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Abstract

Some reaction-diffusion systems feature nonlocal interaction and,

near the point of Hopf bifurcation, can be represented as a system of

nonlocally coupled oscillators. Phase of oscillations satisfies an evo-

lution pde which takes different forms depending on the values of

parameters. In the simplest case the equation is effectively a diffu-

sion equation which is excitation-free. However, more complex forms

are possible such as the Nikolaevskii equation and the Kuramoto-

Sivashinsky equation incorporating linear excitation. We analyse a

situation when the phase equation is based on nonlinear excitation.

We derive conditions on the values of the parameters leading to the

situation and show that the values satisfying the conditions exist.

1 Introduction

Reaction-diffusion systems exhibiting oscillatory dynamics near the Hopf bi-
furcation can be reduced to an evolution equation for the phase of oscilla-
tions [1, 2]

∂tψ = a1∇2ψ + a2(∇ψ)2+

b1∇4ψ + b2∇3ψ∇ψ + b3(∇2ψ)2 + b4∇2ψ(∇ψ)2 + b5(∇ψ)4+

g1∇6ψ + g2∇5ψ∇ψ + g3∇4ψ∇2ψ + g4(∇3ψ)2 + g5∇4ψ(∇ψ)2+

g6(∇2ψ)3 + g7∇3ψ∇2ψ∇ψ + g8∇3ψ(∇ψ)3 + g9(∇2ψ)2(∇ψ)2+

g10∇2ψ(∇ψ)4 + g11(∇ψ)6+

e1∇8ψ + · · · ,

(1)
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where an, bn, gn, en, . . . are constant coefficients. The right-hand side of (1)
can be viewed as a power series in small parameter ∇2 ∼ (1/L)2, where L is
the large characteristic spatial scale of variations of ψ.

Under certain conditions equation (1) can be truncated to finite forms.
The most simple forms are the classical 2nd order (in ∇) diffusion equation
and the nonlinear diffusion equation transformable into the Burgers’ equa-
tion. If a1 < 0 or b1 > 0 the respective terms of (1) become anti-dissipative so
that perturbations of a flat field ψ =const grow. One can say that such terms
bring about excitation. In such cases a truncation must be of higher-order
in ∇ in order to maintain balance, examples being the 4th order Kuramoto-
Sivashinsky (KS) equation [1, 3] and the 6th order Nikolaevskii equation [4].
Note that the excitation terms in these equations are linear. As a conse-
quence, the state ψ ≡ const turns out unstable to infinitesimal perturbations
and is globally destroyed.

It is interesting to investigate whether a truncation with nonlinear exci-
tation is possible. Unlike linear one, a nonlinear excitation can support lo-
calized dissipative structures sometimes referred to as auto-solitons and also
complex regimes resulting from their interactions. Previously we showed that
such a model is mathematically feasible [5, 6]. In the present work we execute
a systematic procedure by which we derive a nonlinearly excited truncation
of the phase equation from the complex Ginzburg-Landau (GL) equation
with nonlocal coupling [7]. Tanaka and Kuramoto [7] mention a variety of
systems linked to the nonlocal GL model: cellular slime molds, oscillating
yeast cells under glycolysis and the Belousov–Zhabotinsky reaction dispersed
in water-in-oil aerosol OT microemulsion.

Consider (1) and suppose that the coefficients b4 = −ε is slightly neg-
ative. This makes the term −ε∇2ψ(∇ψ)2 an excitation; it can be treated
as an anti-diffusion, −∇2ψ, with the nonlinear coefficient (∇ψ)2. Suppose
also that the coefficients a1, a2, b1, b2 and b3 are small enough so that the
respective terms can be neglected. The rest of the coefficients appearing in
(1) with the exception of b4 are generally of order 1. When a perturbation of
the flat steady state ψ ≡ const grows, the 4th order nonlinear term b5(∇ψ)4

comes into play. Its role is similar to (∇ψ)2 in the KS equation, which is to
create regions of sharp variations of ψ. In such regions, the dissipation g1∇6ψ
prevails (assuming g1 > 0) as it is of higher order in ∇; this prevents forma-
tion of singularities. Denoting characteristic scale of the phase variations by
Ψ > 0 we evaluate in absolute value: ∇2ψ(∇ψ)2 ∼ Ψ3/L4, (∇ψ)4 ∼ Ψ4/L4
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and ∇6ψ ∼ Ψ/L6. The balance between the three terms,

εΨ3/L4 ∼ Ψ4/L4 ∼ Ψ/L6 , (2)

determines the scales of the dissipative structures,

Ψ ∼ ε , L ∼ (1/ε)3/2 . (3)

Suppose that

a1 = o(ε6) , a2 = o(ε5) , b1 = o(ε3) ,

b2 = o(ε2) , b3 = o(ε2) , b4 = −ε .
(4)

Let us show that these conditions make the respective terms of (1) negligible
compared to the balance terms (2). For the latter, taking into account (3),

b4 ∇2ψ(∇ψ)2 ∼ εΨ3/L4 ∼ ε10 .

