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Abstract— Linear bilevel programming has been studied for 
many years and applied in different domains such as 
transportation, economics, engineering, environment, and 
telecommunications. However, there is lack of attention of the 
impacts on dynamic decision making with abrupt or unusual 
events caused by unpredictable natural environment or human 
activities (e.g. Tsunami, earthquake, and malicious or terrorist 
attacks).  In reality these events could happens more often and 
have more significant impacts on decision making in an 
increasingly complex and dynamic world. This paper addresses 
this unique problem by introducing a concept of Virtual Follower 
(VF). An extended model of bilevel multi-follower programming 
with a virtual follower (BLMFP-VF) is defined and the kth-best 
algorithm for solving this problem is proposed. An example is 
given to illustrate the working of the extended model and 
approach. 

Keywords— Bilevel programming, virtual follower, kth-best 
approach, decision making. 

I.  INTRODUCTION  
Bilevel programming (BLP) techniques have been 

developed to solve decentralized optimization problems [1]. In 
a classical BLP model, there are two hierarchical classes of 
decision makers. The upper-level is termed as the leader and 
the lower-level is termed as the follower. The control for the 
decision variables is shared amongst the players who seek to 
optimize their individual objective functions. It is assumed that 
perfect information sharing is available for all the players.  The 
leader attempts to optimize his objective function given the 
assumption that the leader anticipates all possible responses of 
its followers. The follower observes the leader’s decision and 
reacts in a way that is to optimize his personal objective 
function. Because the set of feasible choices available to all 
players is interdependent, the leader’s decision affects the 
follower’s objective function and allowable actions, and vice 
versa. 

Although bilevel programming were initiated by Von 
Stackelberg [1] back in the early nineteen fifties, it was not 
drawn much attention until the mid-seventies and the early 
eighties, which were motivated by the increasingly complex 
real world problems in the processes of hierarchical decision 
making and engineering design [2-6]. Since then, bilevel-

programming techniques have been applied in different 
domains such as transportation [7], decentralized resource 
planning [8], electronic power market [9], and 
telecommunications [9].  However, even though with the recent 
advances in bi-level programming, its theoretical foundation 
remains unsatisfactory and incomplete. Due to the intrinsically 
complex nature of bilevel programming problems, it is not 
surprising that the vast majority of theoretic work to date has 
been depending on the simplified version of the real-world 
problems [10]. We observed that, in the previous research, 
there is lack of attention of the impacts on dynamic decision 
making with abrupt or unusual events caused by unpredictable 
natural environment or human activities (e.g. Tsunami, 
earthquake, and malicious or terrorist attacks).  In reality these 
events could happens more often and smart decision making 
are becoming more critical in an increasingly complex and 
dynamic world.  

One typical example of such case is in telecommunications. 
In reality, wireless communications and Internet environment 
have becoming increasingly dynamic and vulnerable. 
Computer network management in terms of Quality of Service 
(QoS), reliability and security are crucial for the smooth 
operations of our modern society. The complex network 
management can be complicated by unexpected events caused 
by unpredictable natural environment or human activities (e.g. 
Tsunami, earthquake and malicious attack). These events or 
accidents may introduce huge surge of network traffic, bring 
very negative impacts to user experience, and even make the 
network paralyze. In these scenarios, the malicious Internet 
user or a cluster of abrupt Internet users has distinct behavior 
from ISPs (Internet Service Providers) and any other normal 
users.  

Bilevel programming optimization has been extended to 
telecommunications and Internet services [15] with the 
deregulation of Internet service providers and the rapid growth 
of mobile multimedia applications.  In recent years, the Internet 
traffic has increased exponentially with the increasing 
proliferation of different kinds of attractive smart phones and 
handhold mobile devices and their innovative content-rich 
bandwidth-hungry applications. For examples, Internet-based 
radio/television broadcasts, video conferencing, video 
telephony, real-time interactive and collaborative work 



environments, and video on demand. There is clear limitation 
of the pure optimization approach in the telecommunications 
and Internet industries with respect to routing, resource or 
quality of service allocation and pricing. The management 
decisions on routing strategy, allocation, or price choices of 
one Internet service provider (ISP) cannot be made 
independently without the considerations of the other ISPs and 
its subscribers. Internet Service Providers (ISP), 
telecommunication firm, the subscribers and other actors can 
be all regarded as the players in the networking games. The 
choices of any player will influence the choices of the others. 
The networking system requires an equilibrium, or stable 
operating point, to maintain its reliability and robustness.  

