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Abstract. Weassessed the ability of theBureauofMeteorology’sACCESS-S1dynamical forecast system to simulate and

predict high rainfall extremes for each season over Australia, especially focusing on the role of the Madden-Julian
Oscillation (MJO). Using retrospective forecasts for the period 1990–2012, we show that ACCESS-S1 simulated the
observed modulation of extreme weekly mean rainfall by each phase of the MJO reasonably well; however the simulated
changes in probabilities tended to be weaker than those observed, especially across the far north during the austral summer

season. The ability of themodel to (i) simulate the observedmodulation of extreme rainfall and (ii) predict theMJO to a lead
timeof fourweeks, translated to enhanced forecast skill for predicting theoccurrence of extremeweeklymean rainfall across
much of Australia at times when the MJO was strong, compared to when the MJO was weak, during the austral spring and

summer seasons inweeks 2 and 3. However, skill reduced across the central far north during the summerwhen theMJOwas
strong, suggesting the model is not good at depicting theMJO’s convective phases as it protrudes southward over northern
Australia. During autumn andwinter, there was little indication of changes in forecast skill, depending on the strength of the

MJO.The results of this studywill be useful for regional applicationswhen theMJO is forecast to be strongduring spring and
summer, particularly where the swing in probability of extreme rainfall is large for specific phases of the MJO.
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1 Introduction

The Madden-Julian Oscillation (MJO) has been observed to
affect subseasonal variation of Australian rainfall both in the
tropics and extratropics (e.g. Donald et al. 2006; Wheeler et al.

2009). The MJO affects Australian rainfall via two distinct
mechanisms. In the tropical north during the extended summer
wet season (roughly extending from October–April), rainfall
varies in direct response to the MJO’s convective component,

which is shifted into the Southern Hemisphere during these
months (e.g. Wheeler et al. 2009; Marshall and Hendon 2019).
Subseasonal rainfall (e.g. as embodied by weekly mean

anomalies) increases during MJO phases 4–7 (phases defined
by Wheeler and Hendon 2004), which corresponds to when the
MJO’s convective centre traverses from west to east across the

far north of Australia. Similarly, tropical rainfall is suppressed
during MJO phases 8 and 1–3, when the suppressed convective
phase of the MJO traverses from west to east across northern
Australia.

The MJO also affects Australian extratropical rainfall as
a result of teleconnections that act to remotely perturb
the extratropical circulation (e.g. Matthews et al. 2004), thus

affecting the occurrence and locations of rain-bearing weather

systems (e.g. Wheeler et al. 2009). Importantly, these remotely
driven rainfall variations are not confined to the austral summer
season, so the MJO can influence Australian extratropical

rainfall even when there is no direct influence of the MJO in
tropical portions of Australia. This feature of the MJO means
that it can be an important driver and source of predictability of
tropical and extratropical Australian subseasonal weather and

climate variability year-round.
Another important feature of theMJO’s impact onAustralian

rainfall is that it not only acts to shift the mean rainfall, it also

acts to shift the likelihood of occurrence of extreme rainfall (e.g.
Wheeler et al. 2009). Improved understanding of the causes and
predictability of extreme rainfall, which we define in this study

to be weekly mean accumulations above the 90th percentile
(which we refer to as the upper decile), is important because of
the potentially large impacts of extreme rainfall on, for instance,
human health, agricultural production and infrastructure (e.g.

roads and bridges). The focus of this study is thus on the MJO’s
influence on Australian subseasonal rainfall extremes and their
predictability.
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We assessed the predictability of MJO-influenced rainfall
extremes using the ACCESS-S1 coupled model seasonal fore-

cast system, which is the Bureau of Meteorology’s operational
system (Hudson et al. 2017). In this study, we will provide an
assessment of the capability of ACCESS-S1 to predict weekly

mean rainfall extremes, highlighting the role of the MJO. This
assessment can help build confidence in the uptake of forecasts
of extreme rainfall if the role of the MJO, which has been

demonstrated to be well predicted to lead times of 3–4 weeks
(e.g. Rashid et al. 2011; Marshall and Hendon 2019), can be
identified. This assessment will also highlight areas where
further model development and improvement may be required,

for instance, to improve the depiction of the MJO’s teleconnec-
tions to extratropical Australia.