By comparison, using (3) and (4),

a1 ∇2ψ ∼ a1Ψ/L
2 ∼ o(ε10) ,

a2 (∇ψ)2 ∼ a2Ψ
2/L2 ∼ o(ε10) ,

b1 ∇4ψ ∼ b1Ψ/L
4 ∼ o(ε10) ,

b2 ∇3ψ∇ψ ∼ b2Ψ
2/L4 ∼ o(ε10) ,

b3 (∇2ψ)2 ∼ b3Ψ
2/L4 ∼ o(ε10) .

(5)

Now look at the rest of equation (1) starting from the term g2∇5ψ∇ψ.
Among those all nonlinear terms are negligible relative to the balance terms
because of higher order in Ψ ∼ ε, and all linear terms are negligible because
of higher order in ∇2 ∼ 1/L2 ∼ ε3. Thus, the phase equation reduces to

∂tψ = b4 ∇2ψ(∇ψ)2 + b5 (∇ψ)4 + g1 ∇6ψ . (6)

Earlier [5] we solved (6) numerically as a semi-artificial model in one dimen-
sion under periodic boundary conditions and obtained smooth kink-shaped
waves propagating at a constant speed.
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Our plan is to derive (6) from the complex Ginzburg-Landau equation
relevant to nonlocal reaction-diffusion systems. Tanaka and Kuramoto [7]
analysed the system of this type

∂tX = f(X) + δ̂∇2X + kg(S) , (7)

τ∂tS = −S +D∇2S + h(X) . (8)

Here X is the vector representing concentrations of reactants, δ̂ is a diagonal
matrix responsible for diffusion, f and g are the vector functions, k, τ and
D are constants. Implicitly system (7)–(8) involves a bifurcation parameter
µ which, when changing from µ < 0 to µ > 0, brings about oscillatory
instability. Note that equation (8) is linear; this allows to solve it for S in
terms of X and substitute in (7). Provided that the parameter k is small,
k ∼ O(|µ|), this leads to the complex nonlocal Ginzburg-Landau equation

∂tA = µσA− β|A|2A+ δ∇2A+ kη ′

∫

dr′G(r − r′)A(r′, t) , (9)

where A is loosely proportional to X; σ, β, δ and η′ are parameters. It is
assumed that

Reσ > 0 . (10)

The coupling function G satisfies the normalization condition
∫

G(r) dr = 1 . (11)

The complex parameter δ is responsible for diffusion and, therefore, should
have positive real part,

Re δ > 0 . (12)

Using (11), it is convenient to write (9) in the form

∂tA = µσ′A− β|A|2A+ δ∇2A+ kη ′

∫

dr′G(r− r′)[A(r′, t)−A(r, t)] , (13)

where
σ′ = σ + kη ′/µ . (14)

The system is assumed supercritical,

Reσ′ > 0 . (15)
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Some parameters in (13) can be eliminated by changing variables. The imagi-
nary part of the coefficient µσ′ vanishes after transforming A→ A exp[iµ Im σ′t]
and the diffusion coefficient D as well as Re β and µReσ′ become unity by
rescaling A, t and r. Eventually (13) is transformed to

∂tA = A− (1 + ic2)|A|2A+ (δ1 + iδ2)∇2A

+K(1 + ic1)

∫

dr′G(r − r′)[A(r′, t) −A(r, t)] ,
(16)

where c1, c2, δ1, δ2 and K are real constants. Condition (12) is equivalent to

δ1 > 0 . (17)

The complex amplitude A is connected to the real phase of oscillations, ϕ,
via

A = ae−iϕ , (18)

where a is the real amplitude. We consider a one-dimensional case keeping
the symbol ∇ for convenience. In one dimension

G(x) =
1

2
(ζ + iη)e−(ζ+iη)|x| , (19)

where

ζ =

(

1 +
√

1 + θ2

2D

)1/2

, η =

(

−1 +
√

1 + θ2

2D

)1/2

. (20)

Here the parameter θ = ω0τ is proportional to the basic frequency of oscil-
lations, ω0, and characteristic time τ . The diffusion coefficient D becomes
unity upon the mentioned rescaling of x leading to (16). The form (19)–(20)
expresses the physical fact that effective coupling radius, 1/ζ , is proportional
to the square root of the diffusion coefficient, D1/2. We refer to [7] for more
details.

As for the phase, it is convenient to analyse its departure from c2t, defined
by

ϕ = c2t+ ψ . (21)

For ψ we will derive the phase equation (1) using (16) and (18). During
this procedure the integral term is decomposed in a power series in ∇. Each
coefficient in equation (1) turns out to be a combination of the parameters
δ1, δ2, c1, c2, K and θ.
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It is important to note that the value of the parameter K is limited. After
transferring from (13) to (16), K(1 + ic1) appears as the combination

kη ′/µ

Reσ′
= K(1 + ic1) .

Taking real part and using (10), (14) and (15), we have

K =
Re(kη ′/µ)

Reσ′
=

Reσ′ − Reσ

Reσ′
= 1 − Reσ

Reσ′
< 1 . (22)

The results above were obtained by Tanaka and Kuramoto [7]. Tanaka sub-
sequently showed [8, 9] that, when the values of the parameters are appropri-
ately chosen, equation (16) reduces to the Kuramoto-Sivashinsky equation
or the Nikolaevskii equation. We present and briefly discuss these equations
in Section 5.

