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Abstract 

Acetic acid was used in abiotic experiments to adjust the solution pH and 

investigate its influence on the chemical hydrolysis of the Organic Fraction of 

Municipal Solid Waste (OFMSW). Soluble chemical oxygen demand (SCOD) 

was used to measure the hydrolysis under oxidative conditions (positive 

oxidation-reduction potential values), and pH 4 allowed for 20% (±2%) of the 

COD added to be solubilized, whereas only 12% (±1%) was solubilized at 

pH7. Under reducing conditions (negative oxidation-reduction potential 

values) and pH 4, 32.3% (±3%) of the OFMSW was solubilised which shows 

that acidogenesis at pH 4 during the anaerobic digestion of solid waste can 

result in chemical hydrolysis. In comparison, bacterial hydrolysis resulted in 

54% (±6%) solubilization.  

 

Keywords : Organic Fraction of Municipal Solid Waste, lignocellulosic 

biomass, pre-treatment, chemical hydrolysis. 

 

1. Introduction 

Lignocellulosic substrate is a general term for material containing cellulose, 

hemicellulose and lignin, and includes the Organic Fraction of Municipal 

Solid Waste (OFMSW), wood, grass, leaves, paper, wheat straw, etc. 

Cellulose is a linear polymer of glucose units which can form intra- and 

interchain bonds leading to a crystalline macromolecule. It is relatively rigid 

with a high degree of dimensional stability in the direction of the cellulose 

fibres. Hemicelluloses have a more irregular structure with side groups, 

substituent groups and sugars present along the length of the chain. Lignin is a 
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randomised condensed polymer with many aromatic groups and is much more 

hydrophobic than cellulose or hemicelluloses (Popescu et al., 2011). 

Most of the cellulose is located in highly ordered crystalline regions, in which 

cellulose chains or fibrils are so tightly packed that even water molecules can 

scarcely penetrate; cellulose is accordingly water insoluble. Less ordered 

portions of the assembly, called amorphous regions, typically comprise about 

5 percent of the cellulose microstructure (Bailey & Ollis, 1986). These 

amorphous regions are easily hydrolysed by, for example, acids; the 

crystalline regions on the other hand are much more difficult to decompose 

and it depends on crystallinity, crystallite size, degree of polymerisation, 

surface area, particle size, lignin content, wood density, etc (Hendriks & 

Zeeman, 2009; Popescu et al., 2011). The solubilization of lignocellulosic 

components not only depends on temperature, but also on other parameters 

like moisture content and pH. The xylan of hemicellulose can be extracted 

quite well in an acid or alkaline environment, while glucomannan is difficult 

to extract in an acid environment and needs a stronger alkaline environment 

than xylan to be extracted (Fengel & Wegener, 1984). 

However, much more recalcitrant is the lignin casing which encloses the 

polysaccharide components of the biomass. Lignin is a complex and 

heterogeneous material, and its random arrangement makes it very resistant to 

chemical and enzymatic attack. The lignocellulosic complex prevents enzymes 

from accessing the degradable cellulose, and some studies have suggested that 

enzymes may adsorb preferentially onto lignin which results in unproductive 

enzyme binding (Kristensen et al., 2007). As both accessibility of enzymes to 

the solid matter and hydrolysis of complex compounds constitute the rate-
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limiting step during anaerobic degradation (Eastman & Ferguson, 1981), pre-

treatment of the substrate is beneficial for the rate and extent of the anaerobic 

process, the biogas yield and mass reduction of anaerobic sludge (Xiao & 

Clarkson, 1997). 

Acid hydrolysis of cellulose is a well-known phenomenon and is carried out 

with concentrated or dilute acid: the most extensively used acids are H2SO4 

and HCl (Grethlein, 1984). Rajan and Carrier (2014) determined the optimal 

conditions for pretreating wheat straw, and found them to be: 140°C, 1% (v/v) 

H2SO4 and a 30 min reaction time. Under these conditions, the glucose yield 

from wheat straw was maximized at 89% of the theoretical maximum. 

