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Abstract

The idea of using non-sample prior information in the form of pre-testing for improving

properties of estimators is applied in the testing regime to achieve better power of the

ultimate test in this paper. In particular, to test the intercept of a simple regression model,

prior information from previous investigations or expert knowledge on the suspected value

of the slope is potentially beneficial. Any uncertainty on the value of the slope is removed

by performing a pre-test before testing the significance of the intercept. The impact of

the pre-test on the performance (power and size) of the ultimate test is studied. A robust

procedure based on M-estimator is used to formulate a test and deriving its power function.

It is shown that the ultimate test based pre-test achieves a reasonable dominance over the

others asymptotically and performs better for larger coefficient of variation.

Keywords: pre-test, asymptotic size, asymptotic power, M-estimation, regression model.

1 Introduction

Consider a simple regression model of n observable random variables, Xi, i = 1, . . . , n

Xi = θ + βci + ei, (1.1)

where the errors ei’s are from an unspecified symmetric and continuous distribution function,

Fi, i = 1, . . . , n, the ci’s are known real constants of the explanatory variable and θ and β are

the unknown intercept and slope parameters respectively.

Testing the significance of the intercept, H?
0 : θ = 0 are carried out under three possible

cases based on the knowledge of the slope. In the first case, the slope is unspecified i.e. it is

treated as a nuisance parameter and the testing of the significance of the intercept is referred

as the unrestricted test (UT). If a non-sample prior information on the value of the slope (say
∗on leave from Institute of Mathematical Sciences, Faculty of Sciences, University of Malaya, Malaysia.
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0) is known, the testing of the significance of the intercept is defined as the restricted test

(RT). If the prior information on the value of the slope is uncertain, it is suggested to perform

a pre-test to remove the uncertainty on the value of the slope before testing the significance of

the intercept. For the final case, the ultimate test (on the intercept) is defined as the pre-test

test (PTT). Obviously the pre-test (on the slope) affects the power and size of the ultimate

test (on the intercept).

In spite of numerous works in improving the estimation by the inclusion of a non-sample

prior information (Saleh, 2006, Khan and Saleh, 2001 and Khan et al., 2002), very little

attention has been paid in improving the performance of the test of the parameters. The effect

of pre-test on the performance (size and power) of the ultimate test are studied in parametric

cases (Bechhofer, 1951 and Bozivich et al., 1956) as well as non-parametric cases (Saleh and

Sen, 1982) though the number of studies is very small in literature. Saleh and Sen (1981)

use rank based nonparametric tests and formulate the power function of the ultimate test.

However, there are some limited discussions in investigating the power of the ultimate test

discussed in the paper.

Realizing M-estimation is more popular than the other robust methods and well known for

its flexibility and well defined for a variety of models for which MLE is also defined (Huber,

1981, p.43, Jurěcková and Sen, 1996 p.80), a score type M-test is proposed to formulate

the power functions of the UT, RT and PTT (see Yunus and Khan, 2007). The asymptotic

power functions for the UT, RT and PTT that are derived using M-test are found to have

the same form as that derived by using the rank statistic by Saleh and Sen (1982) though

the methodology of M-estimation and R-estimation is different. The paper discussed the

asymptotic comparison of the UT, RT and PTT analytically and computationally for a special

case of the value of coefficient of variation. The dependency of power functions to the coefficient

of variation is studied in this paper as an extension of the previous works.

Along with some preliminary notions, the method of M-estimation is presented and sta-

tistical tests concerning testing on the intercept, namely, the UT, RT and PTT are given in

Section 2. The asymptotic distributions of the test statistics and the asymptotic power func-

tions of the test are given in Section 3. Section 4 is devoted to the analytical results comparing

the asymptotic power functions of the UT, RT and PTT while the investigation of the power

functions through an illustrative example is presented in Section 5.

2 The Proposed Test

Given an absolutely continuous function ρ : < → <, M-estimator of θ and β is defined as the

values of θ and β that minimize the objective function

n∑

i=1

ρ(Xi − θ − βci). (2.1)
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M-estimator of θ and β can also be defined as the solutions of the system of equations,

∑n
i=1 ψθ(Xi) =

∑n
i=1 ψ(Xi − θ − βci) = 0,

∑n
i=1 ψβ(Xi) =

∑n
i=1 ciψ(Xi − θ − βci) = 0.

