
 
ABSTRACT This paper presents a finite-element model of the Phu My Bridge, a 380m-main span reinforced concrete cable-
stayed bridge in Ho Chi Minh City, Vietnam. The model is also updated based on accelerometer data from the on-structure sensing 
system for structural health monitoring (SHM). A comprehensive sensitivity study is undertaken to examine the effects of various 
structural parameters on the modal properties, according to which a set of structural parameters are then selected for model 
updating. The finite-element model is updated in an iterative procedure to minimise the differences between the analytical and 
measured natural frequencies. The model updating process converges after a small number of four iterations, due to the accuracy 
of the initial model which was achieved through careful consideration of the structural parameter values for the model, optimal 
element discretisation for mesh convergence, and the most sensitive parameters for updating. The updated finite-element model 
for the Phu My Bridge is able to reproduce natural frequencies in good agreement with measured ones and can be helpful for long-
term monitoring efforts. 
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1 INTRODUCTION 

The Phu My Bridge (Figure 1), opened to traffic in 2009 and 
located over the Saigon River in Ho Chi Minh City (HCMC), 
Vietnam, is a critical link in the highway system around HCMC 
designed to relieve traffic congestion in the urban core. 
Additionally, the Phu My Bridge is an important link in the 
transport corridor from the southern Mekong Delta region to 
the central and northern parts of Vietnam. To ensure the 
structural integrity and operational safety, in 2019 the bridge 
was fitted with a structural health monitoring (SHM) sensing 
system that includes three inclinometers on the eastern side 
pylon, eight accelerometers (4 on the eastern deck and 4 on the 
four longest mid-span cables on the eastern side), one weather 
station, and one anemometer.  

 

 
 

Figure 1. Phu My Bridge Layout. 

 
A three-dimensional finite-element (FE) model was 

constructed using linear elastic beam elements for the deck, 
towers, and piers, truss elements for the cables, and elastic or 
rigid links for the connections and boundary constraints. The 
bridge deck girder, which is composed of two longitudinal 
concrete girders linked by transverse prestressed concrete cross 
girders at 5m intervals, is modelled using a single spine passing 
through the centre of the deck. The cables are modelled using 

single linear elastic truss elements and the nonlinear effect due 
to cable tension and sag is considered by linearizing the cable 
stiffness using an equivalent modulus of elasticity [1]. As this 
is the first attempt at updating the model with one set of data, 
for simplicity one value for the cable elastic modules is adopted 
for all cables.  The FE model, after a mesh convergence study, 
consists of 2290 beam elements, 144 truss elements, and 2310 
nodes as shown in Figure 2.  
 

 

Figure 2. Three-dimensional model of Phu My Bridge. 

 

2 METHODOLOGY 

 Operational Modal Analysis 

Through Operational Modal Analysis (OMA), modal 
properties were identified from ambient vibration data captured 
by the Phu My SHM system over a seven-day period from July 
29th to August 4th 2020. This was carried out by using two 
different output-only techniques: the Enhanced Frequency 
Domain Decomposition (EFDD) in the frequency domain and 
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the data driven Stochastic Subspace Identification (SSI); these 
techniques are available in the commercial program ARTeMIS. 

 Finite Element Analysis 

Modal properties identified from OMA show reasonable 
correlation with the FE model results in terms of natural 
frequencies and mode shapes. However, consistent 
discrepancies can be seen between the analytical and measured 
natural frequency results. While the finite element method is a 
mature technique, FE models are unable to predict structural 
responses with complete accuracy due to inherent errors in the 
modelling procedure. Errors that may cause discrepancies are 
well documented in the literature. Possible sources are [2]: (1) 
Structural modelling errors such as ill-defined boundary 
conditions, difficulty in modelling detailed, complex shapes, 
connections, joints, and assumptions for simplification 
purposes; (2) Structural parameter errors such as estimating 
values for unknown material properties; and (3) Model order 
errors resulting from inaccurate model discretisation. In this 
study, (1) and (2) are the major contributors of differences 
between the analytical and measured results. 