This research addresses the above dynamic networking 
management issue and other similar emergency management 
issues as a unique bilevel decision-making problem. To tackle 
the problem, an extended bilevel multi-followers programming 
(BLMFP) model is defined and a solution for this model 
together with related theories is presented based on our 
previous research results [16,18,21,23].  

The rest of this paper is organized as follows. In section 2, a 
general BLMFP model with a virtual follower is defined. In 
Section 3, an extended Kth-best approach for this problem is 
presented. Then a numerical example of the extended kth-best 
approach is illustrated in Section 4. This paper is concluded in 
Section 5 with future research directions. 

II. A MODEL OF BILEVEL MULTI-FOLLOWER PROGRAMMING 
WITH A VIRTUAL FOLLOWER 

A BLMF decision problem has been defined to have two or 
more followers at the low lever of the bilevel problem. Under 
this definition, if the followers don’t have any shared decision 
variables, it is called an uncooperative relationship 
between/among followers.  

During a special event or disaster, normally there is 
abnormal behaviour (e.g. a surge of traffic, service 
breakdown), which are caused by hidden factor(s) or 
unexpected player(s).  We define the hidden factor or 
unexpected player as a virtual follower. In this case, both the 
leader and the followers may be affected by the virtual 
follower’s decision information in his/her objective or 
constraints. We present this model as follows. 
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Ki ,,2,1 = , a linear BLMFP problem, where )2(≥K  followers 
are involved and there are k shared variables and one partial 
shared variable,  individual objective functions and constraint 
functions among the followers, is defined as follows:  
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The main idea to deal with linear BLMFP problems with 
partial sharing variables among the followers is that an 
assumed third party controls the shared variable z . It means 
that the thi  follower controls the variable iy  ( Ki ,,2,1 = ), and 
a third party called a virtual follower: the thK )1( + follower, 
controls the variable z . 

Definition 1: A topological space is compact if every open 
cover of the entire space has a finite subcover. For example, 

],[ ba  is compact in R  (the Heine-Borel theorem) [23]. 

III. AN EXTENDED KTH-BEST ALGORITHM FOR LINEAR BLMFP 
WITH A VIRTUAL FOLLOWER 

A. Model transformation 
Based on Definition 3.3 of the linear BLP [16], a constraint 

region for linear BLFMP problems with a virtual follower 
should refer to all possible combinations of choices that the 
leader and all the followers may make. That means if there 
exists an optimal solution for a linear BLMFP problem with a 
virtual follower, this solution has to satisfy all constraints. The 
individual constraints can be equally treated no matter the 
sharing constraints belong to themselves or not, 

The thi  follower controls the variable iy  ( Ki ,,2,1 = ) and 
the virtual follower, called the thK )1( + follower, controls the 
variable z . By using this splitting method, (1) can be rewritten 
as follows: 
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Actually (2d) is that the K  followers share the variable z . 
By using a weighting method proposed by [1], we can obtain a 
compromised formulation for (2) as follows: 
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To simply (3), we have 
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This simple transformation has shown that solving the 
linear BLMFP (1) is equivalent to solving (4). There are K  
followers that have the shared variable z  for the linear 
BLMFP (1).  However, (4) has 1+K  followers and is the linear 
BLMFP without shared variables among the followers. We can 
also find that all the variables of the followers parameterise 
into the objective functions and constraint functions of the 
followers. 

In order to demonstrate the application for the proposed 
model transformation technology, the decision problem model 
for emergency QoS management in computer networks can be 
established by simplifying it into the following linear BLMF 
decision model:  

Example 1: 
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where 1Rx∈ , 1
1 Ry ∈ , 1

2 Ry ∈ , 1Rz∈ and }0{ >= xX , 
}0,0{ 21 >>= yyY , }0{ >= zZ . 

The variable z  is controlled by the virtual follower. 
According to the way of model transformation, (2), (3) and (4), 
we have as follows: 
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By using proposed model transformation technology, the 
model (1) can be transferred into model (4). It is a linear 
BLMFP and all the variables of the followers parameterise into 
the objective functions and constraint functions of the 
followers.  