Descriptions of the ACCESS-S1 forecast system, analysis

data and MJO index are provided in Section 2. In Section 3, we
expand upon the assessment by Marshall and Hendon (2019) of
the capability of ACCESS-S1 to predict theMJO using the now-

complete set of ACCESS-S1 hindcasts for the period 1990–
2012. The model’s depiction of the influence of the MJO on
Australian rainfall extremes and the contribution of the MJO to
the predictive skill of the extremes are presented in Sections 4

and 5 respectively, and we conclude with a summary of key
results in Section 6.

2 Data sets and model description

We explored rainfall variations across Australia using the daily

analyses from the Australian Water Availability Project
(AWAP; Jones et al. 2009). The AWAP analyses are an
optimum interpolation of available station observations on a

5-km horizontal grid. In this study, which focuses on subseaso-
nal rainfall extremes, we defined an extreme occurrence when
weekly mean rainfall anomalies exceed the 90th percentile,
using 7-day runningmeans calculated from the daily data at each

grid point. We calculated the rainfall anomalies relative to
climatology and defined the 90th percentile during each stan-
dard 3-month season using the 1990–2012 record, so to be

compatible with the hindcast record available from the forecast
model.

Wemonitored theMJO using the real-timemultivariateMJO

(RMM) indices from Wheeler and Hendon (2004). The two
RMM indices, RMM1 and RMM2, provide a measure of the
strength and phase of the MJO. The RMM indices are the
principal components of the leading pair of eigenvectors derived

from a combined empirical orthogonal function (EOF) analysis
of equatorially averaged outgoing longwave radiation (OLR)
and zonal wind at 200 and 850 hPa. Interannual variability was

removed by subtracting the previous 120-day mean prior to
computing the daily RMM indices. This leading pair of EOFs
described the eastward propagation of the combined convection/

zonal wind disturbance that characterises the MJO. They were
derived from data that are not subject to any band pass filtering
and so could be used to assess both real-time evolution of the

MJO and its prediction with forecast data. A positive RMM1
corresponds to enhanced convection centred around the mari-
time continent, whereas a positive RMM2 represents a convec-
tion dipole with an enhanced centre over the west Pacific and

suppressed centre over the central Indian Ocean. RMM1 and
RMM2 may equivalently be expressed as a daily amplitude

ð¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMM12 þ RMM22

p Þ and phase (¼tan�1(RMM2/RMM1)),
which is useful for the construction of MJO composites. We
used the same eight phases as defined by Wheeler and Hendon

(2004), with the MJO deemed to be strong/active when the
RMM index amplitude was greater than one and weak/inactive
when the RMM index amplitude was less than one.

We assessed predictability of rainfall extremes and the role
of the MJO using the Australian Community Climate and Earth
System Simulator-Seasonal forecast system version 1
(ACCESS-S1), which is the Bureau of Meteorology’s current

operational coupled model subseasonal to seasonal prediction
system (Hudson et al. 2017). The ACCESS-S1 prediction
system is based on the UK Met Office Global Coupled 2.0

model Global Seasonal Forecast System version 5 (MacLachlan
et al. 2015). ACCESS-S1 became the operational subseasonal to
seasonal prediction system at the Bureau of Meteorology in

August 2018, replacing the low resolution-low top model
Predictive Ocean Atmosphere Model for Australia (Alves
et al. 2003; Marshall et al. 2011; Hudson et al. 2011, 2013).
The ACCESS-S1 system has high horizontal resolution

(25 km in the ocean and ,60 km in the atmosphere), and its
85 vertical levels in the atmosphere mean that the stratosphere
is well resolved to above 1 hPa. Hindcast and real-time

initial conditions for sea-ice and the ocean were provided
from the assimilation produced at the UK Met Office (e.g.
Mogensen et al. 2009, 2012; Maclachlan et al. 2015). The

atmospheric initial conditions for the hindcasts were provided
by interpolating the European Centre for Medium-Range
Weather Forecasts-Interim reanalysis (ERA-I; Dee et al.

2011) of zonal wind (u), meridional wind (v), temperature,
humidity and surface pressure onto the ACCESS-S1 atmo-
spheric model grid. In real-time, the atmospheric initial condi-
tions were provided by the Bureau of Meteorology Numerical

Weather Prediction system. Soil moisture was initialised with
climatology (MacLachlan et al. 2015) and soil temperatures
were interpolated from ERA-I data.