2 Complex GL equation with two nonlocal

terms

Tanaka and Kuramoto commented that the Ginzburg-Landau equation (16)
“involves six independent parameters c1, c2, K, θ, δ1 and δ2” [7] (p.026219-
5). Our aim in the paper is to satisfy the six conditions (4) by choosing
the values of the parameters. However, our computations indicate that to
achieve this we seem to need more than six independent parameters.

Therefore, we add one more reactant into (7)–(8); this will allow to raise
the number of independent parameters to nine. By selecting their values we
will be able to satisfy in Section 4 the conditions (4) subject to all necessary
restrictions. So we consider an extended reaction-diffusion system

∂tX = f(X) + δ̂∇2X + k1g1(S1) + k2g2(S2) , (23)

τ1∂tS1 = −S1 +D∇2S1 + h1(X) , (24)

τ2∂tS2 = −S2 +D∇2S2 + h2(X) , (25)

where k1 ∼ k2 ∼ O(|µ|). The extra term k2g2(S2) in (23) leads to the extra
integral term in the respective nonlocal Ginzburg-Landau equation,

∂tA = µσA− β|A|2A+ δ∇2A
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+k1η1
′

∫

dr′G1(r− r′)A(r′, t) + k2η2
′

∫

dr′G2(r − r′)A(r′, t) , (26)

where each coupling function Gn carries its own θn, n = 1, 2. The coupling
functions satisfy the normalization conditions

∫

G1(r) dr =

∫

G2(r) dr = 1 .

Using these conditions, equation (26) is modified to

∂tA = µσ′A− β|A|2A+ δ∇2A

+k1η1
′

∫

dr′G1(r − r′)[A(r′, t) −A(r, t)]

+k2η2
′

∫

dr′G2(r − r′)[A(r′, t) −A(r, t)] ,

(27)

where
σ′ = σ + k1η1

′/µ+ k2η2
′/µ . (28)

Rescaling (27) in the similar way to (13), we obtain

∂tA = A− (1 + ic2)|A|2A+ (δ1 + iδ2)∇2A

+K1(1 + ic11)

∫

dr′G1(r − r′)[A(r′) −A(r)]

+K2(1 + ic12)

∫

dr′G2(r − r′)[A(r′) −A(r)] ,

(29)

where

K1(1 + ic11) =
k1η1

′/µ

Reσ′
, K2(1 + ic12) =

k2η2
′/µ

Reσ′
. (30)

Now we have the 9 independent parameters at our disposal: δ1, δ2, c11, c12,
c2, K1, K2, θ1 and θ2 (the latter two are part of G1 and G2).

Let us derive restrictive conditions on K1 and K2 in place of (22). Taking
real part of (30) and summing up, we get

K1 +K2 =
Re(k1η1

′/µ) + Re(k2η2
′/µ)

Reσ′
.

Then, using (28), (10) and (15),

K1 +K2 =
Reσ′ − Reσ

Reσ′
= 1 − Reσ

Reσ′
< 1 . (31)
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Another restriction to be met is positiveness of the coefficient at ∇6ψ in (6),

g1 > 0 . (32)

It is necessary to ensure that the term is dissipative.

3 Derivation of the phase equation

We start with the derivation of the phase equation for the Ginzburg-Landau
equation (16) and then will generalize it for the extended variant (29). Denote

I0 = K(1 + ic1)

∫

dx′G(x− x′)[A(x′) − A(x)] . (33)

Substituting (41) into (16) and separating real and imaginary parts, we ob-
tain

∂ta = a− a3 + δ1∇2a− δ1 a(∇ϕ)2 + 2δ2∇a∇ϕ+ δ2 a∇2ϕ+ Re I . (34)

∂tϕ = c2a
2 + 2δ1

∇a∇ϕ
a

+ δ1∇2ϕ− δ2
∇2a

a
+ δ2(∇ϕ)2 − 1

a
Im I , (35)

where

I =
I0
e−iϕ

. (36)

Spatial variations of both the real amplitude a and phase ϕ are assumed
slow, therefore ∇ ∼ 1/L ∼ ε1 is a small parameter. For consistency with (3)
we state

ε1 = ε3/2 .

As we said in the previous section, the integral I in (34)–(35) can be rep-
resented as a series in ∇. Since A(x′) − A(x) = (x′ − x)∇A + (1/2)(x′ −
x)2∇2A + . . . and G(x) = G(−x) the leading term in such series is of order
∇2.

We face a typical centre manifold situation involving the fast variable a
and slow variable ϕ. The amplitude a is quickly attracted to the vicinity of
the equilibrium state, a0 = 1, by means of ∂ta = a − a3 and then is weakly
affected by the perturbations. The phase is subject to the almost constant
force c2a

2 ≈ c2a
2
0 = c2 plus the weak influence of the perturbations. Thus,

the phase and amplitude end up changing slowly is space and time about
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ϕ = c2t and a0 = 1. The centre manifold theory says that there exists a
manifold to which the dynamics are attracted exponentially quickly,

a = a[∇ϕ] . (37)

Equation (37) manifests a stiff connection between the amplitude and phase
on the attractor. This link allows to eliminate the amplitude from (35) and
thus obtain a closed equation for the phase.

