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Abstract: Reinforcement learning (RL) is pivotal in empowering Unmanned Aerial Vehicles (UAVs) to
navigate and make decisions efficiently and intelligently within complex and dynamic surroundings.
Despite its significance, RL is hampered by inherent limitations such as low sample efficiency,
restricted generalization capabilities, and a heavy reliance on the intricacies of reward function
design. These challenges often render single-method RL approaches inadequate, particularly in the
context of UAV operations where high costs and safety risks in real-world applications cannot be
overlooked. To address these issues, this paper introduces a novel RL framework that synergistically
integrates meta-learning and imitation learning. By leveraging the Reptile algorithm from meta-
learning and Generative Adversarial Imitation Learning (GAIL), coupled with state normalization
techniques for processing state data, this framework significantly enhances the model’s adaptability.
It achieves this by identifying and leveraging commonalities across various tasks, allowing for swift
adaptation to new challenges without the need for complex reward function designs. To ascertain
the efficacy of this integrated approach, we conducted simulation experiments within both two-
dimensional environments. The empirical results clearly indicate that our GAIL-enhanced Reptile
method surpasses conventional single-method RL algorithms in terms of training efficiency. This
evidence underscores the potential of combining meta-learning and imitation learning to surmount
the traditional barriers faced by reinforcement learning in UAV trajectory planning and decision-
making processes.

Keywords: unmanned aerial vehicles (UAVs); meta-reinforcement learning; generative adversarial
imitation learning

1. Introduction

Reinforcement learning (RL) [1], a subset of machine learning, is predicated on the
interaction between intelligent agents and their environments to facilitate decision making.
This method has seen considerable advancements in areas such as systems control and
gaming, and it holds significant promise for UAV trajectory planning and control [2,3].
However, the intricacies of UAV control and the dynamic nature of their operational
environments necessitate rapid and precise decision making from these agents, challenging
the capabilities of traditional RL methods.

A primary concern in this realm is sample efficiency, especially critical in UAV
trajectory planning and control [4]. The substantial costs and safety risks associated
with real-world UAV flights render the extensive sample data and environmental in-
teractions required by conventional RL frameworks impractical for actual deployment,
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as depicted in Figure 1. Thus, developing methods to enhance sample efficiency is of
paramount importance.

Moreover, the generalization capabilities of RL models in the context of UAV trajectory
planning and control are often found wanting. Due to the variability and complexity of
real-world environments, models that perform well in training scenarios may experience
significant performance declines when introduced to new, unfamiliar settings. This drop in
performance is often linked to the models’ strategies being too tailored to specific training
environments, lacking the flexibility needed to adapt to new situations.

Additionally, traditional RL approaches are heavily reliant on the design of reward
functions. Minor alterations in these functions can lead to vastly different flight strategies,
making the task of crafting reward functions that accurately reflect the complex objectives
of UAV missions challenging [5,6].

Figure 1. Illustration of a drone executing tasks in a simulated real-world environment.

To tackle these challenges, the research community is turning towards innovative
approaches such as meta-learning and imitation learning [7–9]. Meta-learning, often
described as ’learning to learn,’ empowers models with the ability to swiftly acclimate to
new tasks by discerning and assimilating the underlying similarities across diverse tasks.
This approach fundamentally aims to equip models with the capability to identify and
abstract the core attributes of tasks, thereby leveraging accumulated knowledge to adeptly
modify strategies when confronted with novel scenarios. Such a methodology enhances
models’ adaptability and generalization skills, making them more versatile and effective in
dynamic environments [10,11].

Imitation learning serves as a valuable complement to meta-learning, focusing on
teaching agents to acquire strategies through the observation and replication of expert
behaviors, instead of relying solely on reward signals. This learning paradigm is inspired
by the human method of skill acquisition, which typically involves emulating the actions of
individuals who have already achieved proficiency in a particular domain [12,13]. By adopt-
ing this approach, agents are able to circumvent the intricate process of reward function
formulation, allowing them to directly assimilate the decision-making processes and critical
maneuvers employed by experts in complex scenarios. Consequently, agents can attain or
closely approximate the efficiency of experts in task execution, even in scenarios devoid of
explicit reward indicators [14,15].

