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Quantitative time-resolved irradiance measurements were obtained of

the Hayabusa Sample Return Capsule’s entry on June 13, 2010, as mea-

sured from 12.6 km altitude with the Australian Ultraviolet Spectrograph

instrument on board NASA’s DC-8 Airborne Laboratory, which was sta-

tioned just outside of the landing site at the Woomera Test Range in Aus-

tralia. The measurements were calibrated against NIST traceable standard

calibration lamps on the tarmac at NASA Dryden Aircraft Operations Fa-

cility and at NASA Ames Research Center. The recorded spectra cover the

wavelength range from 300 to 470 nm over the duration from 13:52:02.5 un-

til 13:52:33.5 UTC. The spectra show shock emission from N+
2 , as well as

several ablation products from the heat shield material (CN, Ca, and Al).

In addition, the high-temperature tail of gray-body emission is observed to

enter the wavelength range after 13:52:13 UTC. These data were evaluated

in terms of the temporal evolution of the capsule’s stagnation temperature

and emissions within the CN and N+
2 manifolds. A peak in the irradiance

within the wavelength band from 365 to 392 nm was registered at approxi-

mately 13:52:07 UTC and elevated levels of irradiance within the combined
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CN and N+
2 manifolds were subsequently registered at about 13:52:20 UTC.

An apparent maximum capsule temperature close to 3050K was found at

around 13:52:23 UTC, consistent with apparent capsule temperature values

deduced using other instruments.

Nomenclature

Ai aperture area of the instrument, m2

Al lamp aperture area, m2

Aobs is instantaneous area of the capsule face observed from the DC-8, m2

Ee,λ spectral irradiance, W/m2-nm

Le,λ spectral radiance, W/m2-nm-sr

dobs instantaneous observed distance between the capsule and the DC-8, km

ri radius of the instrument aperture, m

rcap is the actual capsule radius, 0.2 m

x is the distance from the source to the instrument aperture, m

Ω solid angle

I. Introduction

Super-orbital re-entry still offers a host of challenges that are being tackled through

the combined efforts of computational simulation and experimental measurements. To un-

derstand the minimum requirements of a thermal protection system’s heat shield material,

in-flight testing is ideal. However, current opportunities for flight testing of prototype config-

urations are rare and far between, so experimental efforts are generally focused on laboratory

simulations.

In Australia, laboratory simulation of super-orbital flow energies is achieved using expan-

sion tunnel facilities located at the University of Queensland.1,2 These facilities are impulsive

wind tunnel facilities which produce test flows with a duration on the order of 100 (and up to

500) microseconds. Actual flight conditions produce ablative flows for several tens of seconds

under atmospheric conditions that are slightly different than in the wind tunnel facilities.

Although recent free piston driver developments have established new flow conditions, scaled

testing of thermal protection system models is commonly employed.

When an actual flight opportunity presented itself with the return of the JAXA Hayabusa

Sample Return Capsule on the 13th of June 2010, the community worked together to mount

an airborne and ground-based observing campaign to study the entry. Hayabusa was sched-
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uled to enter the atmosphere above Australia late in the evening on the 13th of June 2010

with a speed of about 12.2 km/s, the fastest re-entry since ‘Stardust’ in 2006. Observations

of the Stardust re-entry yielded a significant body of data suitable for testing computational

models3–5 so, with JAXA and Australian approval, NASA deployed the DC-8 Airborne Lab-

oratory to the Woomera Test Range to provide a high altitude platform for Hayabusa irra-

diance measurements. A research team from the University of Southern Queensland and the

University of Queensland contributed to this mission a near-UV slit-less spectrograph, called

the Australian Ultraviolet Spectrograph (AUS). At the same time, teams of researchers from

the University of Queensland, The University of Southern Queensland, and the University

of New South Wales (Australian Defence Force Academy) were positioned at Tarcoola and

Coober Pedy for ground-based observations of the re-entry.6

Near-UV emissions data were acquired using a variety of instruments during the Stardust

re-entry observation campaign. The fibre-fed Cerny-Turner device described by Winter and

Trumble7 resolved CN and N+
2 structures between about 320 and 450 nm with a resolution

of about 0.3 nm for capsule altitudes between 75 and 50 km. Tracking challenges associated

with the very narrow field of view of this device meant that not every recorded spectrum

contained useful data. The echelle spectrograph used by Jenniskens3 provided similar data

but only at altitudes between 82 and 69 km whereas peak heating occurred at around 60 km.