However, the use of acid is a deterrent to large scale implementation due to the 

cost of recovery of the expensive acid (Grethlein, 1984). Xiao and Clarkson 

(1997) treated newsprint paper with acetic acid alone at various concentrations 

(from 0 to 80%) in a boiling water bath, but no significant solubilization of 

lignin occurred. They showed that the addition of nitric acid had a tremendous 

effect on the solubilization of lignin. More recently it has been reported that 

the presence of lignin can slow down the acid hydrolysis of cellulose (Yoon et 

al., 2014). Acid hydrolysis of woody biomass was firstly carried out at high 

concentration (72% H2SO4 for 1 hr at 30°C) followed by a dilute acid 

hydrolysis (4% at 100-120°C), and it was shown that the second hydrolysis at 

120°C could degrade glucose to 5-hydroxymethylfurfural (5-HMF) and then to 

levulinic and formic acids. However, the presence of lignin prevented the 

formation of levulinic acid and formic acid as part of the glucose or 5-HMF 

were converted to humins under acidic conditions (Yoon et al., 2014). Acids 

such as acetic acid were used as catalysts for the hydrolysis of lignocellulosics 
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in ionic liquids as this can take place at milder conditions. Van Spronsen et al. 

(2011) showed that acetic acid also works as co-solvent, increasing the 

solubility of the constituents of lignocellulosic biomass in the ionic liquid. 

No paper has yet examined the relative contribution of acetic acid and 

enzymes in the hydrolysis process of OFMSW. Sometimes, an imbalance in 

anaerobic digestion leads to an accumulation of acids and it is not clear at 

what concentration these acids can lead naturally to a chemical hydrolysis and 

to which extent. Acetic acid is the most common acid produced by acidogenic 

bacteria, and a two-stage anaerobic process allows for the optimization of the 

acid-phase reactor independently from the methanogenic reactor. Therefore, 

simultaneous chemical and bacterial hydrolysis could take place in the 

acidogenic reactor, but the contribution of each treatment on the overall 

solubilization is not known. Thus, the aim of this work was to investigate the 

effect of acetic acid concentration on chemical hydrolysis, and compare it with 

bacterial hydrolysis. 

 

2. Materials and methods 

2.1. Feedstock 

The Organic Fraction of Municipal Solid Waste (OFMSW) was used in this 

study to simulate a lignocellulosic material that undergoes anaerobic digestion. 

It consisted of 41.3% Kitchen Wastes (KW), 10.8% Garden Wastes (GW) and 

47.9% Paper Wastes (PW) on a wet basis. The composition of the simulated 

paper waste and the preparation of the feedstock used for the study was 

reported elsewhere (Trzcinski & Stuckey, 2009). This slurry was autoclaved 

(120°C for 20 minutes) to sterilize the feed. 
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2.2. Bacterial hydrolysis 

To study the hydrolysis of OFMSW due to enzymes secreted by bacteria, an 

anaerobic inoculum (TSS = 2.7 g/L, VSS = 2.07 g/L) from a CSTR fed on the 

same substrate at 10 days HRT was added to a serum bottle with two grams of 

MSW so that an inoculum to substrate ratio (I/S) of 1.2 was obtained. The 

inoculum was previously centrifuged at 3,000 rpm for 20 minutes in order to 

discard the debris present in the supernatant. In order to study only the 

hydrolysis, methanogenesis was inhibited by adding Sodium 

Bromoethanesulfonate (BES) so that a final concentration of 10-5 M was 

obtained (Smith, 1983). A positive control was run in parallel with α-cellulose 

(Sigma-Aldrich) (on the same COD basis as OFMSW assuming that α-

cellulose was C6H10O5) to confirm the enzymatic activity.  

The bottles were then filled to 100 mL with biomedium defined by Owen et al. 

(1979) and flushed with a CO2/N2 mixture (30/70%) for 5 minutes to obtain 

anaerobic conditions. A negative control with inoculum, biomedium and BES 

(no OFMSW) was run as well and its SCOD was subtracted from the bottle 

with OFMSW in order to obtain a SCOD which reflects enzymatic hydrolysis. 

The bottles were stoppered with rubber septum-type stoppers which were 

secured with 20 mm aluminium crimp seals, and placed on an orbital shaker at 

30°C. All bottles were run in triplicate, and the values reported are the mean of 

the 3 values.  