Models honed through meta-learning exhibit the remarkable ability to swiftly adjust
to a variety of imitation learning tasks. Conversely, the tangible behavioral paradigms
provided by imitation learning serve as invaluable practical guides for meta-learning. This
synergistic blend not only mitigates the challenges associated with low sample efficiency
and limited generalization but also equips models with the capacity to master intricate
decision-making processes without the need for explicit reward signals.
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In response to these challenges, we introduce an innovative meta-reinforcement learn-
ing algorithm that leverages the principles of Generative Adversarial Imitation Learning
(GAIL) [16]. This algorithm harmoniously integrates the strengths of both meta-learning
and imitation learning, tailoring its design to meet the specific demands of UAV trajectory
planning. By augmenting the UAVs’ perception of the state space with normalized methods
and residual connections, we ensure consistent performance stability across diverse and
challenging environments. These advanced techniques empower our algorithm to excel
in UAV trajectory planning tasks, markedly enhancing both the sample efficiency and the
ability to generalize across different scenarios.

In this paper, Section 2 introduces some relevant work in the field of drones,
Section 3 provides a detailed explanation of meta-reinforcement learning and Genera-
tive Adversarial Imitation Learning, and Section 4 presents the specific methodology of
this paper. Section 5 covers the experimental part.

2. Related Work

Researchers have actively adopted reinforcement learning methods to guide UAVs
in autonomous decision making, which includes the application of basic control systems,
path planning, obstacle avoidance, and advanced control techniques.

Application of Basic Control Systems: The fundamental aspects of UAV technology
encompass attitude adjustment and basic flight control, with a key focus on ensuring the
stability and controllability of UAVs under various flight conditions. Koch et al. [17] utilized
Deep Reinforcement Learning (DRL) to optimize UAV attitude control, especially under
extreme conditions, such as strong winds and turbulence. Their research demonstrates the
potential application of DRL in UAV control systems.

Path Planning and Obstacle Avoidance: Path planning is a critical component of
UAV navigation, involving the efficient selection of routes and avoidance of obstacles.
Zhao et al. [18] employed the Q-learning algorithm to improve UAV path planning and
obstacle avoidance capabilities, focusing on enhancing autonomous navigation technol-
ogy, and confirmed the effectiveness of the algorithm in dealing with static and dynamic
obstacles. Pham et al. [19] implemented autonomous navigation of UAVs using RL and
the TEXPLORE algorithm, advancing sophisticated UAV control. Their research demon-
strated the efficacy of this algorithm in navigating and avoiding obstacles in unknown
environments. He et al. [20] improved the autonomous navigation capabilities of UAVs in
unknown environments, particularly in path planning and obstacle avoidance, using DRL
based on the Twin Delayed DDPG (TD3) algorithm. However, these methods also have
drawbacks, requiring continuous trial-and-error training with low sample efficiency, and
they struggle to generalize to new environments without prior examples.

Advanced Control: Advanced control in UAV technology not only includes basic
flight operations but also encompasses the ability to execute complex tasks, such as forma-
tion control and advanced navigation techniques. Yang et al. [21] significantly enhanced
the formation control capabilities of UAVs using GAIL. Their method, by imitating peer
actions and combining historical data, effectively improved the recognition of real-world
environmental states. Additionally, Wang et al. [22] significantly enhanced the navigation
and control efficiency of racing drones by combining imitation learning with modular
strategies and utilizing Convolutional Neural Networks (CNNs). Hu et al. [23] employed
meta-reinforcement learning to improve trajectory design for energy-constrained UAVs
in dynamic network environments, focusing on enhancing the adaptability and response
speed of UAVs as mobile base stations in unfamiliar environments.

While the applications of meta-reinforcement learning and imitation learning have
achieved significant results in improving the efficiency and adaptability of UAV training,
they each have their limitations. Meta-reinforcement learning (Meta-RL) often requires
the manual design of reward functions to describe new tasks, which can be both cumber-
some and impractical for non-experts. A more natural way to describe tasks is through
demonstration, as performed in imitation learning (IL). However, IL is limited in its abil-
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ity to continue improving policies and, compared to reinforcement learning methods,
is constrained by the similarity between new tasks and the training dataset, leading to
deficiencies in generalization capabilities [24]. Therefore, this paper is dedicated to com-
bining meta-reinforcement learning and imitation learning to address the aforementioned
issues.Table 1 compares our work with previous studies.

Table 1. Comparison of related work.