 Model Updating 

If the measured modal properties identified from the SHM data 
are assumed to be very close to the actual behaviour of the 
structure, then the intent is to update the FE model so that the 
predicted modal properties match those obtained from 
measurements. This presents a challenging problem as complex 
structures with a large number of degrees of indeterminacy, 
such as cable-stayed bridges, have inherent uncertainties in 
many parameters and boundary conditions. Numerous model 
updating methods have been proposed to meet this challenge 
[3][4][5].  

For cable-stayed bridges, the most popular updating methods 
are sensitivity-based and iterative i.e. changing the most 
sensitive model parameters iteratively until agreement between 
predicted and measured results has been achieved. This 
approach has the advantages of identifying parameters that can 
directly affect the modal properties of the structure and acquire 
an immediate physical interpretation of the updated results. 

In this paper, a sensitivity-based updating method is used for 
updating the FE model of the Phu My Bridge. The method is 
based on the eigenvalue sensitivity of selected structural 
parameters that are assumed to fall within certain limits 
according to the degrees of uncertainty, possible variation, and 
engineering judgement. The changes of these parameters are 
found by minimising an objective function by solving a 
quadratic programming problem detailed in the next section. 

 

3 SENSITIVITY-BASED PARAMETRIC UPDATING 
WITH CONSTRAINTS 

As the relationship between the natural frequencies and model 
parameters is nonlinear, the problem is linearized and can be 
expressed as a Taylor series expansion (limited to the first two 
terms) [5]. Since the Taylor expansion is truncated by 
neglecting the higher-order terms, the shortened expansion 
necessitates several iterations. When very large discrepancies 
exist between the measured and analytical responses, the 
validity of the Taylor series truncations to first order is 
undermined and the iterative process is prone to divergence. As 

such, the initial FE model prior to updating should be relatively 
close to the measured behaviour [6].  
The model updating approach adopted for this study utilises an 
improved sensitivity-based updating algorithm as described in 
[7]. This updating approach has the advantage of considering 
uncertainties in the measurements and the input parameters by 
utilizing weighting matrices. The formulation of the procedure 
is as follows. 

The ith eigenvalue λi and the corresponding eigenvector ϕi of 
an undamped continuous system discretised into an n degrees 
of freedom FE model are obtained by solving the following 
eigenequation: 

 𝐊Φ௜ = λ୧𝐌Φ௜ (1) 

 
where K and M are the structural stiffness and mass matrices, 
respectively. 

If from an initial FE model the set of structural parameters 
(pi,a, i = 1, 2, 3,……, np) can be represented by a vector Pa 

 

 𝐏௔ = [𝑝௜,௔ | 𝑖 =  1, 2, 3, … … . . , 𝑛௣]் (2) 

 
where np is the total number of structural parameters, then a set 
of eigenvalues (Ʌa) can be obtained from the model as  

 

 𝚲௔ = [𝜆௜,௔  | 𝑖 =  1, 2, 3, … … . . , 𝑛௔]் (3) 

where na is the total number of computed modes. The subscript 
a in Eqs. (2) and (3) is used to indicate the results from the 
analytical model.  

From SHM modal analysis of the structure, the modal 
characteristics of the structure can be determined and expressed 
as 

 𝚲௘ = [𝜆௜,௘  | 𝑖 =  1, 2, 3, … … . . , 𝑛௘]் (4) 

 
where Ʌe is the vector of measured eigenvalues, and ne is the 
total number of measured modes. The subscript e is used to 
indicate that the properties are obtained from measurements. It 
may be assumed that the total number of measured modes is the 
same as the total number of analytical modes (ne = na). 

