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Abstract 

In modern dairy farming systems, heat stress is still a significant challenge. Dairy cows will 

encounter sub-optimal welfare which can result in production decline, diseases and even 

mortality, especially for high-producing cows with lower heat tolerance. The frequency and 

magnitude of heat stress events or heat waves are predicted to keep increasing in coming 

decades associated with global warming. Therefore, greater attention is being paid to 

alleviating the effects of heat stress on dairy cows and livestock generally. Modelling and on-

farm experiments have been undertaken in many countries to assess the influence of heat stress 

on livestock using modern computer technologies and other hi-tech tools. At the same time, 

mitigation approaches such as optimal shed structure, new cooling facilities, targeted feeding 

regimes, improved farm management and genetic selection have all been studied extensively. 

However, due to differences between farm conditions and varying heat tolerance of different 

breeds and coping ability, the results from different heat stress models provided a variety of 

thresholds for on-farm decision support. Therefore, determination of accurate heat stress 

thresholds to facilitate practical mitigation options are still difficult.  

This study was initiated by summarizing the progresses achieved by previous studies on 

intensively kept dairy cows in relation to measuring, assessing and mitigating their heat stress. 

By taking comparative analysis of the published studies about thermal indices, animal 

responses and mitigation solutions, a range of recommendations were given for developing 

more accurate assessment and designing of more effective mitigation options. The review 

suggested that for achieving accurate and applicable thresholds of heat stress, it is necessary to 

establish monitoring systems embedded into routine farm management systems, which can be 

an add-on unit of current robotic milking system (RMS). The robust monitoring system would 

measure real-time data from the ambient environment, animal responses, as well as the 

operation pattern of mitigations. Furthermore, by facilitating big-data analysis techniques to be 

used on individual farms, (or for individual animal) it might be possible to implement self-

calibration procedure for the assessment, thresholds and control algorithms responding to 

varied cow’s production status, farm management factors and local climate changes.  

The follow-up research presented in this thesis demonstrated the possibility of establishing 

more accurate heat stress threshold by taking advantage of the routinely collected datasets on 

robotic dairy farms and local weather stations. The dairy farm observed in this study situated 

in a subtropical climate region, held around 150 lactating cows and applied RMS with semi-

free traffic. The farm management system recorded specific production, health and behaviour 

information of each individual animal over 5-year period (2013-2017), which was utilized for 

the analysis in this study. The historical climate conditions were measured by local weather 

station with dataset accessible on a government website, which provided the data of daily 

thermal parameters for this research. Furthermore, data-loggers were also positioned on farm 

from April 2016 to November 2017 to measure thermal parameters hourly.  

By using the collected information, this study compared the performance of published thermal 

comfort indices (TCIs) as the indicators of cows’ responses to heat stress. These TCIs included 

temperature humidity index (THI), black globe humidity index (BGHI), environmental stress 

index (ESI), equivalent temperature index (ETI), heat load index (HLI), respiration rate index 

(RR) and comprehensive climate index (CCI). The comparison also included the basic thermal 

parameters: dry bulb temperature (Tdb), relative humidity (RH), wet bulb temperature (Twb) 

and dew point temperature (Tdp). The strength of their correlation with daily milk yield (DMY) 

and milk temperature (MT) was tested statistically. The regression analysis using climate 
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dataset from local weather station and on-farm data-loggers were also compared to validate the 

accuracy of online data source. The statistical analysis found similar performance between 

TCIs and Tdb. It was also found that the inaccuracy of online data source, due to spatial 

variability between on-farm measurement and local weather station, could be neglected when 

modelling the association between TCIs and MT. A general threshold with significant decline 

of DMY was identified as THI>64 for cows with DMY around 31 kg/cow/day.  

As Tdb can provide sufficient accuracy in the prediction of heat stress, the dynamic thresholds 

of daily minimum and mean temperature (Tmin and Tmean) were then established using 

individual information of 126 cows. The dataset was grouped according to the age, body weight 

(BW) and days in milk (DIM) of cows. Specific thresholds for different groups were identified 

using single broke-line regression between temperature and DMY or MT. Machine learning 

model was applied to transform these thresholds of different group into a decision tree of 

dynamic thresholds, which achieved overall 94% accuracy with the thresholds of Tmin, and 

79% accuracy with the thresholds of Tmean. Moreover, for the whole herd, multiple broken-

line regression was applied, which established four stages of heat stress including as thermal 

comfort stage (Tmin < 5 oC, Tmean < 9 oC), mild heat stress (Tmin: 5-6 oC, Tmean: 9-11 oC), 

effective heat stress (Tmin: 6-14 oC, Tmean: 11-16 oC) and critical heat stress (Tmin > 14 oC, 

Tmean > 16 oC) based on the change of DMY and MT.  

To gain more understanding of the heat stress influence on animal behaviours in RMS, extra 

dependent variables were imported into new models involving rumination time (RT), time of 

milking (TM), miking frequency (MF), milking duration (MD), milking speed (MS), and milk 

yield per milking (MY). A new index – rumination efficiency index (REI) was created to 

evaluate the efficiency of rumination. According to the multiple broken-line regression, 5 

minutes reduction of RT, 0.08 kg/cow/hour reduction of REI and 1% increase of low efficiency 

miking (LEM) were found to be associated with raising 1 oC of Tmean. It was also 

demonstrated that cows could not adjust their pattern of milking behaviour (e.g. visiting time 

pattern) coping with heat stress. Statistically, 86% of their milking event happened between 

07:00 AM and 09:00 AM. However, REI and RMS performance can be improved by adjusting 

the pattern of milking behaviour such as milking interval (MI). The financial comparison 

between current pattern and adjusted pattern estimated that nearly $400 daily benefit could be 

gained.  

In addition, this study also analysed the cumulative and lag effect of heat stress which were 

time-related. For the short-term effect, an intensity duration index (IDI) was defined by 

multiplying the mean temperature of the heat stress period with the duration of the period. 

Multiple levels of heat stress were then identified by IDI with different decline rate of DMY 

from -0.01 to -0.13 kg/cow/IDI. For long-term heat stress, the lag and cumulative effect was 

demonstrated by the negative correlation between the duration of heat stress during dry-off 

period and the production performance of the subsequent lactation period. The lag effect was 

found to be 3-4 days, while the cumulative effect could last for about 2 months. The regression 

between DMY and the average temperature of the period with heat stress during the 2 months 

before test day (HSmean) was found to perform stronger correlation (R2 equals 0.73-0.77) than 

the regression between DMY and same day’s temperature (R2 equals 0.65-0.68).  
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 General introduction 

1.1. Background and hypothesis 

Farm managers are increasingly focused on enhancing animal comfort and welfare, which is 

necessary to maintain production efficiency of dairy cows (Phillips, 2018; Phillips, 2008). Heat stress 

is still one of the unavoidable challenges within modern dairy farming. For high-producing cows, the 

negative impacts of heat stress are exacerbated due to their lower heat tolerance and higher heat 

production. Measurements and assessments of heat stress have been undertaken for several decades, 

which developed several models to link thermal parameters and animal responses, such as heat load 

index (HLI) (Gaughan et al., 2002) and comprehensive climate index (Mader et al., 2010). Thresholds 

to categorize the levels of heat stress were also established from these models to provide decision 

support for farmers, such as Silva et al. (2007) and Hammami et al. (2013). General mitigations 

against heat stress include cooling facilities (Zimbelman, 2007), diet adjustment (Kanjanapruthipong 

et al., 2015a) and genetic selection (Roland et al., 2016). However, the results of assessment and 

mitigation to heat stress can be still varied between different breeds, climate and farm conditions. It 

still requires significant amount of time and labour cost for modification, when applying these 

approaches on specific farms. With the development of information technology, dynamic algorithm 

or artificial intelligence (AI) are expected to provide more applicable assessment or mitigation of heat 

stress than any constant equation or model, which could be self-modified according to specific farm 

condition. However, such studies are still rare in relation to heat stress.  

Recently, various precision livestock farming (PLF) techniques are being applied by dairy farming 

systems (Banhazi et al., 2012). Robotic milking system (RMS), as one major component of PLF, are 

widely adopted in Europe, Australia and America. The primary benefit of RMS is saving labour cost, 

which has been reported between 18% and 30% in comparison with conventional milking system 

(CMS) (Rodenburg, 2012). In addition to reduce labour cost, RMS is also able to collect high-

frequency and long-term information of production and health condition for individual cow, which is 

accomplished by the sensors in milking robots (station) or wearable monitors (i.e. neck band or ear 

tag). This kind of information can possibly be utilized for routine detection of cows’ health problems, 

such as lameness and mastitis (LeBlanc, 2016; Pastell and Madsen, 2008). In relation to heat stress, 

routinely measured parameters including milk temperature (MT) and rumination time (RT) are found 

to be sensitive indicators of animal responses (Chaudhari and Singh, 2015; Soriani et al., 2013). 

Therefore, RMS can easily build a fundamental database for developing dynamic algorithm or 

artificial intelligent for solving heat stress problems. However, insufficient studies have been 

published in this area. Furthermore, as most measurements of heat stress were conducted in CMS, it 

is still unclear about the heat stress impacts on cows milked by RMS.  Specific mitigations that can 

be taken in RMS (i.e. adjustment of robotic milking) also need further study.  

1.2.  Research Objectives 

The objective of this study are: 

 Review the progresses achieved in previous studies on measuring, assessing and mitigating 

heat stress of dairy cows.    

 Compare the prediction performance of published thermal comfort indices (TCIs) by using 

data from field measurement and online database 

 Identify accurate dynamic thresholds of heat stress via statistical and AI method 

 Improve existed indices by adding new parameters 

 Establish new indices for evaluating the impacts of heat stress 

 Analyse the influence of heat stress in RMS and generate possible mitigations 
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1.3.  Thesis outline 

The thesis outline is provided separately for Chapter 2 to 6 as follows: 

 Chapter 2: A review on measuring, assessing and mitigating heat stress of housed dairy cow 

with precision livestock farming techniques 

This chapter systemically summarized the development of technologies for measuring, 

assessing and mitigating heat stress. It was aimed to describe the gaps of current studies, as 

well as point out the potential directions for further studies including this study. 

 

*Chapter 3 to 6 report a series of analysis using 5-year dataset collected from RMS 

 Chapter 3: Modelling of heat stress in a robotic dairy farm. Part 1: Thermal comfort indices 

as the indicators of production loss 

This chapter compared the various published models assessing heat stress and demonstrated 

a simplified way of using thermal parameters in the assessment. This is a mathematical or 

statistical analysis and evaluation of the published studies reviewed in Chapter 2.  

 Chapter 4: Modelling of heat stress in a robotic dairy farm. Part 2: Identify of the specific 

thresholds with production factors 

This chapter refined the thresholds of dry bulb temperature considering the specific 

production factors of cows (age, body weight and days in milk) that resulted in AI decision 

tree to support thresholds selection. 

 Chapter 5: Modelling of heat stress in a robotic dairy farm. Part 3: animal behaviour and 

milking performance 

This chapter modelled the influence of heat stress on robotic milking performance and 

proposed a more suitable milking pattern for the robotic milking systems to enhance the 

milking efficiency of cows. A new rumination efficiency index (REI) was proposed to 

quantify the influence of heat stress on rumination time and milking behaviours. 

 Chapter 6: Modelling of heat stress in a robotic dairy farm. Part 4: Lag and cumulative effect 

of heat stress 

This chapter developed several new indices of heat stress to quantify the duration, lag effect 

and cumulative effect. The intensity duration index (IDI) was developed for short term heat 

stress that can estimate the heat stress effects considering both of the temperature and duration. 

The heat stress mean temperature (HSmean) is established for long term heat stress, which 

can quantify the historical heat stress within a period of time. The new index demonstrated a 

good correlation with milk yield.
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 A review on measuring, assessing and mitigating heat 

stress of housed dairy cow with precision livestock farming 

techniques 

2.1. Abstract 

Heat stress is a significant challenge for dairy farming systems. Dairy cows under heat 

stress will encounter sub-optimal welfare that can ultimately result in production loss 

for farmers. An increase in frequency and magnitude of heat stress events is predicted 

for coming decades. Thus there is a greater attention being paid on reducing the effects 

of heat stress on animals. In the past few decades, modelling and on-farm experiments 

have been used to assess the effect of heat stress on livestock. Mitigation solutions 

including optimal shed structure, ventilation systems, targeted feeding regimes, 

improved farm management and genetic selection have been explored widely on farms 

across the globe. However, under different farm conditions (e.g. with different 

mechanical or natural ventilation systems), the heat tolerance and coping ability of 

dairy cows can vary significantly. Until now, the results from different mathematical 

models have provided a variety of heat stress thresholds for on-farm use. In practice, it 

is still costly to determine an accurate heat stress threshold in order to design mitigation 

options. This review summarises the results of previous studies on the effects of heat 

stress on intensively kept dairy cows and the different approaches taken to address the 

issue. Here we undertook a comparative analysis of the published studies related to 

thermal indices, animal responses, (i.e. production loss and animal welfare), and 

mitigation approaches. A range of recommendations are made on conducting more 

accurate assessments and design of effective mitigation options. For future studies, 

there is a requirement to establish monitoring systems embedded into routine farm 

management systems. The robust monitoring system would need to acquire real-time 

data from the thermal environment (e.g. data from local weather stations), animal 

responses to heat stress (e.g. real-time respiration rate), and the operation pattern of 

mitigations (e.g. procedures and efficiencies). Furthermore, through big data analysis 

for each farm, self-recalibration needs to be automatically implemented for the 

assessment and control algorithms following the changes of cows’ production status, 

farm management and local climate.  

2.2. Introduction  

Heat stress is defined as an event that affects animal’s homeostasis and health due to 

physiologically harmful heat load (Gaughan et al., 2012). The welfare and comfort of 

dairy cows are increasingly seen as moral and practical concerns, especially in 

developed countries (Silanikove, 2000; Phillips, 2008). Under heat stress conditions, 
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the optimal welfare of dairy cows can be compromised via decreased feed intake, 

resting and rumination time (Grant, 2012). The sub-optimal animal comfort due to heat 

stress is the primary cause of production losses in the global dairy industry, especially 

for high-producing cows (e.g. -8.9 kg/cow/d under heat stress) (Biby, 2010). The 

general on-farms mitigation technique to combat heat stress for housed dairy cows is 

to control the thermal environment around animals (Mader et al., 2007). However, the 

high cost associated with climate control systems cannot be economically justified in 

many cases (Zimbelman, 2007). The adjustment of diet (to reduce the negative effects 

of heat generation associated with increased metabolism) has been studied as a potential 

mitigation option, especially for cows at their early lactation stage (Kanjanapruthipong 

et al., 2015b). There are nutritional strategies identified to cope with high ambient 

temperatures such as the use of a high energy diet to balance reduced feed intake and 

increased energy demand for thermoregulation, and use of protein with a low rumen 

degradability to balance increased N catabolism (Das et al., 2016).  

At the same time, the genetic selection of heat tolerant breeds has also been progressed 

with various level of success, such as the crossbreeding of Zebu-Hereford (Roland et 

al., 2016). The selection of cow species and breeds suited to tolerate heat stress (at the 

expense of productive capacity) has been an important management strategy in hot and 

humid climates, with heat tolerant cows expected to become more widely used with 

projected global warming (Hoffmann, 2010). For example, in North Eastern Australia, 

the Belmont Red hybrid breed was developed to increase cow productivity through 

greater heat tolerance, parasite resistance and resilience to periodic severe under-

nutrition (Rudder et al., 1976; Coates et al., 1987). Some modelling results have 

suggested that breeding for a greater tolerance to heat stress is unlikely to improve the 

livestock productivity (Moore and Ghahramani, 2014). 

At present, various precision livestock farming (PLF) techniques are being developed 

for the benefit of modern livestock industries, such as robotic milking, precision feeding 

for individual animals, and farm management automation. Some of the PLF 

technologies have also been developed for detection of heat stress such as integrated 

monitoring for thermal environments and animal physiological responses (Pollard et 

al., 2004; Schmidt et al., 2004; Eigenberg et al., 2008). In addition to hardware 

development, models and software development is also being undertaken to cooperate 

with the hardware (Black et al., 2016; Willis et al., 2016). A number of mathematical 

models (e.g. thermal comfort indices) have been developed using field observations to 

assess and predict the effects of heat stress on animals (Mader et al., 2010; Gaughan et 

al., 2008a). By using these models, a range of heat stress mitigation approaches such 

as auto-controlled sprinkling have been evaluated (Mader et al., 2007). Moreover, the 

current literature provides varied heat-stress assessment for different on-farm 

conditions (e.g. different ventilation systems). In the field, selection and modification 

of the published assessment results, such as the thresholds, are always required with 

huge time and labour cost. Further development of modelling methods is still necessary 

to enable their application in the commercial farms and to overcome the bias between 

the results of different on-farm studies. This review aims to summarise the current 

knowledge of heat stress in dairy cows. The primary focus of this review will be on the 



5 

 

published on-farm monitoring, thermal comfort indices, models, and the developed heat 

stress mitigation techniques for housed dairy cow. Moreover, the possible solutions by 

using PLF techniques for achieving more accurate modelling on heat stress assessment 

and mitigation will be discussed.  

2.3. Mechanisms of thermal comfort  

The dairy cow is homoeothermic animal that needs to keep her body temperature at a 

nearly constant level. As defined by DeShazer et al. (2009), the thermal neutral zone 

(TNZ) is the ambient temperature the animal requires to achieve the least thermal-

regulatory effort. Within the TNZ range, vasoconstriction (minimum tissue 

conductance) and vasodilatation (maximum tissue conductance) regulate body 

temperature under the slightly colder or warmer ambient temperature. The general TNZ 

for mature beef and dairy cow is between 5 – 15 oC. However, it is obvious that cow 

with higher producing performance has a lower threshold temperature to enter heat 

stress. In addition, the threshold temperature between thermal noxious and extreme 

zones is still unclear. When the ambient temperature is out of the TNZ, lower/upper 

critical temperature (LCT/UCT) was identified as the thresholds forcing animal to cope 

via more thermal-regulatory efforts. Silanikove (2000) has defined the LCT as the 

ambient temperature decline to a level that a resting homeotherm has to increase the 

rate of heat production for maintaining thermal balance. The UCT was described as 

having three primary features: increased metabolic rate; increased evaporative heat 

loss, and minimal tissue thermal insulation. The author also categorised four stages of 

thermal well-being: the innocuous stage, the aversive stage, the noxious stage and the 

extreme stage. However, the threshold values of such thermal zones and stages can 

always change. Difference in breeds, farm conditions (e.g. building structure and 

facilities), management (e.g. feeding and milking frequency), and animal production 

levels can result in different values of TNZ, UCT and LCT (Johnson, 1987; Roenfeldt, 

1998; Igono et al., 1992; Wathes et al., 1983; Nonnecke et al., 2009; Spain and Spiers, 

1996). With an average milk production of 30 kg/d/cow, Berman et al. (1985) reported 

that the UCT of a dairy cow is about 25 to 26 oC, while the LCT is about -37 to -16 oC 

as reported by Hamada (1971). Hahn (1999) reported specific temperature thresholds 

for cows in different production status, this information was refined by Silanikove 

(2000) to specify  stages (Figure 2-1).  
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Figure 2-1 Critical ambient temperatures, thermal zones and stages for cow 

performance adapted from Hahn (1999) and Silanikove (2000), Zone-N: thermal 

neutral zone; Zone-I: thermal innocuous zone; Zone-II: thermal aversive zone; Zone-

III: thermal noxious zone, and Zone-IV: thermal extreme zone. 

By considering the internal heat balance of an animal, the heat input from nutrient and 

metabolic energy intake determines the capacity of heat loss and retained energy of an 

animal, as illustrated in Figure 2-2. The amount of heat production (heat loss) that is 

used to maintain body temperature will decrease the retained energy for production 

activities (DeShazer et al., 2009; West, 2003; Kadzere et al., 2002). It is commonly 

accepted that feeding a cow in an optimal thermal condition or TNZ is a way to increase 

production efficiency. Kadzere et al. (2002) concluded that the increased nutrient intake 

raises the milk production rate of dairy cows which also generate more metabolic heat 

production. The increased metabolic heat production maintains animal body 

temperature under cold conditions. However, it requires more heat dissipation to reduce 

body temperature under hot conditions.  

 

Figure 2-2 A schematic illustration of heat transfer within constant heat balance of 

dairy cow 

The heat loss between ambient environment and the animal body can happen through 

sensible and latent heat exchange following thermodynamic principles. The sensible 

heat loss can occur via conduction, convection, and radiation, while the latent heat loss 

mainly happens as moisture evaporates. It should be noted that the decrease in sensible 

heat loss will always compensate for increased latent heat loss. The latent heat loss then 

usually follows the rule of psychometrics under standard pressure (101.325 kPa), as 

shown by DeShazer et al. (2009). Therefore, latent heat loss is typically minimised 

under high relative humidity conditions. It is also difficult to separate heat transfer by 

evaporation and convection, as wind flow will also enhance the moisture evaporation 

(Silanikove, 2000). Many physical factors can cause differences in thermal dynamic 

heat loss as summarised by DeShazer et al. (2009) (Table 2-1). Modelling of the heat 

balance has been the focus of several studies by simulating the heat transfer between 

ambient environments and animal body considering different animal activities 

(Turnpenny et al., 2000a; Turnpenny et al., 2000b).  

Under principles of heat transfer, to some degree, animals can modify their behavioural 

and physiological activity patterns to cope with adverse thermal conditions (DeShazer 

et al., 2009; West, 2003; Kadzere et al., 2002). The basic animal responses to heat stress 
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include increased respiration rate, sweating rate, lying vs standing patterns and animal 

preference to move to cooling areas, e.g. shelter. A series of nervous system responses 

and metabolic (biochemical) reactions occur simultaneously in order to maintain body 

temperature. Silanikove (2000) provided an overview of the physiological reactions of 

animals, including hormonal reactions, water balance metabolism, and nutrient 

supplementations. The biochemical reactions toward heat stress are not the primary 

focus of this review, as more integrated understanding of such physiological reactions 

have been summarized by other review articles (West, 2003; Rensis and Scaramuzzi, 

2003; Zimbelman, 2007; Kadzere et al., 2002; Biby, 2010; Roland et al., 2016) In 

summary, the separation between heat transfer, behavioural responses, and biochemical 

reactions is only an artificial approach to simplify the complex system of thermal 

regulation. The separation of maintenance and production energy usage is also artificial 

(Kadzere et al., 2002) to simplify the processes for assessments. 

Table 2-1 Physical factors influencing energy transfer from the animal’s body surface 

(DeShazer et al., 2009 as adpated from ; Hahn, 1976). 

 

2.4. Measurement of heat stress–indicators in the field studies 

As presented in Table 2-2, this section introduces the key indicators in the studies of 

heat stress assessment. The measurement of heat stress indicators would require real-

time data acquired in relation to environmental and animal responses. With the 

development of PLF techniques, robust monitoring systems are available for detecting 

most of these indicators. However, some of the indicators (e.g. rectal temperature) still 

require manual detection which can be time and labour intensive procedure.
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Table 2-2 Instruments applied in field studies to evaluate the severity of heat stress 
Type of parameters Devices Manufacture Range Uncertainty References 

Thermal 

parameters 

Temperature 

& humidity 

 

Tinytag Plus 2 logger 
Gemini loggers Ltd, Chichester, 

UK 

-25 – 80 oC 

0 – 100 % RH 

±1% full scale oC 

±3% full scale 

RH 

Schuller et al. (2014); 

Banhazi et al. (2008a); 

Banhazi et al. (2008c); 

Banhazi et al. (2008b) 

HMP45 data loggers Vaisala, Helsinki, Finland 
-40 – 60 oC 

0 – 100 % RH 

±1% full scale oC 

±3% full scale 

RH 

Tucker et al. (2008) 

HOBO Pro data loggers 
Onset Computer Corporation, 

Pocasset, MA., USA 

-40 – 70 oC 

0 – 100 % RH 

±0.5% full scale 

oC 

±3.5% full scale 

RH 

Mader et al., 2007; Uzal 

Seyfi, 2013; Tucker et al., 

2008; Scharf et al., 2012; 

Seyfi, 2013; Ortiz et al., 

2015 

Wind speed 

Hall effect anemometer 
NRG Systems, Hinesburg, VT, 

USA 
1 – 96 m/s ±0.1 m/s Tucker et al. (2008) 

Hot‐wire anemometers 
Alnor Instruments (Shoreview, 

Minn) 
0-20 m/s ±5% full scale Banhazi et al. (2008c) 

Solar 

radiation 
Pyranometers Licor Li200x 

Campbell Scientific Inc. Logan, 

UT, USA 

400-1100 nm of 

daylight spectrum 
±3-5% full scale Tucker et al. (2008) 

Integrated 

measurement 

Automated weather stations, 

Vantage PRO weather 

recorder 

Davis Instruments, Hayward, 

CA., USA 

-76 – 54 oC 

0 – 100 % RH 

0-1800 W/m² 

1-809 m/s 

±1.5 oC 

±3% full scale 

RH 

±5% full scale 

W/m² 

1 m/s 

Eigenberg et al. (2005a) 

110-WS-18 Portable weather 

station 

Novalynx Corp., Grass Valley, 

CA., USA 

-40 –604 oC 

0 – 100 % RH 

0.4 – 1.1 microns 

spectral 

1-57 m/s 

±1.5 oC 

±3% full scale 

RH 

±5% full scale 

W/m² 

± 1mph 

Legrand et al. (2011) 

Animal 

responses 

Sweating 

rate 
Evapo-meter 

Delfin Technologies Ltd., 

Kuopio, Finland 
0-200 g/m2 h 

±8-10% full 

scale 
Rungruang et al. (2014) 
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Respiration 

rate 
RR Automatic dataloggers 

U.S. Meat Animal Research 

Central., USA 
Not applicable ±2-3 BPM Eigenberg et al. (2005a) 

Heart rate Equine T56H transmitter 
Polar Electro, Inc. Bethpage, 

NY, USA 
Not applicable Not applicable Kumar and Hancke (2015) 

Rectal 

temperature 

Digital thermometer, GLA-

M500 

Agricultural Electronics, San 

Luis Obispo, CA., USA 
Unknown Unknown Church et al. (2014) 

Stainless steel probe YSI 
1700 Brannum Lane, Yellow 

Springs, OH., USA 
0 – 60 oC ±0.2 oC Brown-Brandl et al. (2003) 

Skin 

temperature 

Infrared thermometer Model 

RAYST80XB 

Raytek Corporation, Santa 

Curz, CA, USA 

-32 –760 oC 

 

<±1% full scale 

oC 

 

Scharf et al. (2012) 

Agema 489 thermal camera  FLIR Systems, Boston, USA -15 –50 oC ±2 oC Banhazi et al. (2009b) 

Vaginal 

temperature 

Vaginal controlled drug 
CIDRTM, InterAg, Hamilton, 

New Zealand 
Unknown Unknown Schütz et al. (2009) 

Thermochron sensor 
Thermochron, SL, KN 

Laboratories, Osaka, Japan 

-30 – 85 oC 

 

±0.5 oC 

 
Nabenishi et al. (2011) 

Lying 

patterns 

HOBO Pendant G 
Onset Computer Corporation, 

Pocasset, MA., USA 
±29.4 m/s² ±2-3% full scale Wang et al. (2016) 

ICEQube/ICETag 
IceRobotics Ltd, Bankhead Rd, 

South Queensferry, British 
Not applicable Not applicable (Maltz et al., 2011) 

Production data 
Variables including the body weight, feed intake, milk yield, and conception rate are frequently recorded 

on-farms using a number of PLF devices in dairy and other livestock industries. 