The ACCESS-S1 subseasonal hindcasts consist of an 11-
member ensemble that extends to 60-day lead time. Ensemble
initial conditions were produced by perturbing the atmospheric

initial condition (Hudson et al. 2017). In this study, we analysed
11-member ensemble hindcasts initialised on 1st, 9th, 17th and
25th of each month during 1990–2012. For assessing prediction
of the MJO, we created predicted RMM indices following the

procedure of Rashid et al. (2011). That is, we projected the
model’s predicted anomalies, formed by removing the lead time
and start time dependent seasonal cycle, of equatorially aver-

agedOLR and zonal winds at 200 and 850 hPa onto the observed
pair of eigenvectors derived by Wheeler and Hendon (2004) in
order to obtain the predicted RMM1 andRMM2 indices. Prior to

projecting the predicted anomalies onto the observed EOF pair,
we removed interannual variability by subtracting a 120-day
mean that is created for a lead time of t days as the mean of the

previous 120-t days of observations up to the start of the forecast
plus the t days of the forecast.

We assessed forecast skill for predicting extreme rainfall
using the Symmetric Extremal Dependence Index (SEDI), a
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skill score gaining popularity in its use for verifying extreme
events, for which the number of occurrences is small by

definition (e.g. North et al. 2013; Marshall et al. 2014; White
et al. 2014; Haiden and Duffy 2016; Singh et al. 2017). The
SEDI is recognised for its ability to provide meaningful results

where many other standard verification scores become degener-
ate when dealing with rare events and small sample sizes (Ferro
and Stephenson 2011; Hogan and Mason 2012). Proposed by

Ferro and Stephenson (2011), the SEDI score is based on a 2�2
contingency table and is computed from the hit rate (H) and the
false alarm rate (F) at each grid location, using the equation:

SEDI ¼ logF � logH � logð1� FÞ þ logð1� HÞ
logF þ logH þ logð1� FÞ þ logð1� HÞ

A forecast is deemed to be a ‘hit’ if it and the corresponding
observation both exceed a particular threshold (the 90th percen-
tile in our study); and a ‘false alarm’ if the forecast exceeds the

threshold but the observed does not. SEDI scores greater (less)
than zero indicate skill better (worse) than for random forecasts.

To calculate SEDI scores, we assumed that the forecasts

starting 8 days apart in eachmonth (1st, 9th, 17th and 25th) were
independent events. This is reasonable given that we verified
subseasonal forecasts using weekly averaged periods, and we

included data from both weeks 2 and 3 of the forecast (when the
MJO was well predicted) in constructing the contingency table.
We constructed the 2�2 contingency table based on each
individual ensemble member’s forecast exceeding the thresh-

old, whereby the ensemble members were pooled and each
added to the counts in the contingency table before the SEDI
score was calculated (Marshall et al. 2014). The confidence

interval of the SEDI as estimated using the formula for the
standard error (SSEDI; Ferro and Stephenson 2011), which was
computed at each grid location from the hit rate, false alarm rate,

sample size n and base rate p (the relative frequency with which
an extreme heat event is observed to occur):

SSEDI ¼
2

ð1�HÞð1�FÞþHF

ð1�HÞð1�FÞ log½Fð1� HÞ� þ 2H
1�H

log½Hð1� FÞ�
��� ���

H log½Fð1� HÞ� þ log½Hð1� FÞ�f g2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hð1� HÞ

pn

s

Wecomputed the 95%confidence intervals at each grid point
as SEDI� 2� SSEDI (where SSEDI estimates the standard
deviation) and we considered SEDI scores to represent useful

forecast skill (i.e. better than a random forecast) when confi-
dence intervals comprised positive values only.

3 MJO prediction skill

Webegan by assessing the capability of the ACCESS-S1 system

to predict the MJO by verifying the prediction of the RMM
indices. A preliminary assessment of MJO forecast skill with
ACCESS-S1was provided inMarshall andHendon (2019), who

used a small subset of the hindcasts that were available at that
time. We expanded upon their analysis here using the

complete hindcast set (4 start times per month with 11 members
for 1990–2012). We group start times together for the standard

3-month seasons and also show some results using all start
months.