Rescale the variables via t1 = ε2
1t and x1 = ε1 x. Then

∇ = ε1∇1 , ∂t = ε2
1∂t1 . (38)

Expand the amplitude into the series

a(x) = 1 + ε2
1a2(x) + ε4

1a4(x) + ε6
1a6(x) + . . . . (39)

Using (38), (21) and (39) in the phase equation (35) and the amplitude
equation (34), we obtain, for the phase departure introduced in (21),

ε2
1∂t1ψ = 2c2 ε

2
1 a2 + 2c2 ε

4
1 a4 + c2 ε

4
1 a

2
2 + 2c2 ε

6
1 a6

+2δ1 ε
4
1 ∇1a2∇1ψ + δ1 ε

2
1 ∇2

1ψ − δ2 ε
4
1 ∇2

1a2 − δ2 ε
6
1 ∇2

1a4

+δ2 ε
2
1 (∇1ψ)2 − 1

a
Im I + . . .

(40)

and, for the amplitude,

ε4
1∂t1a2 + ε6

1∂t1a4 + · · · = −2ε2
1a2 − ε4

1

(

2a4 + 3a2
2

)

− ε6
1

(

2a6 + 6a2a4 + a3
2

)

+δ1ε
2
1

(

ε2
1∇2

1a2 + ε4
1∇2

1a4 + . . .
)

− δ1
(

1 + ε2
1a2 + ε4

1a4 + . . .
)

ε2
1(∇1ψ)2

+2δ2ε1

(

ε2
1∇1a2 + ε4

1∇1a4 + . . .
)

ε1∇1ψ

+δ2
(

1 + ε2
1a2 + ε4

1a4 + . . .
)

ε2
1∇2

1ψ + Re I .

(41)

Collecting terms ∼ ε2
1 in (41) we obtain

0 = −2a2 − δ1(∇1ψ)2 + δ2∇2
1ψ + (Re I)2 , (42)

where (Re I)2 denotes the coefficient at ε2
1 in ε1-series for Re I that we need

yet to determine. Inserting (18) into (33) we get

I0 = K(1 + ic1)

∫

dx′G(x− x′)[a(x′)e−iϕ(x′) − a(x)e−iϕ(x)] (43)
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implying that a and ϕ also depend on t. We want to decompose the integrand
into a series. Using the Taylor series

a(x′) = a(x) + ∇a(x)∆x+
1

2
∇2a(x)∆x2 + . . .

= a(x) + ε1∇1a(x)∆x+ 1
2
ε2
1∇2

1a(x)∆x
2 + . . . ,

(44)

where
∆x = x′ − x ,

and substituting the ε1-series (39) into (44) and then the latter together with
the coupling function (19) into (43) we get

I0 =
K

2
(1 + ic1)(ζ + iη)e−iϕ

∫

dx′ e−(ζ+iη)|∆x|

×
[(

ei∆ϕ − 1
)

+ ε2
1a2(x)

(

ei∆ϕ − 1
)

+ε3
1∇1a2(x)∆x e

i∆ϕ

+ε4
1

(

a4(x)e
i∆ϕ +

1

2
∇2

1a2(x)∆x
2 ei∆ϕ − a4(x)

)

+ε5
1

(

∇1a4(x)∆x e
i∆ϕ +

1

3!
∇3

1a2(x)∆x
3 ei∆ϕ

)

+ε6
1

(

a6(x)e
i∆ϕ +

1

2
∇2

1a4(x)∆x
2 ei∆ϕ +

1

4!
∇4

1a2(x)∆x
4 ei∆ϕ − a6(x)

)

+ . . .

]

,

(45)

where
∆ϕ = ϕ− ϕ′

(ϕ′ = ϕ(x′)). In order to determine (Re I)2 we need to extract cumulative
component ∼ ε2

1 from (45). We need the Taylor series

ei∆ϕ = 1 + i∆ϕ− 1

2
∆ϕ2 − 1

3!
i∆ϕ3 +

1

4!
∆ϕ4 +

1

5!
i∆ϕ5 + . . . (46)

and also the Taylor series for ∆ϕ,

∆ϕ = −(ϕ′ − ϕ) = −(ψ′ − ψ)

= −ε1∇1ψ∆x− 1

2
ε2
1∇2

1ψ∆x2 + . . . .
(47)
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Substituting (47) into (46) we find

ei∆ϕ − 1 = i

(

−ε1∇1ψ∆x− 1

2
ε2
1∇2

1ψ∆x2 + . . .

)

−1

2

(

ε1∇1ψ∆x+
1

2
ε2
1∇2

1ψ∆x2 + . . .

)2

+ . . . .

(48)

Now we substitute (48) into (45) and take into account that the integrals
involving odd powers of ∆x give zero. The leading term ∼ ε1 in (45) comes
from ei∆ϕ − 1, it is (−iε1∇1ψ∆x); upon integration it gives zero. In order
∼ ε2

1

(Re I)2 = Re

{

K

2
(1 + ic1)(ζ + iη)

∫

dx′ e−(ζ+iη)|∆x|

×
[

−i1
2
∇2

1ψ∆x2 − 1

2
(∇1ψ)2∆x2

]}

.

(49)

Using(49), we express a2 from (42),

a2 =
δ2
2
∇2

1ψ − δ1
2

(∇1ψ)2 +
1

2
(Re I)2 =

δ2
2
∇2

1ψ − δ1
2

(∇1ψ)2

+
K

4

{

(ζ − c1η)

∫

dx′ e−ζ|∆x|

[

−1

2
(∇1ψ)2∆x2 cos(η|∆x|) − 1

2
∇2

1ψ∆x2 sin(η|∆x|)
]

−(c1ζ + η)

∫

dx′e−ζ|∆x|

[

−1

2
∇2

1ψ∆x2 cos(η|∆x|) +
1

2
(∇1ψ)2∆x2 sin(η|∆x|)

]}

.