Banhazi and Banhazi (2015); 

Banhazi et al. (2015); 

Banhazi et al. (2011) 
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Thermal parameters 

Thermal parameters are the key factors to calculate heat transfer. These parameters 

primarily include temperature, humidity, wind speed and solar radiation. As shown in 

Table 2-2, there are a wide range of commercial sensors in the market that can be used 

for monitoring these parameters. These devices have been used to monitor 

microclimates in dairy farming systems, thermal environment of the area, as well as the 

internal condition of bedding material (Mader et al., 2007; Uzal Seyfi, 2013; Tucker et 

al., 2008; Scharf et al., 2012; Seyfi, 2013; Ortiz et al., 2015a). 

Temperature and humidity are the basic parameters to determine the thermal comfort. 

The temperature gradient through the animal body and ambient temperature leads to 

the sensible heat loss of the animal. The required parameters to calculate heat transfer 

are dry bulb temperature (Tdb), wet bulb temperature (Twb), dew point temperature 

(Tdp) and relative humidity (RH). Currently, temperature and humidity can be 

measured using commercial devices such as the Tinytag Plus 2 logger from Hasting 

Data Loggers, NWS, AUS(Schuller et al., 2014; Banhazi et al., 2008a; Banhazi et al., 

2008c; Banhazi et al., 2008b). A similar sensor fitted with data logger (Hygrochron, 

KN Laboratories, Osaka) was used to detect these variables, as indicated by Nabenishi 

et al. (2011). HMP45, a humidity and temperature sensor (Vaisala, Helsinki, Finland) 

was applied in field measurement (Tucker et al., 2008). HOBO Pro temperature and 

humidity sensor (Onset Computer Corporation, Pocasset, MA) has been widely applied 

in on-farm studies.  

Wind speed (WS) or air velocity can influence the efficiency of convection and 

evaporation heat transfer. Under a natural ventilation system, the detection can only 

obtain mean value of air velocity for an approximate area. In a ventilated airspaces, the 

efficiency of fans and inlets/outlets can determine air velocity and air distribution 

within buildings. Therefore, airspeed is usually monitored around exhaust fans. 

Anemometers are widely applied in studies such as #40 Hall effect anemometer 

provided by NRG Systems, Hinesburg, VT, USA (Tucker et al., 2008) or Hot-wire 

anemometer from Alnor Instruments, Shoreview, Minn (Banhazi et al., 2008c; 

Banhazi, 2013). The sensitivity of the currently available instruments is still insufficient 

for low-speed air movement detection, although hot-wired anemometers can detect 

airspeeds around 0.1 m/s. There are a number of manual/portable anemometers 

available to measure low speed air movements, but their application is costly, 

associated with relatively large errors, and requires an optimized sampling plan (Van 

Overbeke et al., 2015). 

Solar radiation (SR) is the primary factor in heat transfer through radiation, especially 

at open lots. The evaluation of shelter efficiency is usually accomplished by comparing 

solar radiation with or without shading constructions (Kendall et al., 2006). Tucker et 

al. (2008) have applied Pyranometers such as Licor Li200x Pyranometer (Campbell 

Scientific Inc. Logan, UT, the USA) for a direct measurement of solar radiation. Other 

devices such as Ruakura Meteorological Stations (AgResearch, New Zealand), have 

been used to measure the solar radiation as well as the hours of sunshine (Kendall et 

al., 2006). 
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Black globe temperature (Tbg) is a parameter of the thermal environment that 

represents the effects of ambient temperature, wind cooling and solar radiation on cows 

(Li et al., 2009). Tbg was measured using a matte black copper ball (12.5-15 cm 

diameter) with a temperature sensor inside it (Lee, 1953). Currently, integrated 

monitoring stations (weather stations) are commercially available to measure several 

thermal indicators within one device as listed in Table 2-2.  

The measurement of thermal parameters can be performed at three levels; (1) regional, 

(2) building (herd), and (3) animal (individual) levels. At present, undertaking 

measurements at a single animal level are still difficult due to behaviour issues and 

varied postures of animals. Compared to measurements undertaken at building level, 

the heat transfer can be influenced by the varied behaviours of individual animals, such 

as standing or lying in different areas of the building. Therefore, further research is 

needed to develop reliable measurement methods for the direct monitoring of the 

thermal parameters around a single animal. The forecasting or estimation of thermal 

stress is still based on the data collected from regional and/or building levels.  

Animal Responses 

Physiological, behavioural, and immunological responses are the primary coping 

responses to the sub-optimal thermal environment. These responses can change from 

normal to impaired levels corresponding to the level and duration of adverse thermal 

conditions (Hahn, 1999). The ways animals cope with heat stress are described as 

acclimatisation (endocrine, cellular and metabolic responses to several stressors), 

acclimation (refers to a single stressor) and adaptation ( a permanent change in the 

genotype) (Roland et al., 2016). In this case, short-term acute events and long-term 

chronic challenges can cause varied responses of animals and finally influence the 

production performance (such as milk production). The TNZ of cow can shift during 

acclimatisation. Moreover, such responses could also be impacted by many other 

factors, such as mitigation strategies and genotype of the animal. 

Sweating or sweating rate (SWR) is one of the obvious responses to high ambient 

temperature among the several physiological and behavioural responses. Animals use 

sweating as an effective cooling system through evaporative heat transfer. The sweating 

rate is highly dependent on the blood flow rate and sweat glands in unit skin area 

(Blazquez et al., 1994). The skin moisture loss is technically difficult to measure and 

highly variable results have been obtained in the range between 77 and 279 g moisture/ 

m2/h (Robertshaw and Vercoe, 1980; Blazquez et al., 1994). Consequently, the 

detection of SWR is also very difficult. However, devices such as the evapo-meter 

(Delfin Technologies Ltd., Kuopio, Finland) were applied by Rungruang et al. (2014) 

to measure the sweating rate on dairy cow skin, clipped and shaved with a razor, and 

top of the hair coat (unclipped and unshaved) shoulder areas. Similar study was also 

conducted to measure the skin wetness of pig using infrared camera, which found the 

angle of camera, time lag after spraying and the size of animal could cause influence 

on the accuracy of the result (Banhazi et al., 2009b). 

Respiration rate (RR) or panting is an early warning indicator of entering heat stress. 

The animal body can increase respiration rate to dissipate excess heat. Silanikove 

(2000) has reported that panting is a way to cool the brain under heat stress (Silanikove, 
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2000). Lanham et al. (1986) found the RR could significantly decline after drinking 

water, which reduces internal body temperature via conductive cooling of the water. 

The measurement of RR is usually performed using visual detection. Monitoring of the 

panting frequency can be performed by human observation or via scanning or video 

recordings during constant time intervals (Scharf et al., 2012). Panting score is usually 

given as breath per minute (Gaughan et al., 2008a). U.S. Meat Animal Research Central 

(USMARC) has developed automatic monitoring devices that fixes such automated 

data logging system on the animal body (Eigenberg et al., 2000). These devices have 

been applied in research (Brown-Brandl et al., 2005; Eigenberg et al., 2005a) to model 

the relationship between RR and heat stress. 

The overall evaporation heat transfer via sweating and panting is defined as respiratory 

and cutaneous water (RCW) losses. Silanikove et al. (1997) reported the RCW loss of 

a 600 kg lactating cow could be as high as 13 kg/day. A significant increase in 

respiration rate can threaten animal health through respiratory alkalosis (Benjamin, 

1981). Studies also reported air pollutants e.g. ammonia could possibly compromise 

respiration by impacting the body buffers, which have exacerbated the heat stress on 

animals (Costa et al., 2003).  

Heart rate (HR) can be measured and used to estimate the heat loss and retained energy 

(illustrated in Figure 2) in ruminants (Brosh, 2007; Green, 2011). The current HR 

monitor designs are based on electrocardiograph analysis, and these units transmit the 

data remotely, which minimizes the presence of humans close to the animals. Devices 

such as implantable very high frequency systems (VHF) combined with PSL-iEGG2 

sensor (Alphonce et al., 2017) or other integrated system with T56H transmitter (Kumar 

and Hancke, 2015) are also available commercially(Brosh, 2007).  

Rectal temperature (RT) is an indicator of core body temperature which is highly 

related to the production performance (Zimbelman et al., 2009; Johnson et al., 1963). 

RT stays nearly constant in TNZ while tend to increase with increasing ambient 

temperature (Zimbelman et al., 2009). Lemerle and Goddard (1986) found greater RR 

could prevent an increase in rectal temperature. Church et al. (2014) investigated the 

relationship between cow eye temperature and rectal temperature. Their study reported 

a strong positive correlation between eye and rectal temperatures. This positive 

correlation indicated that heat stress might be predicted reliably via detecting eye 

temperature, despite the fact that eye temperatures were consistently lower than rectal 

temperatures. However, significant impact from environmental factors (e.g. wind 

speed) was reported, which needs to be well-managed to ensure reproducible and 

meaningful readings from the monitoring devices. There are several commercially 

available devices for measuring rectal temperature, such as digital thermometers GLA-

M500 (Agricultural Electronics, San Luis Obispo, CA) (Church et al., 2014) and GLA 

525/550 (Hi-Performance Digital Thermometer, San Luis Obispo, CA) (Wheelock et 

al., 2010). Another version, a GLMA M700 (San Luis Obispo, CA) has been applied 

by Zimbelman (2007). Brown-Brandl et al. (2003) used the YSI (1700 Brannum Lane, 

Yellow Springs, OH 45387) stainless steel probe inserted to a depth of approximately 

20 cm and recorded temperature with one minute intervals on Pace Scientific Inc. 

Pocket Logger (6407 Idlewild Rd., Suite 2.214, Charlotte, NC 28212). Bouraoui et al. 
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(2002) measured the rectal temperature using a veterinary digital thermometer (Jorgen 

Kruuse A/S, China, Model: MT 1681) inserted nearly 60 mm into the rectum for 60 

seconds.  

Skin temperature (ST) was also investigated by some researchers using an infrared 

thermometer (Model RAYST80XB, Raytek Corporation, Santa Curz, CA, USA) 

(Scharf et al., 2012; Legrand et al., 2011) and  thermocouples (5SC-TT-T-30-36, 

Omega Engineering Inc., Stamford, CT) to measure skin temperatures on shaved areas 

of the animals’ shoulders. An infrared gun (Raynger MXTM model RayMX4pU Raytek 

C, Santa Cruz, CA) has been utilised to measure the skin temperature of the rump and 

loin of the animal from the right and left aside (Zimbelman, 2007). Similarly in piggery 

studies, to detect skin temperature, an Agema 489 thermal camera (FLIR Systems, 

Boston, USA) was applied by Banhazi et al. (2009b), and the compute image analysis 

was done by applying VideoPro32 Colour Image Analysis System software, version 

2.17 (Leading Edge Pty. Ltd., Adelaide, Australia). 

Using current technology, most of the measurements of SWR, RR, RT, and ST still 

require manual detection i.e. touching and inserting or scanning the animal body with 

portable monitors. These manual detections methods limit the frequency of data 

acquisition (i.e. real-time vs. hourly measurements). Human observation can cause 

errors and inconsistencies, adding uncertainty to collected data. Moreover, there is still 

an uncertainty if the interactions with animals during the manual detection can add extra 

stress to animals, which may influence animal responses to heat stress (Brosh, 2007). 

Vaginal temperature (VT) is another method of measuring core body temperature, 

which can be conducted automatically with a sensor placed in the abdominal cavity. 

Such measurement can be performed by telemetry systems consisting of an implantable 

transmitter and a CorTempTM data logger with 30 s data logging interval (HQ, Inc. 9th 

Street Drive, West Palmetto, FL., USA.) (Eigenberg et al., 2005b). Another method is 

using vaginal controlled drug release insert (CIDRTM, InterAg, Hamilton, New 

Zealand) fitted with microcontroller Minilog-TX data logger (Vemco Ltd., Shad Bay, 

Nova Scotia, Canada) that has been applied in measurements of internal body 

temperatures (Schütz et al., 2009; Kendall et al., 2006; Tucker et al., 2008). During 

these studies, temperature loggers were inserted into the vaginal cavity. Similar 

instrument, such as a thermal sensor (Thermochron, SL, KN Laboratories, Osaka, 

Japan) attached to an intravaginal drug release device (PRID, Ceve Sante Animale, 

Libourne, France) was used by Nabenishi et al. (2011). 

Lying patterns (LP) is the main behaviour response of animals to cope with heat stress. 

The change in frequency, duration, and position of lying behaviours usually 

corresponds with the different level of heat stress (Anderson et al., 2013). It is known 

that standing can help cow to increase the available surface of evaporation or 

convective cooling from ventilation, while lying can increase the available surface of 

conductive cooling from bedding material. (Anderson et al., 2013; Smith et al., 2016; 

Provolo and Riva, 2009). Core body temperature (CBT) will intensively affect the lying 

behaviour of a cow as reviewed by Allen et al. (2013). The measurement of lying 

behaviour can be visually conducted by observing the cows (Tucker et al., 2008), but 

this methods is labour intensive and thus expensive. Automatic approaches include 
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video recording system such as Aycan Alarm systems, from Security Joint Stock 

Company, Samsun, Turkey, (Uzal Seyfi, 2013) and sensor devices such as HOBO 

Pendant G, from Onset Computer Corp (Wang et al., 2016).  

Several behavioural indices have been developed to assess the comfort of cow, such as 

cow comfort index (CCI) (Cook et al., 2005), free-stall use index (SUI) (Overton et al., 

2002), and cow stress index (CSI) (Mattachini et al., 2011). These indices calculate the 

ratio of cows to specific behaviour (e.g. lying vs. standing sows per building or farm). 

The seasonal variation of these indices is correlated to thermal indices and Uzal Seyfi 

(2013) specifically suggested an accurate time range for daily behaviour observation. 

Instead of continuous observation, Uzal Seyfi (2013) recommended performing 

observations during 08:00 AM to 15:00 PM and 19:00 PM to 24:00 PM in the autumn 

and summer, 12:00 PM to 16:00 PM in the winter and 10:00 AM to 12:00 PM and 

20:00 PM to 22:00 PM in the spring. It was also found that the building structure e.g. 

insulated or uninsulated building can affect the value of these behaviour indices even 

under the same thermal conditions (Provolo and Riva, 2009). Stocking density was also 

demonstrated to have an influence on these indices, the 129% stocking density can 

reduce ratio of SUI ≥ 85%, compared with 82% and 100% stocking density (Wang et 

al., 2016).  

Production Performances 

The measurement of production performances is a routine task for farmers and farm 

managers. Several research projects, management systems, and report standards have 

been developed and applied by agricultural institutes for farmers (Ghavi Hossein-Zadeh 

et al., 2013; Bryant et al., 2007; Carabano et al., 2016a). The measured variables are 

mainly the body weight, feed intake, milk yield, and conception rate recorded in 

databases for farm or regional management. This section reviews the primary indicators 

affected by heat stress: feed intake, milk production, and fertility.  

Feed intake or dry matter intake (DMI) decreases to reduce diet-induced 

thermogenesis (DeShazer et al., 2009). It is reported that a heat stressed dairy cow could 

have negative energy balance (NEBAL), when feed intake was not meeting energy 

demands (energy input in Figure 2) of maintenance (heat loss) and lactation (retained 

energy) (Allen et al., 2013). Moreover, under heat stress, the reduction of feed intake 

also exacerbates the degree of NEBAL and decreases the milk production (Rhoads et 

al., 2009). Measurement of DMI can be performed by automated feeding systems such 

as Insentec feed bins (Rough- age Intake Control system, Insentec B.V) (Wang et al., 

2016).  

Milk yield (MY) or milk production is the primary concern during heat stress. The 

majority of studies on the impact of heat stress on dairy cows have used MY as the 

indicator of production performance (e.g. investigating correlation between MY and 

rectal temperature) (Table 2-4). Some research has described that reduced milk 

production might result in reduced metabolic heat production as well (West, 2003). Key 

indicators of production performance related to heat stress, such as the quantity and 

quality of milk production (protein, fat, casein, lactose and total milk solids ) can be 

automatically reported by milk analysers incorporated into the milking stations, such 

as FT120, from Foss Elctric, Hillerod, Denmark (Kendall et al., 2006). This 
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theoretically enables producers to assess the impact of heat stress on farms. 

Furthermore, factors including interval and duration in milk station for individual 

animals are also available for analysis of the animals’ milking behaviour. 

Conception rate (CR) or productivity is another indicator of the production 

performance which can be affected by the heat stress. Conception rate is defined as the 

success rate of artificial insemination, or the inverse of the number of services per 

conception (Ghavi Hossein-Zadeh et al., 2013). Rensis and Scaramuzzi (2003) reported 

that heat stress in summer can cause nearly 20-30% reduction in conception rate 

compared with the thermal conditions in winter time. Moreover, they pointed out that 

the effect of heat stress was lasting. The effect of summer heat stress could even cause 

negative after-effects during the autumn. It was also reported that increased uterine 

temperature can be measured as another indicator of heat stress which is linked to 

decreased conception rate (Biby, 2010). In modern dairy farms, information about 

production performance is always recorded by farmers as part of their management 

systems. There are systems developed to monitor animal reproduction by collecting 

data such as breeding dates and pregnancy detection e.g. HerdeW version 5.5, from 

Software Projecktierungs und Handels GmbH, Aschara, Germany (Schuller et al., 

2014). Traditionally, detection of the pregnancy is performed manually by rectal 

palpation (Morton et al., 2007a). 

In summary, the measurement of the heat stress indicators is the first step for assessing 

the heat stress impact on farms. However, no uniform measurements systems are 

available for recording these key variables on farms. Thus, different results may be 

generated by farmers and researchers depending on the type of devices and operating 

procedures used.  

2.5. Assessment of heat stress – the development of thermal indices  

As illustrated in Table 1, several factors can affect heat transfer and heat balance within 

intensive livestock systems. Thermal indices (TI) are developed to model the linkage 

between such factors and the indicators of animal responses to assess the heat stress 

impact on animals. This section will summarise the published thermal TIs (Table 2-3), 

simulated thresholds of indices (Table 2-4), and results from field measurement (Table 

2-5). The initial studies on heat stress were focused on heat tolerance and adaptability 

of animal through indicators of animal body condition such as RT and RR (Rhoad, 

1944; Bianca, 1963; Benezra, 1954). Many studies have used the temperature humidity 

index (THI) as an indicator of heat stress (Sevi et al., 2001). As shown in Table 2-3, 

the original THI was established as a discomfort index (THI-1) using Tdb and Twb for 

evaluating human comfort (Thom, 1959). The adapted form of THI equation (THI-4) 

was used to model the rectal temperature of bull calves and different coefficients of 

Tdb and Twb (Bianca, 1962). THI-5 and 6 were studied on Heifer cows (MY: 15.5 

kg/d) in a climate chamber (Berry et al., 1964; Yousef, 1985). The values calculated by 

these two indices (THI-5,6) were used as the basis for a livestock weather safety index 

(LCI, 1970). THI-7 was used to report a strong relation between thermal condition, 
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milk production and animal comfort (Johnson, 1965). In the past 50 years, a range of 

equations were developed to estimate THI, as described in Table 2-4.  

Assuming uniform responses from all animals on a farm to a thermal stressor is 

unrealistic due to differences between animals such as age, genotype, and production 

level, thermal variance of ventilation and solar radiation (Berman, 2005). As an 

example of the impact from different production levels on thermal tolerance, 

Zimbelman et al. (2009) found the threshold of THI-6 has declined to 68 compared 

with the previous stress value 72, as the milk production level increased from about 15 

kg/d to around 30 kg/d after the initial THI equation was established. Gorniak et al. 

(2014) found the value might be even as low as 60, denoting a reduction in feed intake 

and milk production for the temperate climate in Germany. Similar threshold (THI = 

62) was also found by Hammami et al. (2013) from an experiment in Luxembourg. Due 

to these limitations for using THI equation, the reported thresholds were only suitable 

to the condition where it was developed. The modification to THI equations has been 

conducted in much published research (Mader et al., 2006; Buffington et al., 1981; 

Yousef, 1985; Baeta et al., 1987; Gaughan et al., 2002; Berman, 2005; Eigenberg et 

al., 2005a; Gaughan et al., 2008a). These studies attempt to include more related factors 

to the model such as wind speed and solar radiation, as well as the specific biological 

differences due to breed type, coat colour, and health status. Tbg was used to replace 

dry bulb temperature in the general THI equation which developed the black globe 

humidity index (BGHI) (Buffington et al., 1981). The equivalent temperature index 

(ETI) was built by analysing the relationship between milk production and the heat-

loss rates (Baeta et al., 1987). By considering wind speed, this index demonstrated the 

importance of ventilation cooling in hot and wet condition. By incorporating the effect 

of wind speed and solar radiation into THI-6, Mader et al. (2006) provided an improved 

regression (higher R2) with panting score to estimate the discomfort of heat stress of 

feedlot cattle. Brown-Brandl et al. (2005) used further environmental parameters to 

develop the respiration rate index (RR) at a feedlot for different breeds. Their research 

demonstrated the importance of considering heat tolerance with or without shading, 

especially for animals under THI>78. Gaughan et al. (2002) developed the heat load 

index (HLI) for feedlot beef cattle. Modelling was based on panting observations in 

four Australian commercial feedlots. The management factor, shaded or unshaded, was 

taken into account. They used Tbg, RH, and WS to mathematically describe the 

microclimate condition of the animals. The study finally determined thresholds value 

(starting net gain of body heat) for different body and environmental conditions of 

animals. The index was modified with another study including 13 feedlots farm and 

used as the basis for a risk assessment program on the web server (Gaughan et al., 

2008a). Based on the HLI equations (HLI-1,2), the comprehensive climate index (CCI) 

was developed to assess both cold and heat stress (Mader et al., 2010). They used the 

CCI index to estimate an apparent temperature which represented ambient temperature 

that the animals would feel. CCI included varied adjustment equations for the main 

equation which accounted for the different weight of thermal factors. However, the 

latest indices are primarily modelled on feedlot cows fed in open areas. The effort to 

understand the differences between beef cows and dairy cows as well as the variability 
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between intensive and extensive farming systems is still necessary. Berman (2005) 

introduced an index, the threshold temperature (THRT) by simulating the thermal 

balance of Holstein dairy cows (Berman, 2005). The index was used to estimate the air 

temperature threshold when dairy cows need heat relief. The simulation of using the 

THRT in practical estimations used a thermal balance model consisting of 153 elements 

such as the effects of milk production, hair coat depth, ambient temperature, humidity, 

wind speed and exposed body surface (posture) (McGovern and Bruce, 2000). Based 

on these varied effects, the study introduced multiple equations for different production 

levels to calculate the air temperature when respiratory heat loss is occurring. In 

practical, on-farm heat stress studies (Table 2-5), not all of these developed indices 

were selected to be included in the predicting equations. Currently, the equation of THI-

6 was used more extensively in field studies (Table 2-5). There is a limitation for 

application of TIs, in part due to the limitation of the available instrument, the difficulty 

of measurement, and weight of thermal factors in different equations.  

The assessment of cow heat stress generally has reported the threshold values of heat 

stress (such as the breakpoint of decline in production performance), the interaction of 

time effect (such as the time lag of heat stress), and the coefficient between thermal 

indices and animal responses (such as reduction in milk yield per day per unit increase 

in THI). The maximum and minimum THI values were used to quantify the intensity 

of heat stress (Herbut and Angrecka, 2012).The maximum THI value was usually 

measured at mid or early afternoon which indicated the highest heat stress suffered by 

dairy cows. Inversely, the minimum THI value was measured for quantifying the night 

time cooling efficiency. For example, the threshold of mortality was reported based on 

maximum THI > 80 and minimum THI > 70 (Vitali et al., 2009). The research found 

that the coefficient between mortality and THI had an increase from -0.542 to 232.75 

deaths per 1000 cattle after exceeding the threshold point (THI maximum > 80). Several 

threshold values were developed based on varied thermal indices as shown in Table 2-

4. The coefficient between animal production and heat stress level is one of the primary 

interests in related studies listed in Table 2-5 (e.g. Hammami et al. (2013)).  

Different studies have related the significant effect from heat stress to different 

exposure time (e.g. two weeks (Berry et al., 1964), 24-48 hours (Spiers et al., 2004), 

and 2 days (West et al., 2003)). García-Ispierto et al. (2007) reported the impact of heat 

stress on the conception rate to be highly dependent on timing of the stress and the 

artificial insemination service. Their results indicated that prediction of impact by the 

heat stress using THI equation should focus on the three days before and one day after 

the artificial insemination (AI). They also reported that the heat stress predicted by a 

THI equation could decrease the ratio of pregnancy and foetal loss during 21-28 days 

of gestation. To provide effective mitigation, farmers were required to monitor at least 

five weeks before and one week after service (Morton et al., 2007a). It can be concluded 

that application of the short-term values of THI (e.g. THI during stress time) has no 

value in predicting animal responses to heat stress. Studies that determine THI values 

for a longer-time period (e.g. fortnightly) have a greater value; however, the long-time 

results (e.g. thresholds) cannot be applied in real-time mitigation (e.g. ventilation 

control). A long term assessment (e.g. two weeks with exposure to high THI) cannot 
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prevent the milk yield loss under heat stress. Zimbelman (2007) recommended that the 

assessment following the heat stress event should not exceed 48 hours. Therefore, 

farmers can provide timely mitigation measures to avoid milk yield losses in a two 

week time window after start of the heat stress. 

