

 This is an author’s copy of the paper, which has been accepted and published in the

International Conference on Internet of Things (ICIOT)

Blockchain Developments and Innovations – An Analytical

Evaluation of Software Engineering Approaches

Mahdi Fahmideh1, Anuradha Gunawardana2, Shiping Chen3, Jun Shen2, and Brian Yecies2

1University of Southern Queensland, Australia
2 University of Wollongong, Wollongong, Australia

3CSIRO Data61, Eveleigh, Australia
Mahdi.Fahmideh@usq.edu.au, anuradhawg66@gmail.com, Shiping.Chen@data61.csiro.au,

jshen@uow.edu.au, byecies@uow.edu.au

Abstract. Blockchain has received expanding interest from various domains. Institutions,

enterprises, governments, and agencies are interested in Blockchain’s potential to augment

their software systems. The unique requirements and characteristics of Blockchain plat-

forms raise new challenges involving extensive enhancement to conventional software de-

velopment processes to meet the needs of these domains. Software engineering approaches

supporting Blockchain-oriented developments have been slow to materialize, despite pro-

posals in the literature, and they have yet to be objectively analyzed. A critical appraisal of

these innovations is crucial to identify their respective strengths and weaknesses. We present

an analytical evaluation of several prominent Blockchain-oriented methods through a com-

prehensive, criteria-based evaluation framework. The results can be used for comparing,

adapting, and developing a new generation of Blockchain-oriented software development

processes and innovations.

Keywords: Blockchain, Software Engineering, Software Development Innovations, Evalu-

ation Framework.

1 Introduction

Based on recent trends and evidence, views on the development of Blockchain technology are

diverse and contrasting. A recent global survey by Deloitte [1] found that IT-based organizations

are keen to adopt Blockchain and consider adopting it as a priority to improve the performance of

their operational systems. Furthermore, Bosu et al. [2] reported the results of a prototype Block-

chain project hosted on GitHub that more than doubled in engagement from 3,000 to 6,800 use

cases between March and October 2018. The number of related projects launched within this

relatively short time demonstrates the allure of this technology among our research community.

On the other hand, substantial financial losses caused by numerous attacks and system failures

related to Blockchain and smart contract applications are evident in many industry reports. Nota-

ble examples include the Coinrail exchange hack in 2018, with the loss of $42 million worth of

cryptocurrencies; the DAO attack in 2016, ending in the withdrawal of Ether funds worth $50-60

million; the $65 million loss following the Bitfinex attack in 2016; and the $600 million loss due

mailto:Mahdi.Fahmideh@usq.edu.au
mailto:anuradhawg66@gmail.com
mailto:Shiping.Chen@data61.csiro.au
mailto:jshen@uow.edu.au
mailto:byecies@uow.edu.au

2

to the 2014 MtGox attack [3, 4]. To mitigate such failures, adopting systematic software engineer-

ing approaches, as acknowledged in several previous studies (e.g., [4, 5]), is essential. A systemat-

ic engineering methodology will allow Blockchain developers to design a Blockchain system and

implement it in a manageable manner without exposing it to attacks and vulnerabilities. Moreover,

unlike an ad-hoc methodology, errors occurring within a systematic approach can be better traced

and fixed. A systematic approach will better assist development teams to deal with the uncertain-

ties surrounding Blockchain-oriented software caused by its relative immaturity and the many

under-explored areas associated with the technology.

Responding to these issues, in this paper we set up a research agenda to i) review existing ad-

vances in Blockchain development; ii) propose an evaluation framework including a coherent set

of criteria derived from both the Blockchain and software engineering literature; iii) evaluate the

selected development approaches against the criterion set; and iv) outline evaluation outcomes.

Hence, our study contributes to Blockchain-oriented software engineering in two major ways:

• By providing an evaluation framework as a useful tool by which to compare and contrast exist-

ing Blockchain engineering approaches and to prioritize and select one innovation which fits

the requirements of a given Blockchain-oriented system development project.

• By identifying unaddressed knowledge gaps in the innovations relating to Blockchain devel-

opment in order to map out future research directions.

 Section II explores the history and background of Blockchian technology and discusses recent

work on software engineering for Blockchain-based systems. Section III presents a review of a

selected set of Blockchain development innovations. Section IV details the criteria for an evalua-

tion framework, along with an evaluation of existing Blockchian development approaches. In

Section V, we discuss the evaluation outcomes reported in the previous section, as well as the

limitations of the processes reviewed. Finally, conclusions and suggestions for future work are

presented in Section VI.

2 Background

2.1 Blockchain

Blockchain technology originated with the introduction of Bitcoin cryptocurrency in 2008 [6].

Since then, industrial interest in Blockchain system development has expanded significantly, with

companies exploring the potential of Blockchain-enabled Internet-based systems for the future [7].

Fundamentally, a Blockchain is a cryptographically linked chain of records or blocks, with each

block containing a hash value of the previous block and one or more transaction logs with their

timestamp [7]. These chains of blocks are stored on a distributed node network, allowing each

participant node to retain a copy of the Blockchain. Participating nodes validate each new block

by collectively agreeing if the new block can join the existing Blockchain. The process of reaching

collective agreement is known as a consensus mechanism. After successful validation, a new

block is added to the existing Blockchain. These validating and chaining procedures make these

blocks suitable for storing sensitive financial transaction information, as users can rely on a secure

exchange of information without needing an intermediary, potentially a less trustworthy mecha-

nism [8].