Fig. 1 shows the skill in predicting the daily ensemble mean

RMM indices using bivariate correlation (COR) and bivariate
root mean square error (RMSE) as defined in Lin et al. (2008):

CORðtÞ ¼
PN
t¼1

½a1ðtÞb1ðt; tÞ þ a2ðtÞb2ðt; tÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
t¼1

½a21ðtÞ þ a22ðtÞ�
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

t¼1

½b21ðt; tÞ þ b22ðt; tÞ�
s ð1Þ

RMSEðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1

ð½a1ðtÞ � b1ðt; tÞ�2 þ ½a2ðtÞ � b2ðt; tÞ�2Þ
vuut

ð2Þ

Here, a1(t) and a2(t) are the verification RMM1 and RMM2
indices at time t as provided byWheeler andHendon (2004), and

b1(t, t) and b2(t, t) are the respective ensemble mean forecasts at
time t for a lead time of t days. N is the number of forecasts
during each season, or for all times. We calculated COR and

RMSE using all hindcasts over the period 1990–2012 for lead
times out to 40 days. We also compared to the skill of a
climatological forecast, which was obtained by setting to zero

the forecast anomalies (b1¼ 0 and b2¼ 0) in the bivariate
RMSE (Eqn. 2). The RMSE for the climatological forecast
approximately asymptotes toO2 because the standard deviation

of each of the observed RMM indices over all days is one (we
denote this as ‘CLIM’ with a grey solid curve in Fig. 1).
Forecasts are more skilful than a climatological forecast when
the bivariate RMSE ,RMSEclim ,O2, which roughly equates

to when the bivariate COR. 0.5 (e.g. Murphy and Epstein
1989). Note the RMSE for the climatological forecast is
equivalent to the observed bivariate amplitude. We diagnosed

the model’s bivariate amplitude by setting to zero the observed
anomalies (a1¼ 0 and a2¼ 0) in (Eqn. 2). We diagnose the
bivariate spread of the forecast by substituting the ensemble

mean RMM indices for the verification (the ‘a’s) in (Eqn. 2).
The COR shown in Fig. 1a drops below 0.5 at about 25–30

days (longest in spring and shortest in autumn), which agrees
well with the earlier assessment of MJO prediction with

ACCES-S1 by Marshall and Hendon (2019). The lead time to
cross 0.5 correlation (25–30 days) places ACCESS-S1 in the
upper tier ofmodels for predicting theMJO (e.g. compare to Lim

et al. 2018). A further pleasing result for ACCESS-S1 is that
skill for predicting the MJO during boreal summer is now much
higher than in its predecessor, POAMA (e.g. compare to results

in Rashid et al. 2011 and see Hudson et al. 2017).
Examination of the ensemble spread (black dashed curve in

Fig. 1b) indicates that although the ensemble is initially well

dispersed (i.e. the spread matches the RMSE at day 1), the
spread grows more slowly than the error, especially in the first
5 days of the forecast. This implies that although the initial
perturbations are of appropriate size relative to the forecast
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error, they are not optimally growing. Presumably this stems

from ‘spin-up’ of the perturbations in ACCESS-S1, whereby we
only added perturbations to dynamical fields (as described in
Hudson et al. 2017), with the initial diabatic tendencies (in

particular latent heat releases due to deep convection) being
zero.

Examination of the bivariate amplitude of the model’s RMM
indices (Fig. 1c), here based on individual members and not the

ensemble mean, shows that although the model has realistic
MJO amplitude at the start of the forecast, for most seasons the
MJO then weakens with lead time, resulting in an equilibrated

MJO amplitude after about 10-day lead time that is ,10–20%
weaker-than-observed. The only exception to this is for forecast
start times during boreal summer (June, July, August; JJA),

when the equilibrated model amplitude is stronger than
observed. We have no further insight as to why this is the case,
but the weaker amplitude for the other seasons reflects system-
atic bias in the eastward extent of the MJO into the western

Pacific (Marshall and Hendon 2019).

In summary, the ACCESS-S1 prediction systemmade skilful

forecasts of the MJO well into the week 4 of the forecast. In the
following sections, we assess the impact of theMJO on forecasts
of extreme rainfall in Australia during weeks 2 and 3 of the

forecast when the skill for the MJO is high.