As mentioned previously, the analytical (Ʌa) and the 
measured (Ʌe) modal properties are usually discrepant due to 
inaccuracies in both the FE model and the measurements. For 
SHM purposes, it is assumed that the measured modal 
properties are very close to the actual behaviour of the structure 
and that the FE model errors are the main contributor to the 
discrepancy. Therefore, the model can be improved by the 
parametric model updating procedure. Let Pu represent the 
vector of structural parameters after updating 

 

  𝐏௨ = [𝑝௜,௨ | 𝑖 =  1, 2, 3, … … . . , 𝑛௣]் (5) 

 
The relationship between the measured and initial model 
eigenvalues can be approximated by a first-order Taylor series 
expansion with respect to the structural parameters. The higher-
order terms in the Taylor series expansion are neglected under 



the assumption that the changes in the structural parameters 
between successive iterations are sufficiently small: 
 

  𝛅𝚲 = 𝐒𝛅𝐏 (6) 

where δɅ is the eigenvalue residual vector calculated by Ʌe - 
Ʌa ; δP  is the perturbation vector of the structural parameters 
calculated by Pu - Pa ; and S is the sensitivity matrix. 

As Eq. (6) attempts to determine the change in parameters 
required to obtain the measured observations, Eq. (6) is 
formulated as an inverse problem. The selection of updating 
parameters depends on their sensitivity, and the total number of 
updating parameters determines the complexity of the 
optimisation problem. Therefore, reducing this number by 
determining the most sensitive parameters is critical to 
successful model updating. A sensitivity analysis for each 
parameter computes the sensitivity coefficient defined as the 
rate of change of a particular response quantity with respect to 
a change in the structural parameter. For all selected responses 
and parameters, the sensitivity matrix Sij with respect to 
eigenvalues is obtained by [8]: 
  

 S୧୨ =
ஔ஛౟

ஔ୔ౠ
 (7) 

where δPj and δλi are the change in parameter and the 
corresponding change in response, respectively. If sensitivities 
for different types of parameters are to be compared, then the 
relative sensitivity matrix Sr is defined by [6]: 
 

 S୰୧୨
= ൬

ஔ஛౟

ஔ୔ౠ
൰ P୨ (8) 

 
where Pj is the structural parameters evaluated either at the 
initial estimate Pa, or at an iteration value during the updating 
process where j = 1, 2, 3, . . . ., n for n iterations.  

The relative sensitivities can be also normalised with respect 
to the response value to form the normalised sensitivity matrix 
Sn defined by: 

 S୬୧୨
= ൬

ஔ஛౟

ஔ୔ౠ
൰ ∙ ቀ

୔ౠ

஛౟
ቁ (9) 

 
The following objective function was proposed to solve the 
inverse problem as stated in Eq. (6) [9]. 
 

 𝐉 = 𝛅𝐏𝐓𝐖𝐏𝛅𝐏 + (𝐒𝛅𝐏 − 𝛅𝚲)𝐓𝐖𝐄(𝐒𝛅𝐏 − 𝛅𝚲) (10) 

 
where WP and WE are the positive definite weighting matrices. 
WP is chosen to restrain large changes to more certain 
parameters or parameters that may affect the eigenvalues 
drastically, and WE is chosen to give weighting to those 
eigenvalues that are more certain than others. 

To avoid very large variations in parameter perturbation that 
violate the assumption of the first-order Taylor series 
approximation and reduce the physical meaning of the updated 
result, inequality constraints for each structural parameter are 
implemented as follows: 

 𝐁𝒍 ≤ 𝐏 ≤  𝐁𝐮 (11) 

 𝐛𝒍 ≤ 𝛅𝐏 ≤  𝒃𝐮 (12) 

where Bl and Bu are vectors of lower and upper bounds for the 
structural parameters P, respectively, and bl and bu are vectors 
of lower and upper bound perturbations for the change in 
structural parameters δP, respectively. 
 
Figure 3 presents an overview of the model updating procedure 
to solve Eq. (6). 