(2.2)

If ρ is differentiable with partial derivatives ψθ = ∂ρ/∂θ and ψβ = ∂ρ/∂β, then the M-

estimators that minimize the function in (2.1) are the solutions to the system (2.2). On the

contrary, the M-estimators obtained from solving system (2.2) may not minimize equation (2.1)

(c.f. Caroll and Rupert, 1988 p.210). The system of equations (2.2) may have more roots,

while only one of them leads to a global minimum of (2.1). Jurěcková and Sen (1996) have

given proof that there exists at least one root of (2.2) which is a
√

n - consistent estimator of

θ and β under some conditions [c.f. p.215 - 224]. The ψ function is decomposed into the sum

ψ = ψa + ψc + ψs,

where

(a) ψa is absolutely continuous function with absolutely continuous derivative.

(b) ψc is a continuous, piecewise linear function with knots at µ1, . . . , µk, that is, constant in

a neighborhood of ±∞ and hence its derivative is a step function ψ′c(z) = αv, µv < z <

µv+1, v = 0, 1, . . . , k where α0, . . . , αk ε <, α0 = αk = 0 and −∞ = µ0 < µ1 < . . . <

µk+1 = ∞. We assume that f(z) = dF (z)
dz is bounded in neighborhoods of Sµ1 , . . . , Sµk

.

(c) ψs is a nondecreasing step function, ψs(z) = λv, qv < z ≤ qv+1, v = 1, . . . , m where

−∞ = q0 < q1 < . . . < qm+1 = ∞ and −∞ < λ0 < λ1 < . . . < λm < ∞. We assume

that 0 < f(z) = (d/dz)F (z) and f ′(z) = (d2/dz2)F (z) are bounded in neighborhoods of

Sq1 , . . . , Sqm .

The asymptotic result under conditions M1 to M5 of Jurěcková and Sen (1996, p.217) is used

in this paper. Further assume that all ψa, ψc and ψs are nondecreasing and skew symmetric

that is ψj(−x) = −ψj(x), j = 1, 2, 3. Let F be symmetric about 0, so that
∫ ∞

−∞
ψ(x)dF (x) = 0.

Assume that

σ2
0 =

∫ ∞

−∞
ψ2(x)dF (x). (2.3)

Following Jurěcková and Sen (1996, p.217), two cases are considered:

(i) if ψs = 0 then

γ =
∫ ∞

−∞
(ψ′a(x) + ψ′c(x))f(x)dx. (2.4)

(ii) if ψa = ψc = 0, then

γ =
∑

(λv − λv−1)f(Sqv). (2.5)
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Further assume that σ0 and γ are both positive and finite quantities. Let the distribution

function, F be continuous and symmetric about zero and have finite Fisher information,

I(f) =
∫ ∞

−∞
{f ′(x)/f(x)}2dF (x), (2.6)

where f ′(x) = (d/dx)f(x) = (d2/dx2)F (x). Assume that

(i) there exists finite constants c̄ and C?(> 0) such that

lim
n→∞ c̄n = c̄ and lim

n→∞n−1C?
n
2 = C?2 (2.7)

with

c̄n = n−1
n∑

i=1

ci and C?
n
2 =

n∑

i=1

c2
i − nc̄2

n (2.8)

both exist.

(ii) the ci’s are all bounded, so that by (i),

max
1≤i≤n

(ci − c̄n)2/C?
n
2 → 0, as n →∞. (2.9)

Let ψ : < → < be nondecreasing and skew symmetric score function. For any real numbers a

and b, consider the statistics below

Mn1(a, b) =
n∑

i=1

ψ(Xi − a− bci), (2.10)

Mn2(a, b) =
n∑

i=1

ciψ(Xi − a− bci). (2.11)

If β is unspecified, the designated test function is φUT
n with the null hypothesis H?

0 : θ = 0. The

testing for θ involves the elimination of the nuisance parameter β. It follows that Mn2(0, b)

is decreasing if b is increasing (Jurěcková and Sen, 1996, p.85) and under local hypothesis,

H
(1)
0 : β = 0, Mn2(0, 0) has expectation 0. Then let

β̃ = (sup{b : Mn2(0, b) > 0}+ inf{b : Mn2(0, b) < 0})/2.

Then β̃ is a translation invariant and robust estimator of β.

We consider the test statistic TUT
n = Mn1(0, β̃) where under H?