The finding of 20 publications on heat stress research studies as summarised in Table 

2-5 were focused on cow mobs with a varied number of animals from <20 to >10000 

with time durations in range between few weeks and several years. They had selected 

cows with a body condition score from 2 to 6. The range of daily milk yield level was 

between 15 to 32 kg/d/cow. Calculated as a coefficient with unit increasing of TI, the 

physiological responses of animal were quantified in the range between -0.11 and -0.23 

hour/TI of lying time, and +0.09 to +0.54 BPM/TI of RR. The core body temperatures 

(VT or RT) were quantified in a range of +0.01 to +0.293 oC/TI. The production 

performance was quantified in a range of -0.13 to -0.254 kg/TI of DMI, -0.125 to -1.48 

kg/TI of MY, and -0.5 to -1.1 %/TI of conception rate. Several factors such as varied 

regional climate condition or animal body conditions caused the variance of these 

results. However, there is still insufficient understanding of the most effective way to 

deal with these factors. Several studies have aimed to determine the reasons for such 

differences by evaluating the performance of published TIs. Bohmanova et al. (2007) 

compared the performance of seven THI indices (THI 1 to 7) for predicting milk 

production loss using data collected from 61 herds in America. The author indicated 

that the weight of humidity in THI equation is the primary reason for the inconsistency 

under different climates. Silva et al. (2007) evaluated the performance of equations of 

THI-5, BGHI, ETI, ESI, HLI-1, and RR on their regression with animal physiological 

responses. The author recommended ETI and HLI equations for evaluating tropical heat 

stress conditions. However, in the study of Kendall et al. (2006), HLI was reported to 

be less useful compared to THI to account for the vaginal temperature. Another 

evaluation of these equations by Hammami et al. (2013) for Holstein breeds 

recommended that THI-8 was the best choice for preliminary heat stress forecast in 

Luxembourg. This was related to the robust nature of the equation and taking into 

account the wind speed and solar radiation. Another evaluation of the thermal indices 

was conducted by comparing their Pearson correlation coefficient between indices’ 

values and physiological responses (Li et al., 2009). The study used data collected from 

5 different states in America and University of Arizona Parker Agriculture Research 

Complex in the same year 2008. The correlation between indices’ values and animal 

responses (skin temperature, rectal temperature, and sweating rate) did not gain high 

correlations (< 0.4) when the data set was pooled. However, the results collected from 

Parker Agriculture Research Complex showed reasonably good correlation between 

respiration rate and THI-adj, BGHI and HLI. Dikmen and Hansen (2009) have even 

pointed out that a direct application of the ambient temperature (Tdb) as the predictor 

of rectal temperature might have a similar performance as THI equations in sub-tropical 

regions.  

Table 2-4 is presenting calculated threshold values for different thermal indices under 

multiple climate conditions from cold-dry to hot-wet. In this table, the microclimate 

condition was simulated for wind speeds in range between 0 and 7 m/s, while the solar 
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radiation was varied between 475 and 1112.5 W/m2. In Table 2-4, threshold values of 

these thermal indices are categorised as normal, alert, urgent and emergency as different 

levels of heat stress. It is likely that under the same climate conditions, different thermal 

indices would result in different assessment. For instance, in Table 2-4, the thermal 

condition with Tdb equal to 27oC and RH equal to 68% will be considered as Danger 

level with THI-7, while it will be assessed as Normal level with THI-2. As discussed 

above, the difference can be related to the varied contribution of the parameters in the 

equations. To improve the accuracy of the equation by adding enough parameters to 

account for different climate or farm conditions, national or international studies are 

necessary (e.g. Gaughan et al. (2008b)). The proposed outcome can be a guideline for 

farmers to select a suitable method to estimate TI for their specific farm conditions and 

animal breed. However, the time resource and the labour cost can be an important driver 

in their selection for evaluation method.  

In summary, the development of thermal indices has been undertaken for several 

decades to provide a modelling tool in order to assess the likely impact of heat stress. 

The recent version of TI equations (RR or HLI) permitted the provision of an early 

warning function for heat stress. In general, they have applied panting score or 

respiration rate as a sensitive indicator of animal responses to heat stress. Temperature, 

humidity, wind speed and solar radiation are the most required environmental factors 

considered in the recent equations (RR or HLI). With the improvement in technology 

for measurements, studies can now be conducted on animals in different 

regions/countries and studies can be conducted for longer periods. Animal related 

variables such as breed, coat colour, body condition and production status have also 

been considered in model development in previous studies (Gaughan et al., 2008b; 

Gaughan et al., 2002; Carabano et al., 2016b). All these improvements have resulted in 

development of equations to deal with a greater complexity of calculation and to be 

applicable to practical conditions.  
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Table 2-3 Summary of TI equations 

Equation 
Farm, Facility & Time 

arrangement 

Number of 

Animals 

Breed & 

Production Level 

Indicator 

of 

Responses 

Reference 

THI-1 = 1.8 * [0.4 * (Tdb+Twb)] +47  

THI-2 = 1.8 * (0.15Tdb + 0.85Twb) + 32  

THI-3 = 0.72Tdb + 0.72Twb + 40.6  

ESI = 0.63Tdb - 0.03RH + 0.002SR+ 0.0054Tdb * RH – 

0.073(0.1+SR)-1  

【HUMAN】 

N/A N/A N/A N/A 
Thom (1959); 

Moran et al. (2001) 

THI-4 = 1.8 * (0.35Tdb + 0.65Twb) + 32 Climate chamber 4 

Ayrshire bull calves 

【FEEDLOT 

CATTLE】 

RT Bianca (1962) 

THI-5 = Tdb + 0.36 Tdp + 41.5 

THI-6 = 0.8Tdb + (Tdb - 14.4) * RH + 46.4 
Climate chamber 56 

Heifers 

MY: 15.5 kg/d 
Unknown 

Berry et al. (1964);  

Yousef (1985) 

THI-7 = 1.8 * (0.55Tdb + 0.2Twb) + 49.5 Unknown Unknown Holstein MY Johnson (1965) 

THI-8 = 4.51 + THI-6 – 1.991WS + 0.0068SR 
Pens with varied shelter 

(14:00-17:00, 82-83 days) 

72 (exp.1) 

96 (exp.2) 

Angus 

Angus crossbred  

【FEEDLOT 

CATTLE】 

RR Mader et al. (2006) 

BGHI = Tbg + 0.36Tdp + 41.5 

Open pasture with shad 

structure 

(24 hour, 4 non-

consecutive days) 

30 Mostly Holsteins 
RT, RR, 

MY 

Buffington et al. (1981) 

Yousef (1985) 

ETI = 27.88 – 0.456Tdb + 0.012Tdb2 – 0.491RH + 

0.001RH2 + 1.151WS – 0.126WS2 + 0.020Tdb * RH - 

0.046Tdb * WS 

(T:16-40℃, RH:40-90%, WS: 0.5-6.5 m/s) 

Unknown Unkown Lactating dairy cow MY Baeta et al. (1987) 

HLI-1 = 33.2 + 0.2RH + 1.2Tbg – (0.82WS)0.1 – 

log(0.4WS2 + 0.001) 

4 feedlots 

(2 months) 
2187 

【FEEDLOT 

CATTLE】 

RR, 

Behaviors 
Gaughan et al. (2002) 

RR = 5.1Tdb + 0.58RH – 1.7WS + 0.039SR – 105.7 

Pends with shade 

structure 

(4 months) 

96 

Angus, 

Hereford,  

Pinzgauer,  

Red Poll 

RR 
Eigenberg et al. 

(2005b) 
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【FEEDLOT 

CATTLE】 

THRT = 33.7 + 7.9WS – 3.8WS2 -3.3WVP + 

1.6WS*WVP  

 (T:20-45, RH: 0.8-3.9kPa, WS: 0.2-2 m/s) 

Data simulation for 

indoor farming 
N/A 

Holstein 

(MY:45kg/d) 

Thermal 

Balance 

Outputs 

Berman (2005) 

HLI-2 = 8.62 + 0.38RH + 1.55Tbg – 0.5WS + e2.4-WS 

(Tbg>25) 

HLI-2 = 10.66 + 0.28RH + 1.3Tbg – WS (Tbg<25) [e = 

2.71828] 

13 feedlots 

Varied shade 

specifications 

(>1 year) 

>10000 

B.Taurus, 

B. Idicus 

Waygu 

Crossbreed 

【FEEDLOT 

CATTLE】 

RR, 

Tympanic 

temperature, 

Gaughan et al. (2008a) 

 

Table 2-4 Threshold values based on thermal indices equations 
Tdb 

(oC) 

RH 

(%) 

WS 

(m/s) 

SR 

(W/m2) THI-1 THI-2 THI-3 THI-4 THI-5 THI-6 THI-7 THI-8 BGHI ETI HLI-1 RR HLI-2 

20.0 52.5 7.0 475.0 72 59 65 61 65 65 74 59 72 18 65 28 67 

21.0 54.8 6.5 517.5 73 61 67 63 67 67 76 62 74 20 67 37 70 

22.0 57.0 6.0 560.0 75 63 68 65 68 68 77 65 75 21 69 46 72 

23.0 59.3 5.5 602.5 76 65 70 67 70 70 79 68 77 23 70 55 75 

24.0 61.5 5.0 645.0 78 67 71 69 71 72 80 70 79 25 72 64 78 

25.0 63.8 4.5 687.5 79 69 73 71 73 73 81 73 80 27 74 73 81 

26.0 66.0 4.0 730.0 81 72 75 73 74 75 83 76 82 29 76 82 84 

27.0 68.3 3.5 772.5 83 74 76 75 76 77 84 79 84 31 77 91 87 

28.0 70.5 3.0 815.0 84 76 78 77 77 78 86 82 86 34 79 99 90 

29.0 72.8 2.5 857.5 86 78 80 80 79 80 87 86 87 36 81 108 94 

30.0 75.0 2.0 900.0 88 80 81 82 81 82 89 89 89 39 83 117 97 

31.0 77.3 1.5 942.5 89 83 83 84 82 84 90 92 91 42 85 126 101 

32.0 79.5 1.0 985.0 91 85 84 86 84 86 92 95 92 44 87 135 105 

33.0 81.8 0.5 1027.5 93 87 86 88 85 88 93 99 94 47 89 144 111 

34.0 84.0 0.0 1070.0 94 89 88 90 87 90 95 102 96 50 94 153 118 

35.0 86.3 0.0 1112.5 96 92 89 93 88 92 96 104 97 53 95 161  

*Thresholds for THI and BGHI: Normal:<74; Alert:74-79; Danger:79-84; Emergency:>84; (Eigenberg et al., 2005b) 

*Thresholds for ETI: Normal:<30; Alert:30-34; Danger:34-38; Emergency:>38; (Silva et al., 2007) 
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*Thresholds for HLI-1: Normal:<89; Alert:89-92; Danger:92-95; Emergency:>95; (Silva et al., 2007) 

*Thresholds for HLI-2: Normal:<80; Alert:80-88; Danger:88-92; Emergency:>92; (Hammami et al., 2013) 

*Thresholds for RR: Normal:<90; Alert:90-110; Danger:110-130; Emergency:>130;(Eigenberg et al., 2005b) 

*The legend of color and levels: Normal, Alert, Danger, Emergency 

Table 2-5 Summary of studies using thermal indices 
Responses Thermal 

Index 

Animal 

NUM 

Duration Genotype Production and body status Environmental 

condition 

Coefficient with thermal index 

value 

Reference 

LP THI-6 

HLI-2 

24 2 months Holstein 

Friesian 

601 kg body weight 

2.5-3.75 (1-10) body 

condition score 

Non-lactating 

Tdb: 18.2 – 

31.4 ℃ 

RH: 19 – 64% 

WS: 0 – 2.8 m/s 

SR: 169 – 308 

W/m2 

THI: 62 – 77.7 

HLI: 54-81 

-0.16 to -0.23 hour lying time /24 

hour/ THI 

-0.11 to -0.16 hour lying time /24 

hour/ HLI 

Legrand et al. 

(2011) 

RR THI-5 

BGHI 

ETI 

ESI 

HLI-1 

RR 

413 1 year Holstein 

Jersey 

15 kg/cow/day milk yield Tdb: 25 – 35 ℃ 

RH: AVG 65 % 

WS: AVG 9.6 m/s 

+0.099 bpm respiration rate / 

THI 

+0.155 bpm respiration rate / 

BGHI 

+0.520 bpm respiration rate / 

ETI 

+0.464 bpm respiration rate / 

ESI 

+0.542 bpm respiration rate / 

HLI-1 

+0.344 bpm respiration rate / RR 

Silva et al. (2007) 

RT or VT THI-6 

HLI-2 

40 20 days Holstein 

Friesian 

514 kg body weight 

3-4 (1-10) body condition 

score 

Tdb: 7.7 – 

27.8 ℃ 

THI: 46.4 – 74.1 

HLI: 41.8 – 81  

+0.01℃ vaginal temperature / 

THI 

 

Kendall et al. 

(2006) 

THI-5 

HLI-2 

27 18 days Holstein 

Friesian 

193 lactation days 

510 kg body weight 

4-5 (1-10) body condition 

score 

Tdb: 1 – 24℃ 

RH: 32 – 94% 

Tbg: 0 – 33 

+1.9% of internal body 

temperature / THI 

+0.6% of internal body 

temperature / HLI 

Schütz et al. (2009) 
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SR: 0 – 1171 

W/m2 

(basic internal body temperature 

38.4 ℃) 

THI-6 

HLI-2 

36 20 days Holstein 

Friesian 

158 lactation days 

499 kg body weight 

3.5-6 (1-10) body 

condition score 

20.8 kg/cow/day milk 

yield 

Tdb: 8.5 – 

28.6 ℃ 

RH: 9 – 47% 

WS: 0 – 31.7 m/s 

SR: 0 – 1309 

W/m2 

THI: 47.8 – 77.7 

HLI: 45.6 – 102.2 

+0.07℃ vaginal temperature / 

HLI 

No relation to THI 

Tucker et al. (2008) 

THI-7 10-48 

(8 separate 

studies) 

1 month Holstein 90 – 140 lactation days Tdb:8 – 40 ℃ 

RH: 8 – 40 % 

THI: 60 – 80 

+0.06℃ rectal temperature / THI 

 

Zimbelman (2007) 

THI-5 

BGHI 

ETI 

ESI 

HLI-1 

RR 

413 1 year Holstein 

Jersey 

15 kg/cow/day milk yield Tdb: 25 – 35 ℃ 

RH: AVG 65 % 

WS: AVG 9.6 m/s 

-0.053℃ rectal temperature / 

THI (NS) 

+0.054℃ rectal temperature / 

BGHI (NS) 

+0.293℃ rectal temperature / 

ETI 

+0.209℃ rectal temperature / 

ESI 

+0.286℃ rectal temperature / 

HLI-1 

+0.114℃ rectal temperature / RR 

Silva et al. (2007) 

DMI THI-7 10-48 

(8 separate 

studies) 

1 month Holstein 90 – 140 lactation days Tdb:8 – 40 ℃ 

RH: 8 – 40 % 

THI: 60 – 80 

-0.13 kg/cow/day dry matter 

intake / THI 

 

Zimbelman (2007) 

THI-6 14 2 month Holstein 

Friesian 

19-20 kg/cow/day milk 

yield 

Tdb:14.7 – 

38.9 ℃ 

RH: 18.5 – 

82.4% 

THI: 68 – 78  

-0.18 kg/cow/day dry matter 

intake / THI 

 

Bouraoui et al. 

(2002) 

THI-3 Unknown 2 season 

winter 

summer 

Jersey 

Sindhi 

Unknown THI: 74 – 86 -0.254 kg/cow/day dry matter 

intake / THI 

Henry et al. (2014) 
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MY THI-3 145 15 years Holdeo 

(Holstein 

Friesian  

* Deoni) 

Unknown Tdb: 22 – 38℃ 

RH: 25 – 54% 

WS: 6.2 m/s 

-18.22 kg of seasonal lactation 

milk yield / THI 

-142.59 days of lactation / THI 

Mote et al. (2016) 

THI-6 

HLI-2 

40 20 days Holstein 

Friesian 

514 kg body weight 

3-4 (1-10) body condition 

score 

Tdb: 7.7 – 

27.8 ℃ 

THI: 46.4 – 74.1 

HLI: 41.8 – 81  

-0.2 kg/cow/day milk yield / THI 

-0.125 kg/cow/day milk yield / 

HLI 

Kendall et al. 

(2006) 

THI-1 to 

7 

 

94362 Unknown Unknown 28-30 kg/cow/day milk 

yield 

166-174 lactation days 

Tdb: 1 – 38 ℃ 

RH: 11 – 99% 

THI: 31 – 92  

-0.22 to -0.57 kg/cow/day milk 

yield / THI 

Bohmanova et al. 

(2007) 

THI-6 14 2 month Holstein 

Friesian 

19-20 kg/cow/day milk 

yield 

Tdb:14.7 – 

38.9 ℃ 

RH: 18.5 – 

82.4% 

THI: 68 – 78  

-0.4 kg/cow/day milk yield / THI 

 

Bouraoui et al. 

(2002) 

THI-6 174 3 months Holstein 

Friesian 

Group 1: 12 kg/cow/day 

milk yield 

Group 2: 21 kg/cow/day 

milk yield 

Group 3: 32 kg/cow/day 

milk yield 

Tdb:15.5 – 33 ℃ 

RH: 35 – 96 % 

THI: 60 – 80 

Group 1: -0.18 kg/cow/day milk 

yield / THI 

Group 2: -0.28 kg/cow/day milk 

yield / THI 

Group 3: -0.36 kg/cow/day milk 

yield / THI 

Herbut and 

Angrecka (2012) 

THI-6 1173 9 years Holstein Unknown Tdb: -13.6 – 

37.5 ℃ 

RH: 7 – 100 % 

THI: 34.2 – 87.5 

-1.48 kg/cow/day milk yield / 

THI 

 

Ghavi Hossein-

Zadeh et al. (2013) 

THI-3 >10000 16 years Deoni 246 lit/cow/month milk 

yield 
Tdb: 21 – 39 ℃ 

RH: 22 – 51 % 

-0.347 lit/cow/month milk yield / 

THI 

Thorat et al. (2016) 

THI-6 

THI-8 

HLI-2 

ETI 

ESI 

CCI 

23963 11 years Holstein 5 – 330 lactation days 

23-24 kg/cow/day milk 

yield 

Tdb: 0 – 18℃ 

RH: 72 – 91% 

SR: 36 – 164 

W/m2 

WS: 2 m/s 

-0.164 kg/cow/day milk yield / 

THI-6 

-0.152 kg/cow/day milk yield / 

THI-8 

-0.123 kg/cow/day milk yield / 

HLI-2 

Hammami et al. 

(2013) 
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-0.146 kg/cow/day milk yield / 

ETI 

-0.109 kg/cow/day milk yield / 

ESI 

-0.154 kg/cow/day milk yield / 

CCI 

THI-6 191012 6 years Holstein 5 – 305 lactation days 

Multiparous 

THI: 50-85 -0.91-1.27 kg/cow/day milk 

yield / THI 

Bernabucci et al. 

(2014) 

THI-6 6813 10 years Unknown 15.5-17.5 kg/cow/day milk 

yield 

THI: 46 – 79 -0.2 kg/cow/day milk yield / THI Bouraoui (2009) 

CR THI-6 1150 2.5 years Holstein  10345 kg annual milk 

production/cow 

Tdb: 2.3 – 

29.8 ℃ 

RH: 49-96% 

 

-0.02 odds ratio / THI 

-0.63% conception rate / THI 

-0.50% conception rate / hours 

with THI > 73 

Schuller et al. 

(2014) 

THI-6 11302 3 years Holstein 

Friesian 

613.5 kg body weight 

25-29 kg/cow/day milk 

yield 

Tdb: 12.2 – 

32.1 ℃ 

RH: 9 – 47% 

THI: 55.8 – 79.9 

-0.55% conception rate / THI 

Critical point:  

THI>69 1 day before AI 

Nabenishi et al. 

(2011) 

THI-5 8155 2 years Holstein 

Friesian 

26 year around calving THI: 66 – 78 -1.11% conception rate / THI 

with THI > 70 

 

Morton et al. 

(2007a) 

THI-6 1735 3 years Holstein  10499-10266 kg annual 

milk production/cow 

Tdb: 5.6 – 

31.8 ℃ 

RH: 72 – 94 % 

THI: 42.9 – 80.7 

-0.309% conception rate / THI 

mean 

-0.318% conception rate / THI 

max 

García-Ispierto et 

al. (2007) 

THI-6 6813 10 years Unknown 15.5-17.5 kg/cow/day milk 

yield 

THI: 46 – 79 -0.926% conception rate / THI Bouraoui (2009) 
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2.6. Mitigation of heat stress – the way of cooling   

To enhance cow comfort and minimize production loss under adverse thermal 

conditions during summer time, environmental management is a necessity (Grant, 

2012). The mitigation strategies for housed cows following physical or thermodynamic 

principles (conduction, convection, radiation and evaporation cooling) will be reviewed 

in this section. In practical terms, other approaches (not included in this review) such 

as fixed time artificial insemination (Rensis and Scaramuzzi, 2003), nutrition/feeding 

(Kanjanapruthipong et al., 2015b; Wheelock et al., 2010; Rungruang et al., 2014; 

Miron et al., 2010; Miron et al., 2008) and genetic improvements (Hansen, 2007) are 

also important to provide combined benefits with thermal cooling facilities, but will not 

be included in this review. 

Roof and Shading 

The effect of solar radiation load as a contributor to heat stress was researched by 

Pollard et al. (2004). Shading constructions should generally be made available on dairy 

farms, especially on feedlot dairies. The purpose is to minimize the solar load (radiation 

heat transfer) in the afternoon and maximize the efficiency of conductive or convection 

cooling (Sparke et al., 2001). The parameters of the material, size, and orientation have 

been studied for nearly 5 decades (Givens, 1965; Hahn et al., 1962; Bond et al., 1967). 

An animal radiation heat balance (Rbal) was derived by Berman and Horovitz (2012). 

The author defines radiation from animal surrounding sources as the underside of the 

roof providing the shade, the cool and shaded ground, the hot unshaded ground 

surrounding the shadow created by the shade, the indirect diffuse radiation from a cool 

sky, and the radiation from the sun-exposed ground surrounding the shade. The primary 

effect factors of Rbal were determined as the intensity of radiation sources, roof and 

shaded surface dimensions, and animal density. The author also concluded that the 

increase of the shaded area (shaded ground) per cow would only provide a small effect, 

as the surface of the cow’s body only had a small radiation heat gain from the shaded 

ground. Shoshani and Hetzroni (2013) reported some new barn construction designs: 

the sliding roof, shuttered roof, open ridge roof and pagoda (capped-gable) roof. The 

author mentioned varied building specific dimensions such as orientation, width, height 

and slope of the roof should be adjusted for different local conditions. Wind and 

sunshine direction are the two key factors for these dimensions. For the efficiency of 

shading mitigation, Kendall et al. (2006) reported the influence from the shading 

facility could only gain limited mitigation compared with enough night cooling for the 

cow under temperate summer conditions. It was also found that although shading 

protects animals from highest solar radiation, the different treatments of shading (non-

shading, 25%, 50% and 90% shading) had no difference on lying behaviour and only 

0.2 oC reduction (37.9 oC – 25% shading vs. 37.7 oC – 90% shading) of minimum body 

temperature (Tucker et al., 2008). Studies also found that the colour of the cow’s body 

had a significant influence on the body temperature changes caused by solar radiation, 
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as well as the preference of the shading type. Similar results were also demonstrated by 

Schütz et al. (2009).  

Bed Cooling 

Cows lose heat through conduction when lying down, if the surface in contact with the 

cows is lower than body temperature. Cummins (1998) used different bedding materials 

for the dairy cow and found cows preferred ground limestone. The naturally occurring 

conductive cooling when cows lie on sand bedding was studied by Radoń et al. (2014), 

who developed a transient heat exchange computational model that predicted that cows 

would lose about 400 W (or 339 W/m2) when lying on sand bedding for typical summer 

afternoon conditions for Bratislava, Slovakia (steady-state flux was lower). This model 

assumed that stalls were not over-crowded and, consequently, the sand bedding was 

able to cool off between lying bouts. Cows may also choose to lie down in cooler areas. 

Research performed on a free-stall dairy barn (with cubicles in 4 lines, head to head) 

by Seyfi (2013) found that the cows preferred to use the courtyard for resting during all 

seasons instead of the high-cost stalls. The cows preferred the dry and clean area with 

a soft floor and high air speed. Therefore, an engineer should pay more attention to the 

design of the courtyard area. Adequate shade areas and good drainage could be the 

important factors for a comfort courtyard area. Cows may also sacrifice comfort and 

hygiene to seek out conductive cooling when heat stressed. Herbut and Angrecka 

(2018) studied cows behaviour under heat stress and reported that as the daily average 

THI increased from 62.6 to 73.2, cows decreased the amount of time lying in stalls from 

9.2 to 6.7 h/d and increased the amount of time lying in manure alleys from 0.5 to 1.4 

h/d, apparently as a way to cool down. However, cows lying in a manure alley to cool 

off is uncomfortable and will lead to poor hygiene. 

Some studies have investigated enhancing natural conductive cooling by actively 

chilling water then using the chilled water to cool the bedding for the cows. Perano et 

al. (2015b) developed and evaluated a conductive cooling system that circulated chilled 

water through modified cow’s waterbeds. The conductive cooling system was 

evaluated with both 4.5 and 10 ⁰C circulating water and using about 1 cm of sawdust 

bedding on top of the waterbed. The study reported that the cooled cows maintained 

nearly 5% higher milk yield, 14% higher dry matter intake and 18 bpm lower 

respiration rate compared to control cows when all the cows were challenged with heat 

stress. Perano et al. (2015b) also demonstrated that for waterbeds, an active heat sink 

is needed since installing waterbeds on top of concrete and relying on passive 

conductive cooling from the waterbed to the concrete surface did not have any 

measurable effect. Gebremedhin et al. (2016) used computational fluid dynamics to 

model the system studied by Perano et al. (2015b) and predicted that when a cow was 

lying down on a waterbed cooled with 4.6 ⁰C water, the cow would conduct 430 W/m2 

to the waterbed. In another study, Ortiz et al. (2015a) tested a conductive cooling 

system comprised of a flat-plate heat exchanger chilled with 7 ⁰C water and covered 

with 25 cm of bedding. The conductive cooling system was tested with both dried 

manure and sand bedding at different climate-controlled conditions (hot and dry, hot 

and humid, and thermos neutral). The study reported an increase in milk yield from 

29.6 kg/cow/d to 31.0 kg/cow/d for cooled cows for the sand bedding under hot and 
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humid conditions treatment. On the contrary, for the dried manure bedding under hot 

and humid conditions, the study reported a reduction in milk yield from 29.1 kg/cow/d 

to 27.6 kg/cow/d for cooled cows. There was no change in milk production for cooled 

cows for other treatments, nor was there any change in feed intake or respiration rate 

for any of the treatments. The Ortiz et al. (2015a) study measured a maximum steady-

state flux of 28.6 W/m2 in their system due to the insulating effect of the 25-cm bedding, 

which is likely why the Ortiz et al. (2015a) system measured less benefit to the cows 

then the Perano et al. (2015b) study. 

Ventilation and Evaporative Cooling 

The most direct way for cooling the cows is using nature ventilation. Marciniak (2014) 

compared the cooling efficiency between the barn with flat roof exhaust ducts and air 

supply from side curtain and the barn with roof ridge and air inlets. The former one 

gains more comfortable thermal conditions for the cows. However, the author also 

pointed out that natural ventilation can only provide limited mitigation to heat stress. 

