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High-order versions of truncated generalized nonlinear phase diffusion equation of Ku-
ramoto are analyzed. The main common feature of the equations is nonlinear internal energy
supply. Numerical solutions are presented for some specific values of equation coefficients.
Extended physical interpretations of the solutions are suggested.

§1. Introduction

In his monograph!) Kuramoto presents the analysis of a system of reaction-
diffusion equations describing oscillators weakly coupled through a diffusion mecha-
nism. The position of the oscillators,

U(t) = Uo[g(?)]

depends on the phase, ¢(t), which, in absence of the coupling, equals time ¢. The
diffusion coupling leads to the phase deviating from ¢: ¢(x,t) = ¢t + 9(x,t). It was
shown?!) that slow variations of the phase deviation, 1, satisfy the (non-dimensional)
generalized nonlinear phase diffusion (GNPD) equation,

O = a1V + az(Vep)?+

b VA + by V3 Vep + b3(V24h)2 + b4 V2 (Vep)? + bs(Vep) i+

(1-1)
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c6(V2)® + e (V)P + -+

where a,, and b, are constant coefficients. The right-hand side of equation (1-1) is,
in fact, the power series in small parameter V2 ~ (1/L)?%, where L is the presumably
large characteristic distance over which the variations of % occur. The function 9 is
allowed to vary considerably so that its characteristic amplitude, ¥, is not necessarily
small.

When the coefficient a; is positive, (1-1) reduces to a linear diffusion equation,
0yp = a1V?¢. Indeed, provided the initial variation of 1 was sufficiently small,
the function evolves under the dominating influence of the diffusion term while the
higher-order terms in ¢ are negligible because of the smallness of ¥ and the higher-
order terms in V are negligible because of the smallness of 1/L. It is the trivial fact
that the diffusion equation is well-balanced in the sense that an arbitrary initial dis-
tribution does not blow up, but evolves towards a finite-amplitude (for this particular
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equation, zero-amplitude) settled regime. Second-order (in V) nonlinear truncation
of (1-1) is the nonlinear phase diffusion (NPD) equation, ;% = a1 V29 + ag(V)?.
Analogously to the linear diffusion equation the NPD equation is well-balanced.?)

The situation changes dramatically when control parameters of the original
reaction-diffusion equations are altered so that the coefficient a; became slightly
negative: a1 = —¢, 0 < € < 1. In this case the negative diffusion term becomes
the source of energy resulting in an unlimited growth of the amplitude of the solu-
tion. As the amplitude grows, the nonlinear term, ao(V1)? ~ ao®?/L?, generates
segments of relatively rapid variation of 1, where L is relatively small (albeit still
large enough to preserve validity of the expansion (1-1)). On those segments, the
4th-order term b; V44 ~ b;¥/L* becomes comparable to the 2nd-order terms. Given
b1 < 0, this term produces dissipative effect and smoothes out the field, 1y. With the
first three terms in its right-hand side taken into account equation (1-1) reduces to
the Kuramoto-Sivashinsky equation, 944 = a1 V29 + az(V))? + b, V4. To estimate
typical dimensions of the dissipative structures formed within the KS equation in
large spatial domains, equate by the order of magnitude the terms in the right-hand
side (assuming |ag|, |b1| ~ 1):

e0/L* ~W?|L* ~W/L*,
which gives
Un~e, Le~l/ye. (1-2)

However, the ignored higher-order terms, for instance, the nonlinear source
bsV24p(V)2, by < 0 must affect the dynamics substantially if the initial field varia-
tions were not small enough or not sufficiently extended in space. To estimate the

scales of such “dangerous” distortions, equate by the order of magnitude the source
term and, for example, the diffusion term:

4V (Veh)?| ~ [V . (1-3)

Equation (1-3) gives the connection between the initial amplitude, ¥;, and width,
Ly, of the dangerous distortions:

|b4|FS /LG ~ Py /L3 . (1-4)

With |bs| ~ 1 (1-4) yields ¥y ~ /eLg. Consider for instance the distortions of the
scale (1-2), Ly ~ 1/4/€; then ¥y ~ /eLy ~ 1. For shorter distortions, Ly ~ 1/e®,
0<a<1/2 weget ¥~ £1/2=® « 1. The inequality demonstrates that even small-
amplitude variations can be dangerous. With respect to them the trivial state, ¥ =
const, is nonlinearly unstable.