Lower resolution near-UV data was obtained for about 30 s around the time of peak heating

using intensified video-rate devices down to wavelengths around 320 nm in the case of the

work by Rairden and Jenniskens,8 and down to about 380 nm in the case of the work by

Jenniskens et al.9 The ∆ν = 0 CN manifold was very well resolved by the upward-looking

device of Jenniskens et al.10 but only around the time of peak heating.

The AUS instrument was developed in an effort to provide near-UV emissions spectra

from the Hayabusa re-entry to augment the existing Stardust data base. For the AUS

instrument to make a useful contribution in this respect, it was determined that the CN

and N+
2 structures would need to be resolved, the deduced spectral emissions should have

an absolute calibration reference, and reliable results were required throughout the re-entry

process, including the time of peak heating.

Here, the results from the airborne observations of the Hayabusa re-entry obtained us-

ing the AUS device are discussed. Section II describes the AUS instrument and Section III

details the calibration procedures and results. Section IV describes the data reduction tech-

niques, presents the measured spectra, and discusses the temporal evolution of the irradiance

signatures.
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II. Instrument

The Australian Ultraviolet Spectrograph was mounted in the DC-8 at station 610 (the

distance in inches from the nose of the aircraft). The instrument was co-aligned with an

intensified near-UV spectrometer (IUV) as illustrated in Fig. 1. The IUV device was previ-

ously deployed in the Stardust observation campaign.8 At station 610, a fused silica window

was fitted to the DC-8 to enable acquisition of emission signatures in the near-UV region.

The window has good and flat transmittance well below the atmospheric (ozone) cut-off

at about 300 nm. The instrument was secured on top of a ball mount and pointed to the

entering capsule by hand. A wide field of view video camera (a Watec device) with good

performance at low light levels was co-aligned with the spectrometer to facilitate manual

tracking which was achieved by displaying the video signal on a headset display with cross-

hairs. The outlet of a tube delivering cold air was positioned near the window to prevent

icing, and a curtain was placed over the mounted instruments during the observation event

to prevent stray cabin light from entering the instruments.

Figure 1. Annotated photograph showing the arrangement of the Australian Ultraviolet Spectrograph (AUS)
mounted in the DC-8.

The design of the AUS instrument is illustrated in Fig. 2. The AUS instrument consisted

of UV fused silica right angle prism (60 mm size, uncoated, Thorlabs: PS613) positioned

ahead of a 1200 lines/mm fused silica transmission grating (50 × 50 mm, Thorlabs: GTU50-

12). An offset of approximately 10 degrees was applied to the prism to achieve a centre

wavelength of about 375 nm on the intensified CCD array. The right angle prism and
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Figure 2. Optical arrangement of the Australian Ultraviolet Spectrograph (AUS).

diffraction grating were embedded in an aluminium housing with mating 52 mm filter mount.

The 105 mm lens used in the AUS device was manufactured by CoastalOpt and had colour

correction between 250 and 650 nm and an f/4.5 maximum aperture.

Imaging of the emissions was achieved using a Princeton Instruments intensified CCD

camera (PI-MAX 1024B with a GenII intensifier) with 1024 × 256 pixels. The longer 1024

pixel rows were aligned in the vertical direction – the direction of the wavelength disper-

sion, providing a dispersion of 0.187 nm/pixel. The FWHM of Hg lines identified during

wavelength calibrations was about 3 pixels, corresponding to a resolution of approximately

0.5 nm. The spectrometer field of view in the direction of the 256 pixels was approximately

3.6 degrees. Images were exposed for 100 ms and read-out and stored during a period of

269.536 ms to produce data at a rate of approximately one frame every 0.370 seconds. Dur-

ing the re-entry observation, the gain on the CCD intensifier was set to 200, and the lens

aperture was set to its maximum.