4 Impact of the MJO on extreme rainfall

Prior to assessing forecast skill for predicting extreme rainfall
and the possible contribution of the MJO, we first diagnosed
how the MJO modulates weekly mean extreme rainfall from

observations, as simulated in weeks 2 and 3 from the ACCESS-
S1 predictions. We began by forming the 90th percentile
thresholds for weekly mean rainfall anomalies for the 4

standard seasons (Fig. 2). We did this from the observed
AWAP analyses (Fig. 2a) and using data from weeks 2 and 3
from the hindcasts (Fig. 2b). Note that we used predicted
rainfall that was calibrated to the daily AWAP analyses using

a quantile-quantile matching method applied to daily data and
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Fig. 1. (a) Correlation, (b) RMSE and (c) amplitude of the predicted bivariate RMM index (solid lines) using all ACCESS-S1 hindcasts initialised

1990–2012 (black), and hindcasts initialised in SON (orange), DJF (red), MAM (light blue) and JJA (dark blue), as a function of lead time. Also

shown in the (b) is the bivariate RMSE for the CLIM reference forecast (grey) and the bivariate ensemble spread (dashed) calculated using data for

all months. Also shown in (c) is the amplitude of the observed bivariate RMM index (dashed lines).
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Fig. 2. Threshold for weekly mean rainfall anomaly (mm/day) exceeding the 90th percentile for (a) AWAP and

(b) ACCESS-S1 averaged over lead times of 2–3 weeks in SON (top row), DJF (second row), MAM (third row) and JJA

(bottom row).
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downscaled from 60 to 5 km horizontal resolution (Bureau of
Meteorology, 2019; de Burgh-Day et al. 2020). The calibration

was done using leave-one-out cross validation (leaving out the
year to be calibrated) to increase the robustness of the
calibration (so the same data was never used simultaneously

for training and calibrating the predictions). All members at
each lead time and start time were used to define the quantiles
of the predicted data and the calibration was performed in an

11-day window to increase the observed sample size for
consistency with the model’s climatology. That is, for a
given start date in the hindcast, the climatological mean
value for each grid box and each lead day was computed from

11�23 values (11 ensemblemembers and 23 years). This small
sample size resulted in a climatological mean for daily values
that was often too noisy. The daily mean climatologies

were therefore smoothed with an 11-day window to mitigate
this effect, and the calibration was applied to the daily data
in an 11-day window for consistency. Further details are

provided in Bureau of Meteorology (2019) and de Burgh-
Day et al. (2020). The calibration method improved
the prediction of the rainfall distribution over large parts of
the country at lead times of 2–3 weeks for most start months

(not shown).
Fig. 2 shows that the threshold for the 90th percentile of

weekly mean rainfall is highest during summer months in the

northern portions of the country, reflecting the high rainfall there
during the summer monsoon. During winter (JJA), high values
lie across the southwest and southeast of the continent, with

orographic enhancement apparent along the Great Dividing
Range in eastern Victoria and southern New South Wales, and
for western Tasmania. Enhanced thresholds are also apparent

along the eastern coastal strip, especially during autumn.
Comparing the threshold from the model output with the
observed indicated remarkably good agreement both in spatial
distribution and magnitude. This agreement is not surprising

because we used calibrated data. The spatial detail may also
partly reflect the high model resolution (e.g. capturing the Great
Diving Range, the escarpment to the east of Perth, the coastal

enhancement on the central east coast and the west–east contrast
across Tasmania) and a good depiction of the relevant dynamics
and circulation.

We now turn to assessing the impact of the MJO on the
occurrence of extreme rainfall and how well depicted this is in
the forecast model (Figs 3–10). Based on exceedance of the 90th
percentile thresholds displayed in Fig. 2, we created the

composite probability of occurrence of extreme rainfall for each
of the eight phases of the MJO when the MJO amplitude is
greater than one. Probability composites were computed by

counting the number of instances at each grid location for which
the weekly mean rainfall value was greater than the event
threshold value as displayed in Fig. 2, and then divided by the

total number of samples in the composite. We displayed
probability composites as ratios relative to the mean decile
probability of occurrence (nominally 0.1), so that probabilities

greater than one indicate an increased likelihood of an upper
decile event, and probabilities less than one indicate a decreased
likelihood. Significance was assessed using a z-score test for
event probabilities (Spiegel 1961).