Work Koch et al. [17] Zhao et al. [18] Pham et al. [19] He et al. [20] Ours

Learning Method DRL Q-learning RL + TEXPLORE DRL (TD3) Meta-RL + IL

Key Contribution
UAV attitude
stability in extreme
conditions

Efficient obstacle
avoidance

Navigation and
obstacle avoidance
in unknown
environments

Improved
navigation in
unknown
environments

Combined
adaptability and
generalization

Drawbacks Limited to attitude
control

Low sample
efficiency, poor
generalization

Low sample
efficiency

Low sample
efficiency, poor
generalization

The training time
is relatively long

3. Preliminary

RL is typically conceptualized within the framework of a Markov Decision Process
(MDP) [25], formalized as M ≡ (S, A, P, R, γ). Within this framework, S delineates the
set of possible states, while A encapsulates the available actions. The function P(s′|s, a)
defines the likelihood of transitioning to a subsequent state s′ upon the execution of an
action a in the current state s. The reward function R(s, a) quantifies the immediate benefit
received upon performing action a in state s. Lastly, the discount factor γ balances the
agent’s valuation of immediate rewards against future returns, with values approaching
0 indicating a preference for immediate rewards and values nearing 1 signifying a longer-
term outlook.

3.1. Meta-RL

Unlike conventional reinforcement learning approaches that are tailored for singular
tasks, meta-reinforcement learning (Meta-RL) aspires to craft policies that are capable
of rapid adaptation or optimization when faced with a sparse influx of data from new
tasks [26]. The prevailing methodologies in Meta-RL typically presuppose a task frame-
work where all constituent subtasks are unified by identical state and action spaces. The
distinctions among these tasks often emerge through variations in the reward functions,
the probabilities of state transitions, or the distributions of initial states. For instance, in the
context of robotic object-grasping experiments, diverse tasks may entail the manipulation of
different objects within a consistent physical environment. Despite the variability in tasks,
the robot’s action space (such as arm movements) and state space (encompassing joint
angles and object locations) remain unchanged. Tasks are derived from the distribution
Ti ∼ p(T ), with each task Ti characterized by (S ,A, pi, ri, γ). Given the shared framework
of state and action spaces across tasks, the task distribution p(T ) is delineated by the reward
function and the initial state distribution p(s0), thus formulated as p(T ) = p(R)× p(s0).

In the meta-training phase, tasks are drawn from the task distribution p(T ) to facil-
itate the training process. The fundamental goal during this stage is to equip the model
with the ability to swiftly acclimate to novel tasks. Following this, in the meta-testing
phase, the model is presented with a series of new tasks that, while related, are distinct
from those encountered during training. This phase is critical for evaluating the model’s
capacity for adaptability and its proficiency in assimilating new tasks. Throughout the
meta-training period, the agent utilizes specific meta-learning parameters or employs up-
date mechanisms designed to foster this rapid adaptation, which is then put to the test
in the subsequent meta-testing phase. The intricacies of the meta-training process are
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illustrated in Figure 2, highlighting the structured approach to achieving adaptability and
flexibility in task learning.

Meta-Training

MDP 1

        

Episode Episode 

MDP 2

      

Episode Episode 

MDP 3

        

Episode Episode 

  
…

Trial 1 Trial 2 Trial 3

Figure 2. Meta-training process.

The process of meta-reinforcement learning can be subdivided into two critical cycles:
the inner loop and the outer loop.

1. Inner Loop:

• During the inner loop phase, the agent leverages meta-knowledge provided by
the outer loop, which is crucial for application.

• The main goal of this phase is to efficiently use meta-knowledge for quick adap-
tation to new tasks or environments.

• The effectiveness of the meta-knowledge is gauged by the agent’s performance
in this segment, serving as a vital evaluation criterion.

2. Outer Loop:

• The outer loop’s primary role is to evolve and fine-tune the meta-knowledge itself.
• This stage involves a thorough examination of similarities and differences across

tasks to enhance the meta-knowledge that facilitates learning.
• It also updates the meta-knowledge based on feedback from the inner loop,

ensuring its efficacy across diverse tasks.

The concept of ’meta-knowledge’ encapsulates the extensive knowledge framework
an agent amasses while navigating through diverse tasks or challenges, serving as a pivotal
element in its ability to swiftly adapt to novel tasks or environments [27]. The primary aim
of meta-reinforcement learning is to develop reinforcement learning algorithms endowed
with the agility to adapt to new situations, with meta-knowledge at the heart of this
endeavor. This knowledge domain includes, but is not limited to, learning methodologies,
task-specific nuances, accumulated experiences, and environmental dynamics. The intrinsic
value of meta-knowledge is rooted in its capacity for generalization—the extent to which
insights gained from one task can be leveraged to enhance performance in other, ostensibly
disparate tasks.

In the meta-reinforcement learning framework (shown in Figure 3), the meta-knowledge
accumulated in the outer loop significantly guides the inner loop, helping it adapt more
quickly to new tasks. The essence of this learning mode lies in how effectively meta-
knowledge can be extracted and utilized from multiple tasks, and how it can be adjusted
according to the evolution of tasks, thus enabling the agent to rapidly adapt when facing
new tasks. This approach is particularly suitable for scenarios in which the task environ-
ment frequently changes or the agent needs to handle a variety of different tasks, enhancing
the model’s generalization capabilities.
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Agent

Action

Reward, State

Environment

Inner loop

Outer loop

Related 

tasks Meta-knowledge
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Figure 3. The framework of Meta-RL.