III. Calibration

Calibrations of the AUS instrument were performed on the tarmac at the NASA Dryden

Aircraft Operations Facility (DAOF) before and after the observation mission using NIST-

traceable absolute radiance standard calibration lamps. Post-re-entry calibrations were also

performed subsequently at the NASA Ames Research Center with an additional deuterium

lamp for enhanced calibration accuracy at lower wavelengths.

Two standard integrating sphere lamps were used: a SphereOptics lamp fitted with a 500

± 5µm diameter aperture and a GigaHertz lamp (serial number BN-0102-02 SN14053aw, last

calibrated April 9, 2010) fitted with a 809.1 ± 0.9µm diameter aperture. These apertures

were selected so that at the chosen calibration distance, both lamps produced peak irradi-

ance similar to that anticipated for the capsule. However, because the anticipated near-UV
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molecular band emissions from CN in the shock layer far exceeded the irradiance from the

lamps at these wavelengths, it was necessary to calibrate the instrument using high exposure

settings relative to those adopted for the re-entry observation. In all of the calibration work,

Ocean Optics emission line halogen lamps containing mercury and argon (Hg/Ar) with small

1 mm apertures were placed at the same elevation adjacent to the standard lamps, in order

to provide a wavelength scale for the calibration.

The standard spectral radiance values Le,λ (W/m2-nm-sr) provided from the lamp cali-

brations were converted to spectral irradiance values Ee,λ (W/m2-nm) received at the instru-

ment using the lamp aperture areas Al, the solid angle of the flux received at the instrument

Ω and the aperture area of the instrument, Ai according to

Ee,λ =
Le,λAlΩ

Ai
. (1)

Because of the small solid angles used during calibration, to a very good approximation,

Ω = π
(
ri
x

)2

(2)

where ri is the radius of the instrument aperture and x is the distance from the source to

the instrument aperture. Thus, the spectral irradiance received at the instrument location

is independent of the instrument aperture as expected

Ee,λ =
Le,λAl
x2

. (3)

Although the irradiance at the instrument during calibration is independent of the instrument

aperture, the instrument sensitivity is dependent on the instrument aperture. For the present

work the same aperture (f/4) was used during all calibrations and the observation flight. For

the calibrations reported herein, the gain setting on the ICCD was 200, as it was for the

observation flight.

For the calibrations performed on the tarmac at NASA Dryden Aircraft Operations

Facility on 7 June 2010, the SphereOptics lamp was available to instruments towards the

front of the DC-8 and was positioned close to boresight from the AUS instrument station.

The distance from the lamp to the the outer skin of the aircraft at a point just above the

window was measured with a laser range finder at 28.733 m. From the aircraft geometry,

this location on the aircraft skin is estimated to be 80.3 mm closer to the AUS instrument

than the outside surface of the fused silica window.11 The window thickness was 31.75 mm

and the distance from the inner window surface to the diaphragm of the 105 mm lens was

225 mm. Therefore, the overall distance from the lamp aperture to the instrument totals

28.906 m in this case.

For the 7 June 2010 results reported in Fig. 3, the pixel counts at each wavelength were
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summed across 11 pixels in the spatial direction and the background counts were identified

at each wavelength from the counts on pixels adjacent to the primary summation region.

A total of 21 frames each with an exposure of 250 ms was recorded for this calibration so

ADU results were averaged across the total number of frames and reduced in magnitude

by a factor of 2.5 according to the ratio of exposure used during calibration to that used

during the re-entry observation since the acquired counts are proportional to the exposure

time. The instrument sensitivity figure expressed as ADU per W/m2-nm was then obtained

by dividing the summed counts (the ADU value) at each pixel location by the spectral

irradiance Ee,λ (Eq. 3) at the corresponding wavelength from the standard lamp. There is

substantial scatter for this calibration despite the elevated exposure and the averaging over

21 frames, Fig. 3 . At 460 nm, the mean sensitivity deduced from the 7 June 2010 calibrations

was 1.170×1013 ADU per W/m2-nm with the standard deviation over 32 pixels centered at

this wavelength being 0.089×1013 ADU per W/m2-nm.
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Figure 3. Instrument sensitivity results from pre- and post-re-entry calibrations on the tarmac at NASA
Dryden Aircraft Operations Facility referenced to the settings used during the re-entry observation.