(50)
The terms (∇1ψ)2 and ∇2

1ψ do not depend on x′ so (50) contains the integrals

Cn(ζ, η) =

∫ ∞

−∞

dx′ e−ζ|x′−x| cos(η|x′ − x|)(x′ − x)n ,

Sn(ζ, η) =

∫ ∞

−∞

dx′ e−ζ|x′−x| sin(η|x′ − x|)(x′ − x)n

for n = 2. Tables of integrals give

C2(ζ, η) =
4ζ (ζ2 − 3η2)

(ζ2 + η2)3 , S2(ζ, η) =
4η (3ζ2 − η2)

(ζ2 + η2)3 .
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Later we will also need cases n = 4 and n = 6,

Cn(ζ, η) =
2Γ(n+ 1)

(ζ2 + η2)(n+1)/2
cos [(n+ 1) arctan(η/ζ)] ,

Sn(ζ, η) =
2Γ(n+ 1)

(ζ2 + η2)(n+1)/2
sin [(n+ 1) arctan(η/ζ)] .

(51)

Straightforward manipulations in (50) lead to the answer

a2 = α1∇2
1ψ − α2(∇1ψ)2 , (52)

where

α1 =
δ2
2
− K

8
S2(ζ − c1η) +

K

8
C2(c1ζ + η) ,

α2 =
δ1
2

+
K

8
C2(ζ − c1η) +

K

8
S2(c1ζ + η) .

(53)

In order ∼ ε3
1 the amplitude equation (41) says

0 = (Re I)3 . (54)

Let us show that this is true. From (45) using (48) we find

(Re I)3 = Re

{

K

2
(1 + ic1)(ζ + iη)

∫ ∞

−∞

dx′ e−(ζ+iη)|∆x|

×
[

−i 1

3!
∇3

1ψ∆x3 − 1

2
∇1ψ∇2

1ψ∆x3 +
1

3!
i∇3

1ψ∆x3

−a2i∇1ψ∆x+ ∇1a2 ∆x] .

This integral is equal to zero as it involves only odd powers of ∆x. Grouping
terms ∼ ε4

1 in the amplitude equation (41) we have

a4 = −(1/2)∂t1a2 − (3/2)a2
2 + (1/2)δ1∇2

1a2 − (1/2)δ1a2(∇1ψ)2

+δ2∇1a2∇1ψ + (1/2)δ2a2∇2
1ψ +

1

2
(Re I)4 .

(55)

(Re I)4 is the coefficient at ε4
1 in the series for Re I.

Here we make the crucial remark that the time derivative in (55) can
be ignored straight away as justified by the following. Having placed a2
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expressed by (52) under the time derivative in (55) and subsequently into the
phase equation (40) we get the terms of higher orders than the time derivate
ε2
1∂t1ψ ∼ ε2

1 already present in (40), for example 2c2ε
4
1α1∂t1∇2

1ψ ∼ ε4
1. Such

terms can be ignored.
Now let us determine (Re I)4 by grouping terms ∼ ε4

1 in (45),

(Re I)4 = Re

{

K

2
(1 + ic1)(ζ + iη)

∫

dx′ e−(ζ+iη)|∆x|

×
[(

−i 1

24
∇4

1ψ∆x4 − 1

8
(∇2

1ψ)2∆x4 − 1

6
∇1ψ∇3

1ψ∆x4

+i
1

4
(∇1ψ)2∇2

1ψ∆x4 +
1

24
(∇1ψ)4∆x4

)

+a2

(

−i1
2
∇2

1ψ∆x2 − 1

2
(∇1ψ)2∆x2

)

+
1

2
∇2

1a2∆x
2

]}

.

(56)

Substituting (52) into (56) and the result into (55) (with the time derivative
removed) and rearranging we come to

a4 = β∇4
1ψ + β1

(

∇2
1ψ
)2

+ β2∇1ψ∇3
1ψ + β3∇2

1ψ(∇1ψ)2 + β4(∇1ψ)4 (57)

with the coefficients

β = α1
δ1
2

+
K

8
(ζ − c1η)C2α1 +

K

8
(η + c1ζ)S2α1

− K

4 · 24
(ζ − c1η)S4 +

K

4 · 24
(η + c1ζ)C4 ,

β1 = −3

2
α2

1 − δ1α2 +
δ2
2
α1 +

K

32
(ζ − c1η)C4 −

K

32
(η + c1ζ)S4

−K
4

(ζ − c1η)C2α2 −
K

4
(η + c1ζ)S2α2

−K
8

(ζ − c1η)S2α1 +
K

8
(η + c1ζ)C2α1 ,

β2 = −δ1α2 + δ2α1 −
K

24
(ζ − c1η)C4 −

K

24
(η + c1ζ)S4

−K
4

(ζ − c1η)C2α2 −
K

4
(η + c1ζ)S2α2 ,

(58)
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β3 = 3α1α2 −
δ1
2
α1 −

5δ2
2
α2

−K
8

(ζ − c1η)C2α1 −
K

8
(η + c1ζ)S2α1

+
K

16
(ζ − c1η)S4 −

K

16
(η + c1ζ)C4

+
K

8
(ζ − c1η)S2α2 −

K

8
(η + c1ζ)C2α2 ,

β4 = −3

2
α2

2 +
K

4 · 24
(ζ − c1η)C4 +

K

4 · 24
(η + c1ζ)S4

+
K

8
(ζ − c1η)C2α2 +

K

8
(η + c1ζ)S2α2 +

δ1
2
α2 .