3

The ability to create smart contracts is an important attribute of Blockchain technology. Smart

contracts are database slots that store the necessary logic to create and validate transactions; these

contracts allow users to read, update, and delete data stored in Blockchain systems [6]. These

smart contracts can be implemented either via domain-specific languages like Solidity on Ethere-

um, or using general-purpose languages like Java and Go, which can be familiar to Blockchain

developers. Moreover, smart contracts create a pathway for non-Blockchain software systems to

integrate Blockchain technology, where the business logic, rules, and data specific to that system

are coded into smart contracts which are then executed and deployed in decentralized ledgers.

However, the meticulous design and robust development of smart contracts in Blockchain systems

are essential to mitigate the effects of malicious attacks and exceptions caused by poorly designed

or badly implemented platforms.

2.2 Development of Blockchain-based Systems

Blockchain-based software engineering is associated with a range of concepts and terminologies.

A common understanding of these diverse notions and terms is essential to successful Blockchain

system development. According to Porru et al [4], a Blockchain-based system is a novel software

system that utilizes a Blockchain implementation in its components. Thus, innovations across

various Blockchain developments can be viewed as an extension of traditional software develop-

ment, with the need to incorporate features of a Blockchain system such as decentralized architec-

ture, systematic block transaction recording, and data redundancy [6, 9].

As mentioned in Section I, Blockchain development should be based on systematic approach-

es, characterized by an endorsed collection of phases, activities, practices, tools, documenting, and

user training [10], thereby providing clarity about how one should perform each activity pre-

scribed under a given process. Although adopting such methodologies may not necessarily guar-

antee optimal software quality, as suggested in [11, 12] there is a strong correlation between the

quality of a particular engineering innovation and the final software product’s performance.

In developing Blockchain systems, developers encounter numerous challenges including, but

not limited to, compromise between security and performance, choice of an appropriate consensus

mechanism, and the complexities around multiple stakeholder corporations [7, 13]. On top of

these challenges, the relative immaturity of Blockchain technology increases the complexity of

Blockchain adoption, calling for extra effort from developers used to working on conventional

software engineering projects. As pointed out by Ingalls [14] forty years ago, the more complex

the system, the more susceptible it is to total breakdown, making it all the more important for

developers to follow systematic engineering approaches incorporating the Software Development

Life Cycle (SDLC). In this paper, the evaluation framework to be elaborated in Section IV has

incorporated the complexities surrounding Blockchain adoption, and its criteria have been devel-

oped with a strong focus on the SDLC and recommended systematic software engineering prac-

tices.

3 Existing Studies of Blockchain-based Systems Development

This section briefly describes six prominent Blockchain development innovations, which have

been selected based on four key criteria. Thus the approach: i) fully or partially describes the de-

velopment process of a Blockchain system; ii) is based on all (or at least some) of the SDLC phas-

4

Fig. 1. CBDG approach block diagram

es; iii) describes all Blockchain’s chief integral characteristics discussed in Section II – for in-

stance, smart contracts and block validation; iv) has been recently published, between January

2018 and December 2020. Based on our investigation of academic papers in line with these crite-

ria, we selected six approaches, namely CBDG [15], BADAO [16], BSDP [17], BSCRE [19],

BAFISCT [20], and BCSTM [21]. Since many studies are ongoing, this is an incomplete list. For

each of these approaches, we provide a brief description of its development process, focusing on

the SDLC phases.

3.1 CBDG

The CBDG approach [15] describes the development tasks required to build a Blockchain system,

shown in Fig. 1. As the first task, possible future benefits of integrating Blockchain are identified.

In this space, either the existing systems are migrated to a Blockchain-enabled system or a com-

pletely new system is developed from scratch. If integrating Blockchain is considered beneficial,

the next task is to select a suitable Blockchain implementation platform like Ethereum. The au-

thors of [15] underline the importance of using such a platform as against building a completely

new Blockchain, which could potentially involve many years of work.

The third task involves identifying development requirements and defining an appropriate

Blockchain model and a conceptual workflow. A range of other related factors – including i)

permissions from the Blockchain network, ii) choice of front-end programming languages, iii)

external databases, and iv) servers – are also considered. Next, a Proof-of-Concept (PoC) proto-

type of the Blockchain system is designed to secure client approval. In designing this PoC, client

feedback is also incorporated. The formulated prototype consists of various components including

i) information architecture, ii) designs, and iii) sketches. Once the PoC is approved by the client,

visual and technical designs are completed as the fifth task. These artefacts depict the complete

design of the Blockchain system to be developed, and they also incorporate User Interface and

API designs. The sixth and final task entails developing the Blockchain system based on the set

designs. Here the first development is referred to as the pre-alpha version, as formal testing and

client approval have not yet been realized. The pre-alpha version is then subjected to thorough

testing and moves through three more versions, alpha, beta, and finally the Release Candidate

version. At the end of this process, the fully tested system is deployed. Importantly, the deployed

Blockchain system should be able to be upgraded when required.