For the z-score test, we assumed that the weekly mean data
in our composites were comprised of independent samples,

of size N, for each MJO phase (e.g. following Marshall et al.
2014, based on an average 6-day progression through each
MJO phase). We accounted approximately for the non-

independence of ACCESS-S1 ensemble forecast members at
lead times of 2–3 weeks by computing the effective sample size,
Neff ðffi N

1�r
1þrÞ, using the autocorrelation r of rainfall at each grid

box. The autocorrelation coefficient was calculated by correlat-
ing (as a function of hindcast start) each ensemble member with
the ensemble mean of the remaining 10 ensemble members at
each grid box. The correlation coefficients were then averaged

over the 11 realisations, from which we calculated Neff.
The probability of occurrence of the weekly mean rainfall

exceeding the 90th percentile for each MJO phase was assumed

to be significanctly different than the climatological rate when
the absolute value of z was greater than 1.96 (two tailed
distribution). Note that blue in the maps indicates an increase

in the frequency of upper decile weekly rainfall events and red
indicates a decrease.

The observed increase in frequency of upper decile weekly
rainfall maximises across the north during summer in phases

4–5–6 and is most substantially reduced during phases 8–1–2,
corresponding to the occurrence of the active and suppressed
convective phases of the MJO over northern Australia. This

result is consistent with the observed patterns shown in figure 16
of Wheeler and Hendon (2004) using upper quintile weekly
rainfall for the period 1974–1999. However, in all seasons the

frequency of upper decile weekly rainfall was also observed to
change in various MJO phases throughout Australia, reflecting
the importance of the remote impacts of the MJO (e.g. Wheeler

et al. 2009). Comparing to the model behaviour, ACCESS-S1
depicts the MJO relationship in all phases and seasons reason-
ably well, with pattern correlation coefficients ranging 0.4–0.7,
except for MJO phase 4 in December, January, February (DJF)

when the correlation drops to 0.1 (we discuss some of the
possible reasons for this below).

The model’s extreme rainfall event probabilities tend to be

slightly weaker than those in AWAP, consistent with the
model’s weaker-than-observed representation of MJO rainfall
anomalies in ACCESS-S1 (see also Marshall and Hendon

2019). For certain MJO phases, the model also failed to
adequately capture the observed strong connections to extreme
rainfall, particularly when observed probabilities of wet condi-
tions were low. These include (i) over southeastern Australia in

MJO phase 3 during September, October, November (SON,
Fig. 3), when anomalous high pressure over southeastern
Australia drove a dry signal due to large-scale subsidence

(Wheeler et al. 2009), (ii) over eastern Australia in phase 6
during DJF) Fig. 6), (iii) over much of Australia in phase 7
during March, April, May (MAM, Fig. 8), and (iv) over most of

the mainland in phase 2 during JJA (Fig. 9), again in association
with anomalous high pressure over southern Australia (Wheeler
et al. 2009). These examples highlight where theMJO rainfall in

ACCESS-S1 was overdone, presumably due to an underrepre-
sentation of the Australian mean sea level pressure/circulation
response to the MJO at those times (e.g. Wang and Hendon
2019).
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Fig. 3. Ratio of probabilities of upper decile weekly rainfall events in SON for MJO phases 1 to 4, for (a) AWAP and

(b) ACCESS-S1 at lead times of 2–3 weeks. Ratios were calculated relative to the mean decile probability (nominally

0.1), and bold contours indicate regions where the ratio is significantly different from one at 95% confidence using a

z-score test for event probabilities. The pattern correlations (cor) with observed probabilities are indicated within each

ACCESS-S1 figure panel.
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Fig. 4. Same as Fig. 3 except for MJO phases 5–8 in SON.
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Fig. 5. Same as Fig. 3 except for MJO phases 1–4 in DJF.
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Fig. 6. Same as Fig. 3 except for MJO phases 5–8 in DJF.
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Fig. 7. Same as Fig. 3 except for MJO phases 1–4 in MAM.
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Fig. 8. Same as Fig. 3 except for MJO phases 5–8 in MAM.
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Fig. 9. Same as Fig. 3 except for MJO phases 1–4 in JJA.
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Fig. 10. Same as Fig. 3 except for MJO phases 5–8 in JJA.
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5 Impact of the MJO on prediction of extreme rainfall