A similar approach was adopted for the 16 June 2010 tarmac calibrations except that in

an effort to improve the signal-to-noise ratio, 5 frames with 20 accumulations at an exposure

of 200 ms were recorded. In this case, the distance from the lamp to the instrument was

27.666 m, and the lamp used for this calibration was the GigaHertz device. A substantial

improvement in the signal to noise ratio was achieved – the standard deviation of the sig-

nal over 32 pixels centered at 460 nm was 0.057×1013 ADU per W/m2-nm compared with a

figure of 0.089×1013 ADU per W/m2-nm achieved in the pre-flight calibration. The mean

sensitivity at this wavelength was 1.096×1013 ADU per W/m2-nm in the post-flight tarmac

calibration and this figure is approximately 6 % lower than the value identified from pre-flight
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calibrations with the SphereOptics lamp. The post-flight calibrations with the GigaHertz

lamp are considered more reliable because of the improvements in the signal-to-noise ratio

that were achieved through instrument settings adopted for the post-flight calibration, and

because post-flight calibrations with the SphereOptics lamp consistently indicate a reduc-

tion in lamp output by around 50 % relative to pre-flight lamp output11 and this reduces

confidence in the absolute calibration of the SphereOptics lamp.

Further improvements in the calibration methods were achieved during additional post-

flight calibrations performed at the NASA Ames Research Center on 24 June 2010. For

this work, the signal-to-noise ratio of the calibration was increased for wavelengths lower

than 400 nm through the use of a deuterium lamp with a defined spectral radiance which

was co-aligned with the GigaHertz integrating sphere. These two lamps in combination

provided reference irradiance standards down to the lowest wavelength limit of the AUS

instrument. An Hg/Ar lamp was also co-aligned with the standard lamps in order to provide

the wavelength reference. For this work, one of the fused silica windows as used on DC-8 was

taken to the laboratory, and the lamps were positioned 25.730 m from the window. The AUS

instrument was positioned on the other side of the window, directly facing the calibration

lamps. The total distance from the lamps to the diaphragm of the 105 mm lens was 25.958 m

in this case. For the calibrations with the integrating sphere, 20 frames were taken, each with

75 accumulations at an exposure of 100 ms on the ICCD. For the deuterium lamp, 20 frames

were taken with one accumulation at an exposure of 60 ms. Results from these calibrations

are presented in Fig. 4, again referenced to a single accumulation at an exposure of 100 ms

as was used for the re-entry observation event.
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Figure 4. Instrument sensitivity results from the calibrations performed at NASA Ames Research Center
referenced to the settings used during the re-entry observation.
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Although an absolute radiance calibration was provided with the deuterium lamp, the

uncertainties in the actual discharge area of this lamp make it necessary to rely on the

integrating sphere for an absolute fix on the irradiance provided to the AUS instrument.

Therefore the instrument sensitivity results from the deuterium lamp were scaled to match

the results from the integrating sphere at a wavelength of 370 nm, corresponding to the

peak sensitivity of the instrument. The instrument sensitivity deduced from the scaled

deuterium lamp calibrations closely follows that derived from the GigaHertz lamp at wave-

lengths either side of the selected cross-over wavelength (370 nm) and this demonstrates the

reliability of the deuterium lamp scaling method. Over 32 pixels centered at 460 nm, the

mean of the instrument sensitivity figure in this case is 1.048×1013 ADU per W/m2-nm with

a standard deviation of 0.023×1013 ADU per W/m2-nm. Given the calibrations performed at

NASA Ames yielded considerably better signal-to-noise and seemingly reliable results down

to the lowest wavelength detection limits of the AUS instrument, these calibration results

are adopted for the analysis of the re-entry observation data. The cubic spline curve fitted

to the calibration data shown as the broken line in Fig. 4 is used to facilitate data analysis.