3.2 BADAO

The BADAO approach [16] describes a model-based, process-driven method for developing a

5

Fig. 2. BADAO approach block diagram

Blockchain-enabled system – either a Decentralized Autonomous Organization (DAO) or Block-

chain-Augmented Organization (BAO). In a DAO, the traditional centralized transaction pro-

cessing is decentralized and automated via smart contracts. In the case of BAOs, they are identi-

fied as organizations, and are augmented with Blockchain features such as immutability and trace-

ability.

Fig. 2 illustrates the development tasks germane to the BADAO approach. Firstly, a Business

Process Model (BPM) for the desired business scenario is defined. This BPM guides the subse-

quent development process based on SDLC phases. The next task involves establishing the suita-

bility of Blockchain for the identified business case, expressed as either DAO-suitable, BAO-

suitable, or not suitable. If BAO is found to be suitable, the process boundaries of the BAO are

determined. Here, consideration is given to automating as many processes as possible utilizing

Blockchain and smart contracts, while allowing non-Blockchain processes to complement Block-

chain-enabled ones.

After completing these tasks, the construction of a Platform Independent Model (PIM) is un-

dertaken. This model is independent of any features specific to a particular Blockchain platform.

However, the PIM includes features such as smart contract architectures, Blockchain state defini-

tions, and security models attached to the Blockchain model. Next, a Platform Specific Model

(PSM) is constructed to incorporate elements relevant to the Blockchain platform selected. The

realized PSM can be used to implement the Blockchain solution once the smart contracts are

implemented and the design concepts are validated.

3.3 BSDP

BSDP [17] has undertaken an online survey of 1604 Blockchain developers in 145 Blockchain

projects hosted on GitHub. The survey asked about the different methods utilized by Blockchain

developers in conducting requirement analysis, tasks assignment, testing, and verification of

Blockchain projects. These development tasks are depicted in Fig. 3.

6

Fig. 3. BSDP approach block diagram

In terms of requirement analysis, most requirements are identified by project managers and

through community discussion. In these discussions, ideas are brainstormed among community

members via online and offline meetings. Customer feedback and the selection of requirements by

developers themselves are other forms of requirement analysis. Regarding task assignment in

Blockchain projects, few options are identified. Allowing developers to select tasks based on

personal preference is one option. Some tasks are assigned based on developer expertise – BSDP

points to the relative inexperience and unfamiliarity of developers in dealing with Blockchain

projects.

Regarding testing, the BSDP survey revealed that unit testing and code review were the two

main code quality assurance innovations utilized in Blockchain projects. Unit tests are either writ-

ten by developers themselves or by a separate quality assessment team. Manual testing of the code

by developers themselves is another popular testing mechanism identified. In addition, functional

testing is utilized to test the functionality of the end software against established system require-

ments. Moreover, a separate Testnet, which is an alternative Blockchain, can be deployed to test

the security and scalability of Blockchain projects without breaking the main Blockchain.

3.4 BSCRE

BSCRE describes the design and implementation of a Blockchain system in the real-estate indus-

try [19]. A graphical overview of BSCRE’s development tasks is provided in Fig. 4. Firstly, the

requirements of the proposed Blockchain system are gathered. Next, the design of smart contracts

involves three main steps: i) formulating actors and their role definitions, ii) defining business

service functions, and iii) describing Ethereum processes.

Regarding actors and their roles, two main actors named as contract owner and users are identi-

fied. The contract owner is usually the real-estate owner who is responsible for the development of

the smart contracts. Users or tenants create their own Ethereum wallets to access the Blockchain

network. Turning to business services functions, smart contracts require four main functions: i)

creation of new transactions, ii) generation of smart contracts, iii) sending messages, and iv) min-

ing using Ethereum. Concerning the Ethereum processes, [19] identifies four: i) block validation,

7

Fig. 4. BSCRE approach block diagram

ii) network discovery, iii) transaction creation and iv) mining. All validated blocks join the peer-

to-peer Blockchain network via the network discovery process. Further, the mining process en-

sures that all new validated blocks are added to the Blockchain and broadcast to the whole net-

work.

After designing smart contracts as described above, they are implemented on a suitable Block-

chain network like Ethereum. A dapp is also developed if the Blockchain system requires a User

Interface. Once smart contracts are implemented, they are compiled to generate a binary file. Next,

the contracts are deployed on an Ethereum network using Ethereum clients. Finally, a Web appli-

cation is developed to interact with the smart contracts.

3.5 BAFISCT

BAFISCT describes a development process designed to integrate Blockchain with supply chain

processes [20]. The tasks associated with BAFISCT’s development process are shown in Fig. 5.

Firstly, the target product for the supply chain operations is defined. This is followed by the identi-

fication of the characteristics of the selected product. These product characteristics include a range

of factors – for instance, the producer, price, and design of the product. The third task entails iden-

tifying all the requirements attached to the product, which can be functional, regulatory, or tech-

nical. Based on these requirements, the main actors involved in supply chain processes relevant to

the selected product are defined as the fourth task. Next, the different operations and processes

attached to these actors are identified and modelled as Block Flow Diagrams.

