solving problems in two dimensions. The implementation process is exactly the same as that
presented in [18]. For elliptic PDEs, the algebraic system, where each row has 5 non-zero
entries, can be solved iteratively using a Picard scheme. For parabolic PDEs, systems of
tridiagonal equations can be formed and solved efficiently with Thomas algorithm. It requires
that the problem domain is represented by a Cartesian grid (not by a set of scattered points).
Thus, for non-rectangular domains, the discretisation is still based on Cartesian grid but with

non-uniformly-spaced stencils.

Consider Poisson equation (32) defined on a non-rectangular domain (Figure 11) and sub-
jected to Dirichlet boundary conditions. The exact solution is chosen to be ul®(x,7) =
exp(—(x —0.25)? — (y — 0.5)?) sin(7x) cos(27y). The problem domain is embedded in Carte-
sian grid, where the interior nodes are grid nodes inside the domain and the boundary nodes
are the intersections of the grid lines and the boundary. Figure 11 also shows that as the
RBF width increases, the present construction of CIRBF approximations results in a much

more accurate and stable solution than the usual approach.

4.4 Approach 4: Separate construction in each direction and min-

imum number of derivative equations

This approach is developed for CIRBF stencils based on two-dimensional approximations.
In this section, new compact 9-point IRBF stencils are constructed. Unlike our previous
work [17], the conversion process of the RBF space into the physical space is now conducted

independently in each direction, where the size of the conversion matrix is reduced about

10



half. Below is a schematic diagram 9-point stencil associated with node (3, j)

X3 Xg X9
Xy X5 Xg

X1 Xg Xy

The nodes are locally numbered from left to right and from bottom to top, where node (i, )
is located at the centre (i.e. (i,j) = node 5). In the z direction, the process of approximating

the field variable and its derivatives starts with

aux y sz (25)

where G;(z,y) = v/[r — (¢;).]> + [y — (¢1), ]2 + a2. Integrating (25) once and twice yields

Zw, (z,y) + Ci(y) (26)

sz (2.) + 2Ci(y) + Caly) (27)

where C and Cj are functions of y. It was shown in [17] that the most accurate approxima-
tion is achieved when the derivative values incorporated in the conversion system are taken

at nodes 2, 4, 6 and 8. We follow this strategy in the present construction.

The conversion system is formed as

o H i 8)
H =
2y K c
—_———
clz]

11



where C[* is the conversion matrix;

X1)y FQ(Xl)a €y, Oa O> ]-> 0? 0
sy T, FQ(X2>7 07 T2, 07 07 17 0
x3), -, Hilxz), 0, 0, x5 0

, L4, Oa 07 ]-7 Oa 0

5

—~ —~ —~ —~ —~ —~ —~ —~ —~
&

S~— SN— N— SN— N— SN— SN— N— SN—
=

(x4)
(xs)
Fl X6), 5 FQ(XG)a 07 Oa Ze, ) Oa 1
Hl X7), ) FQ(X'?)v X, 07 07 17 07 0
Fl Xs ), s Fg(Xg), O, xrs, O, O, 1, 0
Fl X9 ), s FQ(XQ), O, 0, Zg, O, 0, 1
and
o o
Pu

are derivative equations. We observe that using a larger number of derivative equations can
lead to a more accurate approximation but also increase the condition number of C. We

investigate the following two typical cases:

1. Case 1: two derivative equations

—_
82U . (82U2 82u8)T

Ox? Ox?’ Ox?
K= GI(X2)7 R GQ(X2)7 07 R 0
GI(X8)7 R GQ(X8)7 07 ) 0

12



2. Case 2: four derivative equations

—
82u . (82u2 82U4 82U6 82u8)T

Ox? 0x?’ 0x?’ 922’ 0x?
[ Gi(x2). -, Go(xz), 0, . 0
o Gi(x4), -+, Go(x4), 0, , 0
Gi(xg), -+, Go(xg), O, , 0
| Gi(xs), -+, Go(xs), O, , 0
One can compute §%u/dx? at node 5 as
Pus 1 %} !
5oz = [G1(%5), -+, Go(x3),0, -+, 0] (cl) (7@> (29)
The approximation in the y direction can be derived in a similar fashion
0%us —1 %) !
g7 = (G100) -+ Galxs), 0, 0] (V) (7 a—y2> (30)

where

—
9*u B Puy Pug r
oy \ oy?’ Oy?

for the case of two derivative equations, and

—
@ . 02U2 82’&4 02u6 82’&8 r
Oy \ 0y?’ Oy?’ Oy?’ Oy?

for the case of four derivative equations.

At each interior node, there are 3 unknowns, namely u, 0*u/0x? and 0*u/0y*, and one
can also establish 3 independent algebraic equations derived from collocating the differential

equation
Pu 0u

dx% " 92

= f(z,y) (31)

and applying the CIRBF equations of second derivative in the z (i.e. (29)) and y (i.e. (30))

direction at the interior node.