IV. Results

IV.A. Observation Overview

First light from the spacecraft was recorded on the ICCD at 13:51:54.0 UTC with the capsule

first appearing distinct from the main bus at 13:52:00.3 UTC. The proximity of the capsule

and spacecraft bus on the ICCD image for times before 13:52:12.1 UTC introduced some

uncertainty in identification of the capsule spectra and some localized interference from the

main bus spectra also occurred. Bright emissions from the disintegrating main bus caused

localised saturation on the ICCD and serious distortion of the counts recorded in imaging of

the capsule spectra for times between 13:52:12.1 and 13:52:17.2 UTC, rendering the data in

the capsule region unusable during this time. High counts in the main bus region recorded

on the ICCD continued to distort some of the results in the capsule region from 13:52:17.6

to 13:52:21.0 UTC but from 13:52:21.3 UTC, counts from the disintegrating main bus were

no longer problematic. From 13:52:28.0 UTC, disintegrating bus fragments were no longer

recorded on the ICCD and by 13:52:36.1 UTC, the counts from the capsule region were

comparable to the background noise recorded on the ICCD.

IV.B. Data Analysis

Sample results from a frame recorded at 13:52:05.40 UTC are presented in Fig. 5. In this

figure the primary feature of the ICCD image is the main bus, but the capsule region can
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be seen just below the main bus region. For the orientation of ICCD image of Fig. 5, the

direction of increasing wavelength is towards the right of the page, and the direction of

capsule travel is towards the bottom of the page. To define the capsule region, a strip of

around 8 or more pixels (in the spatial direction) was manually identified for each frame,

and the counts within this strip were summed in the spatial direction. The width of the

pixel strip identified for each frame actually varied depending on motion blur arising from

imprecise tracking of the capsule during the period of exposure of the ICCD frame (100 ms).

When motion blur resulted in smearing in both the spatial and the wavelength directions, it

was generally possible to track a spectral feature across adjacent pixels rows, and summation

of the capsule counts at each wavelength was then performed along this oblique direction.

To identify the appropriate background level for subtraction from the capsule region re-

sults, the counts along two rows of pixels, one immediately above and the other immediately

below the capsule region (in the orientation of the ICCD image in Fig. 5) were averaged

across 3 pixels in the wavelength direction. The background counts across the capsule re-

gion was then taken to be a linear variation in the spatial direction between the counts

identified from the strip of pixels above and below the capsule region. A spectral feature

within the net counts from the capsule region and the calibrated dispersion of the instrument

(0.187 nm/pixel) allowed the assignment of wavelengths to each pixel. The net counts from

the capsule region at each wavelength was then divided by the sensitivity figure of the in-

strument at each corresponding wavelength (Section III) to determine the spectral irradiance

received at the DC-8 location.

To assess the likely precision with which the background counts can be estimated using

the linear variation described above, two approaches were taken. First, in the case of the

early frames, prior to rapid disintegration of the bus region and while the imaged bus region

appeared largely symmetric in the spatial direction, a reference capsule region was identified

as illustrated in Fig. 5. The reference capsule region is the same size as the actual capsule

region and is located the same number of pixels behind the bus as the actual capsule region

is located ahead of the bus. The background subtraction method that was adopted for the

actual capsule region was applied to the reference capsule region so that the total counts

actually recorded in the reference capsule region could be compared with the total counts

estimated according to the linear background subtraction method. It was found that linear

background approximation generally overestimated the background counts. The magnitude

of the error varied with wavelength, being largest at around 385 nm. The magnitude of the

background subtraction error was largely independent of the net counts in the imaged capsule

region for each frame. For wavelengths around 355 nm, the background subtraction error for

times between 13:52:1.7 and 13:52:12.1 UTC was around 6 % of the irradiance received at

around 13:52:20 UTC. For wavelengths around 385 nm, the corresponding error was about
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10 %.