(59)

In order ∼ ε5
1 the amplitude equation (41) requires

0 = (Re I)5 .

Let us show that this is true. Using (45), we obtain

(Re I)5 = Re

{

K

2
(1 + ic1)(ζ + iη)

∫ ∞

−∞

dx′ e−(ζ+iη)|∆x|

×
[

−i 1

5!
∇5

1ψ∆x5 − 1

2 · 3!
∇2

1ψ∇3
1ψ∆x5 − 1

4!
∇1ψ∇4

1ψ∆x5

+i
1

8
∇1ψ(∇2

1ψ)2 ∆x5 + i
3

3!2
(∇1ψ)2∇3

1ψ∆x5

+
2

4!
(∇1ψ)3∇2

1ψ∆x5 − i
1

5!
(∇1ψ)5 ∆x5

−ia2(x)
1

3!
∇3

1ψ∆x3 − a2(x)
1

2
∇1ψ∇2

1ψ∆x3 + ia2(x)
1

3!
(∇1ψ)3 ∆x3

−i1
2
∇2

1ψ∇1a2 ∆x3 − 1

2
(∇1ψ)2∇1a2 ∆x3

+ia4(x)∇1ψ∆x− i
1

2
∇2

1a2∇1ψ∆x3

+∇1a4(x) ∆x+
1

3!
∇3

1a2 ∆x3

]}

= 0
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as only odd powers of ∆x are involved here. Grouping terms ∼ ε6
1 in the

amplitude equation (41) we have

a6 = −1

2
∂t1a4 − 3a2a4 −

1

2
a3

2 +
δ1
2
∇2

1a4 −
δ1
2
a4(∇1ψ)2

+δ2∇1a4∇1ψ +
δ2
2
a4∇2

1ψ +
1

2
(Re I)6 .

(60)

The time derivative ∂t1a4 in (60) can be immediately ignored for the same
reason as ∂t1a2 in (55). From the rest of equation (60) we need to retain
only linear contribution that is the terms proportional to ∇6

1ψ because all
the nonlinear terms of order ε6

1 are negligible as we argued in Section 1. Such
linear terms may come only from two terms in (60):

a6 = linear terms from

{

1

2
δ1∇2

1a4 +
1

2
(Re I)6

}

, (61)

where

(Re I)6 = Re

{

K

2
(1 + ic1)(ζ + iη)

∫

dx′ e−(ζ+iη)|∆x|

×
[

−i 1

6!
∇6

1ψ∆x6 +
1

2
∇2

1a4∆x
2 +

1

4!
∇4

1a2∆x
4

]}

.

(62)

Using a2 from (52) and a4 from (57) and doing some algebra we obtain

a6 = ∇6
1ψ

[

1

2
δ1β +

K

8
(ζ − c1η)C2β +

K

4 · 4!
(ζ − c1η)C4α1

− K

4 · 6!
(ζ − c1η)S6 +

K

4 · 6!
(c1ζ + η)C6

+
K

8
(c1ζ + η)S2β +

K

4 · 4!
(c1ζ + η)S4α1

]

(63)

with C6 and S6 given by (51) and β given by (58).
We are getting closer to achieving the goal of transforming the phase

equation (40) into a closed form. To this end we determined all the com-
ponents of the amplitude, namely a2, a4 and a6 appearing in (40), in terms
of ψ. The next task is to express the input from (1/a) Im I in terms of ψ.
First, we decompose Im I into the series

Im I = ε1(Im I)1 + ε2
1(Im I)2 + ε3

1(Im I)3 + . . .
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and take into account that all the odd terms disappear because I1 = I3 =
· · · = 0 as we explained earlier. Thus, we have

a−1Im I = (1 + ε2
1a2 + ε4

1a4 + ε6
1a6 + . . . )−1

×
[

ε2
1(Im I)2 + ε4

1(Im I)4 + ε6
1(Im I)6 + . . .

]

= −ε4
1a2(ImI)2 + ε2

1(Im I)2 + ε4
1(Im I)4 + ε6

1(Im I)6 + . . . . (64)

To find (Im I)2 we use the expression under Re in (49),

(Im I)2 = Im

{

K

2
(1 + ic1)(ζ + iη)

∫

dx′ e−(ζ+iη)|∆x|

×
[

−i1
2
∇2

1ψ∆x2 − 1

2
(∇1ψ)2∆x2

]}

=
K

2

[

−(ζ − c1η)C2
1

2
∇2

1ψ − (c1ζ + η)C2
1

2
(∇1ψ)2

+(ζ − c1η)S2
1

2
(∇1ψ)2 − (c1ζ + η)S2

1

2
∇2

1ψ

]

. (65)

To determine (Im I)4 we use the expression under Re in (56),

(Im I)4 =
K

2

{

(ζ − c1η)