3.2. GAIL

GAIL represents a sophisticated approach that synergizes the principles of Generative
Adversarial Networks (GANs) with IL. This technique is particularly efficacious in complex
settings where articulating a precise reward function poses significant challenges. GAIL
acquires the capability to execute specific tasks by mimicking the behaviors of experts,
circumventing the need for explicit reward signals in the learning process. Within this
paradigm, the expert’s strategy is denoted by πE, and the learner’s strategy is signified by
π. The formulation for the learner’s strategy π encompasses the generation of expected
trajectories, illustrating the process of learning through observation and emulation of
expert actions.

Eπ [ f (s, a)] ≜ E
[

∞

∑
t=0

γt f (st, at)

]
(1)

Here, s0 ∼ ρ0, at ∼ π(at|st), and f is an arbitrary function.
At the heart of GAIL lies the emulation of the expert policy’s state–action occupancy

measure. This measure is a critical probability distribution that captures the frequency of
an agent executing certain actions in given states under a specific policy. Unlike behavior
cloning, which directly replicates expert trajectories without necessitating environmental
interaction and consequently faces the challenge of compounding errors—where slight
inaccuracies in imitation accumulate over time—GAIL necessitates active engagement with
the environment. This interaction is pivotal for GAIL as it enables the learning policy to
refine its actions based on the dynamic feedback from the environment, thereby mitigating
the risk of error propagation inherent in behavior cloning.

The GAIL algorithm includes a discriminator D and a policy π, where policy π acts
as the generator in the Generative Adversarial Network. The discriminator D takes state–
action pairs (s, a) as input and outputs a probability between 0 and 1, indicating how likely
it is that the pair (s, a) originates from the agent’s policy rather than the expert’s policy. The
goal of the discriminator is to make the output for expert data as close to 0 as possible and
the imitator’s output close to 1, thus clearly distinguishing between the two. Based on the
above, we can define the loss function for the discriminator D as:

L(ϕ) = −Eρπ [log Dϕ(s, a)]− EρE [log(1 − Dϕ(s, a))] (2)

where ϕ represents the parameters of the discriminator. The core idea of this algorithm is
to make the trajectories generated by the policy π be misidentified by the discriminator
as coming from the expert. Using this approach, we do not need to preset a specific
reward function; instead, we can define the reward r(s, a) as − log(D(s, a)). In this setting,
if the discriminator D judges the state–action pair (s, a) to be extremely similar to the
expert’s behavior, the value of D(s, a) is close to 1, and then − log(D(s, a)) will be a smaller
negative value, equivalent to a higher reward. Conversely, if the value of D(s, a) is close
to 0, implying that the discriminator considers the state–action pair unlike the expert’s
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behavior, then the reward − log(D(s, a)) becomes a larger negative value, representing a
lower reward.

Building on the theoretical framework described, we embarked on a series of compar-
ative analyses involving three distinct algorithms, applied to the Cartpole task. The initial
step entailed the generation of expert data, for which we opted for the Proximal Policy
Optimization (PPO) algorithm, given the relative simplicity of the Cartpole task. From the
generated trajectory, we sampled 30 state–action pairs (s, a). Our comparative analysis
revealed that the Generative Adversarial Imitation Learning (GAIL) algorithm required
merely 80 training epochs to attain the maximum reward threshold. In contrast, the tra-
ditional Deep Q-Network (DQN) algorithm necessitated a more extensive trial-and-error
approach, taking approximately 200 epochs to reach a comparable performance level. No-
tably, the training trajectory of the model underpinned by GAIL exhibited greater stability
than its DQN counterpart. The outcomes of these experimental endeavors are encapsulated
in Figure 4.

Figure 4. The comparison of three algorithms under the CartPole task.

Nevertheless, given the constrained dataset of merely 30 data points, the performance
of the Behavior Cloning (BC) algorithm was found to be subpar in comparison to the
traditional DQN algorithm, failing to deduce the optimal strategy. This deficiency was
predominantly attributed to the model’s propensity for overfitting when faced with such a
scant data volume. In essence, the GAIL algorithm demonstrated its efficacy by propelling
the model to attain superior performance levels more expediently, utilizing fewer data
points and training epochs. Consequently, this underscores the potential merit of integrat-
ing the GAIL algorithm within the meta-reinforcement learning framework, especially for
UAV tasks where articulating a precise reward function is challenging.