The second approach for estimating the precision of the background subtraction method

was applied in the case of frames after 13:52:21.3 UTC, and a representative ICCD image

and corresponding spectral irradiance result for such times is presented in Fig. 6. The

assessment of the background subtraction method in these cases involved the identification of

a reference capsule region immediately ahead of the actual capsule on the ICCD image. The

same assessment method discussed in the previous paragraph was applied in these cases and

indicated that in reference capsule region, the linear approximation generally overestimated

the background. The magnitude of the error in this case varied with the local magnitude

of the imaged capsule emissions, with two times the standard deviation of the error being

around 8 % of the capsule spectral irradiance. Given the uncertainty in the variation of the

effective background in the capsule region relative to the region ahead of the capsule, it is

appropriate to consider the uncertainty as ±8 % of the capsule spectral irradiance for frames

after 13:52:21.3 UTC.

Results in Fig. 6(b) show emissions from a variety of molecular and atomic species su-

perimposed on the continuum emissions from the capsule surface. The principal species

contributing to observed molecular radiation are N+
2 and CN. Carbon is a major element

of Hayabusa’s carbon phenolic ablator thermal protection system so CN is expected to be

generated primarily through the combination of dissociated nitrogen in the high temperature

shock layer air and ablation products from the heat shield. Calcium lines (Ca and Ca+) are

also apparent and on close inspection, aluminium lines can also be observed between the two

Ca+ lines.

actual
capsule
region

bus

reference
capsule
region

flight direction

increasing wavelength

Figure 5. ICCD image acquired at 13:52:05.40 (UTC) (presented in false colour and an expanded spatial scale)
illustrating the location of the Hayabusa capsule and the spacecraft bus.
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Figure 6. Results acquired at 13:52:22.40 (UTC). Part (a): ICCD image (false colour) illustrating the location
of the capsule and the disintegrating spacecraft bus. Part (b): spectral irradiance received at the DC-8.

IV.C. Irradiance referenced to 100 km, front view, no extinction

Results from the analysis of the recorded data were presented in terms of the spectral irra-

diance received at the DC-8 in an earlier publication.12 Figures 7, 8, 9, 10 and 11 give the

spectral irradiance results scaled in the manner described below so as to present the irradi-

ance hypothetically received from the capsule in the absence of atmospheric extinction at a

distance of 100 km with the capsule viewed head-on at every point in time. Results in Figs. 7

to 11 have been averaged over 3 frames. In cases where emissions from the disintegrating bus

have contaminated the capsule results in distinct wavelength bands only (between times 6.5

and 18.7 s), results within the corrupted wavelengths have been removed. Results at times

19.1, 20.6 and 21.0 seconds (corresponding to frames 96, 100 and 101) have been presented

in a light shade because these frames were subject to either uncorrectable motion blur or

background subtraction errors which were not accommodated with the standard approach

described in Section IV.B. Reliable results for times between 13:52:12.1 and 13:52:17.6 UTC

were not obtained because during this period, extremely bright emissions from the disinte-

grating bus corrupted the imaging of spectra from the capsule.

To achieve the scaling of the irradiance results presented in Figs. 7 to 11, Modtran

simulations of the spectral transmittance through the atmospheric path length between the
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capsule and DC-8 location were performed for the capsule at a number of altitudes between

100 and 40 km, based on the predicted locations of both the capsule and DC-8. For each frame

acquired on the ICCD, the Modtran results were interpolated to determine the instantaneous

transmittance which applied at that point in time and the DC-8 received irradiance results

were then scaled by the inverse of the transmittance value at each wavelength. The presence

of ozone virtually extinguishes the atmospheric transmission for wavelengths approaching

300 nm so the irradiance results in Figs. 7 to 11 have only been presented for wavelengths

larger than about 320 nm because attempting to scale the irradiance received at the DC-8

using a quantity which tends to infinity greatly amplifies the noise at lower wavelengths.