§2. Dynamics driven by nonlinear sources

In this section we consider 6th-order (in V) truncations of the GNPD equation.
The necessity for the equations to have such order is dictated by the presence of
nonlinear energy sources. Our particular choices of the coefficients will be motivated
by the possibilities to obtain interesting solutions applicable in other areas of physics
as compared to the original reaction-diffusion problem considered in.V)
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2.1. Linearly stabilized dynamics

Consider (1-1) in one dimension with the energy supply provided by the nonlin-
ear source by021)(9,1)?, by < 0. The order of nonlinearity of this term is 3, therefore
at least 4th-order nonlinear term is needed to prevail over the source at large am-
plitudes. We choose the 4th-order term b5(9;1)*. However, this term alone has
no dissipative effect similarly to the term (9,%)? in the KS equation. Its function
is to create steep sections on the topography of ¥ with relatively small widths, L.
The term is thus responsible for the transfer of the energy towards smaller spatial
scales. To prevent the steep sections from becoming singularities, a higher-order
linear dissipative term is required to smooth out the field. By the order of mag-
nitude, (9,9)* ~ ¥*/L* therefore the dissipation must be expressed by at least
6th-order derivative in order to dominate at relatively small L: 8% ~ ¥/L%. Such
balancing mechanism is similar to that of the KS equation. Essential element of
the balance is the linear dissipation, which, in the final analysis, is responsible for
the stabilization. For the 6th-order truncation in question, a multitude of differ-
ent settled regimes can be obtained using different values of the coefficients of the
equation and different wave numbers. We present one numerical solution for the
coefficients a1 = 6.0 (of the diffusion term), ag = 0, by = 0, by = 0, by = 18.0 (of
the 2nd-order-of-nonlinearity source), by = —3.3 (of the “main” 3rd-order nonlinear
source), bs = 0.4 (of the 4th-order nonlinear energy transfer term), ¢; = 15.0 (of the
6th-order derivative expressing the dissipation), co = ¢3 = ¢4 =c¢5 = ¢ = ¢7 = 0.
Periodic boundary conditions were used and the spectral Galerkin method with har-
monic basis functions was employed in the numerical scheme. The reason behind
the particular choice of the coefficients is to get a rotating auto-wave solution of
saw-like shape similar to that found in solid-phase combustion.?) The settled regime
is displayed in Fig. 1, left, where two periods are shown and z is given in conditional
units. When put onto a cylindrical surface such a wave performs a helical motion.
Kinematically and dynamically the wave well corresponds to a spinning combustion
front,?) interpreted as the line dividing hot combustion products (located below the
line in Fig. 1) from cold unreacted mixture (located above the line). For this phe-
nomenon the phase 1, may be associated with the distance passed by the front along
a burning cylindrical sample.

2.2. Non-linearly stabilized dynamics

Different type of the balance occurs when a nonlinear source is directly coun-
terbalanced by another nonlinear term. Let us choose b3(921)%, b3 > 0, to be the
only source; it is obviously positive. The local growth of 9 driven by the source
can be stopped by a higher power of 821, for instance cg(829)® with cg > 0. In-
deed, as 1 grows its second derivative becomes more and more negative. The term
cg(024)3 is also negative; hence it stunts the growth at large amplitudes. Again,
many possible settled regimes can be obtained using different values of the coef-
ficients and wave number. We give one example using the following coefficients:
a1 = 0, ag = —1.0 (of the 2nd-order nonlinear energy transfer term), by = —10.0
(of the 4th-order derivative representing the dissipative term), by = 0, b3 = 6.4,
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Fig. 1. Left: saw-like wave travelling to the left (the wave number k£ = 0.14). Right: train of
solitons travelling to the right (k = 0.05).

by =bs =c1 =co =c3 =cq4 =c5 =0, ¢cg = 0.3 (of the stabilizing 3rd-order nonlinear
term), c; = 0. The resulting equation looks like an extension of the Hamilton-Jacobi
(HJ) equation in quantum mechanics, where 1) represents the physical quantity called
action,5).6) With by = b3 = ¢g = 0 and a9 # 0 the classical form of the HJ equation
follows. Within this equation, any localized perturbation of spatially uniform field
shrinks to a point, that is the particle appears to be a point. In contrast, within
the extended HJ equation it is possible to adjust the coefficient values in such a way
that to obtain self-sustained extended structures—auto-solitons (Fig. 1, right). The
auto-soliton can be a useful mathematical object to model an extended elementary
particle. Strunin® managed to obtain completely stationary solitons by additionally
adopting some non-zero value for the coefficient a1. It is the stationary soliton that
is needed to model the particle at rest state. The regime presented in Fig. 1 is not
stationary, however it presents certain interest because the model with close values
of the coefficients may happen to be useful for modelling the resting particle in 2 or
3 dimensions. Recently Sivashinsky® put forward the idea that in 2 or 3 dimensions
the travelling soliton may assume the form of a solitary rotating wave. Such an
eventuality would be desirable from quantum mechanical point of view since oscil-
lating nature of such a wave (breather) would reflect wavy character of the particle.
The perspective to find the breather solution gives an exciting incentive for special
investigation of the extended HJ equation.

§3. Conclusions

Investigated are new truncated versions of the generalized nonlinear phase diffu-
sion equation of Kuramoto, where energy is internally supplied by nonlinear sources.
Depending on a type of an energy balance, two kinds of a truncation are presented:
the first where a balance takes place between a nonlinear source and a higher-order
“energy transfer” term combined with a high-order linear dissipation; and the sec-
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ond where a balance occurs between a nonlinear source and a higher-order nonlinear
stabilizing term. Numerical solutions are presented for selected values of coefficients
leading to physically interesting solutions.
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