Following this step, the business rules relevant to the product and its operations are defined.

These rules are included in the Blockchain, and will be appropriately executed to process supply

chain transactions relevant to the product. Next, the different digital assets relevant to supply chain

processes are also defined. Following this, the information flow within the identified digital assets

and processes are defined. Once the information flow is recognized, a complete view of a Block-

chain transaction in terms of the information processed and its subsequent outcome on Blockchain

can be observed.

8

Fig. 5. BAFISCT approach block diagram

The next task, configuration of Blockchain, involves i) identification of a suitable Blockchain

network (permissioned or permission-less), ii) selecting a suitable consensus mechanism and a

Blockchain platform, iii) designing User Interfaces, and iv) developing APIs. Finally, testing of

the configured Blockchain via unit and integration tests is performed.

3.6 BCSTM

The BCSTM approach introduced by [21] is designed to be used in conducting a security assess-

ment of Blockchain-enabled software architecture. For that purpose, it identifies a range of Block-

chain-specific security threats and, based on these threats, the selected architecture is evaluated

utilizing the popular STRIDE threat-modelling approach [22]. Fig. 6 illustrates the development

tasks associated with the BCSTM approach.

Firstly, [21] discusses a range of factors that impact the suitability of Blockchain for a given

scenario. Here, among many other factors, Blockchain features such as immutability, and basic

Blockchain functions such as block validation, are also considered. After establishing Blockchain

suitability, the next task is to define a Blockchain architecture and select an appropriate Block-

chain implementation. For implementation, a suitable network – for instance, a permissioned

network – should be selected. Further, regarding data storage, [21] describes three possible op-

tions. These are hash, where only the hash value of a data item is stored on Blockchain; generic,

for all non-hash data storage; and smart contract, for the storage of executable code.

Next, Blockchain-specific threats relevant to the selected Blockchain architecture are identi-

fied. In [21] eight separate categories have been identified to indicate the range of these threats;

smart contract, cryptocurrency, and permissioned ledger threats are a few of the categories consid-

ered. Finally, based on these listed threats, a threat-modelling assessment is conducted to generate

a holistic view of Blockchain security. In this assessment, possible threat mitigation actions and

decisions are also recognized and documented.

9

Fig. 6. BCSTM approach block diagram

4 Criteria-based Evaluation

4.1 Evaluation Framework

Our developed evaluation framework is structured to review existing Blockchain approaches, and

to classify, evaluate, and characterize their innovations based on accepted software engineering

practices. In so doing, we have followed two main steps as described below.

Step I. Defining meta-level characteristics: Meta-characteristics are features that are anticipated

will be satisfied by an ideal evaluation framework. It is essential to have a set of meta-

characteristics to guide the selection of appropriate criteria for the framework, as they can be used

to evaluate different criteria and decide whether they should be added to the framework. For the

purpose of our framework, we extracted five meta-characteristics defined in [23]. These character-

istics are i) preciseness, for creating unambiguous, quantifiable, and descriptive criteria; ii) sim-

plicity, for ease of understanding; iii) soundness, for the relation or semantic link between the

criterion and the problem domain; iv) minimal overlapping, for distinct and minimally interde-

pendent criteria; and v) generality, to ensure the abstract character of criteria independent of spe-

cific details, standards, and technologies.

Step II. Derivation of the criteria set: We reviewed existing evaluation frameworks such as [23,

25, 26], as well as more recent Blockchain literature, to derive a set of criteria which are applicable

to Blockchain development and also satisfy the meta-characteristics defined in step I above. Fol-

lowing an iterative refinement and elimination of duplicated criteria, a list of eighteen criteria was

derived. Table I briefly describes each of these eighteen criteria, which were utilized to evaluate all

the approaches evaluated in Section III.

The criteria selected span eight categories. Four cover the ‘analysis’, ‘design’, ‘testing and im-

plementation’, and ‘deployment’ phases of the SDLC. Two criteria, modelling language and work

products, are associated with the ‘modelling’ category since they capture different representational

languages and models applicable to Blockchain development. The ‘user support and training’

category includes criteria that provide support and guidance for developers to create a Blockchain

10

system. Unsurprisingly, the tool criterion comes under the ‘tool support’ category. Finally, four

additional criteria are classified under the ‘other’ category, exceptional features which address

other elements anticipated in a Blockchain development approach. Although we are not suggest-

ing that our framework covers all possible criteria relevant to Blockchain development, we believe

that such a comprehensive framework is not found in the existing Blockchain literature.

Table 1. Evaluation Criteria

Criteria description/evaluation questions (Letter C uniquely identifies the criteria)

Criteria related to the analysis phase

Analysing context (C1): Does the approach de-

scribe factors that are used to determine suitability of

integrating Blockchain with a software system?

Requirement analysis (C2): Does the ap-

proach describe or refer to a requirement-gathering

process, techniques, or methods?

Criteria related to the design phase

Smart contract design (C3): Does the approach

describe or refer to a smart contract design process? Is

the functionality of a smart contract described?