B. Definition of solution 
For simplification and convenience, we write model (4) as 

follows: 
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The formulation (5) is the same as (4) except the number of 
followers. They have the same solution algorithms. 
Corresponding to (5), we give following basic definition. 



Definition 2: 

(a) Constraint region: 
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The constraint region refers to all possible combinations of 
choices that the leader and followers may make. 

(b) Projection of S  onto the leader’s decision space: 
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 (c) Feasible set for each follower )(XSx∈∀ : 

  }),,,(:{)( 1 SyyxYyxS Kiii ∈∈=  . 

 The feasible region for each follower is affected by the 
leader’s choice of x , and  the allowable choices of each 
follower are the elements of S .  

(d) Each follower’s rational reaction set for )(XSx∈ : 
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 The followers observe the leader’s action and 
simultaneously react by selecting iy  from their feasible set to 
minimize their objective functions. 

(e) Inducible region: 
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 Thus in terms of the above notations, (5) can be written as 
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We propose the following theorem to characterize the 
condition under which there is an optimal solution for (5). 

Theorem 1: If S  is nonempty and compact, there exists an 
optimal solution for a linear BLMFP problem. 

Proof: Since S  is nonempty, there exist a 
point Syyx K ∈),,,( **

1
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 φ)(* ≠∈ XSx , 
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by Definition 2(c). Because S is compact and Definition 
2(d), we have 
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nonempty and bounded, an optimal solution to the linear 
BLMFP problem must exist. So the proof is completed.  

C.  An extended Kth-best Algorithm 
Theorem 2: The inducible region can be written 

equivalently as a piecewise linear equality constraint comprised 
of supporting hyperplanes of constraint region S . 

Corollary 3.1: The problem (5) is equivalent to minimizing 
F over a feasible region comprised of a piecewise linear 
equality constraint. 

Corollary 3.2: A solution for the linear BLMFP problem 
occurs at a vertex of IR . 

Theorem 3: The solution ),,,( **
1

*
Kyyx  of the linear 

BLMFP problem occurs at a vertex of S . 

Corollary 3.3 If x  is an extreme point of IR , it is an 
extreme point of S . 

Due to the page limit, proofs of Theorem 2&3 and 
Corollaries 3.1-3.3 are omitted here. Please refer to [27] for the 
proofs. 

Theorem 2 and Corollary 3.3 have provided theoretical 
foundation for our new algorithm. It means that by searching 
extreme points on the constraint region S , we can efficiently 
find an optimal solution for a linear BLMFP problem. The 
basic idea of our algorithm is that according to the objective 
function of the upper level, we arrange all the extreme points in 
S  in descending order, and select the first extreme point to 
check if it is on the inducible region IR . If yes, the current 
extreme point is the optimal solution. Otherwise, the next one 
will be selected and checked. More specifically, let 
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Let )~,,~,~( 21 Kyyy   denote the optimal solution to the 
following problem 
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We only need to find the smallest j , Nj ,,2,1 =  under 
which i

j
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Let us write (13) as follows 
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The solving is equivalent to select one ordered extreme 
point ),,,( 1

j
K

jj yyx  , then solve (9) to obtain the optimal 
solution iy~ . If for all i , i

j
i yy ~= , then ),,,( 1

j
K

jj yyx   is the global 
optimum to (5). Otherwise, check the next extreme point.  

IV. A NUMERIC EXAMPLE FOR THE KTH-BEST APPROACH 
Let us give Error! Reference source not found. to show 

how the Kth-best approach works. According to the Kth-best 
approach, Example 1 can be rewritten as follow in the format 
of (8),  
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  subject to 40265 21 ≤++− zyyx  

  15136 1 ≤−+ zyx  

  107 2 ≤+− zyx  

       2047 21 ≤+ yy  

  1575 1 ≤+ yx  

  3425 1 ≤− zy  

  540 2 ≤+ yx . 

Step 1, set 1=j , and solve the above problem with the 
simplex method to obtain the optimal solution 

)5.2,83.1,5.1(),,( ]1[]1[]1[ =zyx .  Let )}5.2,83.1,5.1{(=W  and φ=T .  
Go to Step 2. 

Loop 1: Setting 1←i  and by (11), we have 

yxyxf +=),(min 1 subject to  

43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ; 152 ≤− zx
; 12 ≥+ zx ; 5.1=x ; 0≥y ; 0≥z .  