4. Methods

Building upon the experiments previously mentioned, we introduced the Reptile
algorithm [28] as our chosen method for meta-learning. Reptile is a gradient-based meta-
learning algorithm aimed at identifying a set of initial parameters that enable rapid adapta-
tion to new tasks with a minimal number of gradient updates. Its main strategy involves
applying gradient updates across various tasks, with the goal of achieving a set of initial
parameters that ensures good initial performance across a range of tasks. This approach
allows the Reptile algorithm to significantly enhance the model’s adaptability and flexibility
when encountering new tasks. The structure of this methodology is depicted in Figure 5.
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The Reptile algorithm offers a computational advantage over the MAML approach [29],
particularly due to its avoidance of second-order derivative computations. MAML seeks
to establish a foundational model that, through minor parameter modifications across a
spectrum of tasks, can adeptly adapt to new challenges. This methodology necessitates the
refinement of model parameters for one task, followed by the application of these tweaked
parameters to subsequent tasks, with additional adjustments required for each new task.
Such a process demands intricate calculations of second-order derivatives, leading to
considerable computational demands and extended processing times.

𝛷

𝜃

𝐸𝑛𝑣N
𝐷𝑎𝑡𝑎𝑁

𝐷𝑎𝑡𝑎𝑁𝐸𝑛𝑣N

Inner loop

GAIL-

Update

Reptile-

Update
𝜃′

Outer loop

Figure 5. This figure depicts the global architecture of the model, demonstrating how to optimize the
parameters of the strategy network through a multi-step iterative process, enabling rapid adaptation
to various tasks. The main steps include: (1) Outer Loop: This phase is responsible for updating the
meta-parameters θ. Throughout a series of training cycles, these meta-parameters are used to generate
initial strategy network parameters adapted to various tasks. (2) Inner Loop: For each subtask,
starting from the meta-parameters θ, data are generated through interaction with the environment,
and the parameters Φ of the strategy network are iteratively updated using the GAIL algorithm.
(3) Parameter Update: After the inner loop training, the task-specific parameters Φ obtained are used
to update the meta-parameters θ, thus achieving rapid adaptation to new tasks.

Reptile, on the other hand, adopts a strategy of executing iterative parameter updates
within individual tasks, eschewing MAML’s approach of multiple parameter fine-tunings
across various tasks. Reptile’s primary aim is to extract more generalizable features by
repetitively adjusting parameters over a collection of tasks, thereby facilitating swifter
adaptation to novel tasks. Hence, while MAML’s strength lies in crafting an initial model
that can be fine-tuned for diverse tasks, Reptile streamlines the adaptation process to new
tasks through a restricted series of iterative parameter modifications across tasks.

This diagram (Figure 6) illustrates how a model updates its parameters progressively
after training on multiple tasks, starting from its initial parameters, to enhance its general-
ization ability for new tasks. The key elements include:

• Initial Model Parameters ϕ0: Represent the model’s parameter settings before training
begins.

• Paths in Different Colors: Illustrate the optimization process of the model on various
training tasks. For instance, a blue path indicates training on task n, while a light
yellow path signifies training on task m.

• Arrows: Indicate the direction of the model parameters’ movement in the parameter
space during training.

• Model Parameters ϕ1, ϕ2, . . .: Denote the model parameters after a series of training steps.
• Final Model Parameters θ̂m, θ̂n: Represent the final state of the model parameters on

their respective tasks.
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Sample a training task n

Sample a training task m

𝛷0
𝛷1

𝛷2

መ𝜃𝑚

መ𝜃n

Figure 6. Principle of Reptile.

The essence of the Reptile algorithm lies in iteratively updating the model parameters
to swiftly adapt to new tasks. This involves executing multiple steps of gradient descent
on each task and then updating the global parameters.

Assume the model parameters are θ, and for a randomly selected task Ti, the model’s
loss function on this task is LTi (θ). The parameter update rule is described as follows:

Step 1—In-task Updates: For each task Ti, initialize the temporary parameters θ′ to the
global parameters θ. Then, perform K iterations of gradient descent updates, expressed as:

θ′ = θ′ − β∇θ′ LTi (θ
′),

where β is the in-task learning rate.
Step 2—Global Updates: After the K gradient updates for task Ti, the global parame-

ters θ are updated based on the average gradient changes across all tasks:

θ = θ + α(θ′ − θ),

where α is the global learning rate.
The specific algorithm is as Algorithm 1:

Algorithm 1 Reptile Algorithm [28].

for each iteration do
Sample task Ti
θ′ = θ
for k = 1, 2, . . . , K do

θ′ = θ′ − β∇θ′ LTi (θ
′)

end for
θ = θ + α(θ′ − θ)

end for

In the Reptile algorithm, the objective of each iteration is to minimize the loss function
LTi (θ) of task Ti. The algorithm achieves this by performing K steps of gradient descent on
task Ti, and then uses these updates to adjust the global parameters θ.