We employ an iterative procedure to reduce the number of unknowns from 3 to 1. Substi-

13



tuting (29) and (30) into (31) and then collocating the obtained equation at node 5 leads to

the following algebraic equation, e.g. for the case of two derivative equations,

9 _ _
a2uf 1 82uf 1
E piui = fs + E %’W‘F E )\iT]ﬂ (32)
=(2.8)

i=1 i=(4,6)

where the superscript k is used to denote the present iteration. The solution procedure is as

follows.

1. Guess a distribution of the field variable w;
2. Compute second derivatives at grid nodes using equations (29) and (30).

3. Collocate (32) at the interior grid nodes, impose the prescribed boundary conditions
and solve the obtained system of equations. Note that the system matrix is sparse as

each row contains only 9 non-zero entries.

4. Check the convergence of the iterative procedure

_1\2
CM:\/Z(U%_U?J'I) < 10-12

5. If not, relax the solution and then go back to step 2

ufj = auﬁj +(1- oz)uf’]fl

where « is the relaxation factor (0 < o <'1)

6. If yes, stop and output the solution

Consider Poisson equation (32) defined on 0 < z,y < 1 and subjected to Dirichlet bound-
ary conditions. The exact solution is chosen to be ul®(z,y) = exp(—(z — 0.25)2 — (y —
0.5)%) sin(7z) cos(2ry). Using a grid of 37 x 37 and 8 = 35, the iterative scheme reaches
OM = 10~'2 with 314 iterations for o = 0.1, 95 for a = 0.3, 51 for o = 0.5, 31 for a = 0.7
and 14 for a« = 1. The larger the value of « the faster the convergence will be. It is noted

that the present iterative scheme can work with the largest value of . In (32), the values of

14



second derivative at the side nodes of the stencil are imposed. Alternatively, one can impose

the differential equation by making the following replacements

(agu)k—l . f (agu)k—l (82U)k_1 . f (82U)k_1
) i—1,7 a o ) a 9 i+1,7 )
Ox? i—1,j dy? i—1,j Ox? i1, dy? i+1,

(aQU)k—l . f (aQU)k—l (agu)k—l . f (agu)k—l
= ii-1— | 55 ) 5 i1 — | 7=
dy? i1 dx? i1 dy? ij+1 Oz ij+1

Numerical results indicate that the imposition of PDE rather than second derivatives results
in a much faster convergence of the iterative scheme. For example, for a = 0.5, the number

of iteration is reduced from 51 to 34 as shown in Figure 12.

Figure 13 shows the effect of the MQ width represented by 3 on the condition number of
matrix C and the solution accuracy for a given grid size. Reducing the number of derivative
equations leads to a much stable calculation over large values of . At 8 = 38, the condition
number of matrix C by using two derivative equations is about 6 orders of magnitude lower
than the case of 4 derivative equations. The former produces highly accurate solutions at
large 3. The optimal value of /3 is clearly detected; the corresponding error Ne is 1.02x 107,
When £ is small (i.e. 8 < 10), it can be seen that the matrix C is well conditioned and using
more derivative equations results in a better accuracy. Note that at large values of 3, better
accuracy is also obtained with the case of more derivative equations if extended precision is

employed.

Figure 14 shows the effect of the grid size on the matrix condition number and the solution
accuracy at a large value of . By constructing CIRBF approximations on a stencil defined
on [0,1] x [0, 1], the conversion matrix C is independent of the grid size. It can be seen
that the condition numbers of C by the use of 2 and 4 derivative equations differ by 6
orders of magnitude for all grid sizes. However, the matrix A is well-conditioned for the
two cases, where their condition numbers all grow slow at the rate O(h=2%). The solution
converges as O(h*!?) for the case of two derivative equations and only O(h*3!) for the case of
4 equations. At small values of h, the solution by the former is highly accurate with its error
Ne being reduced to O(107?). The solution accuracy for the case of 4 derivative equations
is significantly improved when extended precsion is used; it produces greater accuracy than

the case of 2 derivative equations.
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5 Concluding remarks