Consensus mechanism (C4): Does the ap-

proach refer to a consensus protocol used and/or

describe a functionality in a Blockchain system?

Architecture design (C5): Does the approach de-

scribe the overall architecture of a Blockchain system?

Has the proposed architecture been segregated into

multiple layers?

Security (C6): Is there any discussion of en-

hancing or maintaining security of a Blockchain

system and architecture design requirements?

Privacy (C7): Is there any discussion of how the privacy of user data is protected, or are there references

to privacy risks, guidelines or policies applicable to a Blockchain system?

Criteria related to the implementation and testing phase

Testing (C8): What is the nature of the support, in terms of techniques and recommendations, provided by

the approach in testing functional and non-functional operations?

Criteria related to tool support

Tools (C9): Is there any evidence of third-party or custom-made tools that can be used to speed up or au-

tomate tasks being followed in development of a Blockchain system?

Criteria related to the deployment phase

Deployment mechanism (C10): Does the approach refer to deployment of a Blockchain system? Is there

any evidence of configuration of hardware and/or software components that are needed for deployment?

Criteria related to modelling

Modelling language (C11): Has the approach in-

cluded one or more representational languages used at

design and/or run time of a Blockchain system?

Work products (C12): Is there any evidence of

one or more interim project outputs/artefacts appli-

cable to each SDLC development phase?

Criteria related to user support and training

Training (C13): Is there any evidence of training

manuals, user documentation, or other forms of sup-

port and guidance to develop a Blockchain system?

Procedures and supportive techniques (C14):

Does the approach include algorithms or step-by-

step guidance to follow or practice tasks required to

develop a Blockchain system? Is there any evidence

of supportive techniques or examples related to

development tasks?

Other criteria

11

Scalability (C15): Does the approach describe

techniques/factors that allow a Blockchain system to

scale up to handle high volumes of transactions and

data requests, or refer to scalability testing mecha-

nisms?

Blockchain type (C16): Does the approach

identify or suggest a suitable Blockchain network

for a Blockchain system?

Domain applicability (C17): Is the approach di-

rected towards one or more industries or domains?

Development roles (C18): Does the approach

define or describe different roles required to devel-

op a Blockchain system?

4.2 Evaluation Outcomes

In Table II, the evaluation outcomes of the six Blockchain approaches based on 15 scaled criteria

are summarized. The scaled criteria are based on a five-point Likert Scale: fully supported, con-

siderably supported, moderately supported, slightly supported, and not supported. Three remain-

ing criteria, C16, C17, and C18, are descriptive in nature, as the answers to them are more open-

ended. Hence, they are not evaluated based on the scale. For C16, the type of Blockchain network

supported under each process is reviewed. For C17, the target domain of each approach is scruti-

nized. For C18, a distinct list of development roles applicable to Blockchain development are

extracted from the selected innovations.

Table 2. Evaluation Outcomes

Criteria Approach

CBDG BADAO BSDP BSCRE BAFISCT BCSTM

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12

C13

C14

C15

 Fully supported

12

Criteria Approach

CBDG BADAO BSDP BSCRE BAFISCT BCSTM

 Considerably supported

 Moderately supported

 Slightly supported

 Not supported

5 Criteria-based Evaluation

5.1 Findings

In this section, we briefly discuss the findings related to each criterion of our evaluation frame-

work. For the 15 scaled criteria, the discussion is based on the evaluation outcomes reported in

Table II.

Analyzing context (C1) – Due to the complexity surrounding Blockchain-enabled software de-

velopment, a range of innovations should provide clear guidance in establishing the suitability of

Blockchain for a given software system. Only the BCSTM and CBDG approaches fully satisfy

this criterion. BCSTM and CBDG review a range of factors to establish Blockchain suitability

[15, 21] including i) the requirement to store users’ personal information on Blockchain itself; ii)

the need to update the rules of the software system; iii) rewarding or compensating participating

nodes; iv) the number of nodes required to validate new blocks; and v) required transaction speed.

Furthermore, BSDP and BAFISCT fail to provide any information about this criterion.

Requirement analysis (C2) – identifies the functional and non-functional requirements that

need to be fulfilled by a Blockchain system. Further, approaches may provide descriptions of

supporting techniques, such as interviews and workshops, which can be used to gather require-

ments. BSDP is the only method to fully satisfy this criterion. It describes the different techniques

used to gather Blockchain project requirements based on the findings of a survey of Blockchain

projects hosted on GitHub. These techniques are briefly summarized in Section III under the re-

view of the BSDP approach. Additionally, BSCRE considerably supported this criterion, as

BSCRE mentions conducting organizational workshops and gathering requirements from the

different stakeholders of a company. Notably, none of the reviewed methods achieved a rating of

not supported.

Smart contract design (C3) – is an integral part of a Blockchain system. If they are not meticu-

lously designed, the whole Blockchain system is susceptible to malicious external attacks. Only

BSCRE was able to fully satisfy this criterion. The main steps include i) redefining actors based

on their direct interaction with the smart contracts; ii) defining smart contract decomposition; iii)

defining message flows and data structure; iv) defining modifiers (special functions called before

other functions) and internal functions; and v) defining tests and security assessment procedures

[19]. BSCRE provides a comprehensive smart contract design process, which is discussed under

the BSCRE approach segment in Section III. BAFISCT is the only method to provide an absence

of details on smart contract design.