Fans and air mixers are strongly recommended for the severe heat stress period. The 

basic rule of effective evaporation cooling is the sufficient moisture holding capacity 

of ventilation air. Sprinkler systems wet the cow with large water droplets, and 

consequently, don’t rely on good water holding capacity in the air whereas mister 

systems and fogger systems rely on small water droplets evaporating quickly. Thus, 

sprinkler systems are better suited for high humidity conditions than mister systems 

(Collier et al., 2006). Sprinkler systems wet the cow to provide direct evaporative 

cooling to the cow, but the cooling effect is only indirectly measured by THI. However, 

fogger or mister systems evaporative cool the air to aid in cooling the cow; 

consequently, the cooling benefit to the cow is indirect but the cooling is quantified by 

the reduction in THI. One drawback to evaporative cooling is the increase in moisture 

in the environment, which can lead to health problems such as mastitis and lameness, 

especially if the rest area is wetted (Nienaber and Hahn, 2007). Typically sprinkler 

systems are used in areas where cows are standing (Martin et al., 2012) to avoid wetting 

the bedding. 

A novel fan-sprinkler configuration for free stall cooling was studied by Hillman et al. 

(2005). The study obtained a 0.3 ℃ reduction of vaginal temperature when comparing 

the fan-sprinkler cooling to general fan cooling. Smith et al. (2007) evaluated and 

reported another option of the free-stall building which applies low profile cross 

ventilation (LPCV) to provide temperature control for cows during all seasons. The 

system can maintain the dairy cow in her TNZ and with stable core body temperature. 

However, the efficiency of such systems applying under hot-humid conditions was not 

as good as applying under hot-dry condition. The efficiency of other commercial 

fan/mist systems were also compared by several studies (Oetting et al., 2002; Spurlin 

et al., 2002; Collier et al., 2003). Roland et al. (2016) reviewed 10 on-farm studies 

applying different ventilation systems. The author concluded the respiratory diseases 

had a higher occurrence in mechanically ventilated buildings compared with ones with 

natural ventilation. Such negative influences could be more harmful to calves. A study 

was also conducted on linking the operation of evaporation cooling facility (sprinkler) 

with THI threshold (Mader et al., 2007). In the experiment, the water sprinkler was 
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controlled based on data collected from a weather station. When the THI threshold 

(based on THI-6) was higher than 68 at 09:00 AM, the electronic solenoid would start 

water flow of the sprinkler. An electronic timer was also applied to control the duration 

of sprinkling as 20 min/ 1.5 hours between 10:00 AM to 17:00 PM. Another sprinkling 

strategy without automatic control was used for comparison. Sprinkling was operated 

once per day at 10:00-12:00 AM or 14:00-16:00 PM based on whether the THI value 

obtained from local weather report was higher than 77. The automatically controlled 

sprinkling gained significant reduction in the animal panting score compared with the 

once per day sprinkling, which indicates that the sprinkling was helping to directly cool 

the cows. Mader et al. (2007) also concluded that cows that have acclimatised to 

sprinkled microclimate would gain heat stress when the sprinkling stopped after a hot 

summer. That means their tolerance to heat stress might be weakened. Cook et al. 

(2007b) also reported that cows may take several weeks to fully acclimate to heat-stress 

conditions, so care must be taken to not abruptly stop cooling cows.  

Some studies paid attention to improving the automatic control strategies, such as 

Daskalov et al. (2006) and Soldatos et al. (2005). These improved control strategies 

(nonlinear robust control) applied non-linear modelling and varying breakpoints. 

Compared with the traditional control strategies which applied fixed breakpoints, the 

new one can control multiple variables simultaneously without affecting each other. 

However, these strategies only rely on thermal variables which do not consider animal 

responses in the calculation. Another improvement was made by Qi and Deng (2009). 

The developed new strategy upgraded previous single-input single output (SISO) 

system to multi-input-multi-output (MIMO) system. The upgrading applied linear 

modelling for controlling temperature and humidity simultaneously. Related to water 

cooling, Legrand et al. (2011) reported that cows would make considerable use of a 

shower to reduce heat load. However, high variance existed between individuals. The 

author also tested the behavioural response to water cooling of cows. The results 

indicated a significant relationship between behaviours with heat stress, but no 

difference between water cooling and the control group.  

It is important to note the effect of night cooling as the primary nature cooling approach. 

The importance of night cooling was emphasised by several researchers such as Scott 

et al. (1983). Igono et al. (1992) reported that enough night cooling could enhance the 

heat tolerance of dairy cows and result in less MY loss even with high ambient 

temperature. Moreover, cooling the animal during her dry period can also gain 

improvement on subsequent lactation (Do Amaral et al., 2009). Moreover, providing 

fresh drinking water can also dissipate heat stress for dairy cows. Pereyra et al. (2010) 

found the absorbed energy at 31 oC could be lower than 18 oC with enough water intake. 

However, the water temperature did not affect the amount of water intake. 

Comparison of Cooling Systems 

Grant (2012) reported a summary on the benefit of cooling facilities in several studies 

which were adapted and supplemented in Figure 2-3. Evaporative cooling systems 

tended to have the most cooling benefit. Seven studies examined the effects of 

evaporative cooling systems (fans with sprinklers, misters, and/or foggers) and found 

that the increase in milk production ranged from 0.6 to 7.7 kg/d/cow and averaged 4.1 
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kg/d/cow. Conductive cooling with waterbeds improved milk production by 2.1 

kg/d/cow. Cooling systems with fans only, shade only, or conductive cooling with a 

flat-plate heat exchanger were less effective and only improved milk production by 0.4 

to 0.8 kg/d/cow. However, the water usage for sprinkler cooling system can be a huge 

cost for farmers, while the efficiency might be reduced by hot-humid conditions (Smith 

et al., 2007). In arid regions water may be a limited resource, and maximum water usage 

may be regulated by government authorities (Martin et al., 2012). Sprinkler systems 

may require from 3,650 to 15,500 L/cow for a 120-d cooling season (Frazzi et al., 2000; 

Meyer et al., 2002; Perano et al., 2015a). Moreover, the mitigation of heat stress gained 

more benefit on milk production for cows during early period of lactation (7.7 kg/cow/d 

vs. 5 kg/cow/d with same mitigation strategy)(Do Amaral et al., 2008; Tao et al., 2011).  

 

 

 
Figure 2-3 Effect of thermodynamic cooling strategies adapted from Grant (2012), 

data cited from (Avendano-Reyes et al., 2006; Urdaz et al., 2006; Do Amaral et al., 

2008; Do Amaral et al., 2009; Adin et al., 2009; Tao et al., 2011; Ortiz et al., 2015b; 

Frazzi et al., 2000; Kendall et al., 2006) 
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Several studies have concluded that fans and sprinklers are a good investment for cow 

cooling. Dhuyvetter et al. (2000) used data from two different high-producing farms in 

Kansas, US (51.9 to 52.6 kg/day for one farm and 39.4 to 40.0 kg/day for the second 

farm) and demonstrated that there was a 3 – 6% increase in cows’ milk production 

under heat stress when the cooling system included fans over the feedline and just over 

the stalls in addition to sprinkler over the feedline and estimated economic paybacks of 

$50 to $63 per cow per lactation (higher producing farm) and $47 to $60 per cow per 

year (lower producing farm). They estimated up to 6X more payback for cooling 2nd 

and subsequent lactation cows vs. 1st lactation cows. 

St-Pierre et al. (2003) modelled economic impacts of heat stress and potential economic 

benefits of cooling via fans, fans + sprinklers, or the fogger system Korral Kool. Their 

model for dairy cows considered calves (0 to 1 yr), yearling heifers (1 to 2 yrs), and 

dairy cows separately. Their model accounted for economic impacts from DMI, MY, 

Preg Rate, Days Open, Cull Rate, and Death Loss as functions of maximum THI for 

the day according to climate data and the THI threshold of 70. The study did not 

distinguish between primiparous cows and multiparous cows. The models for dairy 

replacements accounted for DMI loss, Gain loss, and Death Loss as a function of the 

daily max THI and the respective THI thresholds (72 for yearlings and 70 for calves). 

Estimated reduction in milk production per cow per year ranging from 68 kg/cow/yr to 

2072 kg/cow/yr for the US state with the least heat stress (Wyoming) to the most heat 

stress (Lousiana). They estimated annual losses due to heat stress of up to $383 (Texas 

345,000 cows) and $337 (Florida, 155,000 cows) per cow per year without abatement. 

With abatement Florida (High = $50.131 million/ 155,000 cows = $323.43 per cow per 

year), Texas (Intensive = $129.680/ 345,000 cows = $375.88 per cow per year) implies 

that the “optimum cooling” is only profiting $7 per cow in Texas and $14 in Florida. 

Based on literature values, Ferreira et al. (2016)concluded that milk yield for 

multiparous cows could be reduced by as much as 5 kg per day for the entire lactations 

if cows were heat stressed during the dry period based on other studies documenting 

milk production losses of 1.2 kg/d to 7.5 kg/d in the subsequent lactations due cows 

being heat stressed while dry. Ferreira et al. (2016) did not include other economic 

effects of heat stress in their economic analysis, but other studies have documented the 

effects of heat stress during the dry period to be decreased fertility in cows (Wiersma 

and Armstrong, 1989), decreased immunity and fertility (Do Amaral et al., 2011; 

Thompson and Dahl, 2012) and reduction in birth and growth rates of calves from cows 

that were heat-stressed during their dry period. Ferreira et al. (2016) considered a heat 

stress day to be a day with average THI over 68. Reduced profit per cow per year could 

be $68 (Wisconsin), $101 (California), to $233 (Florida) if cows make 5 kg/d less in 

their subsequent lactation after being heat stressed. Similarly, Adin et al., (2009) 

measured an increase of 5.3% in milk yield in subsequent lactations due to evaporative 

cooling during the dry period in a study performed in Israel. Adin et al., (2009) also 

reported an average decrease in body temperature of 0.2 oC, and a decrease in 

respiration rate from 66.7 to 39.7 bpm. The cooling system used was 10 min of wetting 

cows using individual sprinklers at 120 L/h followed by 30 min of fans. 
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Perano et al. (2017) performed an economic comparison of cooling systems using fans 

only, fans + misters, Korral Kool, or conductive cooling with fans. The study assumed 

that cows were in a climate where THI reached 80 to 85 for at least 2 hr/day, which is 

classified by Moretti et al. (2017) as “danger” level for lactating dairy cows but 

considered moderate heat stress by other authors (Renaudeau et al., 2012). Perano et 

al. (2017) used the change in core body temperature due to the different cooling systems 

to predict the change in milk yield based on the relationship between core body 

temperature and milk yield of a heat-stressed cow established by Spiers et al. (2004) 

and Perano et al. (2015a) and assumed that the milk profit was $0.33/kg as Ferreira et 

al. (2016) estimated. Literature values for expected reduction in core body temperature 

of the four systems came from the following sources: conductive cooling (Perano et al., 

2015a); Korral Kool (Tarazón-Herrera et al., 1999); fans + misters (Chanchai et al., 

2010); and fans only (St-Pierre et al., 2003). Cost to run the cooling systems was based 

on assuming a 10-yr life for the system and calculating the investment cost for the 

system as well as the operational costs of electricity and water (if applicable). Other 

less easily quantified traits such benefits to long term health of the cow or sustained 

milk production after the heat stress is gone were not included in the analysis. The 

results showed that the fans + misters system had the most economic benefit (Figure 2-

4). 

 
Figure 2-4 Comparison of economic returns with different cooling systems adapted 

from Perano et al. (2017).Fan – fans only, FS – fans + misters, KK – Korral Kool, CC 

– fans + conductive cooling. 

2.7. Discussion – the factors causing variation 

The variability between different studies conducted under different conditions can 

create unexpected uncertainty, which is always a challenge. Studies have identified the 

key factors causing the variation, and provided quantified solutions to minimize the 

variation. However, the results from these studies are still limited in relation to bringing 

them into a full application, e.g. providing replicable adjustment of the TI calculations 

for different farms. Below, a range of animal related factors including breeds and 
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genetic, difference between laboratory and field studies, animal status and responses, 

as well as the accuracy of instrument will be discussed. 

Breed and Genetic 

At present, different genetic breeds have been selected for general dairy farming 

system. These breeds would include Ayrshire, Brown Swiss, Busa, Canadienne, Dairy 

Shorthorn, Dutch Belted, Estonian Red, Fleckvieh, Friesian, Girolando, Guernsey, 

Holstein, Illawarra, Irish, Moiled, Jersey, Kerry, Lineback, Meuse Rhine Issel, Milking 

Devon, Montbéliarde, Normande, Norwegian Red, Randall, and Sahiwal. The genetic 

of B.- Indicus- and Zebu-type cow has shown a better heat tolerance than B.-Taurus 

type cow (Kadzere et al., 2002). A conventional crossbreeding between B.-Taurus and 

B.-Idicus cow would result in an improved thermal tolerance, but lower milk yield 

performance (Biby, 2010). Sharma et al. (1983) found that milk production of Jersey 

cows is less affected by the heat stress compared to the Holsteins. The assessment of 

the USA Holstein breed (172,411 sires and 10.5 milk cows) showed that high heat stress 

tolerance can be transmitted from a cow to her daughters, which can enable the 

daughters to achieve higher pregnancy rate, longer productive life and lower milk 

production (Bohmanova et al., 2005). The gene imposing (such as stock hair gene) and 

embryo technique have been used to improve the heat stress tolerance of Holstein cows 

(Olson et al., 2003; Dikmen et al., 2008; Hansen, 2007). However, further research is 

still required to identify potential benefits from genetic improvements. Bohlouli et al. 

(2013) performed a regional study on Iranian Holstein dairy cows which collected data 

from nearly 10000 dairy cow during five years’ test-day milk production. They found 

that the response to heat stress had a heritable component that could vary with the 

number of lactation days. Carabano et al. (2016b) reported that the comfort zones 

(expressed as THI thresholds) with maximum production performance were different 

across climatic and production conditions. This difference is because of an animal in 

warm climate conditions can suffer higher heat stress as their THI threshold for upper 

comfort zone is 6-7 times higher in comparison with temperate climate conditions. 

However, their production performance in the comfort zone was lower. It was also 

reported by Bryant et al. (2007) that the threshold value of THI to reduce production 

performances (milk-solids) varied within different breeds. The threshold for the 

Holstein Friesian (HF) breed was 68 followed by 75 and 69 for Jersey (J) and crossbred 

(HF*J), correspondingly. Bohmanova et al. (2005) found the milk yield reduction 

ranged from -0.48 to 0.38 kg per THI (THI>72) corresponding to different transmitting 

ability series (PTAs) in a national genetic evaluation in U.S. Based on the studies 

summarized in Table 4, the genotype information of the herd is still limited. Although 

the two most popular breeds in the study were Holstein and Friesian cows, specific 

genetic information was usually ignored.  

Laboratory versus Field Studies 

Roland et al. (2016) concluded in the review paper that studies dealing with thermal 

regulation and thermal stress had been performed on different numbers of cows. These 

include studies on a small number of animals, specific climatic region or observations 

from a single herd, farm or research station. However, there is a lack of statistical 
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analysis between different studies testing same parameters on different number of 

animals or regions. Legates et al. (1991) found the respiration rate and rectal 

temperature of dairy cow could be higher in a chamber experiment than field 

measurement. However, for beef cows, the opposite results were found (Eigenberg et 

al., 2000). In this case, rumen temperature was recommended by (Scharf et al., 2012) 

to overcome the difference between laboratory and field measurements. Other factors 

such as stocking density can also affect the animal responses (Wang et al., 2016), which 

will not usually be considered in laboratory studies. Moreover, field studies can focus 

on a variety of regions (dairy herds or farm) in a country (Gantner et al., 2011) or 

multiple countries (Gaughan et al., 2008a), which may include several climate 

conditions simultaneously. In contrast, laboratory studies can only simulate one kind of 

climate condition at one time. The influence of farm management is also typically 

ignored in laboratory studies. Garcia-Ispierto et al. (2007b) reported the influence from 

AI technicians to fertility performance and concluded the odds ratio could vary from 

0.49 to 0.65. The author also emphasised the influence of farm management (such as 

milking frequency) which could change the performance of daily milk yield and fertility 

(milking on the insemination day) (Al-Katanani et al., 1999).  

Animal Status and Lag of Response  

Even under same farm management and unique heat conditions, the animal responses 

such as respiration rate and rectal temperature could be changed diurnally. The changes 

can be caused by a metabolic shift in a day (Brown-Brandl et al., 2003). Dairy cows 

under different production status also have varied tolerance to heat stress. Gantner et 

al. (2011) conducted research on dairy cows in different lactation status (heifers to 5th 

lactation) and concluded the most significant milk yield reduction was found with 

heifers under heat stress. However, Bernabucci et al. (2014) found the influence was 

more severe in multiparous cows compared with the first lactation. Also, iteration of 

days in milk, seasonal and regional effects were found by Huang et al. (2008), which 

could cause a varied effect on conception rate. Research also reported that the responses 

of an animal to the thermal environment has lag which correlates to the body size of 

the animal (Hahn et al., 1999).The sensitive responses such as RR and SW are still 

difficult to be real-time measured automatically and accurately (Scharf et al., 2012). 

However, for developing early warning system towards heat stress, the improvement 

of devices for monitoring these parameters is still important. The potential for field 

implementation of related studies is notable (Eigenberg et al., 2008).  

Instrument and Measurement 

It has been reported that, in the environmental measurement, temperature and humidity 

conditions are not identical to the entire animal house (Herbut and Angrecka, 2012). 

Specific shape and construction of the building can cause differences between TIs’ 

values in particular occupied zones. The new indices which take account of solar 

radiation and wind speed can partially reduce the differences in temperature and 

humidity measurement. However, the variance on solar radiation and wind speed 

measurement can still cause differences. 



35 

 

2.8. Solutions in Precision Livestock Farming 

Monitoring animal behaviour responses might not be a good solution for measuring 

heat stress without robust instruments. The reason is that using behaviour patterns to 

adjust ambient temperature is laborious and inaccuracy. Silanikove (2000) summarised 

that the behaviour measurement might occur in the absence of a productive response, 

especially in the short-term. In recent days, with the development of computer vision 

techniques and attachable behaviour detectors, monitoring animal behaviour is more 

feasible, accurate and user-friendly for farmers (Eigenberg et al., 2000). Sensors which 

were applied for laboratory studies are usually commercially available with large 

potential of field implementation (Maltz et al., 2011). The variance and lag of heat 

stress measurements are expected to be solved by some early warning techniques 

supported by a regional (even global) database sharing consistent standards. The early 

warning and regional database approaches have already been achieved by some 

researchers, such as the applications developed by Eigenberg et al. (2007). However, 

further improvements and better applications are still required. Nienaber and Hahn 

(2007) indicated that such a system should include sensors and cameras linked to 

computer network and programming. The purpose is to finally provide farmers with a 

decision support system which can function in the environment and on the animal. 

Optimal treatment to an individual animal level can be taken in the face of thermal 

uncomforting. In a review paper for heat wave problems and global warming, 

Kuczynski et al. (2011) emphasised the importance of superior environment control 

systems which could allow individual animals to find their optimal conditions. Better 

adjustment possibilities for individual animals could be provided within these systems 

compared with the one that only offers a unique operation to the whole environment. 

From this view of point, PLF has a wealth of possibility for further improvements. As 

emphasised by Banhazi et al. (2009a), the important objective of modelling animal, 

environment and building control systems is to reduce the burden of the human farmer 

accurately.  

To minimise the variance between heat stress studies, current efforts are being made to 

develop measurement and modelling on heat stress covering sufficient geographical 

area (national and global range) following widely agreed standards such as (Gaughan 

et al., 2008a). Web-based early warning forecast systems were developed based on 

these wide range studies as listed in Table 6. The forecast systems obtain weather data 

from the nearest weather station around the farm and predict the heat stress level for 

the coming 1-5 days. The interval of prediction updating defaults as 24 hours which 

can also be changed by users for a shorter period. These kinds of studies and practical 

outcomes are necessary for providing regional threshold standards, guidebooks for 

farmers and early warning alerts. However, the economic and labour costs could be 

huge. The data of these projects would need to be updated periodically (2-5 years) as 

the climate changes (Segnalini et al., 2013; Segnalini et al., 2011) and genetic evolution 

(West, 2003) can always cause inconsistency in the results. Moreover, for practically 

using the website, Gaughan et al. (2012) concluded the forecasting from the website 
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could not specify the effect from building a structure (such as wind speed in the 

building) for the different farm. It also reported that the different ventilation system, 

and floor type can cause varied heat transmission between internal and external 

environment (Seedorf et al., 1998). These variances will always cause inaccurate 

forecasting of heat stress for specific farm conditions. 
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Table 2-6 Web-based weather forecast sites for livestock, adapted from Gaughan et al. (2012) 

Country Species Web Address Online Service 

AUS Dairy cows www.coolcows.com.au  Action generator 

 Cost benefit calculator 

 Weather forecaster 

AUS Feedlot beef http://chlt.katestone.com.au/public-forecasts-2/?site=152  Daily heat load index forecast 

USA Feedlot beef https://www.ars.usda.gov/plains-area/clay-center-

ne/marc/docs/heat-stress/indexregion/ 
 7 days heat stress forecast 

 List of actions for heat stress 

mitigation 

USA Dairy/beef 

cattle 

http://www.mesonet.org/index.php/agriculture/monitor  Daily weather forecast 

 Calculation of cattle comfort index 

USA Livestock http://weather.uky.edu/mrf_lsi.htm  10 days heat stress forecast 

 Hourly livestock heat stress forecast 

 Heat stress index calculator 

USA Livestock http://www3.abe.iastate.edu/livestock/heat_stress.asp  Heat stress forecast and calculator 

(currently inaccessible) 

 

 

http://www.coolcows.com.au/
http://chlt.katestone.com.au/public-forecasts-2/?site=152
https://www.ars.usda.gov/plains-area/clay-center-ne/marc/docs/heat-stress/indexregion/
https://www.ars.usda.gov/plains-area/clay-center-ne/marc/docs/heat-stress/indexregion/
http://www.mesonet.org/index.php/agriculture/monitor
http://weather.uky.edu/mrf_lsi.htm
http://www3.abe.iastate.edu/livestock/heat_stress.asp
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Instead of modelling the heat stress within huge geographical region, the dynamic and flexible 

modelling of heat stress for specific farm is another potential approach by using the PLF 

technologies. As reviewed in previous section, most of the devices for measuring microclimate 

on-farm are commercially available. The production data is routinely recorded by the farm 

management system. Moreover, the physiological and behaviour parameters (e.g. milking 

frequency, rumination time and milk temperature) can be measured even for individual cow 

with high frequency (daily or hourly) in robotic milking system. These advantages of PLF 

technology reduce the labour and time cost for data collection, and provide a big database for 

modelling. However, the usage of these database for heat stress modelling is still limited. To 

develop a dynamic on-farm heat stress modelling system, the primary steps may include: 1) 

develop the new TCI with the best performance in the regression with the parameters recorded 

in the on-farm database (e.g. regression between Tdb and RT); 2) determine the accurate 

thresholds for different levels of heat stress using the new TCI and establish the heat stress 

profile for the individual cow, which can be used for further heat stress mitigation; 3) link the 

heat stress models with the ventilation facilities (e.g. to control the fans operations) and farm 

management system (e.g. to change the milking frequency and interval), which enables 

dynamic adjustment of heat stress mitigation; and 4) convert the statistical models into artificial 

intelligent algorithms, which allows the models to be self-calibrated with key factors (e.g. the 

days in milk).  

2.9. Conclusions 

Solving heat stress is the primary challenge of current dairy farming. Although much progress 

has been achieved in the research area, limited practical improvements have been provided to 

real-farming. This review has focused on summarising the progress achieved in current heat 

stress studies. The published thermal comfort indices were compared, as well as their 

applications in field studies. The performances of current indices have a huge variance affected 

by several factors, such as the difference between laboratory and field studies. Similar variance 

also exists in mitigation solutions. Fans and sprinklers are reported as the most effective cooling 

facilities for heat stress. Nevertheless, the energy cost and reduced performance under hot-

humid conditions are still the major concern in a real application. To overcome such 

variabilities of performance; current studies tend to involve enough number of farms or regions 

in one study. Information will be collected specifically from each farm and stored in the 

database. Several signs of progress (web-based weather forecast sites) were gained from such 

global studies. However, the upgrading of these databases is always necessary to correspond 

to climate and genetic changes. As well as focusing on widely applicable solutions, more 

attention can be paid to a single farm. The potential solution in this way may be achieved 

depending on PLF techniques. The system could dynamically calibrate the control algorithm 

(such as THI). The calibration could be automatically conducted based on the continual on-

farm monitoring. Robotic sensors and cooling facilities would be connected to and controlled 

by the system. The historical database of the single farm can be built up for providing accurate 

mitigation strategies for either the individual animal or the whole herd.  
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 Modelling of heat stress in a robotic dairy farm. Part 1: 

Thermal comfort indices as the indicators of production loss 
 

3.1. Abstract 

Thermal comfort indices (TCI) were developed to assess heat stress and model the relationship 

between thermal parameters and animal responses. The published models mainly include 

temperature humidity index (THI), black globe humidity index (BGHI), environmental stress 

index (ESI), equivalent temperature index (ETI), heat load index (HLI), respiration rate index 

(RR) and comprehensive climate index (CCI). Most of these models applied dry bulb 

temperature (Tdb), wet bulb temperature (Twb), dew point temperature (Tdp), relative 

humidity (RH), wind speed (WS) and solar radiation (SR) as their thermal parameters, while 

the animal responses can vary depending on the proposed usage of the model such as predicting 

the production loss by defining the daily milk yield (DMY) as animal response. The 

performance of these TCIS can be varied when dealing with different climate condition, animal 

breed and farm management systems. This study was conducted to compare these published 

TCIs by testing the strength of their correlation with DMY and milk temperature (MT) on a 

robotic farm situated in a subtropical climate region. The comparison also included the 

regression between basic thermal parameters (Tdb, RH, Twb and Tdp) and animal responses 

(DMY and MT). Moreover, two datasets of thermal parameters measured on-farm and at local 

weather stations were also compared to demonstrate the feasibility of using on-line database 

for modelling of heat stress on farms in the future. The statistical analysis found using Tdb can 

provide similar performance of assessing heat stress as other TCIs. The spatial variability 

between on-farm measurement and local weather station can be neglected when modelling 

between TCIs and MT. The threshold with significant decline of DMY was reported as 

THI >64 for cows with average DMY 31 kg/cow/day. The daily minimum TCIs were found to 

be highly correlated with production loss indicating that night-time cooling was important for 

preventing production losses. The potential of implementing a simplified assessment of heat 

stress using to on-line dataset (automatic weather stations) was demonstrated by this study. 