0 , as n →∞,

TUT
n√

C
(1)
n S

(1)
n

2
→ N(0, 1) (2.12)

with C
(1)
n = n− n2c̄2

n/
∑

c2
i = nC?

n
2/(C?

n
2 + nc̄2

n) and [S(1)
n ]2 =

∑
ψ2(xi − β̃ci)/n.

If β = 0, the designated test function is φRT
n for testing the null hypothesis H?

0 : θ = 0.

The proposed test statistic is TRT
n = Mn1(0, 0). Note that for large n, under H0 : θ = 0, β = 0,

n−1/2TRT
n = n−1/2Mn1(0, 0) → N(0, σ2

0), (2.13)
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where σ2
0 =

∫∞
−∞ ψ2(x)dF (x) (see Sen, 1982, eq 3.7).

For the preliminary test on the slope, the test function, φPT
n is designed to test the null

hypothesis H
(1)
0 : β = 0. The proposed test statistic is TPT

n = Mn2(θ̃, 0) where

θ̃ = (sup{a : Mn1(a, 0) > 0}+ inf{a : Mn1(a, 0) < 0})/2

is a robust estimator. Under H
(1)
0 , as n →∞,

TPT
n√

C
(3)
n S

(3)
n

2
→ N(0, 1), (2.14)

where C
(3)
n =

∑
c2
i − nc̄2

n = C?
n
2 and [S(3)

n ]2 =
∑

ψ2(xi − θ̃)/n.

The consistency of [S(1)
n ]2, [S(2)

n ]2 =
∑

ψ2(x)/n and [S(3)
n ]2 as estimators of σ2

0 follows by

law of large number (Jurěcková and Sen, 1981).

Now, we are in a position to formulate a test function φPTT
n to test H?

0 : θ = 0 following

a preliminary test on β. First, we consider the case where all of φ
(j)
n , j = 1, 2, 3 are one-sided

test. Let us choose positive numbers αj (0 < αj < 1) and real values `
(j)
n,αj , j = 1, 2, 3, such

that for large sample size,

P [TUT
n > `UT

n,α1
|H?

0 : θ = 0] = α1, (2.15)

P [TRT
n > `RT

n,α2
|H0 : θ = 0, β = 0] = α2, (2.16)

P [TPT
n > `PT

n,α3
|H(1)

0 : β = 0] = α3, (2.17)

where `
(j)
n,αj is the critical value of T

(j)
n at the αj level of significance. Let Φ(x) be the standard

normal cumulative distribution function, then

Φ(τα) = 1− α, for 0 < α < 1. (2.18)

Using equations (2.12)−(2.18), as n →∞ we have

n−1/2`RT
n,α2√

S
(2)
n

2
→ τα2 =

n−1/2`RT
n,α2√

σ2
0

(say). (2.19)

n−1/2`UT
n,α1√

S
(1)
n

2
C

(1)
n /n

→ τα1 =
n−1/2`UT

n,α1√
σ2

0C
?2/(C?2 + c̄2)

(say), (2.20)

n−1/2`PT
n,α3√

S
(3)
n

2
C?

n
2/n

→ τα3 =
n−1/2`PT

n,α3√
σ2

0C
?2

(say), (2.21)

where S
(1)
n

2
=

∑
ψ2(xi − β̃ci)/n, C

(1)
n = n− n2c̄2

n/
∑

c2
i , S

(3)
n

2
=

∑
ψ2(xi − θ̃)/n, and C?

n
2 =

∑
c2
i − nc̄2

n.

Now we may write

φPTT
n = I

[
(TPT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
) or (TPT

n > `PT
n,α3

, TUT
n > `UT

n,α1
)
]

(2.22)
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as the test function for testing H?
0 : θ = 0 after a pre-test on β. Note that I(A) stands for the

indicator function of the set A. It takes value 1 if A occurs, otherwise 0. The function enables

us to define the power of the test φPTT
n , that is given by

ΠPTT
n (θ) = E(φPTT

n |θ)
= P [TPT

n ≤ `PT
n,α3

, TRT
n > `RT

n,α2
|θ] + P [TPT

n > `PT
n,α3

, TUT
n > `UT

n,α1
|θ]. (2.23)

In general, the power of the test φPTT
n depends on α1, α2, α3, θ, n as well as β. Note that the

size of the ultimate test αPTT
n is a special case of the power of the test when θ = 0. Since the

nuisance parameter β is unknown, but, suspected to be close to 0, it is of interest to study the

dependence of both αPTT
n and ΠPTT

n (θ) on β (close to 0).