In-task updates aim to quickly adapt to the current task Ti, while the global updates
seek to find a good starting point for the parameters so that for new tasks, effective learning
can be achieved with only a few steps of gradient updates.

Based on the above, we combine GAIL with the meta-reinforcement learning Reptile
algorithm. The core idea is to use GAIL for imitation learning when training subtasks and
then use these training results to update the meta-parameters. This process can be divided
into the following key steps:
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Step 1: Selection and preparation of subtasks—Choose multiple subtasks from the
task distribution and prepare expert demonstration data for each task.

Step 2: Training subtasks using GAIL—For each subtask, train using the GAIL framework.

• Generator (i.e., policy network) training: Train the policy network by attempting to
imitate expert demonstrations.

• Discriminator training: The discriminator learns to distinguish between the behaviors
generated by the policy network and the expert demonstrations.

Step 3: Policy network update—After completing the GAIL training for each subtask,
the policy network is improved.

Step 4: Updating meta-parameters—After completing training on all selected sub-
tasks, update the meta-parameters using the logic of the Reptile algorithm. This usually
involves averaging or integrating the parameter changes obtained across multiple tasks in
some form.

Step 5: Repeat the process—Repeat the above steps until the model performance
reaches the expected target or until the predetermined training cycles are completed.

Additionally, during the training process, we implemented normalization of the states
with the following steps:

(1) At the start of training, we first store historical training data in the experience
replay buffer.

(2) Upon completion of training, we calculate the mean and variance of each dimension
of the state in the replay buffer, concluding the entire training process.

(3) Before commencing the next training session, all states inputted into the network
are normalized.

Through this methodology, GAIL enhances the policy network’s ability to closely
replicate expert behaviors across a variety of subtasks. Following this, the Reptile algorithm
amalgamates the insights gained to refine the meta-parameters, thus facilitating swift adap-
tation to new tasks that bear resemblance to those previously encountered. The integration
of GAIL with Reptile is designed to capitalize on GAIL’s proficiency in imitation learning
while harnessing Reptile’s meta-learning capabilities to boost the learning process’s overall
efficiency and adaptability. This combined approach is delineated as Algorithm 2:

Algorithm 2 Combined GAIL and Reptile meta-reinforcement learning algorithm

Require: Task distribution D, expert demonstrations set E, learning rate α, meta-learning
rate β, training epochs T

Ensure: Optimized meta-parameters θ
1: Initialize meta-parameters θ
2: for t = 1 to T do
3: Sample a set of subtasks S from D
4: Initialize task-specific parameters Φ = θ
5: for each subtask s ∈ S do
6: Initialize policy network πs with parameters Φ
7: Initialize discriminator Ds
8: Obtain expert demonstrations Es from E for task s
9: repeat

10: Train πs by imitating Es
11: Train Ds using behaviors generated by πs and Es
12: Update πs to maximize the score of Ds for the imitated behavior
13: until πs converges
14: Update Φ to optimized parameters of πs
15: end for
16: Update meta-parameters θ = θ + β · (Φ − θ)
17: end for
18: return θ
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5. Experiments

Given the complexity of drone control in three-dimensional space, we opted to conduct
experimental tests on a two-dimensional plane. We utilized the experimental environment
described in the literature [30], which consists of three marked square areas. For detailed
information about the specific experimental setup, please visit the following website: https:
//github.com/marek-robak/Drone-2d-custom-gym-env-for-reinforcement-learning (ac-
cessed on 11 December 2023). The smallest square represents the initial space where the
drone may appear, while the larger square defines the area where the target point may be
located. Here, the agent needs to learn to navigate the drone to the target point. The largest
square represents the boundaries of the drone’s flyable space, and if the drone flies out of
this range, the current round ends.

The drone model utilized in our study is constructed from a rigid body that comprises
three sections, two of which function as motors. These motors are capable of producing lift,
as depicted by the elongated red lines, while the grey lines serve as a reference scale. At
the initiation of each trial, the drone is propelled in an arbitrary direction, with the motors
temporarily disabled for a predetermined sequence of time steps. This arrangement aims to
forge a scenario in which the reinforcement learning agent is tasked with regaining control
and stabilizing the drone during its descent. The portion of the trajectory delineated in red
illustrates the phase of flight where the agent lacks control. Additionally, the simulation of
the drone’s environment is conducted at a temporal resolution of 60 frames per second, as
illustrated in Figure 7.