 

Figure 3. Flowchart sensitivity-based model updating with 
constraints [7]. 

 
Thus, parameter updating can now be achieved by 

minimising the objective function (Eq. (10)) subjected to the 
constraints defined by Eq. (11). This constrained optimisation 
may be stated as the following quadratic programming 
problem: Minimise 
 

 𝐉(𝐱) =  𝟏
𝟐ൗ 𝐱𝐓𝐖𝐱 (13) 

 
subject to: 
Aix = di (i = 1, 2, 3,. . . , ne) and  
Aix ≤ di (i = ne + 1, ne + 2, ne + 3,. . . , ne + 2np) 
 
where 



 𝐱 =  ቄ
𝛅𝐏

𝐒𝛅𝐏 −  𝛅Ʌ
ቅ (14) 

 𝐝 =  ൝
 𝛅Ʌ
𝐛𝒖

−𝐛𝒍

ൡ (15) 

 𝐀 =  ൥
𝐒 −𝐈
𝐈 𝟎

−𝐈 𝟎
൩ (16) 

 𝐖 =  ൤
𝐖𝑷 𝟎
𝟎 𝐖𝑬

൨ (17) 

 
and Ai and di refer to the ith row of matrix A and vector d, 
respectively.  
 

4 SELECTION OF MATCHING MODES AND 
UPDATING PARAMETERS 

Before updating the model, the modes are selected for matching 
between the FE analysis results and the OMA measurements, 
and the structural parameters selected to be included for 
updating. It would be ideal if as many modes as possible are 
matched between the analytical predictions and measurements. 
However, it is generally assumed that the identification of 
lower modes is more reliable than higher modes and therefore 
focusing on matching lower modes is more logical. In this 
study, the lowest 15 modes with frequencies ranging between 
0.2 and 1.2 Hz identified from the initial model are chosen to 
be matched with the OMA results. These include eight vertical-
dominant, one lateral-dominant, one torsional-dominant, and 
one longitudinal-dominant modes of the deck. The frequencies 
determined from the initial FE model and their corresponding 
values obtained from OMA measurements are summarised in 
Table 1. Note that modes 4, 5, 12 and 13 identified from the FE 
results were not identified from the OMA. 
 
A comprehensive eigenvalue sensitivity analysis is performed 
to study the effects of parameters on the selected mode 
frequencies. These parameters include geometry and material 
properties of the deck, towers, material properties of the cables, 
as well as the boundary conditions of the deck/pylon and deck/ 
pier connections (Table 2). Some key considerations associated 
with the parameter updating and sensitivity analysis are 
summarised as follows: 
1. For description purposes, the structural parameters are 

grouped into geometry, non-structural mass, and materials. 
2. For reference purposes, the pylons have been divided into 

five distinct parts as shown in Figure 4. 
3. It is assumed that the cross sections of the deck, pylons, 

and piers have homogeneous properties that do not vary. 
The parameterisation of the connections and boundary 
conditions present a challenge to defining the initial model, 
and to model updating. In this study, three elastic springs 
with one, two, and three degrees of freedom (DOF) 
respectively are assigned to each deck/pylon and deck/pier 
connection. This DOF combination of elastic springs 
allows suitable mode shape behaviour with any 
‘separation’ between deck and pylon, and deck and pier. 
The pylon and pier legs are fully fixed to the ground. 

Table 1. Selected modes for model updating. 

# Mode shape 
description 

Notat
-ion 

FE 
Model 
(Hz) 

OMA 
(Hz) 

% 
diff. 