We assessed the overall impact of the MJO on prediction of
extreme rainfall by computing the SEDI for all cases when the
MJOwas predicted to be strong in weeks 2 and 3, and compared

this to the SEDI for all cases when the MJO was predicted to be
weak. We did this for start times during the four standard
seasons (Fig. 11). During SON, the SEDI is positive when the
MJO is both strong and weak (i.e. most of the country is covered

in orange-yellow positive shades), with highest skill occurring
in the far north east. Pleasingly, higher SEDI values extend to the
southwest and southeast when the MJO is strong. Similarly, a

more positive SEDI occurs in the northwest and central and
southeast during DJF when the MJO is strong. Unfortunately,
across the far central north, where the MJO’s impact is the

strongest during DJF, the SEDI is lower and does not indicate
useful skill when theMJO is strong. Presumably, this reflects the
inability of the model to properly capture the local convective

phase of the MJO over tropical areas, possibly due to misrepre-
sentation of the diurnal cycle of land-based rainfall (e.g.Walters
et al. 2017).

DuringMAMand JJA, there is little difference in SEDIwhen

the MJO is strong versus weak, with the highest skill in the far
north during autumn and across the central portion of the
continent in winter occurring for both strong and weak MJO

activity. Although theMJO is observed to cause extreme rainfall
variability in these regions, the model is apparently unable to
convert this into improved predictive skill when the MJO is

prominent.
For more insight into how and when the MJO modulates

predictive skill, we computed the difference in SEDI for each

phase of the MJO when it is strong and weak (Figs 12–15). In
SON, the improvements in skill when theMJO is strong occur in
mostMJOphases (Fig. 12), most notably during phases 5–7 over
northern parts of the Northern Territory and Queensland where

the odds of extreme rain are elevated when the MJO is strong in
these phases (Fig. 4). During DJF (Fig. 13), some improvement
in skill for predicting upper decile rain due to the MJO is seen in

the northwest Australian Kimberley region, especially during
MJO phases 5–6–7 when the MJO acts to increases the chances
and during phases 8–1–2 when the MJO acts to decreases the

chances (Fig. 5). Otherwise, no clear role for the MJO in
improving the prediction of high rainfall extremes is observed
during DJF.

In MAM and JJA, when there is little impact of the MJO on

predictive skill (Fig. 11), the variation of skill difference with
MJO phase is patchy (Figs 14 and 15). During MAM, improve-
ments in skill are apparent inMJO phase 5 for theKimberley and

Top End, phase 6 forWestern Australia’s mid-west, and phase 7
for northern Queensland (Fig. 14), where the chances of high
rainfall extremes are elevated (Fig. 8). MJO phase 1 also shows

large improvements in skill over parts of western and northern
Australia (Fig. 14) where the chances of high rainfall extremes
are mostly low (Fig. 7). But, in all phases of the MJO, except

phases 1 and 5, skill for predicting upper decile autumn rain over
the TopEnd is lower thanwhen theMJO isweak. This highlights
a window of forecast opportunity in phase 5 for the Top End
when enhanced tropical rainfall is likely in conjunction with

anomalous westerly winds at 850 hPa (Wheeler et al. 2009). The
largest improvements in skill for JJA occur over the Australian

subtropics between 208S and 308S duringMJOphases 1, 4, 5 and
8 (Fig. 15) when the convective phases (4 and 5) and suppressed
phases (8 and 1) of the MJO occur directly to the north of

Australia. These regions coincide with where the observed
chances of high rainfall anomalies and extremes are largely
enhanced (phases 4 and 5) and reduced (phases 1 and 8) (see also

Wheeler et al. 2009).

6 Conclusions

The MJO acts to modulate the occurrence of extreme weekly
mean rainfall (i.e. in the upper decile) throughout Australia.
During summer, the modulation was prominently in the tropical

northern portions of the continent, where the chances of extreme
rainfall increase when the convectively active phases of the
MJO traverse northern Australia (MJO phases 4–5–6) and

decrease during the suppressed phases (MJO phases 8–1–2).
However, away from the tropics and in other seasons the MJO
also modulated subtropical and mid-latitude extreme rainfall as
a result of its teleconnections, which act to alter the extratropical

circulation (e.g. Risbey et al. 2009; Wheeler et al. 2009;
Marshall et al. 2014). As such, the MJO is a potential source
of multiweek predictability of extreme rainfall. In this study, we

assessed the contribution of the MJO to predictability of multi-
week extreme rainfall using the Bureau of Meteorology’s
operational subseasonal–seasonal prediction system ACCESS-

S1. The key findings of this study are:

1. The ACCESS-S1 prediction system is able to predict the

MJO, as measured by the RMM indices, to a lead time of
,28 days, which places this system in the upper tier of
current S2S models (e.g. compare to Lim et al. 2018).