Consensus mechanism (C4) – ensures that new blocks are only added to the Blockchain net-

work once majority nodes agree and verify them. Although the role of a consensus mechanism is

referred to in five out of the six reviewed approaches, only BCSTM achieved a rating of fully

13

supported. Accordingly, the role of a consensus protocol is more critical in a permission-less net-

work, as anyone can participate in its transaction validation process. Also in BCSTM is the need

to continuously provide adequate financial compensation for all nodes participating in block vali-

dation in a permission-less network. If nodes are not adequately compensated, the block validation

process will not run at optimum efficiency, which could result in malicious attacks on the Block-

chain system. The alternative consideration to this problem is to use a permissioned network

where the number of participating nodes is controlled [21]. Furthermore, the BAFISCT approach

states that the chosen consensus mechanism should be compatible with the Blockchain platform

or framework, such as Ethereum, on top of which the Blockchain system is to be developed.

 Architecture design (C5) – of a Blockchain system provides evidence of how each component

of the system is positioned relative to the other components. Architecture can also be described

according to multiple layers. As Table II shows, two approaches fully satisfied this criterion, while

no single approach was rated as not supported. A brief description of the Blockchain architecture

utilized in each approach is provided in Section III.

Security (C6) – Security is an important dimension associated with Blockchain systems. Of the

reviewed innovations, only BSDP and BCSTM fully satisfy this criterion. As elaborated in Sec-

tion III, BCSTM proposes a threat modelling process designed to conduct a security assessment of

a Blockchain-enabled software architecture. The outcomes of this threat-modelling assessment

provide valuable insights into the level of security evident in the architecture of a given Block-

chain. Moreover, BSDP has discovered that most Blockchain projects incorporate popular code

quality assurance mechanisms such as unit testing and code review to test the security of a Block-

chain system. It also mentions that bug bounty, static program analysis, simulation, and external

audit [17] are used in this regard.

Privacy (C7) – Privacy of user data stored on Blockchain is another important dimension of

Blockchain systems. Processes should consider widely accepted standards, rules, and policies on

user data privacy when designing Blockchain systems. However, the reviewed approaches pro-

vide minimal details about this criterion. The BCSTM approach, which achieved a rating of con-

siderably supported, is the highest rated. According to BCSTM, users’ personal information

should not be stored on public elements of the Blockchain as it can violate their privacy rights.

Furthermore, malfunctions and defects in smart contracts can expose private user data to unauthor-

ized parties [21]. Notably, as Table II shows, two approaches fail to provide any details about

Blockchain privacy.

Testing (C8) – The testing mechanism describes the techniques and recommendations provid-

ed by the methods to test functional and non-functional operations of a Blockchain system. While

three out of the six reviewed approaches fully satisfy this criterion, three others did not provide

any details on testing. The testing mechanism associated with each supporting process is briefly

described in Section III.

Tools (C9) – External third-party tools or custom tools can be used to automate or speed up the

tasks involved in developing a Blockchain system. Except for BCSTM, all the approaches provide

evidence of tool support. However, only CBDG fully supported this criterion, describing a wide

range of tools that can be used to automate different Blockchain development tasks. For instance,

the Truffle Ethereum framework can be used in developing dapps, and can also serve as a testing

framework. Furthermore, the Solium tool is used to format code written in Solidity, and fix securi-

ty issues in the code.

14

Deployment mechanism (C10) – The deployment of Blockchain systems can become complex

as it requires the configuration of both hardware and software components. Further, the system

should be fully tested before being deployed to a production environment. The reviewed ap-

proaches provide minimal details on deploying Blockchain systems, with three achieving a rating

of not supported. CBDG is the only fully supported approach. Among other elements, it states that

the deployed system should be able to receive upgrades in accordance with business requirements.

It also mentions various tools that can automate deployment-related tasks. For instance, Remix

IDE is a tool that can be used to deploy smart contracts. BSCRE mentions deploying implemented

smart contracts to an Ethereum network using Ethereum clients, Geth and PyEthApp [19]. BSDP

also refers to the deployment of a fully tested system despite failing to provide detailed descrip-

tions.

Modelling language (C11) – A modelling language can be used to represent different work

products in a Blockchain development innovation in a structured manner. Apart from two ap-

proaches, as Table II shows, the selected processes have all utilized some form of modelling lan-

guage. However, only BADAO fully supported this criterion.

Work products (C12) – Work products are the interim project deliverables that can be identi-

fied from a Blockchain development process. All the reviewed methods incorporated at least one

work product, and no approach received a rating lower than moderately supported. In Section III,

we have modelled the work products relevant to each approach in block diagrams as shown in

Fig. 1-6.

Training (C13) – Procedures should provide training, in terms of training manuals, user docu-

mentation, and other forms of support and guidance necessary to develop a Blockchain system. To

our knowledge, none of the six reviewed approaches provides comprehensive details of training.