3 Asymptotic properties for UT, RT and PTT

Let {Kn} be a sequence of alternative hypotheses, where

Kn : (θ, β) = (n−1/2λ1, n
−1/2λ2), (3.1)

with λ1, λ2 are (fixed) real numbers. The following results follows directly from Yunus and

Khan (2007) [and hence, their proofs are omitted]: Under {Kn}, for large sample,

•
n−1/2

[
TUT

n

TPT
n

]
∼ N2

[(
γλ1C?2

C?2+c̄2

γλ2C
?2

)
, σ2

0

(
C?2

C?2+c̄2
− c̄C?2

C?2+c̄2

− c̄C?2

C?2+c̄2
C?2

)]
(3.2)

and

•
n−1/2

[
TRT

n

TPT
n

]
∼ N2

[(
γ(λ1 + λ2c̄)

γλ2C
?2

)
, σ2

0

(
1 0

0 C?2

)]
. (3.3)

Define d(q1, q2 : ρ) to be the bivariate normal probability integral for random variables x and

y,

d(q1, q2; ρ) =
1

2π(1− ρ2)1/2

∫ ∞

q1

∫ ∞

q2

exp
{−(x2 + y2 − 2ρxy)

2(1− ρ2)

}
dxdy, (3.4)

where q1, q2 are real numbers and −1 < ρ < 1. Here d(q1, q2; ρ) is the complement of the

cumulative density function of standard bivariate normal variable.

Using equations (2.18)−(2.21), (3.2)−(3.4), the power function for the PTT, under {Kn},
is

ΠPTT
n (λ1, λ2) = E(φPTT

n |Kn) → ΠPTT (λ1, λ2)

= Φ(τα3 − γλ2C
?/σ0)[1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0)] +

d(τα3 − γλ2C
?/σ0, τα1 − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 ). (3.5)
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Similarly, the power function for the RT and UT are respectively

ΠRT (λ1, λ2) = 1− Φ(τα2 − γ(λ1 + λ2c̄)/σ0) (3.6)

and

ΠUT (λ1, λ2) = 1− Φ(τα1 − γλ1

√
C?2/(C?2 + c̄2) /σ0) (3.7)

using equations (2.18)−(2.20).

4 Asymptotic comparison

The below results are obtained by Yunus and Khan (2007): For c̄ > 0, α1 = α2 = α and

λ2 ≥ 0, it is easy to show that λ1 + λ2c̄ ≥ λ1

√
C?2/(C?2 + c̄2). Thus,

• ΠRT (λ1, λ2) ≥ ΠPTT (λ1, λ2)

• ΠRT (λ1, λ2) > ΠUT (λ1, λ2)

• ΠUT (λ1, λ2)−ΠPTT (λ1, λ2)
<=
>

0 if B
<=
>
|A| where A = Φ(τα− γ(λ1 + λ2c̄)/σ0)−Φ(τα−

γλ1

√
C?2/(C?2 + c̄2)/σ0) and B = d(τα3 − γλ2C

?/σ0, τα − γ(λ1 + λ2c̄)/σ0; 0)− d(τα3 −
γλ2C

?/σ0, τα − γλ1

√
C?2/(C?2 + c̄2)/σ0;−c̄/

√
C?2 + c̄2 ).

Let α1 = α2 = α, c̄ > 0, λ2 ≥ 0 we find ΠRT (0, λ2) = 1− Φ(τα − γλ2c̄/σ0) ≥ 1− Φ(τα) =

ΠUT (0, λ2) from equations (3.6) and (3.7). Obvious that if the inverse of the coefficient of

variation that is c̄/σ0 decreases, ΠRT (0, λ2) decreases but ΠUT (0, λ2) fixed at α.

The size of the PTT is always smaller than that of the RT and hence it approaches the size

of the UT (that is constant at α) as the coefficient of variation increases.

The analytical results in this section is accompanied with an illustrative example in inves-

tigating the comparison of the power of the tests discussed in the next section. The power of

the tests at any value other than θ = 0 is also considered in the example to study the behavior

of the power functions corresponds to the probabilities of type I and type II errors.