2. The ACCESS-S1 model simulates the observed modulation
of extreme weekly mean rainfall by each phase of the MJO
and in each season reasonably well. However, the variation
of themodel’s extreme rainfall event probabilities associated

with the MJO are generally weaker than those observed,
especially across the far north during the summer season.

3. The MJO is a source of multiweek predictability (forecasts

for weeks 2 and 3) during spring and summer seasons, when
the forecast skill to predict the occurrence of extremeweekly
mean rainfall is enhanced acrossmuch of the country at times

when the MJO is strong compared to times when the MJO is
weak. However, skill is reduced across the central far north
during summer when the MJO is strong, suggesting the

model is not good at depicting the MJO’s convective phases
as it protrudes southward over the northern Australia land
mass. During autumn and winter, there is little indication of
changes in forecast skill depending on the strength of the

MJO.

The overall conclusion is that although theMJO is a driver of

extreme rainfall variations across Australia, the MJO is not a
strong driver of extreme rainfall predictability with the current
forecasting capability provided by the ACCESS-S1 prediction

system. However, for certain seasons and for certain MJO
phases, forecast skill does increase appreciably. For instance,
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Fig. 11. SEDI skill scores for ACCESS-S1 forecasts of upper decile weekly rainfall events in SON (top row), DJF

(second row), MAM (third row) and JJA (bottom row), when the MJO is (a) strong and (b) weak at target lead times of

weeks 2 and 3 combined. Unshaded (white) areas indicate where skill scores are not significantly different from zero at

95% confidence using the SEDI standard error.
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Fig. 12. SEDI skill scores for ACCESS-S1 forecasts of upper decile weekly rainfall events in SON for MJO phases 1–8,

shown as differences from when the MJO is weak, at target lead times of weeks 2 and 3 combined. Unshaded (white) areas

indicate where skill scores are not significantly different from zero at 95% confidence using the SEDI standard error.
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Fig. 13. Same as Fig. 12 but in DJF.
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SEDI   MJO phase 1 (difference)   MAM  SEDI   MJO phase 5 (difference)   MAM  

SEDI   MJO phase 6 (difference)   MAM  
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SEDI   MJO phase 2 (difference)   MAM  
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Fig. 14. Same as Fig. 12 but in MAM.
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SEDI   MJO phase 1 (difference)   JJA  

SEDI   MJO phase 2 (difference)   JJA  

SEDI   MJO phase 3 (difference)   JJA  

SEDI   MJO phase 4 (difference)   JJA  SEDI   MJO phase 8 (difference)   JJA  

SEDI   MJO phase 7 (difference)   JJA  

SEDI   MJO phase 6 (difference)   JJA  

SEDI   MJO phase 5 (difference)   JJA  
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Fig. 15. Same as Fig. 12 but in JJA.
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skill increases markedly across the south and east of the country
during summer when the MJO is strong in phases 4 and 5

(Fig. 13), but these are not timeswhen theMJO is causing a large
swing either toward increased or decreased chances of extreme
rainfall in these regions (Figs 5 and 6). So, although the skill

analyses presented in Figs 12–15 could be useful for regional
users to refer to when theMJO is forecast to be in certain phases,
they need to be used with caution because areas of high skill

might not correspond to areas where the swing in probability of
extreme rainfall is large for specific phases of the MJO.

Clearly there are systematic errors in the depiction of the
MJO and its teleconnection over Australia that are acting to

reduce the predictive skill for forecasts of extreme rainfall. The
weaker-than-observed MJO amplitude in the model at lead
times beyond 1 week contributes to reducing the signal to noise

of theMJO’s local impacts and so reduces predictive skill. There
is an ongoing concerted effort to improve the depiction of the
MJO in the ACCESS-Smodel in conjunction with the Bureau of

Meteorology partner the UK Met Office (e.g. Walters et al.

2017), so we should look forward to improved predictive skill of
multiweek extreme rainfall with subsequent upgrades to the
model. However, the present results also emphasise the chal-

lenge of predicting rainfall extremes and that theMJO is but one
of many contributors that must be well predicted in order to
produce skilful forecasts.
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