[

1

8
(∇2

1ψ)2S4 +
1

6
∇1ψ∇3

1ψS4 −
1

24
(∇1ψ)4S4

+a2
1

2
(∇1ψ)2S2 −

1

2
∇2

1a2S2 −
1

24
∇4

1ψC4

+
1

4
(∇1ψ)2∇2

1ψC4 − a2
1

2
∇2

1ψC2

]

+(η + c1ζ)

[

−1

8
(∇2

1ψ)2C4 −
1

6
∇1ψ∇3

1ψC4 +
1

24
(∇1ψ)4C4

−a2
1

2
(∇1ψ)2C2 +

1

2
∇2

1a2C2 −
1

24
∇4

1ψS4

+
1

4
(∇1ψ)2∇2

1ψS4 − a2
1

2
∇2

1ψS2

]}

,

(66)

with a2 given by (52). In order to determine (Im I)6 we need to take imagi-
nary part of the expression under Re in (62) and retain only linear part,

(Im I)6 = linear terms from

{

K

2
(ζ − c1η)

16



×
[

− 1

6!
∇6

1ψC6 −
1

2
∇2

1a4S2 −
1

4!
∇4

1a2S4

]

+
K

2
(c1ζ + η)

[

1

2
∇2

1a4C2 +
1

4!
∇4

1a2C4 −
1

6!
∇6

1ψS6

]}

.

Inserting a2 expressed by (52) and a4 by (57) this leads to

(Im I)6 = ∇6
1ψ
K

2

{

(ζ − c1η)

[

− 1

6!
C6 −

1

2
S2β − 1

4!
S4α1

]

+(c1ζ + η)

[

1

2
C2β +

1

4!
C4α1 −

1

6!
S6

]}

.

(67)

Substituting (64) and (65)–(67) into (40) and returning to the unscaled op-
erators ∂t and ∇ we finally obtain the phase equation in closed form,

∂tψ = ∇2ψ

[

2c2α1 + δ1 +
K

4
(ζ − c1η)C2 −

K

4
(c1ζ + η)S2

]

+(∇ψ)2

[

−2c2α2 + δ2 +
K

4
(c1ζ + η)C2 −

K

4
(ζ − c1η)S2

]

+∇4ψ

[

2c2β − δ2α1 +
K

48
(η + c1ζ)S4 +

K

48
(ζ − c1η)C4

−K
4

(η + c1ζ)C2α1 +
K

4
(ζ − c1η)S2α1

]

+∇ψ∇3ψ

[

2c2β2 + 2δ1α1 + 2δ2α2 −
K

12
(ζ − c1η)S4

+
K

12
(η + c1ζ)C4 −

K

2
(ζ − c1η)S2α2 +

K

2
(η + c1ζ)C2α2

]

+
(

∇2ψ
)2
[

2c2β1 + 2c2α
2
1 + 2δ2α2 −

K

16
(ζ − c1η)S4

+
K

16
(η + c1ζ)C4 −

K

2
(ζ − c1η)S2α2 +

K

2
(η + c1ζ)C2α2

]

(68)
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+∇2ψ(∇ψ)2

[

2c2β3 − 4c2α1α2 − 4δ1α2 −
K

8
(ζ − c1η)C4 −

K

8
(η + c1ζ)S4

]

+(∇ψ)4

[

2c2β4 + 2c2α
2
2 +

K

48
(ζ − c1η)S4 −

K

48
(η + c1ζ)C4

]

+∇6ψ

[

2c2

(

1

2
δ1β +

K

8
(ζ − c1η)C2β +

K

4 · 4!
(ζ − c1η)C4α1

− K

4 · 6!
(ζ − c1η)S6 +

K

4 · 6!
(c1ζ + η)C6

+
K

8
(c1ζ + η)S2β +

K

4 · 4!
(c1ζ + η)S4α1

)

−βδ2 −
K

2
(ζ − c1η)

(

− 1

6!
C6 −

1

2
S2β − 1

4!
S4α1

)

−K
2

(c1ζ + η)

(

1

2
C2β +

1

4!
C4α1 −

1

6!
S6

)]

+ . . . .

(69)

Equation (68)–(69) is in the form (1) with the coefficients a1, a2, b1, b2, b3,
b4, b5 and g1 being combinations of the independent parameters c1, c2, K,
δ1, δ2 and θ (the latter is present via ζ and η, see (20)).

For the extended Ginzburg-Landau equation (29), which is our primary
interest, the phase equation is straightforwardly obtained by replacing

K(ζ − c1η)Sn → K1(ζ1 − c11η1)Sn1 +K2(ζ2 − c12η2)Sn2 ,

K(η + c1ζ)Sn → K1(η1 + c11ζ1)Sn1 +K2(η2 + c12ζ2)Sn2 ,

K(ζ − c1η)Cn → K1(ζ1 − c11η1)Cn1 +K2(ζ2 − c12η2)Cn2 ,

K(η + c1ζ)Cn → K1(η1 + c11ζ1)Cn1 +K2(η2 + c12ζ2)Cn2

(n = 2, 4, 6)

in (68)–(69) and also in the expressions for α1 and α2, (53), and for β, β1,
β2, β3 and β4, (58)–(59).