1 First vertical 
bending of deck 

VD1 0.260 0.281 -7.40 

2 Second vertical 
bending of deck 

VD2 0.346 0.362 -4.42 

3 First lateral 
bending of deck 

LD1 0.425 0.428 -0.64 

4 First lateral mode 
of towers 

LT1 0.515 - - 

5 Second lateral 
mode of towers 

LT2 0.520 - - 

6 Third vertical 
bending of deck 

VD3 0.521 0.554 -6.05 

7 Fourth vertical 
bending of deck 

VD4 0.580 0.614 -5.52 

8 First longitudinal 
bending of deck + 

towers 

LDT1 0.621 0.665 -6.55 

9 Fifth vertical 
bending of deck 

VD5 0.677 0.684 -1.06 

10 First torsional 
mode of deck 

TD1 0.830 0.836 -0.75 

11 Sixth vertical 
bending of deck 

VD6 0.891 0.899 -0.85 

12 First lateral mode 
of end piers 

LP1 0.978 - - 

13 Second lateral 
mode of end piers 

LP2 0.981 - - 

14 Seventh vertical 
bending of deck 

VD7 1.071 1.163 -7.93 

15 Eighth vertical 
bending of deck 

VD8 1.127 1.21 -6.83 

Note: % diff. = (Initial FE model results – OMA results) / OMA 
results 
 

 
 
 

Figure 4. Pylon definitions. 



Table 2. Model input parameters. 

Index Parameters  Initial 
estimation 

Geometry Parameters 

G1 Pylon lower leg cross sectional 
area 

35 m2 

G2 Pylon side leg cross sectional area 18 m2 

G3 Pylon upper leg cross sectional 
area 

15 m2 

G4 Pylon lower cross beam (CB) 
cross sectional area 

30 m2 

G5 Pylon upper cross beam (CB) 
cross sectional area 

25 m2 

G6 End pier leg cross sectional area 15 m2 

G7 End pier cross beam (CB) cross 
sectional area 

6 m2 

G8 Girder cross sectional area 23 m2 

G9 Girder moment of inertia (I) 21 m4 

G10 Girder torsional inertia (I) 58 m4 

G11 Stay cable cross sectional area Varied 

Non-structural Parameters 

NS12 Non-structural (NS) girder mass 15000 
kg/m 

Material Parameters 

M13 Pylons and piers concrete 
strength 

60 MPa 

M14 Girder concrete strength 60 MPa 

M15 Stay cable Young’s modulus (E) 195 GPa 

M16 Concrete density 2500 
kg/m3 

M17 Stay cable density 7850 
kg/m3 

M18 Concrete Poisson’s ratio 0.2 

M19 Stay cable Poisson’s ratio 0.3 

M20 Spring stiffness 3 x 107 
N/m 

 
 
The eigenvalue sensitivities of the 15 selected modes with 
respect to all parameters described above are computed using 
Eq. (9). This dimensionless sensitivity indicates the effect of a 
certain parameter on a particular frequency. The sensitivities 
range between -0.4 and 0.4. Table 3 lists the input parameters 
from the most sensitive to the least sensitive and noting their 
sensitivity effect - positive sign indicates that an increase in 
parameter values results in an increase in natural frequencies, 
and negative sign indicates an increase in parameter values 
results in a decrease in natural frequencies.  
 

Table 3. Model input parameters from most sensitive to least. 

Rank Index Parameter Sensitivity 
effect 

1 M16 Concrete density - 
2 M15 Stay cable Young’s 

modulus (E) 
+ 

3 G8 Girder cross 
sectional area 

- 

4 G11 Stay cable cross 
sectional area 

+ 

5 G2 Pylon side leg cross 
sectional area 

+ 

6 G1 Pylon lower leg 
cross sectional area 

+/- 

7 M13 Pylons and piers 
concrete strength 

+ 

8 G9 Girder moment of 
inertia (I) 

+ 

9 M14 Girder concrete 
strength 

+ 

10 NS12 Non-structural (NS) 
girder mass 

- 

11 G3 Pylon upper leg 
cross sectional area 

+/- 

12 M17 Stay cable density - 
13 G4 Pylon lower cross 

beam (CB) cross 
sectional area 

+ 

14 G5 Pylon upper cross 
beam (CB) cross 

sectional area 

+/- 

15 G10 Girder torsional 
inertia (I) 

+ 

16 G6 End pier leg cross 
sectional area 

+/- 

17 M20 Spring stiffness - 
18 G7 End pier cross beam 

(CB) cross sectional 
area 

No effect 

19 M18 Concrete Poisson’s 
ratio 

No effect 

20 M19 Stay cable Poisson’s 
ratio 

No effect 

 
 