 

2.3. Chemical hydrolysis under oxidative conditions 
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To study the influence of pH of the medium on chemical hydrolysis, pHs of 4, 

5, 6, 7 were tested using acetic acid which is the most common volatile fatty 

acids measured during the anaerobic digestion process. Abiotic serum bottles 

of 120 mL were used as batch reactors at 30°C; a bottle without pH control, 

and a bottle at pH 9 (using NaOH) were run in parallel. Two grams of 

OFMSW slurry were added to each bottle and tap water was added to reach a 

final volume of 100mL. In order to study the effect of pH only, bacterial 

growth was inhibited by adding K2Cr2O7 so that a final concentration of 100 

mg Cr/L was obtained. Such a high chromium level was deemed lethal 

according to Aquino and Stuckey (2004). The pH was then carefully adjusted 

to 4, 5, 6, 7 by adding drops of dilute acetic acid. All bottles were run in 

triplicate, and the values reported are the mean of the 3 values. Samples were 

taken after 2, 5, 10, 15 and 25 days to analyze for SCOD and acetic acid 

concentrations. The value of acetic acid was converted to COD by multiplying 

its concentration by 1.07 (Aquino & Stuckey, 2004) and then subtracting it 

from the Soluble COD concentration measured in order to obtain the actual 

SCOD concentration that reflects the chemical hydrolysis.  

 

2.4. Chemical hydrolysis under reducing conditions 

A similar experiment was carried out under reducing conditions, i.e. negative 

oxidation-reduction (redox) potentials which are commonly found in 

anaerobic environments. This time bottles were adjusted to pHs of 4, 5, 6, 7 

with acetic acid and pH 9 with NaOH, and the redox potential was adjusted to 

between -100 and -200 mV by means of a diluted Na2S.9H2O solution. 

Potassium dichromate was also added to avoid bacterial growth. These bottles 
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were regularly adjusted over three days to reach the required pH/redox 

equilibrium, and then OFMSW was added to start the experiment. 

 

2.5. Analytical and statistical methods 

The measurement of pH (Jenway 3020 pH Meter) was accurate to within 

±0.02 units. The Soluble Chemical Oxygen Demand (SCOD) analysis was 

carried out as in Standard Methods (APHA, 1999) after filtration through a 

0.45 µm filter (Sartorius, Minisart). The relative standard deviation for ten 

identical samples was 2.6%. The solubilization yield (%) was calculated as the 

SCOD in the supernatant divided by the total COD fed in the bottle. Acetic 

acid concentration was analyzed as previously described (Trzcinski & Stuckey, 

2011). The oxidation-reduction potential was measured with a platinum-band 

ORP electrode (Cole-Palmer, USA) connected to a Jenway 3020 pH meter. 

The data were statistically analyzed using Excel Analysis Toolpak. Firstly, an 

F-Test was run to determine whether two sample populations had significantly 

different variances, or not, at a confidence level α = 0.05. Secondly, a 

student’s “t-test” was used to determine whether the mean values of two data 

columns were significantly different by testing the hypothesis that the means 

of the two columns are equal, assuming equal or unequal variances based on 

the F-test result. Means were reported as not significantly different, or 

significantly different, at a confidence level α = 0.05. The surface area and 

pore width of the OFMSW were analyzed with a Micromeritics TRISTAR 

3000 Analyzer. 

 

3. Results and discussion 

3.1. Bacterial hydrolysis 
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Bacterial hydrolysis proceeds by adsorption of exocellular enzymes onto the 

particulate substrate, together with their reaction with the soluble substrate 

(Noike et al., 1985), and also by attachment of the enzyme producing bacteria 

to the organic substrate particles (Vavilin et al., 1996). As Figure 1 shows, the 

SCOD concentration in the supernatant increased gradually due to the 

enzymatic activity of bacteria which converted the particulate OFMSW into 

soluble molecules. The absence of a lag phase suggests that the inoculum was 

well acclimatized to the substrate, and that some compounds in food, garden 

and paper wastes were readily hydrolysed by bacteria. After day 15, the curve 

reached a plateau meaning that the residual COD had stopped being 

hydrolysed. Alpha-cellulose had a lag phase for 2 days due to adaptation, and 

then reached 64% solubilization after 10 days showing satisfactory enzymatic 

activity of the inoculum. Typically OFMSW may contain up to 20-30% 

cellulose on a dry basis as well as ~5% lignin (Op den Camp et al., 1989), 

which limited the extent of solubilization compared to pure cellulose. A 

different crystallinity and the lignin casing may also explain the discrepancy 

with the positive control. The enzymatic hydrolysis of OFMSW achieved 54% 

solubilization and this was significantly greater than the chemical hydrolysis at 

all pH’s tested at the 95% confidence level.      