Figure 7. Two-dimensional experimental environment space.

In this experiment, the hardware setup used was as follows:

• CPU: Manufacturer: Mechrevo,Country: China,12th Gen Intel(R) Core(TM) i7-12650H,
with a clock speed of 2300 Mhz, with 10 cores and 16 logical processors.

• GPU: Manufacturer: Mechrevo,Country: China,NVIDIA GeForce RTX 4050.

For detailed configurations of the hyperparameters, refer to Table 2.
In our study, we strategically simplified the drone’s operational context by confining

its movements to the xoz plane, thereby significantly mitigating the complexities associated
with navigating a fully three-dimensional space. Within this two-dimensional framework,
the drone utilizes its advanced control system to navigate from an initial point to a specified
target location. This experimental setup enables a concentrated examination of the drone’s
control and navigational efficacy on a plane, alongside an assessment of its stability and
task execution proficiency. This methodological choice not only facilitated a comprehensive
analysis of the drone’s control system efficiency but also established a foundational basis
for future explorations into three-dimensional spatial navigation, yielding crucial data and
insights. Figure 8 simulates the drone’s situation in three-dimensional space:

https://github.com/marek-robak/Drone-2d-custom-gym-env-for-reinforcement-learning
https://github.com/marek-robak/Drone-2d-custom-gym-env-for-reinforcement-learning
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Table 2. Hyperparameter configuration for the experiment.

Hyperparameter Value Description

Learning Rate (α) 1 × 10−3 Learning rate for policy updates.

Meta-Learning Rate (β) 0.001 Learning rate for meta updates in Reptile.

Training Epochs (T) 2500 Total number of training epochs.

Task Sample Number (N) 5, 10, 15, 20 Number of tasks sampled per meta-update.

Gradient Update Steps (K) 5 Number of gradient update steps per task.

GAIL Discriminator Architecture 2 layers, 64 neurons Two-layer network for the GAIL discriminator, each layer with
64 neurons.

GAIL Discriminator Learning Rate 3 × 10−4 Learning rate for the GAIL discriminator.

Expert Demonstration Dataset Size 1000 pairs Size of the expert demonstration dataset (state–action pairs).

Policy Network Architecture 2 layers, 64 neurons Two-layer network for the policy, each layer with 64 neurons.

Policy Network Learning Rate 3 × 10−4 Learning rate for the policy network.

Reward Scaling Factor 0.01 Scaling factor for rewards in GAIL.

Exploration Strategy Epsilon-greedy Epsilon-greedy strategy with initial epsilon of 1, decaying to 0.1.

Batch Size 64 Batch size for training updates.

Regularization Parameter 1 × 10−3 L2 regularization coefficient.

Figure 8. Drone three-dimensional space control task simulation diagram.

Furthermore, we have depicted our strategy through illustrations in Figures 9 and 10.
Given the original eight-dimensional state space, we employed Principal Component
Analysis (PCA) to compress it into a two-dimensional space for the sake of clarity in
visualization. In the derived visual representation, the orientation of the arrows signifies
the actions the model is inclined to undertake in specific states. A concentration of arrows
pointing in a uniform direction within certain regions implies a degree of consistency in the
model’s action choices in those states. In contrast, a varied spread of arrow directions may
indicate the states’ inherent uncertainty or highlight the exploratory behavior of the model
during its learning phase. Moreover, the arrow lengths convey the action magnitudes, with
longer arrows denoting larger actions and suggesting the model’s heightened assurance in
its responses to those states. Conversely, shorter arrows could denote a more tentative or
measured approach by the model in certain states.

It is particularly interesting to observe that within the core region of the feature space,
both the direction and magnitude of the arrows maintain a remarkable consistency. This
pattern implies that the model potentially adopts a more stable or decisive strategy when
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encountering states within this area. Additionally, in the top-right quadrant of the diagram,
we notice a sequence of elongated arrows all pointing in the same direction, suggesting that
the model exhibits a pronounced and robust inclination towards certain actions in these
specific zones.

Figure 9. The visualization strategy displayed when the training results are satisfactory.

Figure 10. In cases of poor training results, we observe that the distribution of the arrows is more
scattered, indicating that a unified and stable strategy has not yet been successfully developed.