This might be a serious limitation that needs to be considered by potential practitioners and re-

searchers in the future. Nevertheless, a few of the lines of action provide partial support for this

criterion. For instance, BCSTM supports documenting evaluation outcomes of its threat modelling

assessment.

Procedures and supportive techniques (C14) – Step-by-step guidelines or an appropriate algo-

rithm might assist developers to better understand the various development tasks described in a

Blockchain innovation. In addition, some helpful examples, or supportive techniques designed to

undertake these tasks might also be provided. All six reviewed approaches, as Table II shows,

provide some level of support for this criterion. However, only three approaches achieved the

highest rating.

Scalability (C15) –The ability of a Blockchain system to handle large volumes of data and

transactions is a sign of its high scalability. However, only the BSDP approach fully satisfied this

criterion, as it discusses a range of relevant testing techniques, such as stress testing. Otherwise,

while a few strategies refer to scalability issues in Blockchain systems, none provides any details

of possible mechanisms to mitigate them. Four of the reviewed approaches failed to provide any

details on scalability.

Blockchain type (C16) – Table III identifies the supporting Blockchain network types.

Domain applicability (C17) Table IV identifies the applicable arena for each approach.

Development roles (C18) – describe the duties and responsibilities of different IT professionals

participating in a Blockchain system. However, development role definitions are limited in exist-

ing approaches. Table V summarizes the identified development roles.

Table 3. Blockchain Type

Approach
Blockchain Network Type

Permission-less Permissioned Not Stated

CBDG ✓

BADAO ✓

BSDP ✓

BSCRE ✓

BAFISCT ✓

BCSTM ✓

Table 4. Domain Applicability

Approach Domain

BAFISCT Supply chain

BSCRE Real estate

BCSTM, BSDP, CBDG, BADAO Not stated or multiple domains

Table 5. Development Roles

Role Referred approaches Description

Smart contract

owner
BSCRE

Responsibilities to create, compile, and deploy

smart contracts

Software engineer BADAO
To perform software engineering roles in develop-

ing a Blockchain-oriented software

Blockchain

developer

 BCSTM, CBDG,

BADAO, BSDP

To implement Blockchain design models and code

smart contracts

Quality assurance BSDP Quality checking/ testing of Blockchain software

Project lead BSDP
Overseeing a Blockchain project, and define pro-

ject requirements when needed

5.2 Limitations

Based on the level of support for the criteria set for our evaluation framework, we identified a

number of limitations among existing Blockchain development approaches.

Firstly, previous studies have raised concerns regarding the lack of a comprehensive develop-

ment methodology to guide the development of Blockchain-based systems. Based on evaluation

outcomes reported in Table II and the individual analytical analysis in Section III above, existing

Blockchain development approaches limit their focus to a few selected SDLC phases, and their

descriptions of Blockchain adoption are generally below the level expected of a full-scale meth-

odology.

16

Secondly, existing approaches and methods provide very low support for training. Due to this

limitation, developers, especially those without experience, following these approaches may cause

problems that might result in poorly developed Blockchain systems.

Similarly, there is minimal support for the deployment phase of the SDLC. Existing approach-

es show little interest in deploying a fully tested Blockchain system, despite deployment being a

complex phase requiring proper guidance.

Further, the selected innovations failed to define many of the development roles applicable to

Blockchain development, and we were only able to extract five roles (see Table V).

Last but not least, there is inadequate discussion about protecting the privacy of user data.

Since global regulators consider user data privacy a priority, the approaches examined should have

given more attention to this issue.

6 Conclusions and Future Work

This paper underlines the need for systematic engineering approaches and innovations to develop

Blockchain systems. As a first attempt to fill this need, we presented a descriptive and comprehen-

sive review of six existing Blockchain development approaches in the context of a proposed eval-

uation framework. Our results highlighted both the strengths and shortcoming of existing ap-

proaches; areas for further improvement include phases, activities, practices, tools, documenting,

and user training [10]. Future Blockchain applications should incorporate these requirements into

their development process so as to ensure both the security and quality of the target Blockchain-

oriented software.

Given these findings, a clear research direction for future investigations is the development of a

comprehensive Blockchain software engineering innovation that would draw on the strengths of

existing approaches, while avoiding their weaknesses. This broad aim can be achieved by extract-

ing method fragments from older processes found in [e.g. 26, 18], as well as from existing Block-

chain development approaches, and amalgamating them to create a fully-fledged methodology.

Once crafted, the newer and more innovative approach can be customized and improved to ac-

commodate the requirements of different Blockchain systems. Despite the unlikelihood of a single

standard or agreement being reached in the future, this effort calls for cooperative work from

experts in different fields.

References

1. L. Pawczuk, R. Massey, and J. Holdowsky, “Deloitte’s 2019 global Blockchain survey - Blockchain gets

down to business,” 2019. [Online]. Available:

https://www2.deloitte.com/content/dam/Deloitte/se/Documents/risk/DI_2019-global-blockchain-

survey.pdf

2. A. Bosu, A. Iqbal, R. Shahriyar and P. Chakraborty, "Understanding the motivations, challenges and

needs of Blockchain software developers: A survey," Empirical Software Engineering, vol. 24, no. 4, pp.