 

3.2. Chemical hydrolysis  

In the bottle without pH control (dotted line in Figure 1) the SCOD increased 

slightly from 248 mg/L on day 2 to 284 mg/L on day 25, which shows that 

OFMSW did not solubilise readily under neutral conditions. The initial SCOD 

consisted of soluble compounds present in the OFMSW such as food waste 
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and some compounds possibly hydrolysed due to autoclaving the OFMSW 

slurry.  

Table 1 shows the concentration of undissociated acetic acid in the abiotic 

bottles at each pH tested. It is clear that higher concentrations led to greater 

SCOD concentrations in the supernatant, and consequently a higher 

solubilization yield. This may due to the hydrolysis of acetyl groups on the 

hemicellulose and the depolymerization to galactose, glucose, and mannose 

from (galacto)glucomannan, and xylose from glucuronoxylan (Yoon et al., 

2014). Previous work on the hydrolysis of straw and wood with ionic liquids 

at 398K showed that furfural production increased when the concentration of 

acetic acid increased (van Spronsen et al., 2011).The pH 4 bottle contained 1.4 

g/L of undissociated acid, and about 20% (±2%) of the total COD fed to the 

bottle was solubilised which was significantly greater than 12% at pH7 (Table 

1). It is important to note that at pH 4, 85% of the acid is in the undissociated 

form (CH3COOH), while at pH7 this fraction is only 0.5%. It is clear from the 

results that these acidic and oxidative conditions resulted in the chemical 

hydrolysis of OFMSW. 

In the second experiment (Figure 2) we attempted to study the influence of 

acidic conditions but under reduced environmental conditions commonly 

found in anaerobic digestion processes. Similarly to oxidative conditions, the 

results (see Figure 2) showed that there is a positive effect of acetic acid on the 

chemical hydrolysis of OFMSW. A 32.3% (±3%) solubilization of the 

OFMSW fed was achieved at pH4, whereas only 14.4% (±1%) occurred at 

pH7 (Table 1). As can be seen in Table 1, to reach pH 4 under reduced 

conditions, a high final concentration of acetic acid (~8 g/L) was required to 
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observe such significant chemical hydrolysis. At pHs in the range 5-7, the 

chemical hydrolysis of OFMSW by acetic acid can be considered negligible.  

 

The surface area and the pore width of dried OFMSW samples after treatment 

are listed in Table 2. Interestingly, the enhanced solubilization did not 

correlate with surface area but with the pore width. This indicates that acetic 

acid can increase the pore width of OFMSW. Such an increase in pore size can 

be related to the removal of hemicellulose as reported earlier (Gregg & 

Saddler, 1996). An increase in micropore size due to the enzymatic hydrolysis 

of microcrystalline cellulose treated with rumen fluid was also observed by 

scanning electron microscopy (Song et al., 2005). Earlier work by Grethlein 

(1985) showed a linear correlation between the initial hydrolysis rate of 

pretreated biomass and the pore size accessible to a molecule with a diameter 

of 5.1 nm, which is about the diameter of a 'representative' cellulase. The 

observed increase in the mean pore size can, therefore, increase the probability 

of cellulose hydrolysis. 

 

4. Conclusion 

This work has shown that significant chemical hydrolysis by acetic acid can 

take place under oxidative and reduced environments. Under oxidative 

conditions at a concentration of 1.4 g/L acetic acid can lead to a 20% 

solubilization yield. Under reduced conditions at an acetic acid concentration 

of about 8 g/L and pH 4 a maximum solubilization yield of 32% was obtained, 

but this is still much lower than the enzymatic hydrolysis by bacteria which in 

comparison can achieve 54% COD solubilization. Surface area analysis 
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revealed that acetic acid chemically hydrolyzes OFMSW by increasing its 

pore width.       
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