5 Illustrative Example - Power Comparison

For this illustrative example, the random errors of the simple linear model are generated from

Normal distribution with mean 0 and variance 1. The sample size is n = 30. Four sets of

values: 0 and 1 with ratio 1:9, 3:7, 5:5, 7:3 are considered as the values of the regressor

ci, i = 1, 2, . . . , 30. These values guarantee c̄n
2/C?

n
2 to be 0.300, 0.078, 0.033, 0.014. Note that

as the coefficient of variation (σ0/c̄) increases, c̄n
2/C?

n
2 decreases.

In this example, the ψ function is taken as Huber ψ function (Hoaglin et al., 1983, p.366,

Wilcox, 2005, p.77), is defined as

ψh(ui) =

{
ui if |ui| ≤ k

k sgn(ui) if |ui| > k,
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Figure 1: Graphs of power functions for increasing λ2 with α1 = α2 = α3 = α = 0.05

and n = 30 for selected values of λ1. Dotted line, solid line and line with star represent

ΠUT (λ1, λ2), ΠRT (λ1, λ2) and ΠPTT (λ1, λ2) respectively. Here c̄n
2/C?

n
2 = 0.300 for graphs

(a) & (e), c̄n
2/C?

n
2 = 0.078 for graphs (b) & (f), c̄n

2/C?
n
2 = 0.033 for graphs (c) & (g) and

c̄n
2/C?

n
2 = 0.014 for graphs (d) & (h).
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where ui = Xi− θ−βci. As suggested in many reference books (Wilcox, 2005, p.76), the value

of k = 1.28 is chosen because k = 1.28 is the 0.9 quantile of a standard normal distribution,

there is a 0.8 probability that a randomly sampled observations will have a value between −k

and k (Wilcox, 2005, p.76). The estimate for σ0 is taken to be
∑

ψ(u)2/n. The estimate for γ

is
∑

ψ′(u)/n (Caroll and Rupert, 1988, p.212) where

ψ′(u) =

{
1 if |u| ≤ 1.28

0 if |u| > 1.28.

The ΠUT , ΠRT and ΠPTT are calculated using the formulas given by equations (3.5), (3.6)

and (3.7). The R-package (mvtnorm) is used in computing the bivariate Normal probability

integral.

The size of the UT, RT and PTT are plotted against λ2 in Figures 1(a)−(d) while power

of the test at λ1 = 3 are plotted against λ2 in Figures 1(e)−(h) for selected values of c̄n
2/C?

n
2.

We desire the size of a particular test to be small and power of the test to be large so that

probability of type I and II errors are both small. As λ2 grows larger, the size and power of

the RT grows larger and approaches 1 (see Figure 1(a) & (e)). Observe also the size of the RT

approaches 1 faster for larger values of c̄n
2/C?

n
2 as λ2 grows larger. From Figures 1(a)−(d),

the size of the UT is constant at α = 0.05 and does not depend on λ2 and c̄n
2/C?

n
2. The power

of the UT though constant regardless the values of λ2, it increases as a smaller c̄n
2/C?

n
2 is

selected (see Figures 1(e)−(h)). Starting at a value that is slightly less than α, the size of the

PTT increases before drops and converges to the nominal size α = 0.05 as λ2 grows larger.

The size of the PTT is small when c̄n
2/C?

n
2 is small and large for larger c̄n

2/C?
n
2 but it is

always less than that of the RT. The power of the PTT is larger for smaller λ2 and it decreases

to the power of the UT as λ2 grows larger. For a larger value of λ2, the power of the PTT is

increasing as c̄n
2/C?

n
2 is decreasing. The PTT has smaller size and larger power for a small

c̄n
2/C?

n
2 than a larger one.

It is impossible to obtain a test that uniformly minimizes the size and maximizes the power

at the same time. We are looking for a test that is a compromise between minimizing the size

and maximizing the power (small probabilities of type I and type II errors). The RT is the

best choice for its largest power but the worst choice for its largest size as λ2 grows larger.

On the contrary, the UT is the best choice for its smallest size but the worst choice for its

smallest power. Both RT and UT uniformly minimize or maximize the size and power at the

same time. The PTT has larger power than the UT for small and moderate values of λ2 and

it has significantly smaller size than that of the RT for moderate and large λ2. Therefore, if

our objective is to obtain a test that has better probabilities for both type I and type II errors,

the PTT is suggested as the best option. The PTT is a compromise between minimizing the

size and maximizing the power than the RT and UT. The PTT has a smaller size and a larger

power for a larger coefficient of variation than a smaller one.
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