In this experimental environment, we conducted comparative tests of our algorithm
using the PPO algorithm as a baseline. As shown in Figures 11 and 12, the use of either
GAIL (Generative Adversarial Imitation Learning) alone or Reptile alone positively im-
pacted the results, with GAIL showing particularly noticeable effects. Our combined
algorithm, Reptile+GAIL, demonstrated even more superior performance. Especially in the
early stages of training, our algorithm was able to achieve good results quickly. During the
convergence phase, compared to using GAIL alone, our algorithm exhibited better stability
(Table 3). This success is attributed to the rapid adaptability to new tasks of meta-learning
and the guiding role of expert data in imitation learning.
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Figure 11. Comparative analysis of algorithm performance.

Figure 12. This graph illustrates the effect of varying the number of task samples. It can
be observed that with the increase in the number of tasks, the performance of the algorithm
correspondingly improves.
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Table 3. The analysis table of return conditions under different n and num. It is observed that an
increase in the number of expert trajectories and subtasks accelerates the model’s learning pace
during the initial phase of training until convergence is achieved. The returns in the table are
moving averages.

Episodes 0 250 2500

n = 05, num = 100 2650.582136 4022.159734 7603.132461
n = 10, num = 100 2998.124612 4953.316497 7988.314579
n = 20, num = 100 3158.919738 5603.789134 7999.314725
n = 05, num = 250 2836.316472 4183.216475 8020.461346
n = 10, num = 250 3104.164917 5287.642197 8035.914238
n = 20, num = 250 3223.845127 5584.264975 8027.313671

Additionally, we conducted a thorough analysis of the process for generating expert
trajectories and observed some key findings. Notably, when the number of available expert
trajectories is limited, or the quality of these trajectories is insufficient, we found that the
experimental results were significantly below expectations (see Figure 13). This discovery
underscores the importance of high-quality and sufficient quantities of expert trajectories
for the performance of our algorithm.

Figure 13. Effects of experiments with different numbers of expert trajectories.

We further investigated the reasons behind this phenomenon. As shown in Figure 14,
with a limited number of expert trajectories, the learning algorithm faces a problem of
insufficient data, which restricts the model’s learning capabilities and generalization per-
formance. On the other hand, when the quality of trajectories is low, the algorithm may
learn incorrect or suboptimal behavioral patterns, leading to poor experimental outcomes.
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Figure 14. The impact of low-quality expert trajectories.

6. Conclusions

This paper elaborated on an innovative framework that integrated the meta-reinforcement
learning algorithm Reptile with GAIL to achieve UAV control on a 2D plane. In experiments,
this framework demonstrated significant advantages and improvements over traditional
single-reinforcement learning algorithms. However, the framework still faces challenges
that need to be addressed. Firstly, the effective operation of GAIL depends on high-quality
expert trajectories, and efficiently acquiring these expert trajectories remains a key issue.
Secondly, the real-time nature of online learning and its interaction with the environment
poses certain risks, necessitating further research and optimization. Based on these analyses,
our future research will focus on two main aspects: firstly, developing methods to generate
high-quality expert trajectories, and secondly, exploring how to effectively translate online
meta-reinforcement learning algorithms for use in offline scenarios, thereby enhancing
the safety and practicality of the algorithm. Through these efforts, we aimed to further
improve the performance and application scope of this framework.

7. Statement of Use of Artificial Intelligence Tools

In this paper, a small portion of the introduction to meta-learning was generated
by ChatGPT, specifically the “To address these issues...explicit reward signals” section,
where ChatGPT was tasked to articulate the roles of meta-learning and imitation learn-
ing separately. We then synthesized and fine-tuned these contributions; in the “Related
Work” section, we provided relevant literature and directed ChatGPT to summarize the
content. For example: Pham et al. [16] implemented autonomous navigation of UAVs using
RL and the TEXPLORE algorithm, enhancing sophisticated UAV control; in the “Prelimi-
nary” section on Meta-RL, “During the meta-training phase...seemingly unrelated tasks”,
ChatGPT was employed to explain the process of meta-reinforcement learning and the
significance of meta-knowledge, which we subsequently compiled and organized; in the
“Methods” section, “In contrast. . . across a set of tasks”, we collected information on meta-
reinforcement learning algorithms Reptile and MAML from the internet and used ChatGPT
to compare their strengths and weaknesses, after which we integrated and corrected the
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content. The rest of the article was also moderately polished with the help of ChatGPT. All
parts concerning the methods and experiments of this paper are original content.

Author Contributions: Conceptualization, Y.G. and S.J.; methodology, Y.G.; software, Y.G. and S.J.;
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and editing, X.Y. and W.Y.; supervision, H.C. All authors have read and agreed to the published
version of the manuscript.
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