The DC-8 was positioned such that when the capsule was in the field of view, the full

front surface of the capsule would be seen, albeit at an oblique angle. Therefore, to transform

the received irradiance at the DC-8 to the reference conditions of 100 km and frontal view,

the DC-8 irradiance results were scaled by the ratio

(
100

dobs

)2 π r2
cap

Aobs
(4)

where dobs is the instantaneous observed distance (km) between the capsule and the DC-8,

rcap is the actual capsule radius (0.2 m) and Aobs is instantaneous area of the capsule face

observed from the DC-8. Values for dobs and Aobs were deduced from pre-flight simulations

of the capsule re-entry path and location relative to the aircraft and have been tabulated in

a separate paper.11

The growth and decay of the CN and N+
2 bandhead features can be discerned throughout

Fig. 7 to 11, and from 13:52:17.6 UTC, the low-wavelength tail of the gray body radiation

emitted from the heat shield is identified as the feature underlying the plasma emissions.

The Ca line at 422.79 nm can be identified from 13:52:17.6 UTC and this is the spectral

feature which was used to specify the wavelength scale at these times.

Figures 7 to 11 include results from the HDVS1 instrument11 for wavelengths down to

almost 400 nm, demonstrating consistency between the AUS results and the HDVS1 results

in the wavelength overlap region, although the magnitude of HDVS1 spectral irradiance

generally appears to increase with wavelength at a higher rate. Also presented in these

figures are gray-body Planck curves fitted to the AUS results by matching the spectral

irradiance value at 457.5 nm (taken as the average of values between 455 and 460 nm) and

assuming an emissivity of 0.9. The values of apparent capsule temperature deduced in this

manner are presented in Section IV.D and are consistent with temperature values deduced

with other instruments. These Planck curves also appear to provide a reasonable baseline

level for assessment of emissions from the shock and ablation layers.
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IV.D. Temporal development of radiation

Figure 12 illustrates the development of irradiance within two wavelengths bands which cover

the region of CN and N+
2 bandheads (B-X) ∆ν = 0 (365 to 392 nm) and ∆ν = −1 (345 to

365 nm). These irradiance results were obtained by integrating the spectral irradiance results

in Figs. 7 to 11 over the respective wavelength regions. In the case of the Planck results

shown in Fig. 12, these were obtained from a similar integration, this time of the Planck

curves also shown in Figs. 7 to 11, with values between the times of 11 and 18 seconds

derived from the HDVS1 data.11 The error bars on the data Fig. 12 represent uncertainties

associated with the background subtraction methods as discussed in Section IV.B.

In the case of the data up to 11 seconds, the error bars are unidirectional and are unique to

each frame (data point), being derived from the background subtraction assessment process

for each frame which was introduced in Section IV.B. For the data prior to 11 seconds,

most of the error bars reach in the positive direction, indicating that the magnitude of

the background is likely underestimated in these cases. In the case of the data after 18

seconds, the presented error bars are bidirectional and are indicative of the ±2σ uncertainties

associated with the background subtraction method in the absence of distortion effects from

the spacecraft bus.

Radiation from the ∆ν = 0 bandhead first peaks at around 7 seconds, and at this time

the radiation from the ∆ν = −1 bandhead appears to plateau. Although emissions from

the main bus contaminated the capsule radiation data in the period from 11 seconds to 18

seconds, radiation from both bandheads must increase some time during this period because

irradiance peaks with a magnitude approximately double that of the first peak/plateau are

observed for both bandheads at around 20 seconds.