3.2. Introduction 

Managing heat stress is one of the main challenges for dairy farmers. Heat stress is defined as 

the specific heat load caused by thermal conditions affecting animal’s homeostasis and health 

(Gaughan et al., 2012). As a result, the welfare and comfort of cows can be compromised via 

decreased feed intake, interrupted resting and rumination time (Grant, 2012; Phillips, 2018; 

Phillips, 2008). The sub-optimal welfare and comfort of cows can ultimately reduce the 

production performance of the animals (Biby, 2010). Furthermore, heat stress can result in 

increased mortality and financial losses for dairy farmers (Bernabucci et al., 2014). Assessment 

and evaluation of the heat stress have been undertaken for several decades in both laboratory 

and field studies (Roland et al., 2016) more references are needed. The basic assessment of 

thermal comfort was based on detecting the body temperature of livestock. However, for on-

farm mitigation, measuring body temperature, e.g. rectal temperature (RT) has been difficult 

to obtain and labour intensive. As an effective alternative, modelling the relationship between 

the ambient thermal condition and animal body temperature or other health-related indicators 

e.g. respiration rate (RR) has provided a practical solution. Such models were introduced as 

animal thermal comfort indices (TCIs), of which the initial one was adopted from human 

discomfort index (Thom, 1959).  
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According to the theory of sensitive and latent heat transfer, the primary indicators of ambient 

thermal condition were characterised as dry bulb temperature (Tdb) and relative humidity (RH), 

which were also calculated as wet bulb temperature (Twb) (Thom, 1959) or dew point 

temperature (Tdp) in some studies (Berry et al., 1964; Yousef, 1985). In last decades, there has 

been a continues development and modifications of the approaches for modelling TCIs, with a 

focus on adjusting the weight of Tdb and RH to apply the models across different climate 

conditions and animal breeds (LCI, 1970). Moreover, wind speed (WS) and solar radiation (SR) 

were added into the modelling when the measurement implemented by using new sensors and 

technologies (Mader et al., 2006). Thresholds and coefficients between animals’ responses and 

TCI values were usually reported as the assessment result of heat stress (Silva et al., 2007). 

Even though a number of TCIs were developed and modified, there have been few models that 

were developed based on cows’ responses to heat stress (Baeta et al., 1987; Johnson, 1965). In 

addition, with the increased production performance of dairy cow genotype selection in past 

years, the heat tolerance of these high-producing cows is decreased compared to the older breed 

(Zimbelman et al., 2009). Thus, the developed TCI models by using low-producing cows may 

produce an inaccurate assessment for current breeds (Ji et al., Submitted-d). 

Of the published thresholds, thermal comfort zones were identified to include three key 

parameters: thermal neutral zone (TNZ), lower and upper critical temperature (LCT/UCT) 

(DeShazer et al., 2009). More specified zones were categorized from thermal innocuous zone 

to thermal extreme zone (Silanikove, 2000). Ji et al. (Submitted-d) reported the inconsistency 

of applying the TCIs to identify thermal zones, even with uniform thermal parameters (Tdb, 

RH, WS and SR). In a practical dairy farm management, the applications of the developed TCIs 

and the thresholds for heat stress mitigation are still limited. This is caused by the difficulty for 

continuous, synchronous and reliable measurements of thermal conditions and cows’ responses, 

as well as the requirement to modify the published models for the local environment (Ji et al., 

Submitted-d) 

With the development of robotic/automatic farming systems (AMS), available information on 

cows’ responses is readily available. Modern dairy farming systems maybe enhanced using 

TCIs and their thresholds in real farm heat stress mitigation. Moreover, for the measurement 

of the on-farm thermal condition, the information from local weather station (e.g. government 

weather forecast http://www.bom.gov.au ) is commercially available which could reduce the 

cost of implementing on-farm measurement. The modelling of heat stress based on on-line 

dataset requires fewer equipment on the farm, and enable the forecasting of heat stress for 

farmers. However, the comparison between models using on-line dataset and on-farm 

measurement is required to demonstrate the acceptable variability of thermal parameters 

between these two approaches. 

In this study, three objectives will be accomplished. The first is to compare the published TCIs 

based on their performance of predicting production loss. The second is comparing the 

application of the data collected from the on-line database (local weather station) and on-farm 

measurement. The last one is to refine the thresholds and coefficient value of the selected TCI 

for heat stress assessment of dairy cow. The overall aim of this study is to provide a simplified 

and reliable TCI for heat stress assessment in practical farm management. 

3.3. Materials and Methods 

Farm, housing and animal 

A dairy farm located in Gatton, QLD, AUS was selected in this study for data collection. The 

farm applied AMS with three milking robotics (LELY Astronaut, Lely Industries NV, 

Maassluis, the Netherlands) installed in the milking station (position shown in Figure 1). After 

training the animals to cooperate with AMS, the herd was managed with free traffic, which 

http://www.bom.gov.au/
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allowed the cows to freely move between feeding and resting area, as well as semi-free access 

to the milking station. The herd management system (LELY T4C, Lely Industries NV, 

Maassluis, the Netherlands) limited the maximum visit times per day of each cow by 

electronically closing/opening the gates of the milking stations. The visit control was dependent 

on the production status and other health factors of an individual animal that identified by their 

ear tag when they moved close to the receiver attached to the gate.  The farm applied solid 

manure as the bedding material in the resting area. Replacement of the bedding material was 

performed periodically.  

From April 2016 to November 2017, average 160 Holstein lactation cows were held in the farm, 

with an average of 180 days in milk (DIM). The average daily milk yield (DMY) during this 

period was 29.5 kg/cow/day, and the average body weight (BW) was 791 kg/cow. The age of 

cows was ranged from 2 to 11 years.  

 

Figure 3-1 Farm layout and position of sensors. The letter “T” indicates the positions of TinyTag2 

Plus data loggers; letter “R” indicates the position of resting (lying) area of cows; letter “F” indicates 

the feeding area, and letter “M” indicates the milking station with AMS. Adapted form google map 

(https://www.google.com.au/maps/@-27.5045056,152.4202448,143m/data=!3m1!1e3) 

Environment measurement 

The on-farm measurement of Tdb and RH was conducted by using Tinytag 2 Plus Data Logger 

from Hasting Data Loggers, NWS, AUS (Schuller et al., 2014; Banhazi et al., 2008a; Banhazi 

et al., 2008b; Banhazi et al., 2008c). The measurement scale of the temperature sensors was -

45°C to +75°C, with an accuracy of ±0.5°C at 25°C in the datasheet. The humidity sensors 

provided a measurement scale of 0% to 100%, with an accuracy of ±3% at 25°C. All the sensors 

were calibrated by the manufacturer before delivered to the researcher. Different numbers of 

sensors were placed in different areas as shown in Figure 1. The data logging interval was 30 

https://www.google.com.au/maps/@-27.5045056,152.4202448,143m/data=!3m1!1e3
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minutes. Periodically data collection and relaunching of the data logger was performed from 

April 2016 to November 2017. 

The measurement of regional climate was done by the weather station in the University of 

Queensland, Gatton, AUS, which is nearly 8 km away from the farm. The climate variables of 

the measurement involved Tdb, RH, WS and SR. The dataset was provided by the Bureau of 

Meteorology, Australian Government (http://www.bom.gov.au) with free access.  

Production measurement 

The AMS machine measured the production performance of individual cows during each 

milking. The data of daily milk production (DMY, kg/cow/day) and the average daily milk 

temperature (MT) was collected from April 2016 to November 2017 and used to calculate the 

production performance of the herd.  

Data processing 

The data collected from on-farm data loggers, a local weather station, and the robotic farming 

system was filtered by removing outliers (Mead, 2017). The values of daily maximum, 

minimum and mean were calculated using the data downloaded from data loggers on the farm. 

The diurnal and seasonal patterns of Tdb and RH were formulated based on this dataset to 

provide a basic description of the changes in thermal condition on the farm during different 

seasons. The comparison of each month’s data was taken by using Duncan’s multiple range 

tests applying 95% significant level. Although climate data was measured hourly in the weather 

station, the government website only provided the record of Tdb, RH, WS and SR at 9 am and 

3 pm during the daily measurement, as well as the daily maximum and minimum value. The 

daily mean value of weather station was calculated based on the average of these four values.   

The data processed from on-farm measurement, as well as the local weather station (maximum, 

minimum and mean value),  was utilized for calculating the value of the published TCI 

equations from 1959 to 2010 in Table 3-1. The basic TCIs (THIs) were developed using Tdb 

and RH in the calculation for the different thermal condition. Among equations, THI1 to 3 was 

developed for human discomfort index(Thom, 1959), as well as the equation of ESI (Moran et 

al., 2001). THI4 was developed by modelling the rectal temperature of bull calves with the 

thermal condition (Bianca, 1962). THI5 to 7 and ETI were established on low-producing dairy 

cows (DMY: 15.5 kg/cow/d) in a climate chamber (LCI, 1970; Johnson, 1965; Baeta et al., 

1987). WS and SR were added in the new TCIs to improve the performance of the modelling. 

THI8 was developed by Mader et al. (2006) to adjust the equation of THI6. Black globe 

temperature (Tbg) was an integrated index to evaluate heat load from solar radiation. It was 

used to established BGHI (Buffington et al., 1981) and HLI1 and 2 (Gaughan et al., 2002; 

Gaughan et al., 2008b). The equation of RR was developed by modelling on the respiration 

rate and thermal condition (Brown-Brandl et al., 2005). The latest version of TCI was CCI, 

which was designed to quantify both heat and cold stress of animal (Mader et al., 2010). The 

equation was formulated as a sum of three adjustment factors for RH, WS and SR. The value 

of basic TCIs (equations 1-7) of each day was calculated by inputting the data of Tdb and RH 

(daily maximum, minimum and mean) from both on-farm measurement and local weather 

station. As WS and SR were not measured on-farm, the calculation of new TCIs (equations 8-

14) was only based on the data from local weather station.  

http://www.bom.gov.au/
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Table 3-1 TCIs from 1959 to 2010 

Num. of Eq. Equation Reference 

(1) 𝑇𝐻𝐼1 = 1.8 × [0.4 × (𝑇𝑑𝑏 + 𝑇𝑤𝑏)] + 47 Thom (1959) 

(2) 𝑇𝐻𝐼2 = 1.8 × (0.15 × 𝑇𝑑𝑏 + 0.85 × 𝑇𝑤𝑏) + 32 

(3) 𝑇𝐻𝐼3 = 1.8 × [0.4 × (𝑇𝑑𝑏 + 𝑇𝑤𝑏)] + 40.6 

(4) 𝑇𝐻𝐼4 = 1.8 × (0.35 × 𝑇𝑑𝑏 + 0.65 × 𝑇𝑤𝑏) + 32 Bianca (1962) 

(5) 𝑇𝐻𝐼5 = 𝑇𝑑𝑏 + 0.36 × 𝑇𝑤𝑝 + 41.5 LCI (1970)  

Johnson (1965) (6) 𝑇𝐻𝐼6 = 0.8 × 𝑇𝑑𝑏 + (𝑇𝑑𝑏 − 14.4) × 𝑅𝐻 + 46.4 

(7) 𝑇𝐻𝐼7 = 1.8 × (0.55 × 𝑇𝑑𝑏 + 0.2 × 𝑇𝑤𝑏) + 49.5 

(8) 𝑇𝐻𝐼8 = 4.51 + 𝑇𝐻𝐼6 − 1.991 × 𝑊𝑆 + 0.0068 × 𝑆𝑅 Mader et al. (2006) 

(9) 𝐵𝐺𝐻𝐼 =  𝑇𝑏𝑔 + 0.36𝑇𝑑𝑝 + 41.5 

𝑊ℎ𝑒𝑟𝑒: 𝑇𝑏𝑔 = (1.33 𝑇𝑑𝑏) − (2.65𝑇𝑑𝑏
0.5) + 3.21 log(𝑆𝑅 + 1) + 3.5 ; 

Buffington et al. (1981) 

(10) 𝐸𝑇𝐼 = 27.88 − 0.456𝑇𝑑𝑏 + 0.012𝑇𝑑𝑏
2 − 0.49𝑅𝐻 + 0.001𝑅𝐻2 + 1.151𝑊𝑆 − 0.126𝑊𝑆2 + 0.02𝑇𝑑𝑏𝑅𝐻 − 0.046𝑇_𝑑𝑏𝑊𝑆 Baeta et al. (1987) 

(11) 𝐸𝑆𝐼 = 0.63𝑇𝑑𝑏 − 0.03𝑅𝐻 + 0.002𝑆𝑅 + 0.0054𝑇𝑑𝑏𝑅𝐻 − 0.073(0.1 + 𝑆𝑅)−1 Moran et al. (2001) 

(12) 𝐻𝐿𝐼1 = 33.2 + 0.2 × 𝑅𝐻 + 1.2 × 𝑇𝑏𝑔 − (0.82 × 𝑊𝑆)0.1 − log (0.4 × 𝑊𝑆2 + 0.001) Gaughan et al. (2002); 

Gaughan et al. (2008b) (13) 
𝐻𝐿𝐼2 =  {

10.66 + 0.28 × 𝑅𝐻 + 1.3 × 𝑇𝑏𝑔 − 𝑊𝑆 (𝑇𝑏𝑔 ≤ 25)

8.62 + 0.38 × 𝑅𝐻 + 1.55 × 𝑇𝑏𝑔 − 0.5 × 𝑊𝑆 + 𝑒2.4−𝑊𝑆(𝑇𝑏𝑔 > 25)
 

(14) 𝑅𝑅 = 5.1 × 𝑇𝑑𝑏 + 0.58 × 𝑅𝐻 − 1.7 × 𝑊𝑆 + 0.039 × 𝑆𝑅 − 105.7; Brown-Brandl et al. 

(2005) 

(15) 𝐶𝐶𝐼 = 𝑅𝐻𝑎𝑑𝑗 + 𝑊𝑆𝑎𝑑𝑗 + 𝑆𝑅𝑎𝑑𝑗 

𝑊ℎ𝑒𝑟𝑒: 𝑅𝐻𝑎𝑑𝑗 = 𝑒[(0.00182×𝑅𝐻)+(1.8×10−5×𝑇𝑑𝑏×𝑅𝐻)] × [(0.000054 × 𝑇𝑑𝑏
2 ) + (0.00192 × 𝑇𝑑𝑏) − 0.0246] × (𝑅𝐻 − 30); 

𝑊𝑆𝑎𝑑𝑗 =  (
−6.56

𝑒
[

1
(2.26×𝑊𝑆+0.23)0.45]×[2.9+1.14×10−6×𝑊𝑆2.5−log0.3(2.26×𝑊𝑆+0.33)−2]

) − 0.0056 × 𝑊𝑆2 + 3.33; 

𝑆𝑅𝑎𝑑𝑗 = (0.0075𝑆𝑅) − (0.00002𝑆𝑅𝑇𝑑𝑏) + (0.00005𝑇𝑑𝑏
2 𝑆𝑅0.5) + 0.1𝑇𝑑𝑏 − 2. 

 

Mader et al. (2010) 
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Statistics  

As the research was conducted on a single herd and farm, influence from different genotype 

and farming conditions e.g. building structures or facilities were exclude from the statistical 

analysis. To determine the best TCI for assessing heat stress, the single linear regression 

between calculated TCIs and responses of cows was taken as follows: 
𝑦 = 𝑎 + 𝑏𝑥 + 𝜀, 

Where y is the dependent variable of animal responses including DMY (kg/d/cow) and MT 

(oC); x is the independent variable indicating thermal condition; a is the intercept; b is the 

coefficient of the thermal indicator; 𝜀 is the random residual term. In addition to the TCIs, for 

comparison, Tdb and RH measured in farm and local weather station were considered as two 

direct indicators of thermal conditions. The selection of best indicator was based on the 

comparison between the regression results. The value of R squared was used to evaluate the 

performance of regressions. The value of correlation coefficients was applied to compare the 

sensitivity of the indicator. 

The selected indicator was then applied to estimate the critical threshold values of heat stress. 

The threshold values were developed based on the significant changes in correlation 

coefficients by using the model of broken-line regression as follows 

𝑦 = {
𝑐 + 𝜀,           𝑥 ≤ 𝑇𝐻𝑅
𝑎 + 𝑏𝑥 + 𝜀, 𝑥 > 𝑇𝐻𝑅

 

Where, c is a constant value when animals’ performance is not affected by the thermal 

condition; when the value of indicator (x) is higher than the threshold (THR), the relationship 

returns to single linear regression, as described above. Beyond the critical threshold, thresholds 

for two more levels of heat stress (moderate and extreme) were also estimated by comparing 

the changes of coefficient values (decline of DMY and raise of MT) within a different range of 

thermal conditions. 

The thermal comfort of the animal was determined using the fitted lines of broken-line 

regression (Kadzere et al., 2002). If DMY was related to the heat stress, the segments with 

positive or none impact (slope ≥ 0) considered as the Normal level of thermal conditions 

without heat stress. For MT prediction, the segments with negative or none impact (slope ≤ 0) 

are the Normal level. Beyond the Normal level, the levels of heat stress (Alert and Urgent) are 

categorized based on the significant increase/decrease of the impact (slope). For further 

comparison of the performance of different indices, the consistency of utilizing the thresholds 

of different indices to identify heat stress was evaluated. The percentage of the days with same 

identification results of heat stress was used to determine the consistency between each two 

pair of indices.  

All data processing and statistical analysis were done using R 3.4.3. (R Development Core 

Team, 2017). The single linear regression was done by using the basic function of 

“lm”(Chambers, 1992), and the broken-line regression was performed based on the “lm.br” 

package  (Adams, 2017). 

3.4. Results and Discussion 

Basic description 

Table 3-2 presents minimum, maximum, mean and standard deviation of data collected in this 

study. The daily mean Tdb measured on the farm during the study period was between 9 and 

31 oC, while the data from local weather station ranged from 9 to 36 oC. The range of daily RH 

recorded on-farm measurement i.e. 36-98% was smaller than the range based on local weather 

station i.e. 11-95%.  
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The average monthly thermal data over observation period collected by local weather station 

are shown in Figure 3-2. The high temperature of the hot season (Dec-Feb) ranged from 20 to 

35 oC with a daily average temperature of 28 oC (Figure 3-2a). The average daily Tdb of the 

cold season (Jun-Aug) was about 15oC. During these three months, the difference between 

daily maximum and minimum Tdb increased from approximately 12 to 20 oC. The RH was 

lower in November and February, which were the starting and ending of hot season (Figure 3-

2b). However, RH suddenly increased after the hot season to the highest level of the year in 

March. WS and SR followed similar monthly patterns as the temperatures (Figure 3-2c). It can 

be seen in Figure 3-2[d], that the pattern of MT and DMY had a reverse pattern. From cold to 

hot season, a 2oC increasing of MT was associated with more than 10 kg decline in DMY. In 

addition, a significant decrease in DMY also occoured during the mid of cold season (July), 

which probably was an indication of cold stress. However, the impact of cold stress (-1kg DMY) 

was much less than heat stress, while no impact on MT was observed.  

The monthly pattern of wind direction is displayed in Figure 3-3 below. The main direction of 

the steady strong wind in a hot season was usually blowing from West to East, which brought 

the dry air from the inland desert to the coast. In the cold season, the wind direction was 

opposite (from East to West), which brought the humid air from ocean to the inland. 

The correlation between daily Tdb and RH measured on the farm and local weather station is 

listed in Table 3-3. Significant correlations (P<0.05) were demonstrated between each variable 

from the two measurements. The R2 values (0.86-0.93) of Tdb correlations showed acceptable 

agreement between the measurements on the farm and local weather station. However, the R2 

value of RH was less than 0.25. Particularly, with minimum RH, the value was only 0.02. 

Moreover, for both datasets from farm measurement and local weather station, no significant 

correlation was found between daily Tdb and RH, except the daily minimum Tdb and daily 

minimum RH (R2 = 0.36, P<0.05). The non-significant correlation indicated a limited 

interaction between these two variables. 

Table 3-2 The weather and animal-related variables measured at the study site.  

Category Variable Units Min Max Mean SE. 

deviation Farm 

measurement 

T_min °C 2.00 24.00 14.27 5.31 

T_max °C 9.00 38.00 27.15 4.65 

T_mean °C 9.00 31.00 19.85 4.39 

RH_min % 1.00 96.00 33.10 18.30 

RH_max % 67.00 105.00 84.61 11.51 

RH_mean % 36.00 98.00 61.18 12.93 

Local weather 

station (web 

data) 

T_min °C -1.00 27.30 12.49 5.69 

T_max °C 15.00 45.70 27.45 5.15 

T_mean °C 9.40 35.88 21.53 4.81 

RH_min % 8.00 95.00 42.22 17.54 

RH_max % 10.00 98.00 64.33 14.64 

RH_mean % 11.00 95.00 53.27 14.75 

WS m/s 1.30 13.70 5.61 1.99 

SR w/m² 17.36 363.42 205.44 72.59 

Animal status Num cows 118.00 196.00 156.41 24.27 

DIM day 122.00 273.00 181.90 33.42 

BW kg 711.71 996.14 910.48 49.14 

Age year 1.10 11.10 3.86 1.91 

Animal 

responses 

MT °C 38.02 41.38 39.13 0.64 

DMY kg/cow/day 18.60 39.40 31.39 3.90 
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Table 3-3 Correlation between thermal variables measured on the farm and local weather station  
Correlation Intercept Coefficient Sign.a R² SE. 

T_min 3.22 0.87 *** 0.93 1.34 

T_max 1.65 0.90 *** 0.86 1.47 

T_mean -0.93 0.95 *** 0.90 1.29 

RH_min 27.58 0.13 * 0.02 18.16 

RH_max 63.40 0.32 *** 0.22 10.22 

RH_mean 49.58 0.22 *** 0.08 12.45 

a – significant level: “NS” – insignificant; “*” – P<0.05; “**” – P<0.01; “***” – P<0.001. 
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Figure 3-2 Monthly patterns of variables. The sub-figures [a] to [d] illustrate the monthly pattern of temperature, relative humidity, wind speed, solar 

radiation, milk temperature and daily milk yield. The result of Duncan’s multiple range test is noted with letters. The significant level is chosen as 0.05. 
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Figure 3-3 Monthly pattern of wind direction. The distribution of wind direction is explained as the 

number of days with the direction towards East or West in each month. 

Comparison of the indices 

The performances of different TCIs in Equation 2-7 for prediction of heat stress were evaluated 

by assessing correlation coefficient between TCI and DMY/MT. Table 3-4 shows the 

performance of the main thermal variables including daily minimum, maximum, and mean 

value of Tdb, RH, Tdp and Twb. Overall, prediction of heat stress by using MT achieved a 

higher value of R2 than the prediction of DMY. All correlation was significant (P<0.05), except 

the ones with minimum RH and Tdp measured on the farm. The prediction using Tdb measured 

on the farm and local weather station had a similar performance. However, the Tdb measured 

on local weather station had a higher impact on DMY and MT. For example, for the prediction 

of DMY by using maximum Tdb, the coefficient values were -0.25 and -0.35 kg/Tdb for the 

data measured on farm and weather station, respectively. Moreover, the predictions based on 

maximum Tdb obtained lower R2 compared with the minimum and mean values. To predict 

MT, the mean value of Tdb resulted in better performance than the maximum and minimum 

values. Most of the prediction using RH resulted in low performance (R2<0.10), however, the 

maximum RH measured on farm showed better results (R2
 = 0.15 and 0.32, for DMY and MT). 

In addition, the prediction applying Tdp and Twb obtained similar performance as using Tdb. 

For the prediction of DMY, the best prediction was achieved by using minimum Tdb on the 

farm (R2 = 0.42). For the prediction of MT, the highest R2, as well as the sensitivity, was 

achieved by using Twb.  

 

The comparison of the predictions using basic TCIs in equations 1 to 7 including daily 

minimum, maximum and mean value of THI1 to THI7 are presented in Table 3-5. All indices 

showed better performance for predicting MT than DMY. The predictions using the maximum 

value of the index resulted in lower R2 value than using minimum or mean values. The overall 

prediction based on the THIs from local weather station resulted in better performance than the 

THIs on the farm. The prediction using THI1 and THI3 had the same performance, as they 

applied the same weight of Tdb and Twb in the equation. For the prediction of DMY, the best 

performance (R2 = 0.40) was achieved by using the minimum value of THI6 on the farm, 

however, the R2 was 0.02 less than the R2 using the minimum value of Tdb on the farm. For 

the prediction of MT, all of the mean THI measured by local weather station had a similar value 

of R2 (0.83-0.86), which were better than using other THIs. 

 

The comparisons by using TCIs (THI8, BGHI, ETI, ESI, HLI1, HLI2, RR and CCI) for the 

prediction of heat stress is presented in Table 3-6. The best model performance achieved by 

these predictions had similar correlation values as the prediction using THI1 to THI7 (Table 3-
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6). The prediction of MT using THI8 and ETI had lower R2 value than using other advanced 

TCIs. The use of maximum value usually had less R2 than using the minimum and mean value 

in the prediction of MT.  
 

 

 

Table 3-4 Simple correlation coefficient between DMY, MT and basic thermal variables (Tdb, RH, 

Tdp and Twb) 

Variables Coefficient R2 SE. Sign.a Coefficient R2 SE. Sign. 

Tdb Farmb Min -0.37 0.42 2.27 *** 0.09 0.72 0.30 *** 

Max -0.25 0.11 2.80 *** 0.09 0.44 0.42 *** 

Mean -0.44 0.36 2.38 *** 0.12 0.79 0.26 *** 

Webc Min -0.41 0.36 3.11 *** 0.10 0.71 0.35 *** 

Max -0.35 0.22 3.45 *** 0.10 0.60 0.41 *** 

Mean -0.46 0.33 3.20 *** 0.12 0.78 0.30 *** 

RH Farm Min -0.01 0.00 2.97 NS 0.00 0.00 0.56 NS 

Max -0.10 0.15 2.75 *** 0.03 0.32 0.46 *** 

Mean -0.06 0.06 2.88 *** 0.01 0.06 0.55 *** 

Web Min -0.03 0.02 3.87 *** 0.01 0.02 0.64 *** 

Max -0.03 0.02 3.87 *** 0.01 0.02 0.64 *** 

Mean -0.03 0.02 3.87 *** 0.01 0.02 0.64 *** 

Tdp Farm Min -0.03 0.01 2.95 NS 0.00 0.01 0.56 NS 

Max -0.30 0.22 2.62 *** 0.10 0.66 0.33 *** 

Mean -0.30 0.31 2.47 *** 0.08 0.55 0.38 *** 

Web Min -0.26 0.26 3.36 *** 0.06 0.46 0.47 *** 

Max -0.37 0.28 3.32 *** 0.09 0.62 0.39 *** 

Mean -0.37 0.30 3.26 *** 0.09 0.62 0.39 *** 

Twb Farm Min -0.27 0.21 2.65 *** 0.06 0.31 0.47 *** 

Max -0.30 0.20 2.67 *** 0.10 0.64 0.34 *** 

Mean -0.40 0.35 2.39 *** 0.11 0.68 0.32 *** 

Web Min -0.41 0.33 3.18 *** 0.09 0.62 0.39 *** 

Max -0.51 0.32 3.22 *** 0.13 0.77 0.31 *** 

Mean -0.56 0.38 3.06 *** 0.14 0.83 0.26 *** 

a –  significant level: “NS” – insignificant; “*” – P<0.05; “**” – P<0.01; “***” – P<0.001 

b –  the data measured on the farm. 

c –  the data collected from government website, which is measured by local weather station 

 

Table 3-5 Simple correlation coefficient between DMY, MT and basic TCIs (THI1 to THI6). Values 

of THI1-7 were calculated using Equations 1-8  
Variables Coefficient R2 SE. Sign.a Coefficient R2 SE. Sign. 