5 PARAMETER UPDATING AND UPDATED MODEL 
RESULTS 

To reduce the complexity of model updating, only those 
parameters with higher sensitivity and with a reasonable degree 
of uncertainty are included and listed in Table 4. Since the 
geometry of the cables are well documented, the cross-sectional 
areas of the stay cables are assumed to be correct and are 
excluded as candidate parameters for adjustment. Additionally, 
the least sensitive parameters are also excluded. 
 
 
 
 



Table 4. Model input parameters selected for adjustment. 

Index Parameter 
M16 Concrete density 
M15 Stay cable Young’s modulus (E) 
G1 Pylon lower leg cross sectional area 
G2 Pylon side leg cross sectional area 
G3 Pylon upper leg cross sectional area 
G4 Pylon lower cross beam (CB) cross sectional 

area 
G5 Pylon upper cross beam (CB) cross sectional 

area 
G8 Girder cross sectional area 
G9 Girder moment of inertia (I) 

NS12 Non-structural (NS) girder mass 
M14 Girder concrete strength 
M13 Pylons and piers concrete strength 

 
 
The structural parameters in Table 4 are updated in an iterative 
fashion using the procedure illustrated in Figure 3. The initial 
estimates of the parameters used in the initial finite-element 
model as listed in Table 2 are taken as the starting point for the 
iterative process. For each iteration, an eigenvalue sensitivity 
analysis is preformed using the parametric values updated in 
the previous iteration. The parameters are restrained from 
extreme changes in each iteration by choosing a weighting 
matrix WP so as not to violate the first-order Taylor series 
expansion approximation for Eq. (6).  

The 12 most sensitive structural parameters in Table 4 are 
updated gradually in each iteration with the natural frequencies 
calculated at the end of each iteration gradually approaching 
those of the measured values. The convergence criterion used 
to stop the iteration is set to ± 4.5% difference between the 
measured and calculated frequencies across all modes (Table 
5). 
 
The convergence of the updating process is reached after four 
iterations. Table 5 summarises the 15 frequencies calculated 
during these four iterations. Most of the calculated frequencies 
converge gradually toward the corresponding measured values. 
The differences between the measured and calculated 
frequencies for the initial and final (4th iteration) updated 
models are plotted in Figure 5. The updated model frequencies 
are generally closer to the measured frequencies and the 
updated results fall within ±4.5%. However, as shown in Figure 
5, the frequency differences of modes 9 and 11 increase as the 
iteration increases. This is attributed to the fact that global 
fitting of frequencies can sacrifice the matching of some 
individual modes. 
 
 
 
 
 
 
 
 
 
 
 

Table 5. Model updating results. 

Mode 

Finite-Element model frequency results (Hz) 

Initial 
model 

Updated model after iteration 

1st 2nd 3rd 4th 

VD1 0.260 0.265 0.269 0.272 0.273 

VD2 0.346 0.352 0.358 0.361 0.364 

LD1 0.425 0.426 0.427 0.428 0.428 

LT1 0.515 0.514 0.513 0.511 0.510 

LT2 0.520 0.519 0.518 0.516 0.515 

VD3 0.521 0.545 0.549 0.550 0.550 

VD4 0.580 0.595 0.601 0.607 0.609 

LDT1 0.621 0.631 0.638 0.640 0.642 

VD5 0.677 0.685 0.699 0.710 0.712 

TD1 0.830 0.829 0.829 0.828 0.828 

VD6 0.891 0.920 0.930 0.936 0.938 

LP1 0.978 0.994 1.001 1.005 1.007 

LP2 0.981 0.995 1.005 1.010 1.012 

VD7 1.071 1.095 1.115 1.125 1.126 

VD8 1.127 1.165 1.175 1.182 1.185 

 
 

 

Figure 5. Comparison of frequency difference between initial 
and final (4th iteration) updated model. 