Using the bounded simplex method, we have 5.1~ =jy . 
Because of ][

~
jj yy ≠ , we go to Step 3. We 

have )}2,2,2(),0,5.1,5.0(),5.2,5.1,5.1(),1,33.1,0(),5.2,83.1,5.1{(][ =jW ,
)}5.2,83.1,5.1{(=T and

)}2,2,2(),0,5.1,5.0(),5.2,5.1,5.1(),1,33.1,0{(=W , then go to Step 4.  
Update 2=j , and choose )5.2,5.1,5.1(),,( ][][][ =jjj zyx , then go to 
Step 2. 

Loop 2: Setting 1←i  and by (11), we have 

yxyxf +=),(min 1 subject to  

43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ; 
152 ≤− zx ; 12 ≥+ zx ; 5.1=x ; 0≥y ; 0≥z .   

Using the bounded simplex method, we have 5.1~ =jy  and 
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43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ; 152 ≤− zx
; 12 ≥+ zx ; 5.1=x ; 0≥y ; 0≥z . 

Using the bounded simplex method, we have 4.0~ =jz . 
Because of ][
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)}5.2,5.1,5.1(),5.2,83.1,5.1{(=T  and  

)}0,5.0,5.0(),1,0,0(),2,2,2(),0,5.1,5.0(),1,33.1,0{(=W , then go to 
Step 4. update 3=j , and choose )2,2,2(),,( ][][][ =jjj zyx , then go 
to Step 2. 

Loop 3: Setting 1←i  and by (11), we have 

yxyxf +=),(min 1 subject to 43 ≤+− yx ; 1≤+− zx ; 

0≤− yx ; 0≤−− yx ; 4≤+ zx ; 152 ≤− zx ; 12 ≥+ zx ; 
2=x ; 0≥y ; 0≥z . 

Using the bounded simplex method, we have 2~ =jy  and 
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zxzxf +=),(min 2 subject to  

43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ; 
152 ≤− zx ; 12 ≥+ zx ; 2=x ; 0≥y ; 0≥z .  

Using the bounded simplex method, we have 6.0~ =jz . 

Because of ][
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)}2,2,2(),5.2,5.1,5.1(),5.2,83.1,5.1{(=T  and 

)}6.0,2,2(),0,5.0,5.0(),1,0,0(),0,5.1,5.0(),1,33.1,0{(=W , then go 
to Step 4.  Update 3=j , and choose )6.0,2,2(),,( ][][][ =jjj zyx , 
then go to Step 2. 



Loop 4: Setting 1←i  and by (11), we have 

yxyxf +=),(min 1  subject to 

43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ;
152 ≤− zx ; 12 ≥+ zx ; 2=x ; 0≥y ; 0≥z  

Using the bounded simplex method, we have 2~ =jy  and 

][
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jj yy = . Setting 1+← ii  and by (11), we have 

zxzxf +=),(min 2 subject to  

43 ≤+− yx ; 1≤+− zx ; 0≤− yx ; 0≤−− yx ; 4≤+ zx ;
152 ≤− zx ; 12 ≥+ zx ; 2=x  ; 0≥y ; 0≥z .  

Using the bounded simplex method, we have 6.0~ =jz  and 

][
~

jj zz = . Solution )6.0,2,2(),,( ][][][ =jjj zyx  is the global solution 
to the example. . Therefore, the optimal solution of the bilevel 
multi-follower problem occurs at the point )6.0,2,2(),,( *** =zyx  
with the leader’s objective value 4.4* −=F , and two followers’ 
objective values 4*

1 =f  and 6.2*
2 =f  respectively. 

V. CONCLUSION AND FURTHER STUDIES 
This paper addresses the theoretical properties of a newly 

defined linear BLMFP-VF problem in which there are not 
common variables among all the followers. This paper presents 
the extended Kth-best approach for linear BLMFP-VP problem 
and gives a numeric example for using the approach.  

This research can be used for making dynamic decisions to 
detect abnormal events and prevent service from breakdown in 
emergency situations. Future research work includes 
developing a web-based dynamic system for government and 
business to make real-time intelligent decisions in emergency 
situations and therefore building robust and resilient 
management systems to deal with potential environmental and 
human disasters.  
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