THI_1 Farmb Min -0.25 0.34 2.41 *** 0.06 0.56 0.38 *** 

Max -0.20 0.16 2.73 *** 0.07 0.56 0.38 *** 

Mean -0.30 0.37 2.36 *** 0.08 0.76 0.28 *** 

Webc Min -0.29 0.36 3.13 *** 0.07 0.68 0.36 *** 

Max -0.32 0.28 3.30 *** 0.08 0.73 0.34 *** 

Mean -0.37 0.38 3.08 *** 0.09 0.86 0.24 *** 

THI_2 Farm Min -0.17 0.25 2.58 *** 0.04 0.38 0.44 *** 

Max -0.17 0.19 2.68 *** 0.06 0.62 0.35 *** 

Mean -0.23 0.36 2.38 *** 0.06 0.71 0.30 *** 

Web Min -0.23 0.34 3.16 *** 0.05 0.64 0.38 *** 

Max -0.28 0.31 3.23 *** 0.07 0.77 0.31 *** 

Mean -0.31 0.39 3.05 *** 0.08 0.85 0.25 *** 

THI_3 Farm Min -0.25 0.34 2.41 *** 0.06 0.56 0.38 *** 

Max -0.20 0.16 2.73 *** 0.07 0.56 0.38 *** 

Mean -0.30 0.37 2.36 *** 0.08 0.76 0.28 *** 
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Web Min -0.29 0.36 3.13 *** 0.07 0.68 0.36 *** 

Max -0.32 0.28 3.30 *** 0.08 0.73 0.34 *** 

Mean -0.37 0.38 3.08 *** 0.09 0.86 0.24 *** 

THI_4 Farm Min -0.19 0.30 2.48 *** 0.05 0.48 0.40 *** 

Max -0.16 0.17 2.71 *** 0.06 0.58 0.36 *** 

Mean -0.24 0.36 2.37 *** 0.06 0.74 0.29 *** 

Web Min -0.23 0.35 3.14 *** 0.05 0.67 0.37 *** 

Max -0.27 0.30 3.27 *** 0.07 0.75 0.32 *** 

Mean -0.31 0.38 3.06 *** 0.08 0.86 0.24 *** 

THI_5 Farm Min -0.20 0.26 2.56 *** 0.05 0.39 0.44 *** 

Max -0.10 0.07 2.87 *** 0.03 0.20 0.50 *** 

Mean -0.31 0.37 2.36 *** 0.08 0.76 0.28 *** 

Web Min -0.28 0.35 3.14 *** 0.06 0.67 0.37 *** 

Max -0.31 0.28 3.32 *** 0.08 0.72 0.34 *** 

Mean -0.37 0.37 3.09 *** 0.09 0.86 0.24 *** 

THI_6 Farm Min -0.32 0.40 2.31 *** 0.08 0.68 0.32 *** 

Max -0.18 0.17 2.71 *** 0.06 0.56 0.37 *** 

Mean -0.31 0.37 2.36 *** 0.08 0.78 0.27 *** 

Web Min -0.32 0.37 3.10 *** 0.07 0.71 0.35 *** 

Max -0.33 0.29 3.28 *** 0.09 0.73 0.33 *** 

Mean -0.38 0.38 3.08 *** 0.09 0.84 0.26 *** 

THI_7 Farm Min -0.28 0.39 2.33 *** 0.07 0.65 0.33 *** 

Max -0.20 0.14 2.76 *** 0.07 0.50 0.40 *** 

Mean -0.33 0.37 2.36 *** 0.09 0.78 0.26 *** 

Web Min -0.31 0.36 3.12 *** 0.07 0.70 0.35 *** 

Max -0.30 0.25 3.37 *** 0.08 0.67 0.37 *** 

Mean -0.38 0.36 3.13 *** 0.09 0.83 0.26 *** 

a – significant level: “NS” – insignificant; “*” – P<0.05; “**” – P<0.01; “***” – P<0.001. 

b – data measured on farm. 

c – data collected from government website, which is measured by local weather station 

 

Table 3-6 Simple correlation coefficient between DMY, MT and advanced TCIs (THI8, BGHI, ETI, 

ESI, HLI1, HLI2, RR and CCI)  

Variables Coefficient R2 SE. Sign.a Coefficient R2 SE. Sign. 

THI_8 Min -0.29 0.35 3.14 *** 0.07 0.72 0.34 *** 

Max -0.18 0.16 3.57 *** 0.04 0.35 0.52 *** 

Mean -0.28 0.29 3.29 *** 0.07 0.69 0.36 *** 

BGHI Min -0.31 0.39 3.05 *** 0.07 0.74 0.33 *** 

Max -0.25 0.25 3.38 *** 0.07 0.66 0.38 *** 

Mean -0.32 0.35 3.15 *** 0.08 0.81 0.28 *** 

ETI Min -0.48 0.27 3.33 *** 0.11 0.51 0.45 *** 

Max -0.08 0.05 3.80 *** 0.02 0.07 0.62 *** 

Mean -0.43 0.30 3.25 *** 0.11 0.65 0.38 *** 

ESI Min -0.44 0.36 3.11 *** 0.10 0.70 0.35 *** 

Max -0.48 0.30 3.26 *** 0.12 0.75 0.32 *** 

Mean -0.55 0.38 3.06 *** 0.14 0.86 0.24 *** 

HLI_1 Min -0.31 0.37 3.10 *** 0.07 0.69 0.36 *** 

Max -0.29 0.28 3.31 *** 0.08 0.72 0.34 *** 

Mean -0.34 0.36 3.12 *** 0.09 0.84 0.26 *** 

HLI_2 Min -0.26 0.33 3.18 *** 0.06 0.63 0.39 *** 

Max -0.23 0.29 3.27 *** 0.06 0.72 0.34 *** 

Mean -0.24 0.34 3.16 *** 0.06 0.79 0.29 *** 

RR Min -0.07 0.35 3.15 *** 0.02 0.69 0.36 *** 

Max -0.08 0.28 3.32 *** 0.02 0.70 0.35 *** 

Mean -0.09 0.36 3.12 *** 0.02 0.85 0.25 *** 

CCI Min -0.25 0.38 3.08 *** 0.06 0.69 0.36 *** 

Max -0.22 0.33 3.18 *** 0.05 0.74 0.33 *** 

Mean -0.27 0.41 3.00 *** 0.06 0.84 0.26 *** 
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a – significant level: “NS” – insignificant; “*” – P<0.05; “**” – P<0.01; “***” – P<0.001. 

Identify the thermal comfort levels 

By using lines fitted to the broken-line regression, normal, alert, and urgent levels of heat stress 

determined as shown in Figure 3-4 to 3-9. Most of these regression had R2 values higher than 

0.85, with exception of the prediction of DMY using minimum THI of on-farm measurement 

(R2=0.74) and minimum CCI of local weather station (R2=0.78).  

For example, in Figure 3-4, the minimum Tdb on a farm with Normal level was lower than 

8.46 oC, with positive impact (slope = 0.20 kg/oC). When minimum Tdb was higher than 8.46 
oC, the impact became negative (slope = -0.25 kg/oC), which indicated an Alert level of heat 

stress. Then, the Urgent level of heat stress happened with minimum Tdb higher than 18.00 oC, 

and the impact could be -1.41 kg/oC, which was nearly 6 times production loss compared with 

the Alert heat stress. However, not all of the regression identified all three levels with two 

thresholds. Some of the regressions could only classify two levels, which were the Alert and 

Urgent level of heat stress, such as the regression between DMY and mean Tdb on a farm in 

Figure 3-4. 

In Figure 3-4, the range of minimum Tdb (from 8.46 to 18.00 oC) on the farm under Alert level 

was smaller than the range of this variable on local weather station (from 6.83 to 24.80 oC). 

Under Alert and Urgent heat stress, the negative impact of minimum Tdb on local weather 

station was larger than twice of the impact of the data measured on the farm (slope = -0.55 vs. 

-0.25 kg/oC for Alert level, slope =  -2.83 vs. -1.41 kg/oC for the Urgent level). The impact of 

mean Tdb was relatively lower than the impact of minimum Tdb, especially under Urgent heat 

stress (-1.57 vs. -2.83 kg/oC, for mean and minimum Tdb measured by local weather station, 

respectively). In addition, the threshold of entering Urgent level using mean Tdb on the farm 

(21.87 oC)  is nearly 10 oC lower than the threshold using the data from local weather station  

(32.18 oC).  

In Figure 3-5, the regression between MT and Tdb showed similar impact under different levels 

of heat stress. The range of minimum Tdb on-farm under Alert level (from 6.43 to 18.57 oC) 

was higher than the range of minimum Tdb on local weather station (from 2.06 to 16.02 oC). 

The thresholds of mean Tdb entering Urgent level were similar for the data measured on the 

farm and local weather station (20.59 vs. 20.29 oC, respectively).  

In Figure 3-6, similar thresholds of mean THI entering Alert level were found with the data 

collected on farm and local weather station (63.74 vs. 63.67, respectively). However, the 

impact of heat stress under Alert level was higher when using the data from local weather 

station (slope = -0.52 kg/THI, compared with -0.37 kg/THI on the farm). The threshold of mean 

THI entering Urgent level using the data on the farm was lower than the threshold for local 

weather station (67.81 vs. 80.84, respectively). However, under Urgent heat stress, the impact 

(slope = -4.12 kg/THI) of mean THI using the data from local weather station was nearly 6 

times of the impact based on the data from farm measurement (slope = -0.68kg/THI).  

In Figure 3-7, the data measured from the farm and local weather station had similar thresholds 

of minimum THI (47.45 vs. 49.13 for Alert level, 64.56 vs. 62.51 for the Urgent level). 

However, the impact of minimum THI under Urgent heat stress that applied farm data was 

more than twice of the impact based on the data from local weather station (slope = 0.39 vs. 

0.17 oC/THI). For the data measured on the farm and local weather station, similar threshold 

and impact of the Urgent heat stress were identified by mean THI (67.02 vs. 71.43, slope = 

0.13 vs. 0.15 oC/THI, respectively). 

In Figure 3-8 and 3-9, the minimum and mean CCI was unable to identify Normal level for the 

prediction of either DMY or MT. The impact of minimum CCI towards DMY decreased (from 

-0.33 to -0.04 kg/CCI) when the minimum CCI was higher than 22, which indicated inaccuracy 

of the equation. The impact of ESI for each level of heat stress was higher than the impact of 

BGHI. 



52 

 

Based on the broken line regression illustrated in Figure 3-4 to 3-9, and described above. The 

thresholds of different indices for Normal, Alert and Urgent level are summarized and listed in 

Table 3-7. The results of consistencies are listed in Table 3-8.  

In Table 8, the mean of THI, BGHI and ESI provided high consistency of identifying heat 

stress based on the decline of DMY, which were all higher than 90%. The using of minimum 

Tdb, mean THI, BGHI and ESI from local weather station could provide more than 80% 

consistency of the identification. When just identify the Normal and Alert level, the minimum 

Tdb measured on the farm and local weather station had 93% consistency, which was the same 

value of the R2 in their correlation (Table 3-3). In Table 3-8, the consistency between Tdb and 

THI increased when using the increase of MT to identify heat stress. However, the consistency 

between THI, BGHI and ESI decreased. Most of the indices had more than 90% consistency 

of the two levels identification, except the consistency between minimum THI and other 

indices. Moreover, the correlation between THIs using the dataset from on-farm measurement 

and local weather station was tested and shown in Table 3-9. The R2 of correlations were higher 

using the mean value of the dataset than using the maximum and minimum value. The R2 of 

THI2, THI4 and THI5 had values lower than 0.90 when using the maximum and minimum value.  
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Figure 3-4 Broken-line regression between DMY and Tdb. The sub-figure [a] is for the data measured on the farm, and [b] is for the data collected from local 

weather station 
 

 

Figure 3-5 Broken-line regression between MT and Tdb. The sub-figure [a] is for the data measured on the farm, and [b] is for the data collected from local 

weather station 
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Figure 3-6 Broken-line regression between DMY and THI. The sub-figure [a] is for the data measured on the farm, and [b] is for the data collected from 

local weather station 

 

 

Figure 3-7 Broken-line regression between MT and THI. The sub-figure [a] is for the data measured on the farm, and [b] is for the data collected from local 

weather station 
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Figure 3-8 Broken-line regression between DMY and advanced TCIs. The sub-figure [a] is for BGHI, [b] is for ESI, and [c] is for CCI. 
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Figure 3-9 Broken-line regression between MT and advanced TCIs. The sub-figure [a] is for BGHI, [b] is for ESI, and [c] is for CCI
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Table 3-7 Threshold values for alerting heat stress based on significant changes in DMY and MT 

Variables vs. DMY 
 

vs. MT 

Normal Alert Urgent 
 

Normal Alert Urgent 

Farm Tmin <9 9 to 18 >18 Tmin <6 6 to 19 >19 

THImean <64 64 to 68 >68 THImin <47 47 to 65 >65 

Web Tmin <7 7 to 25 >25 Tmin <2 2 to 16 >16 

THImean <64 64 to 81 >81 THImin <49  49 to 63 >63 

BGHImean <78 78 to 98 >98 BGHImean <70 70 to 90 >90 

ESImean <15 15 to 28 >28 ESImean <11 11 to 21 >21 

 

Table 3-8 Consistency in using the thresholds to identify different levels of heat stress. 

(The % of the days during observation identified with the same level of heat stress using paired TCIs) 

Consistency (%) Farm Web 

Tmin THImean Tmin THImean BGHImean ESImean 

Identify 3 levels of heat stress according to the decline of DMYa 

Farm Tmin 100.00 60.00 73.00 59.00 63.00 67.00 

THImean - 100.00 45.00 61.00 58.00 49.00 

Web Tmin - - 100.00 80.00 81.00 87.00 

THImean - - - 100.00 95.00 90.00 

BGHImean - - - - 100.00 91.00 

ESImean - - - - - 100.00 

Identify 2 levels of heat stress according to the decline of  DMYb 

Farm Tmin 100.00 69.00 93.00 79.00 83.00 87.00 

THImean - 100.00 70.00 86.00 84.00 74.00 

Web Tmin - - 100.00 80.00 82.00 87.00 

THImean - - - 100.00 96.00 90.00 

BGHImean - - - - 100.00 92.00 

ESImean - - - - - 100.00 

Identify 3 levels of heat stress according to the increase of MTa 

Farm Tmin 100.00 69.00 93.00 79.00 83.00 87.00 

THImean - 100.00 70.00 86.00 84.00 74.00 

Web Tmin - - 100.00 80.00 82.00 87.00 

THImean - - - 100.00 96.00 90.00 

BGHImean - - - - 100.00 92.00 

ESImean - - - - - 100.00 

Identify 2 levels of heat stress according to the increase of  MTb 

Farm Tmin 100.00 96.00 97.00 79.00 92.00 94.00 

THImin - 100.00 98.00 75.00 97.00 96.00 

Web Tmin - - 100.00 81.00 97.00 97.00 

THImin - - - 100.00 79.00 79.00 

BGHImean - - - - 100.00 99.00 

ESImean - - - - - 100.00 

a – the consistency of identifying three levels of heat stress (normal, alert and urgent) 

b – the consistency of identifying two levels of heat stress (normal, alert) 

Table 3-9 R2 of correlation between THIs based on the measurement on the farm and local weather 

station 
Cor Min Max Mean 

THI_1 0.90 0.92 0.95 

THI_2 0.78 0.85 0.90 

THI_3 0.90 0.92 0.95 

THI_4 0.85 0.89 0.93 

THI_5 0.77 0.59 0.94 

THI_6 0.95 0.92 0.96 

THI_7 0.96 0.91 0.96 
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Discussion of key issues 

The dairy farm in this study located in Gatton, Queensland, Australia, which had a humid 

subtropical climate. The basic climate scenario included hot and humid summers, as well as 

mild and sunny winters. Due to the position of Gatton, which was away from the coast but at 

low elevation in the Brisbane Valley, the temperatures in summer were among the hottest in 

south-east Queensland. Thus droughts and heat waves can be problematic for agricultural 

productivity. Based on the measurement of thermal environment in this study, the overall 

climate of the year was warm and humid.  However, the relative humidity in a hot season was 

lower than the one in cold season. Moreover, the measured dry bulb temperature had limited 

correlation with the relative humidity, which was different from other studies measured in the 

subtropical area (Dikmen and Hansen, 2009). This partially indicated the influence of Monsoon 

in the region of southern Queensland. The pattern of Monsoon was plotted in Figure 3-4 with 

a clear reverse of wind direction. The rainfall and air moisture could be influenced, thus the 

microclimate on the farm could not be explained simply by the basic psychometric theory, and 

more researches might be required for this kind of climate condition.  

The temperature measured at the farm and local weather station showed acceptable agreement. 

The measured relative humidity at the farm had limited agreement with the local weather 

station. Therefore, the TCIs which took more weight of relative humidity in the equation could 

lead to lower consistency, such as THI2, THI4 and THI5 in Table 3-9. The previous studies have 

demonstrated the application of downscaling large-scale climate information to small-scale had 

did not necessary influence the precision of estimating plant phenology (Maak and von Storch, 

1997; Matulla et al., 2003), as well as the prediction of heat stress for livestock farming (Milani 

et al., 2015).  This study demonstrated the consistency of using TCIs measured on farm and 

local weather station to predict heat stress. In Table 3-8, the consistency between Tdb on farm 

and BGHI and ESI on local weather station were higher than 80% to predict the decline of 

DMY. For MT prediction, the consistency was higher than 90%. Scharf et al. (2012) compared 

the application of respiration rate and rumen temperature to identify heat stress of cattle under 

laboratory and field studies. The rumen temperature was recommended as the consistent 

variable between environments. In this study, MT was more consistent between farm and local 

weather station, compared with DMY. The prediction of heat stress using the correlation 

between thermal data and MT could result in a more robust outcome, regardless of the spatial 

variability. 

Bohmanova et al. (2007) compared THI 1-7 in two regions (south-east and south-west of 

United States) and concluded the ratio of wet and dry bulb temperature (Twb/Tdb) could affect 

the performance of THIs under humid or arid condition.  The study found THI6 with the lowest 

ratio obtained the highest performance for the arid climate, whereas THI2 with the highest ratio 

performed the best for the humid condition. In this study, no significant improvement was 

found by using THI2 to predict heat stress compared with THI6. This might be caused by the 

limited correlation between the Tdb and RH in this study. However, the improvement of 

prediction performance (the increase of R2) as reported by Bohmanova et al. (2007) is less than 

0.01. It was hard to conclude that adjusting the weight of relative humidity (or ratio between 

Twb and Tdb) in THI equation could lead to significant improvement of the prediction.  

For the prediction of heat stress, the comparison of using basic and advanced TCIs had been 

performed by many studies such as Kendall et al. (2006), Silva et al. (2007), Li et al. (2009), 

Hammami et al. (2013) and Milani et al. (2015). However, there is still no unique conclusion 

based on these studies, as they were undertaken in different climate conditions. The HLI was 

recommended by Silva et al. (2007) for the prediction of heat stress in tropical climate areas, 

whereas Kendall et al. (2006) reported the insignificant relationship between HLI and DMY 

based on the data from oceanic climate areas. In this study, by comparing the best performance 

of prediction using basic thermal indicators, basic TCIs and advanced TCIs, Tdb can provide 
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the same performance as other TICs, with R2 ≈ 0.40 for DMY and R2 ≈ 0.85 for MT. The 

consistency test presented in Table 3-8 also proved the agreement (>80) between Tdb, THI, 

BGHI and ESI to identify the days with different levels of heat stress. This is similar to the 

conclusion from Dikmen and Hansen (2009), which was based on the correlation with rectal 

temperature for the cows in a subtropical region. It indicated the possibility to simplify the 

assessment of heat stress by only using Tdb as the major TCI. 

With different dependent variables in the models, the evaluation of heat stress could be varied, 

even under uniform thermal condition. The BGHI was not correlated with rectal temperature 

but significantly correlated with respiration rate as reported by Silva et al. (2007). Li et al. 

(2009) found the correlation between TCIs and respiration rate was usually higher than the 

correlation between TCIs and skin temperature or sweating rate. In this study, the correlation 

between TCIs and DMY was relatively lower than the correlation between TCIs and MT. This 

is similar to the results from West et al. (2003), which demonstrated the relatively low 

correlation between TCIs and DMY or dry matter intake. West et al. (2003) also found the 

correlation between TCIs and MT afternoon (PM) was higher than the correlation before noon 

(AM). In this study, the correlation between most of the maximum TCIs and MT was lower 

than the correlation between a minimum or mean TCIs and MT. The maximum TCIs usually 

indicated the most serious heat stress in the afternoon, however, it was different from the 

overall thermal condition afternoon (PM) as applied by West et al. (2003). The same difference 

existed between minimum TCIs and the thermal condition before noon (AM). Therefore, it was 

difficult to compare this kind of result between these two studies. However, West et al. (2003) 

selected the minimum and mean ambient temperature as the variables with the greatest 

influence on MT. This partially proved one finding of the present study that the animal 

responses were more influenced by the overall daily heat stress (mean TCIs) and nighttime 

cooling (minimum TCIs). A similar influence was also found with DMY, where the effect of 

minimum and mean TCIs was always higher than the maximum TCIs. Kendall et al. (2006) 

also reported that enough nighttime cooling could prevent the decline of DMY even for non-

shaded cows staying with maximum THI and HLI.  

Three levels of heat stress (Normal, Alert, and Urgent) were identified with different TCIs and 

thresholds in this study. For the mean THI, when the value exceeded 64, heat stress happened 

with a significant decline of DMY. The value was lower than 69 as reported by Bouraoui et al. 

(2002), as the production level of the present herd (31 kg/cow/d) was higher than the reported 

herd (<20 kg/cow/d). For the production level of 35 kg/cow/d, Zimbelman et al. (2009) found 

that the critical value of average THI could be 68. However, the decrease of DMY was 

2.2kg/THI with THI exceeding 68 as reported by Zimbelman et al. (2009), while in the present 

study the decrease was only 0.4-0.5 kg/THI. With the same level of DMY decline, the threshold 

of mean THI found in this study was close to the one reported by Hammami et al. (2013), 

which was 62 with 0.36 kg/THI. However, the production level of the herd in that study was 

around 23 kg/cow/d. The database of Hammami et al. (2013) only included the test result of 

first-lactation cows, which could be the reason for the low heat stress tolerance. Even with 

same statistic approach, different studies applied a different range of animal responses (e.g. 

decline of DMY) to identify the levels of heat stress and the thresholds, it is still necessary to 

establish a standard to quantify the influence of heat stress.  

Moreover, as shown in Table 3-6, most of TCIs had a lower value of threshold when identifying 

the heat stress based on the increase of MT. This demonstrated a higher sensitivity toward heat 

stress compared with DMY. Studies also demonstrated the correlation between milk 

temperature, ambient temperature, internal body temperature and animal health (Chaudhari and 

Singh, 2015; Pohl et al., 2014). By applying a threshold of MT to warn heat stress, farmers 

could be made aware of the problem earlier when compared to monitoring DMY reduction.  
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3.5. Conclusions 

The prediction of heat stress using Tdb can provide similar good performance as other TCIs. 

By using the regression between TCIs and MT, the impact of spatial variability between on-

farm measurement and local weather station can be reduced when assessing heat stress. The 

identified thresholds for different level of heat stress at the research site suggested that heat 

stress can be alerted with daily mean THI of greater than 64 for the cow with 31kg/cow/day 

milk production. However, quantification of the effect of heat stress (e.g. decline of DMY) 

under different levels of heat stress is still difficult. The heat stress with high minimum TCIs 

maybe more detrimental to cattle than heat stress with the maximum TCIs, as the night time 

cooling is essential for the animal to prevent the decline of production performance. The 

potential of simplified assessment of heat stress according to on-line dataset was demonstrated 

by this study. 
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 Modelling of heat stress in a robotic dairy farm. Part 2: 

Identify of the specific thresholds with production factors 
 

4.1. Abstract 

Thresholds of heat stress were identified by determining the temperature or the value of thermal 

comfort indices with significant change of animal responses (e.g. decline of daily milk yield). 

However, the published thresholds could lead to inaccuracy when dealing with specific climate 

conditions, animal breeds and production factors. Thus, dynamic thresholds might be able to 

provide better assessment of heat stress with self-calibration capabilities. In this study, a large 

dataset of individual age, body weight (BW), days in milk (DIM), daily milk yield (DMY) and 

milk temperature (MT) of 126 lactating Holstein cows was collected from a robotic dairy farm 

over 5 years. The ambient dry bulb temperature was collected from local weather station and 

processed as daily minimum and mean temperature (Tmin and Tmean). The raw dataset of 

individual cow was grouped according to their age, BW and DIM. Specific thresholds of dry 

bulb temperature for different group of cows were identified using the single broken-line 

regression between temperature and DMY/MT. The specific thresholds for different group of 

cows were imported into a machine learning model to develop decision tree of dynamic 

thresholds. Thresholds for the whole herd were also identified by using multiple broken-line 

regression considering temperature, age, BW and DIM as independent variables. Four stages 

of heat stress were established as thermal comfort stage (Tmin < 5 oC, Tmean < 9 oC), mild 

heat stress (Tmin: 5-6 oC, Tmean: 9-11 oC), effective heat stress (Tmin: 6-14 oC, Tmean: 11-

16 oC) and critical heat stress (Tmin > 14 oC, Tmean > 16 oC) based on the change of DMY 

and MT. Dynamic thresholds of critical heat stress were established for Tmin (0, 10 and 12 oC) 

and Tmean (5, 7, 13, 14, 15, and 16 oC). The model of dynamic thresholds using decision tree 

had overall 94% accuracy with the thresholds of Tmin, and 79% accuracy with the thresholds 

of Tmean. The importance of cooling the cows during early lactation period was demonstrated 

by the model, as lower threshold was determined with DIM below 40 days.  

4.2. Introduction 

Homoeothermic animals including the dairy cows need to keep their body temperature at an 

appropriate constant level. The internal heat balance is known as a basic mechanism in 

controlling the animals’ body temperature. The heat produced during metabolism (heat input) 

would be consumed for maintaining body temperature e.g. sweating and production activities 

e.g. milking (heat output) (DeShazer et al., 2009; West, 2003; Kadzere et al., 2002). The heat 

stress can disturb this balance as the animal would be required to spend more energy to maintain 

body temperature leaving less energy for production activities, which leads to production loss. 