2636-2673, 2019.

3. R. Bratspies, "Cryptocurrency and the myth of the trustless transaction," SSRN Electronic Journal, vol.

25, no. 1, pp. 2-54, 2018.

4. S. Porru, A. Pinna, M. Marchesi and R. Tonelli, "Blockchain-oriented software engineering: challenges

and new directions," in 2017 IEEE/ACM 39th International Conference on Software Engineering Com-

panion (ICSE-C), 2017, pp. 169-171.

17

5. G. Al-Mazrouai and S. Sudevan, “Managing Blockchain projects with agile methodology,”

in Proceedings of 6th International Conference on Big Data and Cloud Computing Challenges, Singa-

pore: Springer Singapore, 2020, pp. 179–187.

6. M. Crosby, P. Pattanayak, S. Verma, and V. J. A. I. Kalyanaraman, “Blockchain technology: beyond

Bitcoin,” Applied Innovation, vol. 2, no. 6–10. pp. 6-15, 2016.

7. Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, ‘‘Blockchain challenges and opportunities: A sur-

vey,’’ International Journal of Web and Grid Services, vol. 14, no. 4, pp. 352–375, 2018.

8. Y. Guo and C. Liang, “Blockchain application and outlook in the banking industry,” Financial Innova-

tion, vol. 2, no. 1, pp. 2–12, 2016.

9. M. Pilkington, ‘‘Blockchain technology: principles and applications,’’ in Handbook of Research on Dig-

ital Transformations. London, U.K.: Edward Elgar Publishing, 2015, pp. 1-38.

10. D. Avison and G. Fitzgerald, Information systems development: methodologies, techniques and tools,

3rd ed. New York, NY, USA: McGraw-Hill, 2003.

11. G. Cugola and C. Ghezzi, “Software processes: A retrospective and a path to the future,” Software Pro-

cess: Improvement and Practice, vol. 4, no. 3, pp. 101–123, 1998.

12. A. Fuggetta, ‘‘Software process: A roadmap,’’ in Proceedings of the Conference on the Future of Soft-

ware Engineering, Limerick, Ireland, 2000, pp. 25–34.

13. M. Risius and K. Spohrer, “A Blockchain research framework: what we (don’t) know, where we go

from here, and how we will get there,” Business & information systems engineering, vol. 59, no. 6, pp.

385–409, 2017.

14. D. H. H. Ingalls, “The Smalltalk-76 programming system design and implementation,” in Proceedings

of the 5th ACM SIGACT-SIGPLAN symposium on Principles of programming languages - POPL ’78,

1978, pp. 9-16.

15. A. Takyar, “A complete guide to Blockchain development,” Leewayhertz.com, 22-Oct-2019. [Online].

Available: https://www.leewayhertz.com/blockchain-development/

16. K.-B. Yue, “Blockchain-augmented organizations,” in AMCIS 2020 Proceedings, 2020, pp. 1-9.

17. P. Chakraborty, R. Shahriyar, A. Iqbal, and A. Bosu, ‘‘Understanding the software development practic-

es of Bockchain projects: A survey,’’ in Proceedings of the 12th ACM/IEEE International Symposium

on Empirical Software Engineering and Measurement. New York, NY, USA: ACM, 2018, pp. 1-10.

18. F. Harmsen, S. Brinkkernper and H. Oei, "Situational method engineering for information system pro-

jects," in Proceedings of the IFIP WG8.l Working Conference CRIS'94 Maastricht, 1994, pp. 169-194.

19. I. Karamitsos, M. Papadaki, and N. B. A. Barghuthi, “Design of the Blockchain smart contract: A use

case for real estate,” Journal of Information Security, vol. 09, no. 03, pp. 177–190, 2018.

20. R. Bettín-Díaz, A. E. Rojas, and C. Mejía-Moncayo, “Methodological approach to the definition of a

Blockchain system for the food industry supply chain traceability,” in Computational Science and Its

Applications – ICCSA 2018, Cham: Springer International Publishing, 2018, pp. 19–33.

21. C. Hebert and F. Di Cerbo, “Secure Blockchain in the enterprise: A methodology,” Pervasive and Mo-

bile Computing, vol. 59, no. 101038, p. 101038, 2019.

22. A. Shostack, “Experiences threat modeling at microsoft,” in Modeling Security Workshop. Dept. of

Computing, Lancaster University, UK, 2008.

23. M. Fahmideh, et al. “Cloud migration process—A survey, evaluation framework, and open challenges,”

Journal of Systems and Software, 120, pp. 31-69, 2016.

24. R. Ramsin and R. F. Paige, “Process-centered review of object oriented software development method-

ologies,” ACM Computing Surveys, vol. 40, no. 1, pp. 1–89, 2008.

25. A. Sturm and O. Shehory, “A framework for evaluating agent-oriented methodologies,” in Agent-

Oriented Information Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 94–109.

26. S. Brinkkemper, "Method engineering: engineering of information systems development methods and

tools," Information and software technology, vol. 38, no. 4, pp. 275-280, 1996.