Apparent capsule temperature results presented in Fig. 13 were identified from Planck

irradiance values which were fitted to the AUS data at a wavelength of 457.5 nm (taking a

mean value of the irradiance from 455 to 460 nm), and to the HDVS1 data11 at a wavelength

of 462.5 nm (taking a mean value of the irradiance from 460 to 465 nm). In each case, the

data points in Fig. 13 represent the values obtained with an assumed emissivity of 0.9, and

the error bars represent the higher and lower temperature limits which would be obtained for

emissivities of 0.8 and 1.0 respectively. Capsule temperature results differing from those of

Fig. 13 by up to 200 K can be obtained from other spectral irradiance data,11 depending on

the wavelength region and the methodology used for fitting the Planck curve. Nevertheless,

the results in Fig. 13 demonstrate the consistency of AUS and HDVS1 results in the vicinity

of 460 nm.
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V. Conclusion

The Australian Ultraviolet Spectrograph, a slit-less device, was developed for remote

observation of the near-UV emissions from the re-entry of JAXA’s Hayabusa which occurred

above Australia late in the evening of 13 June 2010. Spectra within the wavelength range

300 – 470 nm were successfully acquired from NASA’s DC-8 platform which was positioned

just outside the designated re-entry corridor during the event. The capsule emissions were

distinguished from the spacecraft bus emissions from 13:52:1.7 UTC but for times between

13:52:12.1 and 13:52:17.6 UTC, very bright emissions from the disintegrating spacecraft bus

corrupted the imaging of the capsule emissions.

Calibrations of the instrument before and after the event has enabled deduction of abso-

lute spectral irradiance from the capsule and surrounding shock layer. Results demonstrate

the temporal development of emissions from species associated with the shock layer and

heat shield material including N+
2 , CN, Al, Ca, and Ca+. In particular, the strong emissions

within the CN and N+
2 manifolds ∆ν = 0, ∆ν = −1, and ∆ν = +1 are clearly identified

in the spectra. The low-wavelength tail of gray-body emissions from the heat shield is also

observed with the AUS instrument from 13:52:17.6 UTC.

The magnitude of spectral irradiance obtained with the instrument compares very favourably

with those obtained from an independently calibrated and operated instrument11 for over-

lapping portions of spectra from each instrument: the region from 410 to 470 nm. The

agreement between these two independent instruments is reflected in the deduction of ap-

parent capsule temperatures: both instruments give a peak in the apparent temperature

of approximately 3050 K at around 13:52:23 UTC based on irradiance measurements in the

vicinity of 460 nm and an assumed heat shield emissivity of 0.9.

Uncertainties in the absolute irradiance values reported for the instrument arise primarily

due to background subtraction. For times between 13:52:1.7 and 13:52:12.1 UTC, the back-

ground subtraction uncertainty varies with wavelength and amounts to between 6 and 10 %

of the irradiance received at 13:52:20 UTC. For times after 13:52:17.7 UTC, the uncertainty

scales approximately with the instantaneous irradiance, a representative ±2σ value being

±8 %.

The data presented in this paper are expected to be used in the on-going validation

and development of super-orbital computational tools in the near future. Expansion tunnel

simulation of the Hayabusa re-entry with duplication of the super-orbital flow enthalpies

and correctly scaled density are also being planned for the X2 and X3 facilities in efforts to

explore the fidelity of ground-based test facility simulations of such conditions.
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Figure 7. Spectral irradiance from the capsule for times between 1.7 s and 6.9 s relative to 13:52:00 UTC. Black
line: AUS result; line with lighter shade (for λ > 400 nm): HDVS1 result; broken line: Planck curve fit.
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Figure 9. Spectral irradiance from the capsule for times between 17.6 s and 22.8 s relative to 13:52:00 UTC.
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Figure 10. Spectral irradiance from the capsule for times between 23.2 s and 28.3 s relative to 13:52:00 UTC.
Black line: AUS result; line with lighter shade (for λ > 400 nm): HDVS1 result; broken line: Planck curve fit.
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Figure 11. Spectral irradiance from the capsule for times between 28.7 s and 33.5 s relative to 13:52:00 UTC.
Black line: AUS result; line with lighter shade (for λ > 400 nm): HDVS1 result; broken line: Planck curve fit.
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Figure 13. Apparent capsule temperature as a function of time for an assumed emissivity of 0.9 with the limits
of the error bars indicating the temperatures corresponding to emissivity values of 0.8 and 1.0.
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