It was found that the increased nutrient intake will result in a greater heat input in high-

producing dairy cows as they can generate more metabolic heat, consequently, these animals 

are less tolerant to heat stress (Kadzere et al., 2002). If the feed intake (heat input) of dairy 

cows do not meet the energetic demands of maintenance and lactation (heat output), negative 

energy balance (NEBAL) could occur (Allen et al., 2013). In addition to production loss, the 

NEBAL effect can damage the animal’s health and finally cause death. Vitali et al., (2009) 

reported that severe heat stresses can cause up to 23.3% of herd mortality. 

Effective mitigation of heat stress is still a significant challenge for dairy farming, and design 

of adequate mitigation requires accurate assessment of heat stress effect. The assessment of 

heat stress is generally based on modelling between thermal environments and animal 

responses. Several thermal comfort indices (TCIs) are developed for the assessment under 
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different climate condition or for different animal breeds (LCI, 1970; Buffington et al., 1981; 

Mader et al., 2006; Brown-Brandl et al., 2005; Gaughan et al., 2008b). Studies on dairy cows 

were also conducted to link the results of these models with other indicators of production 

performance, such as feed intake (Zimbelman, 2007), milk production (Bouraoui et al., 2002) 

or conception rate (Nabenishi et al., 2011). However, the TCIs’ applications require 

measurement on the animal parameters which were only applicable in laboratory studies (Berry 

et al., 1964; Yousef, 1985) or in labour intensive field studies (Gaughan et al., 2002; Gaughan 

et al., 2008b). The difference between the TCIs, animal breeds, climate conditions and farming 

facilities could always lead to variability in the results. 

Developing reliable models that can be easily parametrised could be the right approach. These 

are simplified models with parameters that can be easily and reliably can be parametrised is an 

effective solution to enhance the applicability of heat stress assessment. Previously has been 

reported that simply using ambient temperature (dry bulb temperature) as the predictor of rectal 

temperature can provide similar performance as TCI equations in sub-tropical regions (Dikmen 

and Hansen, 2009) and this was also demonstrated in Part I of current study (Ji et al., 

Submitted-a) Moreover, the results based on small number of animals under laboratory 

conditions (Yousef, 1985) or a large number of animals over several regions (Gaughan et al., 

2008b) have little relevance for heat stress problems experienced on specific farms. For 

example, most of the identified thresholds for alerting heat stress are too general to consider 

differences between animal physiological status, production factors or age (Silva et al., 2007), 

which would lead to more effective mitigation of heat stress. 

In an Automatic/Robotic Milking System (AMS), measurements associated with the 

production and physiological status of animals (such as body weight, feed intake and 

production level etc.) are performed automatically and routinely when the cow visits the 

milking robot. Of the collected information, milk temperature (MT) can possibly be applied as 

an indicator of animals’ response to heat stress. Researches have demonstrated a significant 

correlation between milk temperature and ambient temperature, internal body temperature, and 

animal health (Chaudhari and Singh, 2015; Pohl et al., 2014).  

This paper hypothesises that assessment of heat stress can be performed using milk 

temperature, a variable that is readily available in all AMSs. In addition, this paper is aimed at 

generating new heat stress thresholds values. These thresholds values are to be determined 

based on animals’ responses of milk production and milk temperature. Influence of different 

production factors will be considered and compared including milk production level, age, body 

weight and days in milk. Finally, a machine learning model will be developed for adjusting the 

threshold values according to animals’ production factors.  

4.3. Methodology 

Data Collection 

As described in the first paper of this series (Ji et al., Submitted-a), the data collection was 

performed in a dairy farm located in Gatton, Queensland, Australia. The AMS farm had about 

160 lactating cows with milking robots (LELY Astronaut, Lely Industries NV, Maassluis, the 

Netherlands). Animals were allowed to freely move between feeding and resting area, while 

semi-free access to the milking station was managed by the herd management system (LELY 

T4C, Lely Industries NV, Maassluis, the Netherlands). The system controlled the daily 

maximum visits of individual animals. The herd management system was linked to AMS to 

collect information from the individual animal during each milking visit. This information 

mainly included age, body weight (BW), days in milk (DIM), milk production (daily milk 

yield, DMY), and milk temperature (MT), as listed in Table 4-1. We collected a dataset of 
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nearly 5 years’ (June 2013- November 2017) with information of 126 Holstein lactation cows, 

which contained 78455 rows of test day’s data.  

It is demonstrated that the utilization of data from local weather stations outside farm could 

provide a similar assessment of heat stress as using the data from on-farm measurement (Ji et 

al., Submitted-a). Therefore, in this study, the climate data from June 2013 to November 2017 

was downloaded from local weather station with nearly 8 km distance from the research farm. 

As discussed in the previous paper of these series (Ji et al., Submitted-a), a model developed 

by using the relationship between dry bulb temperature (Tdb) and animal responses could 

provide with enough certainty. For long term analysis in this paper, we used observed daily 

minimum temperature to represent night time cooling condition, and mean value of Tdb to 

represent all day thermal condition, as listed in Table 4-1.  

Table 4-1 List of variables in data collection 
Category Name Unit Definition 

Animal status 

and production 

Age Years Age of individual animal 

BW Kg Body weight of individual animal  

DIM Days Days in milk, or lactation days 

DMY Kg/cow/day Daily milk production of individual animal 

MT oC Milk temeprature when milking the animal 

Environment 
Tmin oC Daily minimum temperature, represent the night time cooling 

Tmean oC Daily average temperature, represent the all day thermal condition 

 

Data processing and statistical analysis 

The raw data was filtered, cleaned and outliers have been removed using standard statistical 

methods (Mead, 2017). The analysis was conducted: (1) to identify the specific thresholds for 

different group of animals with different production factors, (2) to identify the general 

thresholds for the overall group by including production factors as dependent variables in the 

model, and (4) to establish a decision tree based on the results from (1), (2) and (3), which was 

expected to calibrate the threshold dynamically.  

 Group the animal 

Animals were classified into different groups to identify specific thresholds according to the 

production factors, age, BW, and DIM of individual animals. The multi-phases segmented 

single linear regression was applied to identify the significant break points for grouping 

(Chamsaz et al., 2011) and the model was formulated as follows:  

     𝑦 = {

𝑎1 + 𝑏1𝑥 + 𝜀,                        (𝑥 ≤ 𝑠1)

𝑎2 + 𝑏2𝑥 + 𝜀,              (𝑠1 < 𝑥 ≤ 𝑠2)
…

𝑎𝑛 + 𝑏𝑛𝑥 + 𝜀, (𝑠𝑛−1 < 𝑥 ≤ 𝑠𝑛)

 

Where x is the independent variables of age, BW or DIM and y is dependent variable DMY or 

MT. The parameters 𝒂𝒊 and 𝒃𝒊 (i = 1 to n) are the intercept and the slope for different phases; 

𝜺 denotes the residual error terms. The threshold or break points (𝒔𝒊, i = 1 to n) and the number 

of phases (n) determined by comparison between the significant difference of 𝒃𝒊  of each 

phases. The value of 𝒔𝒊 is used to group the dataset into sub-groups according to different 

production factors. For example, three groups of younger than 5 years old, between 5 and 10 

years old, and older than 10 years old were generated based on the significant break points of 

age. 
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 Identify the specific thresholds 

Following the first paper of this series (Ji et al., Submitted-a), for each group (categorized with 

age, BW and DIM), the broken-line single linear regression was applied to determine the 

threshold values of Tdb.  The model was formulated following the equation below: 

𝑦 = {
𝑐 + 𝜀,           𝑥 ≤ 𝑇𝐻𝑅
𝑎 + 𝑏𝑥 + 𝜀, 𝑥 > 𝑇𝐻𝑅

 

Where c is a constant representing the mean value of dependent variable y i.e. DMY or MY 

without significant impact from heat stress. The parameters a and b denotes to the intercept and 

slope of single linear regression when the independent variable is above the threshold (THR), 

respectively.  

 Identify the general thresholds 

The multi-phases segmented multiple linear regression was applied to estimate the thresholds 

of Tdb for the whole herd by considering production factors (age, BW and DIM). The model 

was formulated as follows: 

        𝑦 = {

𝑎1 + 𝑏1𝑥1,                      (𝑥1 ≤ 𝑠1)

𝑎2 + 𝑏2𝑥1,             (𝑠1 < 𝑥1 ≤ 𝑠2)
…

𝑎𝑛 + 𝑏𝑛𝑥1, (𝑠𝑛−1 < 𝑥1 ≤ 𝑠𝑛)

+ ∑ 𝑐𝑗𝑥𝑘

𝑗=3,𝑘= 4

𝑗=1,𝑘=2

+ 𝜀 

Where 𝑥1 is independent variable Tdb, 𝑥𝑘 (k = 2 to 4) is the independent variable of production 

factor i.e. age, BW and DIM, y is the dependent variable of animal responses DMY and MT, 

and 𝜀 is the residual error terms. The parameters 𝑎1 𝑡𝑜 𝑛 𝑏1 𝑡𝑜 𝑛, and 𝑠1 𝑡𝑜 𝑛 are using the same 

definition as described in the multi-phases segmented single linear regression. The parameter 

𝑐𝑗 (j = 1 to 3) are the weight (slope) of production factors in the regression. To implement this 

model, an orthogonal transformation was used to a canonical model (Siegmund and Zhang, 

1994). The multiple linear regression is then reduced to a single linear regression by this 

elimination (Lehmann and Romano, 2006).  

 

 Determine the stages of heat stress 

According to the specific and general thresholds as identified above, as well as the varied level 

of cows’ responses with temperature exceeding these thresholds. The stages of heat stress 

impact were determined as follows: 
Stage I - thermal comfort zone: no impact from ambient temperature; 
Threshold I: ambient temperature with significant increase of MT; 
Stage II - innocuous heat stress: the animal’s internal body temperature (MT) started to 
raise as a normal physiological reaction toward heat stress, no extra energy required to cope 
with heat stress, and no production loss (decline of DMY); 
Threshold II: ambient temperature with a significant decline of DMY, this could also be 
identified as a threshold of MT. 
Stage III - effective heat stress: the production performance (DMY) started to decline as 
the animal requiring extra energy to cope with heat stress.  
Threshold III: ambient temperature with a more significant increase of MT or decline of 
DMY compared with Stage II and III. 
Stage IV – critical heat stress: the increase of internal body temperature (MT) and decline 
of production performance (DMY) became more significant, and mitigation (e.g. 
ventilation cooling) was necessary to prevent health injury. 
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As the broken-line regression for each grouped dataset (age, BW and DIM) only generated two 

phases and one thresholds for each correlation, it was unable to find out the Stage III (effective 

heat stress), where the increase of MT or decline of DMY was significant but not as serious as 

Stage IV. Therefore, for the regression applied in each group classified by Age, BW or DIM, 

only Stage I, II and IV were identified. The multi-phased segmented multiple linear regression 

for the whole herd determined the status of Stage III (thresholds and slopes). 

 Decision tree for threshold selection 

For Stage IV, the thresholds determined for the whole herd could underestimate the heat stress 

for specific groups. Thus, mitigation of heat stress using the herd’s thresholds might be 

insufficient. The specified thresholds to ensure the thermal comfort of a specific group of 

animals could be a better solution. However, same cows might be assigned with a different 

threshold as they can meet the features of more than one group (e.g. age<4 years, BW>1000 

kg and DIM<20 days), which lead them to suit to multiple specific thresholds. Therefore, the 

thresholds of specific groups were summarized as classification factors. Then, a decision tree 

was applied to provide an artificial selection of the classes (thresholds) according to the 

production factors (Age, BW or DIM) of individual animal or sub group of the herd. 

𝑇𝐻𝑅(𝑥) = 𝑐 𝑓𝑢𝑙𝑙 + ∑ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑥𝑖 , 𝑘) 

Where the THR(x) is the threshold value determined by the decision tree, parameter of cfull and  

𝑐𝑜𝑛𝑡𝑟𝑖𝑏(𝑥, 𝑘) is the value at the root of the node and the contribution from the k-the feature of 

variable xi, respectively. The prediction of decision tree is made by calculating the mean (root) 

given by the topmost region that covers the whole training set plus the sum of the features’ 

contributions. Dataset were split into 75% for train and 25% for test. Sensitivity, the specificity, 

balanced accuracy and overall accuracy were applied to validate the model (Berry et al., 2004; 

Pinzón-Sánchez et al., 2011; Brodersen et al., 2010). 

All data processing and statistical analysis were done using R 3.4.3. (R Development Core 

Team, 2017). The separation of the dataset was performed using the basic function of “split” 

in R, with 75% for training and 25% for testing. The general linear regression analysis was 

done by using the basic function of “lm”(Chambers, 1992), while the generalized linear 

regression analysis was dependent on the function of “glm” (Dobson and Barnett, 2008). The 

broken-line regression was performed based on the “lm.br” package (Adams, 2017). The multi-

phases linear regression was taken by using the “segmented” package (Muggeo, 2008). The 

decision tree was established by using the “part” package (Therneau et al., 2015). 

4.4. Results and Discussion  

Group the animal 

The whole dataset of the individual animal was grouped to form cohesive clusters that can be 

meaningfully analysed by multi-phased segmented regression (Figure 4-1 and Table 4-3). In 

Figure 4-1 [a], the regression between DMY and Age is plotted. The production level of 

younger animals (age < 4-year) statistically and numerically increased with age. In contrast, 

the production increase was statistically significant but numerically small for older animals 

(aged between 4 and 10 years). A significant decline of DMY was found when animals were 

older than 10 years. The fluctuation of the original dataset in Figure 4-[a] was caused by the 

impact of lactation curve as plotted in Figure 4-1 [c]. In Figure 4-1 [b], positive correlations 

can be seen between DMY and BW for first two weight classes (BW <400 kg, 400 to1000 kg, 

and). However, the correlation under the last group (BW >1000 kg) was negative. Three groups 

were categorized for each factor as listed in Table 4-2. The correlations between BW, Age and 
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DIM are shown in Figure 4-2. Both the Age and DIM had a positive correlation with BW, as 

well as a steady state in the mid of the regression curve. Therefore, the interaction between the 

three factors was considered in the further analysis of this study. 

 

 

 

 
Figure 4-1 Multi-phases linear regression with different production factors. [a] is for Age, [b] 

is for BW, and [c] is for DIM. The fitted lines are the values calculated from regression 

models. 

Table 4-2 Thresholds and slopes of multi-phases linear regression 
Group Age BW DIM 

THR Slope 

(kg/cow/day/year) 

THR Slope 

(kg/cow/day/kg) 

THR Slope 

(kg/cow/day/day) 

1 <4 2.91 <500 0.13 <10 1.87 

2 4 to 10 0.28 500 to 1000 0.02 10 to 40 0.23 

3 >10 -5.80 >1000 -0.003 >40 -0.06 

R2 0.26 0.77 0.98 
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Figure 4-2 Correlation between BW, Age and DIM. [a] – the relationship between BW and 

Age, [b] – the relationship between BW and DIM.  

Identify the thresholds of heat stress 

The fitted lines of broken-line regression for different animal groups are shown in Figure 4-3 

to 5 and Table 4-3.  For the whole herd, the results of multi-phases segmented regression are 

shown in Figure 4-6 and Table 4-4.  

As presented in Table 4-3, the thresholds for different groups of Age indicated the weakened 

heat tolerance of older cows. The thresholds of Tmin entering Stage IV (critical heat stress) 

decreased from 12 to 8 oC, as more night time cooling was required for the older cows. A 

decrease was also found with the thresholds of Tmean and MT with older cows, which was 

decreased from 15 to 13 oC, and from 39 to 38 oC, respectively. The thresholds of Tmean 

entering Stage II (innocuous heat stress) showed a different pattern. The cows with Age 

between 4 and 10 had the lowest thresholds (11 oC). It might be caused by the higher production 

level (DMY) within this Age class when compared to other age classes (Figure 4-1 [a]). 

Evidently, cows with higher production level were more prone to experience innocuous heat 

stress. However, the same threshold of Tmin entering Stage II indicated that the same level of 

night time cooling (≤ 7 oC) were sufficient for all three groups. The animal with higher 

production level (Age: 4 to 10) could have the same recovery from heat stress as other groups, 

if they have access to sufficient cooling. Moreover, in Stage II, older cows (Age > 10) had 

higher slope value for the increase of MT (+0.13 oC/Tmin, and +0.16 oC/Tmean), as well as 

the higher slope value for the decline of DMY in Stage IV (-0.90 kg/Tmin, and -1.01 

kg/Tmean). The influence of high MT became more important than the influence of high 

ambient temperature (Tmin and Tmean) when cows were older than 4 years old. The decline 

of DMY raised from -0.24 kg/MT to -6.61 kg/MT.  
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The threshold entering Stage II of the group with BW lower than 500 kg was lower than other 

groups. However, the slope value for the increase of MT was lower, which indicated they were 

able to dissipate the heat more readily than other groups. This was most likely caused by their 

smaller body mass, which made their internal temperature change more readily in relation to 

changes in external temperatures. The threshold of Tmin entering Stage IV had a lower value 

(10 oC) for cows with BW less than 500 kg, while the threshold of Tmean had a higher value 

(16 oC). It partially implied that this BW cluster would be less likely to enter Stage IV heat 

stress if they had access to sufficient night time cooling. There is no visible difference between 

the thresholds entering Stage II or IV for the groups with BW from 500 to 1000 kg and higher 

than 1000 kg, except 1 oC ( 11 vs. 12 oC) difference between the thresholds of Tmean (MT – 

Tmean) entering Stage II. Nevertheless, the animal with BW higher than 1000 kg had notable 

more decline of DMY (-0.94 kg/Tmin, -0.97 kg/Tmean, and -2.81 kg/MT), compared with 

another group (-0.57 kg/Tmin, -0.53 kg/Tmean, and -0.86 kg/MT). It clearly indicated the 

reduced heat tolerance of heavy cows. As the DMY had no significant increase when the animal 

was heavier than 1000 kg (Figure 4-1 [b]), control their BW below 1000 kg could enhance the 

heat tolerance of the herd, and reduce the risk of heat stress. 

During the first 10 days of lactation (DIM<10 days), cows were unlikely to enter the Stage II 

or III of heat stress as their production (DMY: 25.4 kg/cow/day) had not reached to the high-

production level. The correlation between DMY and MT indicated no decline of DMY even 

with the MT beyond the threshold of 41 oC, which was already 2oC above the threshold of MT 

for the group with DIM>40 days. Between 10 and 40 days of lactation (10 days <DIM <40 

days), the production (36.7 kg/cow/day) of cows achieved high-production level. These cows 

had the lowest heat tolerance compared with other periods.  The decline of DMY could be as 

high as 2.63 kg/MT. For the first 40 days of lactation (DMY<40 days), the thresholds identified 

for Tmin (DMY-Tmin) entering Stage IV were 0 oC. It might be unrealistic to state that cows 

during this period requiring the ambient temperature of night time cooling to be lower than 0 
oC. However, it did imply the importance of night time cooling, as cows always had insufficient 

cooling in this period, thus extra mitigation techniques, such as nutritional manipulations 

should be applied to prevent heat stress. Moreover, during the first 40 days of lactation, the 

thresholds to identify Stage II were higher than the thresholds of Stage IV, which indicated the 

reduced effectiveness of using MT in Stage II to detect heat stress, as the DMY started to 

decline before the MT increasing. After 40 days lactation, the DMY started decreasing as 

illustrated in Figure 4-1 [c], while average DMY in this period was still 32 kg/cow/day. As this 

period lasted for about 300 days, the thresholds identified within this period had similar results 

as the thresholds from other groups classified by Age or BW.  

The regression analysis for the whole herd considered all three factors (Age, BW and DIM) 

and applied multi-phases segmented regression. Three phases were determined for the 

regression between MT, DMY and ambient temperature (Tmin and Tmean). Two phases were 

determined for the regression between DMY and MT. The general threshold for the declining 

of DMY caused by the increasing of MT was identified as 39 oC. This value was equal to most 

of the results identified based on broken line regression for different groups, except the groups 

with DIM<40 days or Age>10 years. The thresholds of Tmin and Tmean entering Stage III 

(effective heat stress) were found as 6 and 11 oC. They were 1 and 2 oC higher than the 

thresholds of Stage II (5 and 9 oC for Tmin and Tmean, respectively). The thresholds entering 

Stage IV determined for the whole herd (14 and 16 oC for Tmin and Tmean, respectively) were 

equal or higher than the maximum thresholds determined by the groups (12 and 16 oC for Tmin 

and Tmean, respectively). Therefore, even by considering the production factors in the 

regression, the thresholds identified for the whole herd in Stage IV could underestimate the 

heat stress for a specific group of animals. In contrast, the thresholds of Stage II or III could be 
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applied as a more reliable alert of innocuous and effective heat stress, since their values were 

lower than most of the thresholds identified for specific groups. 

 

 

 
Figure 4-3 Thresholds identification for groups with different Age. Legend format: Group, Independent and 

dependent variable. [a] fitted lines of regression between DMY and Tmin; [b] fitted lines of regression between 

DMY and Tmean; and [c] fitted lines of regression between DMY and MT. The value of thresholds and slopes 

are presented in Table 4-3. 
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Figure 4-4 Thresholds identification for groups with different BW. Legend format: Group, 

Independent and dependent variable. [a] fitted lines of regression between DMY and Tmin; 

[b] fitted lines of regression between DMY and Tmean; and [c] fitted lines of regression 

between DMY and MT. The value of thresholds and slopes are presented in Table 4-3. 
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Figure 4-5 Thresholds identification for groups with different DIM. Legend format: Group, 

Independent and dependent variable. [a] fitted lines of regression between DMY and Tmin; 

[b] fitted lines of regression between DMY and Tmean; and [c] fitted lines of regression 

between DMY and MT. The value of thresholds and slopes are presented in Table 4-3. 
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Figure 4-6 Thresholds identification for the whole herd with multi-phases segmented multiple 

linear regression. Legend format: Independent and dependent variable, original dataset or 

regression fitted values (Reg.). [a] raw data and fitted lines of regression with Tmin and 

Tmean; and [b] raw data and fitted line of regression between DMY and MT. The value of 

thresholds and slopes are presented in Table 4-4.
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Table 4-3 Summary of broken line regression for thresholds identification (unit of THR: oC, unit for Slope: kg/cow/day/ oC, for all models 

P<0.05) 
 The threshold of Stage II The threshold of Stage IV DMY - MT 

MT-Tmin MT - Tmean DMY-Tmin DMY - Tmean 

Group of Age THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 

<4 7 0.12 0.94 12 0.14 0.94 12 -0.51 0.65 15 -0.48 0.67 39 -0.24 0.72 

4 to 10 7 0.11 0.93 11 0.13 0.94 10 -0.83 0.83 14 -0.84 0.8 39 -2.77 0.69 

>10 7 0.13 0.79 13 0.16 0.82 8 -0.9 0.57 13 -1.01 0.56 38 -6.61 0.88 

Group of BW THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 

<500 0 0.09 0.54 8 0.11 0.5 10 -0.67 0.28 16 -0.91 0.33 39 0.37 0.53 

500  to 1000 7 0.11 0.94 11 0.13 0.94 12 -0.57 0.8 15 -0.53 0.77 39 -0.86 0.76 

>1000 7 0.11 0.88 12 0.14 0.92 12 -0.94 0.68 15 -0.97 0.71 39 -2.81 0.47 

Group of DIM THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 

<10 9 0.11 0.63 11 0.11 0.67 0 -0.33 0.2 7 -0.37 0.18 41 0 0.69 

10 to 40 7 0.12 0.9 10 0.13 0.93 0 -0.35 0.5 5 -0.4 0.48 40 -2.63 0.41 

>40 7 0.11 0.93 12 0.13 0.94 12 -0.68 0.8 16 -0.66 0.76 39 -1.8 0.7 

Table 4-4 Summary of multi-phases segmented multiple linear regression to identify thresholds of the herd (unit of THR: oC) 

 MT-Tmin MT - Tmean DMY-Tmin DMY - Tmean DMY - MT 

THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 THRs Slope R2 

Stage I <5 0.03 

0.96 

<9 0.03 

0.97 

<6 0.23 

0.89 

<11 0.26 

0.85 

<39 3.43 

0.77 
Stage II  

5 to 15 0.08 9 to 19 0.09 
Stage III 6 to 14 -0.15 11 to 16 -0.09 

>39 -1.21 
Stage IV >15 0.14 >19 0.16 >14 -0.6 >16 -0.6 
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Selection of specific thresholds 

As the thresholds for Stage II and III achieved only modest reliability, the selection of specific 

thresholds was only processed for Stage IV. The specific thresholds for Stage IV in a different 

group with different age, BW and DIM were reorganized and summarized in Table 4-5. 

Table 4-5 Thresholds for critical heat stress for specific production factors (unit of THR: oC) 

DMY-Tmin 

THR Age BW DIM 

0 - - <40 

8 >10 - - 

10 4 to10 <500 - 

12 <4 >500 >40 

DMY-Tmean 

THR Age BW DIM 

5 - - 10 to 40 

7 - - <10 

13 >10 - - 

14 4 to 10 - - 

15 <4 >500 - 

16 - <500 >40 

The model of decision tree is illustrated in Figure 4-7 and 8. The performance of the models 

were listed in Table 4-6, 94 and 74% overall accuracy were achieved for predicting the 

threshold values of Tmin and Tmean for the test dataset. 

In Figure 4-7, the basic classification (root branch) is presented based on DIM. If animal’s DIM 

was less than 21 days and BW was larger than 517 kg, the threshold would be 0 oC, which 

indicated night time cooling may not be sufficient to dissipate heat stress, and extra mitigations 

might be required. However, if animal’s BW was less than 517 kg, night time cooling could be 

sufficient if the Tmin was lower than 10 oC. On the other hand, if animals were older than 3.9 

years old or less than 577 kg, the threshold of Tmin would be 10 oC. Otherwise, the animals 

would not have critical heat stress unless the Tmin was higher than12 oC.  

In Figure 4-8, the basic and second level of classification was performed. As all of the cows 

were within their first 13 and 33 days of lactation (DIM< 13 and 33 days), these branches 

together represented 45% of the whole dataset. It suggested more mitigation of heat stress 

should be provided for the early lactation period, regardless of the BW or Age of the animal. 

The third level of classification was based on the Age of cows. If the cow was older than 4 

years old with BW larger than 947 kg or DIM less than 158 days, the heat stress could happen 

with Tmean higher than 14 oC. Before the mid of lactation period (DIM<153 days), cows took 

heat stress with Tmean larger than 15 oC. However, for the Age between 1.8 and 2.5 years old, 

the cows had higher heat tolerance, and the threshold value increased to 16 oC. This threshold 

was similar for the cows within the later period of lactation (DIM>153 or 158 days).  
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Figure 4-7 Decision tree for threshold selection of Tmin (Stage IV of heat stress). Each node 

shows a predicted threshold and the percentage of cows assigned in this class. 