4 Computational results

We solved the system

a1 = a2 = b1 = b2 = b3 = 0 , b4 = −ε (70)
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numerically using a program written reduce. In the program, we assigned
some value to ε and also to 3 of the independent parameters, θ1, θ2 and c12.
Those values are not unique but taken arbitrarily from a range of acceptable
values. The following system of 14 equations was solved: the 6 main equa-
tions (70), 2 equations (53) representing α1 and α2, 5 equations (58)–(59)
representing β, β1, β2, β3 and β4 and 1 equation representing g1. As solution
the values of the following 14 parameters were found: α1, α2, β, β1, β2, β3,
β4, c11, c2, K1, K2, δ1, δ2 and g1. Here we report the results of just two
computations which demonstrate that all the conditions and restrictions are
satisfied. We chose

θ1 = 5 , θ2 = 10 , c12 = 3 .

For the first computation we took ε = 0 implying

b4 = 0 .

The result, up to the fifth decimal digit without rounding, is

δ1 = 4.06892 , K1 = 17.14055 , K2 = −28.03970 ,

δ2 = −1.75789 , c2 = 1.68100 , c11 = 0.69815 .

It is important to know the sign of the coefficient at the sixth derivative,

g1 = 1.01076 .

We are satisfied to observe that all three necessary restrictions on the pa-
rameters are met, namely

g1 > 0 , δ1 > 0 , K1 +K2 < 1 . (71)

For the second computation we took slightly negative b4 = −ε. For compu-
tational efficiency ε was created as a product of one of the unknowns, K1,
and a small number,

b4 = −K1 · 0.00001 . (72)

The result is

δ1 = 4.06912 , K1 = 17.14113 , K2 = −28.04100 ,

δ2 = −1.75795 , c2 = 1.68106 , c11 = 0.69819
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and
g1 = 1.01078 .

Formula (72) means that

b4 = −ε = −0.00017141 .

Clearly we can make b4 as close to zero as we like. The result of this com-
putation only slightly differs from that for b4 = 0 so that the conditions (71)
remain satisfied.

Thus, we satisfied the conditions (70) and restrictions (71). The condi-
tions result, as we showed in Section 1, in the phase scale Ψ ∼ ε and length
scale L ∼ (1/ε)3/2. The higher-order terms in ψ and ∇ in the phase equation
(1) can be safely ignored.

Previously we used equation (6) as a model for solid flames [5]. The
spinning auto-waves obtained in [5] demonstrate robustness of the dynamical
balance behind (6). For a two-dimensional version of (6) and rectangular
shape of domain we also obtained complex, seemingly chaotic regimes [10].

5 Scaling

The table shows the order of magnitude of the coefficients of the phase equa-
tion (1) leading to different truncations and scalings. Where important, signs
of the coefficients are shown.

a1 a2 b1 b2 b3 b4 b5 g1 truncation
+1 1 1 1 1 1 1 1 diffusion eq.

excitation Kuramoto-

−ε 1 −1 1 1 1 1 1 Sivashinsky eq.

excitation

+ε2 1 +ε 1 1 1 1 +1 Nikolaevskii eq.

excitation

o(ε6) o(ε5) o(ε3) o(ε2) o(ε2) −ε 1 +1 eq. (6)

Table. Hierarchy of truncations of the phase equation (1).

For the Kuramoto-Sivashinsky equation

∂tψ = −ε∇2ψ + (∇ψ)2 −∇4ψ
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the balance εΨ/L2 ∼ Ψ2/L2 ∼ Ψ/L4 gives

Ψ ∼ ε , L ∼ 1/
√
ε . (73)

The time scale is determined from Ψ/T ∼ εΨ/L2,

T ∼ L2/ε ∼ 1/ε2 . (74)

Hence, from (73) and (74) we have the scaling relations

ψ = εψ1(r1, t1) , r1 =
√
ε r , t1 = ε2t .

Different scaling takes place for the Nikolaevskii equation

∂tψ = ε2∇2ψ + ε∇4ψ + ∇6ψ + (∇ψ)2 .

The balance ε2Ψ/L2 ∼ εΨ/L4 ∼ Ψ/L6 ∼ Ψ2/L2 gives

Ψ ∼ ε2 , L ∼ 1/
√
ε

and, using Ψ/T ∼ ε2Ψ/L2 ∼ ε5,

T ∼ Ψ/ε5 ∼ 1/ε3 .

Thus, the scaling relations are

ψ = ε2ψ1(r1, t1) , r1 =
√
ε r , t1 = ε3t .

For the nonlinearly excited equation (6),

∂tψ = −ε∇2ψ(∇ψ)2 + (∇ψ)4 + ∇6ψ ,

as we determined in (3),

Ψ ∼ ε , L ∼ (1/ε)3/2 .

Therefore, from Ψ/T ∼ Ψ4/L4 ∼ ε10,

T ∼ 1/ε9 .

Thus, the scaling is

ψ = εψ1(r1, t1) , r1 = ε3/2r , t1 = ε9t .
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6 Conclusions

We derived a nonlinearly excited truncated phase equation (6) governing the
dynamics of reaction-diffusion systems with nonlocal coupling. The systems
are described by the nonlocal complex Ginzburg-Landau equation with nine
independent parameters. The form (6) is valid under the conditions (4) which
we satisfied by selecting the values of the independent parameters.
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