This paper shows that by taking appropriate ways of constructing the approximations in the
process of converting the RBF space into the physical space, compact local integrated RBF
stencils based on one- and two-dimensional approximations are capable of producing a stable
solution over large values of the RBF width. Four approaches, based on extended precision,
definite integrals, higher IRBF approximations and minimum number of derivative equations,
are presented and numerically verified. For differential problems with smooth solutions, much
more stable calculations and highly accurate results over the usual approaches are obtained.
Each approach has its own strengths and weaknesses. Better accuracy and stable solution are
achieved with extended precision at the expense of higher computational costs and the need
for specialized computational tools such as function vpa in Matlab. However, in the case of
uniform grids, by defining stencils on the unit length (1D) and the unit square (2D), one
may need to compute the inversion once and then store/apply for any grid to be employed.
The other approaches, which are simple and easy to implement, are capable of making the
working range of the RBF witdth much larger. Their computational costs are relatively low.
This works further shows a great potential of compact RBF stencils in solving differential

problems.
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Figure 1: Second-order ODE, u.(x) = sin(100z) exp(—5z): Exact solution. The function is
smooth and varies significantly over the domain. Such a variation requires a relatively large
number of nodes for an accurate interpolation.
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Figure 2: Second-order ODE, 3-point stencil, 0 < z <1, 91 < N, < 601, § = 20: Solution
accuracy by IRBF and CIRBF. The solution converges as O(h'%) for IRBF and O(h*™)
for CIRBF. Note that the 3-point stencil is constructed on a unit length.
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Figure 3: Second-order ODE, 3-point stencil, 0 < x < 1, N, = 1001: Condition numbers
of the system matrix A and conversion matrix C' as functions of g representing the RBF
width. When f increases, the growth rate is about 4.46 for cond(C') and 0.00 for cond(A).
Note that the 3-point stencil is constructed on a unit length.
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Figure 4: Second-order ODE, 3-point stencil, 0 < x < 1, N, = 1201: Solution accuracy by
using double precision and extended precision (50 digits) in constructing and computing the
conversion matrix.
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Figure 5: 3-point stencil, N, = 3: Condition number of conversion matrix C' computed
through indefinite integrals, resulting in a matrix of 5 x 5 and through definite integral,
resulting in a matrix of 3 x 3. The matrix condition number grows as O(/3%3?) for the former
and O(33%8) for the latter.
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Figure 6: Second-order ODE, 3-point stencil, 0 < x < 1, N, = 1201: Solution accuracy by
the two methods (indefinite and definite integrals) of constructing matrix C'.
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Figure 7: 3-point stencil: Condition numbers of the interpolation matrix generated by RBF,

IRBF2 and IRBF4.
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Figure 8: 3-point stencil, indefinite integral, N, = 3: Condition numbers of the interpolation
matrix generated by compact IRBF2 (indefinite integral) and compact IRBF4.
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Figure 9: Second-order ODE, 3-point stencil, 0 < =z < 1, § = 50, N, = (51,53,---,901):
Solution accuracy against the grid size by CIRBF2 (indefinite integral) and CIRBF4. For
the latter, the solution converges as O(h*%).
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Figure 10: Second-order ODE, 3-point stencil, 0 < x < 1, N, = 1201: Solution accuracy by
CIRBF?2 (indefinite integral) and CIRBF4.
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Figure 11: PDE, non-rectangular domain: Cartesian grid for non-rectangular domain, where
the boundary nodes are the intersections of the grid lines and the boundary; and solution
accuracy by using double precision and extended precision (50 digits) in constructing and
computing the conversion matrix, where 81 x 81 grid lines are employed.
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Figure 12: PDE, 37 x 37, 8 = 35, a = 0.5, 2 derivative equations: Imposition of PDE
converges faster than imposition of second derivatives.

31



18

10 : : : ——
1016 | n
—6— four derivative equations
—+&— two derivative equations
14
107 B
O 142
o 107 B
S
S
c
c 1010 | ]
Q
=
ie]
S 8
10" | B
©)
10° + .
10" + .
102 0 ‘ ‘ ‘ ‘ ‘ ‘ — 1 ‘ ‘ ‘ ‘ ‘ ‘ — 2
10 10 10
1072 w w w T ‘ ‘ ‘ ———
s —6— four derivative equations (double precision) |
—<— four derivative equations (extended precision)|
—H&— two derivative equations (double precision)
10°F :
[
=z 10 ¢ ]
10°F e
1076 0 ‘ ‘ ‘ ‘ ‘ ‘ — 1 ‘ ‘ ‘ ‘ ‘ ‘ — 2
10 10 10

Figure 13: PDE, g = (2,4,6,---,38), 31 x 31, a = 0.7: Condition number of C and
solution accuracy against the MQ width represented by [ for two cases: four and two
derivative equations. The 4 derivative equation case becomes unstable as [ is increased.
The fluctuation at large values of 3 is overcome by using extended precision or reducing the
number of derivative equations.
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Figure 14: PDE, 5 x 5,7 x 7,---,61 x 61, = 35, a = 0.7: Condition numbers of C and
A, and solution accuracy against grid size for two cases: four and two derivative equa-
tions. The solution converges as O(h*37) for the former and O(h*4!) for the latter. The 4
derivative equation case is much less accurate due to the fact that its associated matrix C
is ill-conditioned; by using extended precision, its performance becomes superior to the case
of using 2 derivative equations.
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