 
 
Table 6 shows the updated values of the 12 structural 
parameters at the end of the 4th iteration as compared to the 
initial estimates. All show variations except for the pylon lower 
and upper cross beams which show very minor changes. The 
fact that the initial model being quite close to the measured 
values (<10% differences) means the changes in the parameter 
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values are generally minor in nature. It should be 
acknowledged that there is no evidence to suggest that the 
updated structural parameter values are the ‘true’ values for the 
Phu My Bridge. The set of updated parameters can be 
considered plausible candidates among many sets of 
parameters with different combinations that can satisfy the 
constrained optimisation problem.  
 
 
Further running of the updating procedure does not show 
reduced differences between the updated model and the OMA 
results. Modes 9 and 11 in particular continue to increase in 
difference between the updated model and the measured 
results. If modes 9 and 11 are excluded and the iterations 
continued, only a minor improvement is achieved, and 
additional iterations cannot reduce the frequency differences 
further. This is attributed to errors associated with collecting 
and postprocessing the measurement data, the simplifications 
and assumptions in the FE model, and the inherent assumptions 
and limitations of the presented updating procedure. 
 

Table 6. Updated parameter values. 

Index Parameter Initial 
estimation 

Updated 
value 

M16 Concrete density 
(kg/m3) 

2500 2507 

M15 Stay cable 
Young’s modulus 

(E) (GPa) 

195 194.95 

G1 Pylon lower leg 
cross sectional area 

(m2) 

35 35.1 

G2 Pylon side leg 
cross sectional area 

(m2) 

18 18.4 

G3 Pylon upper leg 
cross sectional area 

(m2) 

15 15.5 

G4 Pylon lower cross 
beam (CB) cross 

sectional area (m2) 

30 30.02 

G5 Pylon upper cross 
beam (CB) cross 

sectional area (m2) 

25 25.01 

G8 Girder cross 
sectional area (m2) 

23 20.5 

G9 Girder moment of 
inertia (I) (m4) 

21 21.7 

NS12 Non-structural 
(NS) girder mass 

(kg/m) 

15000 14987 

M14 Girder concrete 
strength (MPa) 

60 55 

M13 Pylons and piers 
concrete strength 

(MPa) 

60 55 

 
 

6 CONCLUSION 

This paper presents the first attempt of dynamic modelling and 
model updating of the Phu My Bridge. A total of 15 modes, 
with a frequency range between 0.2 and 1.2 Hz, are selected for 
matching between the measured and calculated FE results. A 
total of 12 structural parameters are selected for updating based 
on an eigenvalue sensitivity study. The updating method used 
is an eigenvalue sensitivity-based approach, and the parameters 
are bounded according to their degree of uncertainty and 
possible variation based on engineering judgement. The model 
updating process converges after a small number of four 
iterations. The small number of iterations highlights the 
importance of accurate initial modelling in reducing the 
computational demand and complexity of the updating 
problem. Accurate modelling was achieved through careful 
consideration of the structural parameter values for the model, 
optimal element discretisation for mesh convergence, and the 
most sensitive parameters for updating. Overall, the 
frequencies calculated from the updated model are closer to the 
measured values when compared to those calculated from the 
initial model.  

This study summarises the updating of an initial FE model 
based on on-structure sensing system and SHM vibration data. 
The results suggest that it is possible to use bridge SHM data to 
update a FE model so that the numerical natural frequencies are 
reasonably close to the measured ones. Complete elimination 
of the frequency differences, however, presents challenges due 
to inherent assumptions introduced before and during the 
formation of the model updating process.  
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