 
Figure 4-8 Decision tree for threshold selection of Tmean (Stage IV of heat stress). Each 

node shows a predicted threshold and the percentage of cows assigned in this class. 
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Table 4-6 Performance of decision tree for different classes 

DMY-Tmin 

THR (oC) Sensitivity Specificity Balanced accuracy Overall accuracy 

0 0.97 1 0.99 

0.94 
8 - - - 

10 1 0.92 0.96 

12 0.88 1 0.94 

DMY-Tmean 

THR Sensitivity Specificity Balanced accuracy Overall accuracy 

5 1 1 1 

0.79 

7 1 1 1 

13 - - - 

14 0.67 0.92 0.79 

15 0.48 0.96 0.72 

16 0.79 0.85 0.82 

Discussion of key issues  

Previous studies have already developed different indices to evaluate the thermal environment 

which was dependent on the dry bulb temperature, relative humidity, wind speed and solar 

radiation (Gaughan et al., 2002; Brown-Brandl et al., 2005; Mader et al., 2010). For the 

subtropical area in this study, Dikmen and Hansen (2009) and Ji et al. (Submitted-a) had 

already demonstrated the direct application of dry bulb temperature can provide enough 

accuracy when assessing the thermal condition. Therefore, instead of selecting thermal 

parameters or comparing the indices, this study aimed to identify the thresholds of heat stress 

based on the key production factors (Age, BW and DIM) associated with dairy cows. The three 

production factors were applied to separate the cows in different groups for analysis. The 

analysis of heat stress for different ages of animals indicated the decrease of heat tolerance with 

the older cows, even though their production level was lower than the mid age group (4-10 

years old). However, as the old cows only took small proportion of the herd population, and 

the average age of the herd was 3.8 years old, more attentions should be paid to the differences 

between the first two groups (before 4 vs. 4 to 10 years old). The link between heat tolerance 

and age of cows provided a statistical relationship, while the internal reasons were the changes 

of cow’s body with age and consequent decline in health status.  

The correlation between Age and BW was reported in this study, the younger cows had lower 

BW than the older cows. The similar relationship was also found by Renquist et al. (2006), 

which measured the BW and body condition score (BCS) of cows with different ages under 

the different status of production (pre-calving, pre-breeding, at weaning, and midway through 

the second trimester of pregnancy). The numerically lowest BW was reported at 3 years old, 

while the peak value was at 8 years old. As reviewed by Kadzere et al. (2002), the BW of cows 

was highly correlated to the heat production and dissipation. The higher BW could lead to more 

heat production and more difficulties in heat dissipation. A similar mechanism was also 

demonstrated by the results of this study. For cows with lower BW it was easier to dissipate 

heat load with night time cooling compared with the ones with higher BW. In addition, the heat 

tolerance of older and heavier cows might also been reduced by their sub-optimal behaviour 

pattern and welfare. Studies found increased rate of lameness with older Age and heavier BW 

(Andersson and Lundström, 1981; Wells et al., 1993), as well as the interaction between 

lameness and heat stress (Cook et al., 2007a). Therefore, management of the Age and BW of 

the herd to reduce the proportion of older (>10 years old) and heavier (>1000kg) cows would 

be able to enhance the heat tolerance of the whole herd. However, the standards to define these 
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thresholds of Age and BW needed to be refined according to specific herd profile in different 

farms or regions. 

Renquist et al. (2006) also reported the calving interval of younger cows was longer than older 

cows. This might explain the higher heat tolerance of younger cows, as they would enter the 

high-production level with lower frequency compared with older cows. The high-production 

level was highly related to the lactation days (DIM) as reported by the current study. The DMY 

increased from 25.4 kg/cow/day to 36.7 kg/cow/day during the first 40 days of lactation and 

kept an average of 32 kg/cow/day from 41 days to the end of lactation. Cows during the early 

stage of lactation experienced heat stress more readily compared with later stage (>40 days) 

cows. Studies had demonstrated that early lactation cows could easily experience a negative 

energy balance (NEB) of as their nutrients intake is insufficient to maintain the high production 

level (Rensis and Scaramuzzi, 2003). A decline of DMY in the early stage of lactation with 

MT higher than 39 oC was observed (-2.63 kg/MT), while the later stage reduction was -1.8 

kg/MT (Table 4-3). However, the decline of DMY along with ambient temperature (Tmin a 

Tmin) during later lactation was higher than the early stage. This was possibly caused by the 

production of early lactation cows relied on body stores for a portion of the nutrients, whereas 

the later lactation cows had to rely more on the nutrients intake (West, 1999). The lag-effect of 

heat stress during the early stage of lactation could than exacerbate the heat stress in a later 

stage, even the later stage had lower production level. Therefore, mitigation of heat stress 

during the early stage of lactation provided more benefit than the later stage. With different 

mitigation approaches, cooling the cows during first 60 lactation days was found to increase 7 

– 8 kg/cow/day of the DMY, whereas the cooling only increase 0.4 – 5 kg/cow/day DMY after 

120 days of lactation (Avendano-Reyes et al., 2006; Urdaz et al., 2006; Do Amaral et al., 2008; 

Do Amaral et al., 2009; Adin et al., 2009; Tao et al., 2011; Ortiz et al., 2015b; Frazzi et al., 

2000; Kendall et al., 2006).  

The MT was measured as body temperature in this study. It had been demonstrated previously 

that a reliable correlation between MT and vaginal temperature (VT) exists when predicting 

fever in cows (Pohl et al., 2014). The threshold of 39 oC of MT and 39.5 oC of VT were used 

to identify the fever of cows performing 0.65 Sensitivity and 0.65 specificities. Moreover, the 

production loss (DMY decline) with MT higher than 39oC was similar to the rectal temperature 

(RT) higher than 38.9oC as reported by Johnson and Ragsdale (1963). Therefore, MT could be 

used to detect body temperature instead of VT and RT monitoring, especially within AMS 

systems, as VT and RT monitoring is labour intensive, costly and could put extra stress on the 

animals during the measurement in traditional dairy farming systems (Hale et al., 2003).  

Previous studies attempting to define the levels of heat stress only relied on one parameter, 

such as body temperature or production performance (Eigenberg et al., 2005b; Silva et al., 

2007; Hammami et al., 2013). However, one parameter might not be sensitive enough to 

indicate different levels of heat stress. For example, in this study, the thresholds of MT under 

critical heat stress (Tmin: 15 oC and Tmean: 19 oC) were higher than the thresholds of DMY 

(Tmin: 14 oC and Tmean: 16 oC). Therefore, implementing mitigations techniques based on 

thresholds of MT might come too late for the cows that are already under considerable heat 

stress. To solve this problem, levels were re-defined in this study focusing on the changes in 

internal body temperature and the production performance, as shown in Table 4-7. 

 

Table 4-7 Thresholds of Tmin and Tmean entering different levels of heat stress, for the 

whole herd 
Levels Tmin (oC) Tmean (oC) 

No stress <5 <9 

Innocuous 5 to 6 9 to 11 

Effective 6 to 14 11 to 16 

Critical >14 >16 
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A selection of thresholds for specific groups within the herd was formulated by using a decision 

tree. The overall accuracy was 94% for Tmin and 79% for Tmean. The model presented in this 

manuscript was built based on a very large dataset acquired from a single farm. Therefore, 

while these results are significant and potentially useful for the dairy industry generally; 

applying the model for other farms or regions still require more evaluations and modifications. 

However, it would be relatively easy to generate new thresholds to optimize mitigation 

procedures according to the profile of specific herds. The mitigations could be optimized via 

providing more effective, timely cooling and more accurate nutrient management.  

4.5. Conclusions 

This study performed a modification to the thresholds of heat stress in relation to production 

factors (Age, BW and DIM) of the cows. A negative correlation was found between heat 

tolerance, Age and BW. Influence of heat stress during early lactation (DIM<40 days) should 

be managed on farms carefully, as the effects could last for the rest of lactation period. For the 

whole herd, the thresholds of heat stress based on internal body temperature and production 

performance was established for Tmin and Tmean. Decision tree model was built to make a 

selection of the specific thresholds based on the production factors. The model had overall 94% 

accuracy with the thresholds of Tmin, and 79% accuracy with the thresholds of Tmean.  
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 Modelling of heat stress in a robotic dairy farm. Part 3: animal 

behaviour and milking performance 
 

5.1. Abstract 

The application of robotic milking system (RMS) has been demonstrated to reduce labour 

requirements for farmers. The performance of RMS is highly depend on the milking frequency 

and milking speed, which can vary with different production factors on farms such as the traffic 

system, thermal comfort and health of cows. Apart from saving labour cost, the RMS also 

collects a series of data in relation to animal health, welfare and production performance, which 

could indicate the status of individual animal. However the usage of these datasets is still 

insufficient. In this study, the dataset provided by RMS was applied to analyse the influence of 

heat stress on an important behaviour, such as rumination. The farm selected by this study 

applied semi-free traffic with automated drafting gates to control the milking behaviour of 

cows. The indicators of animal responses coping with heat stress were detected as rumination 

time (RT), milk temperature (MT) and daily milk yield (DMY). In addition, the performance 

of RMS (milking behaviour) were also monitored, including the time of milking (TM), milking 

frequency (MF), milking duration (MD), milking speed (MS), and milk yield per milking 

(MY). A new index (rumination efficiency index, REI) was defined as ratio between DMY and 

RT, which was created to evaluate the efficiency of rumination under heat stress. By using the 

multiple broken-line regression, it was found that 1oC raising of daily mean temperature could 

reduce 5.12 minutes of RT, decrease 0.07 kg/cow/hour of REI, and increase 1% of low 

efficiency milking (milking with MS below 1kg/min or MY below 10kg/milking). Moreover, 

the study also found cows prefer to milk between 7:00AM to 9:00AM, and 86% of their milking 

event happened during this time of period. No significant correlation was found between heat 

stress and the pattern of milking behaviour (such as visiting time pattern). However, delaying 

the first milking event of the day and controlling milking interval (less than 4 hours) was found 

to be beneficial for REI and robotic milking performance. 

5.2. Introduction 

Robotic milking systems (RMS) have been widely applied in modern dairy farms, especially 

in Europe. One important motivation for installing RMS is labour saving for farmers. Field 

surveys reported, that the labour saving of RMS farms ranged from 18% to 30% when 

compared to conventional milking systems (CMS) (Rodenburg, 2012). However, Rodenburg 

(2012) also pointed out the challenges associated with RMS, including the complexity 

associated with sorting or restraining cows for individual handling. For example, animals 

during traditional milking can be inspected and treated individually, while these opportunities 

for animal handling is not present in RMS, due to the nature of the system. Although, automatic 

sorting gates (often used in conjunction with RMS systems) can be potentially programmed to 

separate individual animal from the herd, frequent interaction with farm workers is normally 

reduced in RMS systems and thus opportunities for regular inspections. Studies also reported 

that the milking frequency, milking speed and production level of RMS could vary widely 

depending on cow traffic arrangements (e.g. forced vs. free) , temperature changes, and other 

operational factors (e.g. stage of lactation and feeding) (Ketelaar-de Lauwere et al., 2000; 

Hermans et al., 2003; Speroni et al., 2003; Svennersten-Sjaunja et al., 2000; Rodenburg and 

Wheeler, 2002).  

The impact of milking system on cow health and comfort is another consideration when 

evaluating RMS. It has been found that cows that are not disturbed frequently in RMS avoid 
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the test person less frequently than cows in CMS (Rousing 2005), which implied the cows 

might have better and longer resting times (Rodenburg, 2012). The health parameters including 

fertility, metabolism, body condition, lameness frequency and udder health reportedly did not 

change significantly due to installation of RMS in a dairy farm (Hillerton et al., 2004). The 

stress levels during milking are also reported to be similar on RMS or CMS farms, while a 

higher stress level was detected during milking on a RMS farm, which was detected by higher 

milk cortisol concentrations (Hagen et al., 2005). 

Heat stress is well known to cause reduction in animal welfare and production performance 

generally (West, 2003; Zimbelman, 2007). When dealing with heat stress, a study found that 

RMS could exacerbate heat stress of primiparous cows (Speroni et al., 2006). However, the 

same study also found that RMS can increase milk production during heat stress in multiparous 

cows. Studies also found that providing cooling facilities in the milking station of RMS could 

increase the visits of cows in the hot season, thus raise the utilization of milking robots (John 

et al., 2016).  

In comparison with most CMS systems, the RMS system has an advantage of providing more 

specific data related to animal health, welfare and production performance. In essence, RMS 

systems can generate significant amounts of useful information in relation to animal responses, 

in addition to saving labour during milking for the farmers. High frequency and long-term data 

are always readily available by RMS. Thus, routine detection of health problems (e.g. mastitis) 

might be offered to farmers, if data could be systematically collected and analysed in RMS 

(LeBlanc, 2016).  However, the selection of key indicators within the data stream and 

modelling of these indicators are still problematic and had limited success such as lameness 

detection (Pastell and Madsen, 2008). 

The data stream provided by the RMS can be also used for the analysis of the heat stress impact. 

For example, rumination time (RT) is one of the key indicators of the heat stress which can be 

recorded by the RMS system for an individual cow. Moallem et al. (2010) indicated that the 

heat stress (high temperature-humidity index, THI) could depress RT. The depressed RT 

reduced feed intake and in turn decreased milk production. When the maximum THI was higher 

than 76, nearly 2.2 min reduction of RT per daily maximum THI unit was reported by Soriani 

et al. (2013).  

Therefore, this study was implemented to analyse an RMS database obtained of a dairy farm 

in Queensland, Australia over five-year period. The primary indicators of heat stress were daily 

rumination time, milking frequency, and milking speed of an individual cow. Moreover, the 

time (at hourly frequency) of each milking visit of each cow were recorded and involved in the 

analysis. The overall aim of this study was to identify the influence of heat stress on both animal 

response and milking performance in an RMS and to provide recommendations for RMS 

operations to mitigate heat stress. Finally, an estimation of financial benefit will be given for 

the adjusted RMS operations on this dairy farm. It was hoped that the results of this study will 

improve milking efficiency in RMS and reduce the negative impact of heath stress in these 

systems.  

5.3. Methodology 

Data collection 

 Farm, animal and climate 

The field measurement was undertaken in an RMS dairy farm located in Gatton, Queensland, 

Australia. As described in previous papers of this series (Ji et al., Submitted-a; Ji et al., 

Submitted-b),the farm had three milking robots (LELY Astronaut, Lely Industries NV, 

Maassluis, the Netherlands) that were connected to a herd management software system (LELY 
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T4C, Lely Industries NV, Maassluis, the Netherlands). From June 2013 to November 2017, the 

herd management system recorded the data of production variables (e.g. daily milk yield, 

DMY) for the individual cow, which was made available to the researchers working on this 

study. Approximately 160 Holstein dairy cows were held on the farm during this period and 

the different variables predetermined by the system were recorded routinely. Variables related 

to the climate condition of the farm were collected from a local weather station, approximately 

8km away from the farm.  

 Measurement of rumination time 

Rumination time was selected as an indicator for heat stress in this study to detect the health 

and welfare status of dairy cows. This variable was measured by using tag monitor (Lely Qwes-

HR, Lely Industries BV, Maassluis, the Netherlands) as shown in Figure 5-1. The monitoring 

device was attached to the upper part of the neck as part of the routine management procedure 

of the farm. The system was part of the commercially available Lely product range. A straps 

were arranged in a way to maximise animal welfare, prevent false movements and mechanical 

damage. The monitor contained an acceleration sensor, tuned rumination microphone, a 

microprocessor and memory. Rumination time was calculated based on the recording of the 

general activity index, as well as the vocal signals. The rumination monitor used in this study 

was validated by previous study (Lindgren, 2009). The monitor recorded rumination time of 

the cow in blocks of 2 hours. Wireless transmission using infrared communication was invoked 

when a cow was moving close to the receiver installed in the milking station. After each visit, 

the daily rumination time was updated in the herd management system and was made available 

for download.  

 

 
Figure 5-1 Positioning of the collar used for measuring rumination time (photo by Ji, 2017)  

 Measurement of milking behaviour 

The RMS study farm had free traffic between feeding and resting area, as well as semi-free 

access to the milking station, as shown in Figure 5-2. Water troughs were positioned only in 

the milking station and passageway leading to the feeding area, which encouraged the animals 

to move to the milking area. The semi-free access provided to the milking stations (controlled 

by the drafting gate) was to enhance the milking efficiency of animals and milking robots via 

normalising the frequency of the visits by the same cow. For example, if a cow visited the robot 

with very high frequency (e.g. ten times per day), the efficiency of the milking robot the resting 

time available for that animal would decline, resulting in further decrease of production 

efficiency. Therefore, the herd management system controlled access to the milking station to 

prevent high frequency visits by the same animal. This strategy is routinely used in 

commercially available robotic milking systems. On the study farm RMS, the cows were only 

allowed to visit the robots every 5 hours if their milk yield reached the threshold level (e.g. 
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15kg/milking). The variables describing milking behaviour of the individual cow were 

recorded by the herd management system and included the time of visit, milking duration, 

milking speed, milk yield per visit, milking frequency and the number of cows milked per day.  

 
Figure 5-2 Layout of farm traffic. The letter “1” indicates the passageway toward milking 

station; the letter “G” indicates the drafting gate to control animal access to milking station; 

the letter “2” indicates the passageway of rejected cows, and the letter “3” indicates the 

general passageway of existing milking station. No limitation of access or forced movement 

between feeding and resting area. Adapted form google map 

(https://www.google.com.au/maps/@-27.5045056,152.4202448,143m/data=!3m1!1e3)  

Data processing and statistical analysis 

The dataset obtained in this study included age, body weight (BW), days in milk (DIM), daily 

milking frequency (MF), time, milking duration (MD), milking speed (MS), milk yield (MY) 

and milk temperature (MT) of individual milking visit of 126 lactating cows for a 5-year period. 

The whole dataset about animals contained 249489 rows of test day’s results. By excluding the 

noise data, which was higher or lower than the mean value plus or minus three times the 

standard deviation, 228087 rows of data remained for the animal. In addition, the climate data 

included daily maximum, minimum, and mean of dry bulb temperature (Tdb) from the local 

weather station. The single correlation test was performed between different variables to obtain 

a basic analysis of their interactions before further modelling. Table 5-1 lists the abbreviation 

and definition of all collected variables. 

 

Table 5-1 List of variables in data collection 
Category Name Unit Definition 

Animal status 

and 

production  

Age Years Age of individual animal 

BW Kg Body weight of individual animal  

DIM Days Days in milk, or lactation days 

DMY Kg/cow/day Daily milk production of individual animal 

MT oC Milk temeprature when milking the animal 

MF Times Frequency of milking visit per day 

MD Minutes Duration of robotic milking per visit 

https://www.google.com.au/maps/@-27.5045056,152.4202448,143m/data=!3m1!1e3
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Robotic 

milking 

performance 

MS Kg/min Milking speed of each robotic milking 

MY Kg/cow/visit Milk production of each robotic milking 

TM Hour in day The time of robotic milking 

LEM % 

Proportion of robotic milking with low efficiency in daily robotic 

milking 

 (MS < 1kg/min or MY < 10kg/milking) 

Environment 

Tmin oC Daily minimum temperature, represent the night time cooling 

Tmax oC Daily minimum temperature, represent the maximum heat stress 

Tmean oC 
Daily average temperature, represent the all day thermal 

condition 

 

 Analysis of temporal patterns 

As the first step, the dataset was transformed into different time frames to analyse the diurnal, 

monthly or seasonal changes or distributions of the previously mentioned variables. The 

statistically significant differences were tested using a t-test. Duncan’s multiple range test was 

applied to detect the statistically the different variables with different time patterns. 

 Rumination efficiency index (REI) 

Previous studies have confirmed a decline in rumination time due to heat stress (e.g. Soriani et 

al. (2013). The insufficient rumination of cows can cause sub-optimal metabolic conditions 

and ultimately reduce the milk production. In this paper, a new index is developed to provide 

an integrated indicator of heat stress based on rumination time. The index formulated as 

follows: 

𝑹𝑬𝑰 =
𝑫𝑴𝒀

𝑹𝑻
  

The “Rumination efficiency index” (REI) is designed to evaluate the efficiency of rumination 

as the amount of milk produced in relation to animal rumination per hour (kg/cow/hour).  RMS 

Low values of this index is assumed to indicate animal health/welfare problems due to heat 

stress, because  animals might be unable to produce sufficient amounts of milk even with 

enough rumination time. The evaluation of heat stress was performed using the dataset of the 

individual animal. Single and multiple linear regression with multi-phases segments were 

applied for the analysis following the model below: 

𝒚 = {

𝒂𝟏 + 𝒃𝟏𝒙𝟏,                (𝒙𝟏 ≤ 𝒔𝟏)

𝒂𝟐 + 𝒃𝟐𝒙𝟏,               (𝒔𝟏 < 𝒙𝟏)
…

𝒂𝒏 + 𝒃𝒏𝒙𝟏, (𝒔𝒏−𝟏 < 𝒙𝟏 ≤ 𝒔𝒏)

+ ∑ 𝒄𝒋𝒙𝒌

𝒋=𝟑,𝒌= 𝟒

𝒋=𝟏,𝒌=𝟐

+ 𝜺 

Where y is the dependent variable representing the animal responses and the performance of 

robotic milking, x is the independent variables including thermal condition and animal 

production factors, x1 is Tdb. More specific description of this method was presented in the 

previous papers of this series (Ji et al., Submitted-b). The threshold value of Tdb with a 

significant decline of rumination time and REI was identified within this model. 

 Impact of heat stress on robotic milking performance 

The indicators of the performance of robotic milking stations were selected as milking 

frequency, milking speed, time of milking, and a number of animals milked. The relationship 

between these performance indicators and heat stress was analysed using general linear 

regression.  
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All data processing and statistical analysis were done using R 3.4.3. (R Development Core 

Team, 2017). The analysis of multi-phase linear regression and general linear regression was 

done by using the same functions and packages introduced by Ji et al. (Submitted-b). The 

Duncan’s multiple range test was taken by using the package “Agricola” (Mendiburu Delgado, 

2009). 

Estimation of financial benefit for the adjusted RMS  

The potential income increase associated with individual milk production and saving of energy 

cost were estimated. The daily income of milk production was calculated by multiplying the 

DMY, number of cows and the local milk price (Gresham, 2018). The energy cost was 

estimated as the product of MF, LEM, number of cows, energy cost of each robotic milking 

(Calcante et al., 2016), and the local energy price (O'Neill, 2018).  

5.4. Results 

 Description of the dataset 

The basic description of the variables used in this paper is listed in Table1. For the period 

between June 2013 and November 2017, the mean of ambient temperature ranged from 13.1 

to 27.8 oC. The mean values of BW, Age and DIM were 828.9 kg, 3.7 years old and 136.7 days 

in milk, respectively. With the RMS, cows preferred to be milked around 08:20 AM with about 

2.8 times of milking per day. The robotic milking averagely took 287.2 seconds for each 

milking including 115.6 seconds for positioning and cleaning the teats. The average milking 

speed was 2.9 kg/min, with DMY between 18.4 and 39.4 kg/cow/day. The cows required 255 

to 535 minutes for daily rumination, and their milk temperature was around 39.1 oC.  

Table 5-2 Summary of descriptive statistics  
Category Var. a Unit min max mean std.dev 

Thermal condition Tmin oC -1.6 27.3 13.1 5.6 

Tmax oC 13.5 45.7 27.8 5.2 

Tmean oC 5.2 30.7 17.5 5.0 

Production factors BW Kg 379.0 1395.0 828.9 170.0 

DIM Days 1.0 364.0 136.7 89.7 

Age Years 1.1 11.1 3.7 1.8 

Robotic milking TM Hour in day 0.0 23.0 8.2 3.4 

MF Times 1.0 6.0 2.8 0.9 

MD Seconds 85.0 746.3 287.2 96.5 

TD Seconds 62.0 575.7 115.6 33.1 

MS Kg/min 0.0 9.8 2.9 1.1 

Behaviour, Health & 

Production performance 

RT Minutes 255.0 535.0 401.5 47.3 

MT oC 28.3 42.5 39.1 0.8 

DMY Kg/cow/day 18.4 39.4 29.5 3.8 

[a] Definition of the variables – Tmin/max.mean: daily minimum/maximum/mean temperature; BW: body weight; DIM: 

days in milk; Age: age of cow; TM: time of milking; MF: milking frequency; MD: milking duration; TD: treatment duration; 

MS: milking speed; RT: rumination time; MT: milk temperature; DMY: daily milk yield. 

 

The monthly patterns of thermal environment, animal behaviour and production performance 

indexes are plotted in Figure 5-3. The patterns of MT and Tmean had a similar trend. However, 

MT reached the highest value (in March) with one month lag compared to the Tmean (in 

February). After the hot season (from December to February), the DMY increased from March 
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to August with decreasing Tmean and MT. The highest DMY was achieved between August 

and October with increasing Tmean and MT from June to August.  In Figure 5-3 [b] and [c], 

the DIM of the herd was lower between April and June compared to the other months, which 

suggested the start of lactation (early lactation) during this period. The cows required more 

rumination (RT) and more milking (MF) in their early lactation period. The efficiency of 

rumination (REI) was also increased during this time, with the highest REI observed in 

September after cold season. The speed of milking (MS) decreased in June and July and 

returned to the highest value on September, which might be related to the changing of both 

lactation status and the thermal condition. The patterns of RT, MF and MS all decreased to the 

lowest value during the hot season, which indicated the influence of heat stress. However, the 

REI decreased to its lowest value with 2 months after the hot season (on April), which was 

partially correlated to the early lactation (lower DIM on April). However, it might also indicate 

the lag effect of heat stress, which requires more analysis to distinguish between these two 

influences. In Figure 5-3 [d] the total number of daily milking behaviours declined to the lowest 

number in February and started increasing from March to June. A slight decrease has happened 

during July, August and September, which might be caused by the discomfort of cold stress. 

However, the ratio of low-efficiency milking (LEM: robotic milking with the speed lower than 

1kg/min or milk yield lower than 10kg/milking) was declined after the hot season and kept at 

a constant level during the cold season.   

The diurnal patterns of robotic milking performance were shown in Figure 5-4 and Table 5-3. 

In Figure 5-4 [a], the MS was higher than 3.1 kg/min after 11:00 AM and the milk yield per 

milking (MY) reached to the peak (18.5 kg/milking) at night time (19:00 PM). However, the 

Figure 5-4 [b] implied the 80% of the daily milking was finished between 04:00 AM and 10:00 

AM. Although the LEM decreased from 70% to 10% during the early morning, most of the 

milking was finished before the cows achieved the highest MS and MY as shown in Figure 5-

4 [a]. As the average MF was about 2.8 times per day, the performance of the first, second and 

third robotic milking was summarised in Table 5-3. The MS and MY were higher with later 

milking, therefore, even the number of third milking only accounted for 12% of the total 

milking behaviour of the day, the production accounted for 24% of the daily milk production.  
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Figure 5-3 Monthly patterns of variables. [a] – the pattern of DMY, Tmean and MT; [b] – the 

pattern of RT and REI; [c] – the pattern of DIM, MF and MS; [d] – the pattern of daily 

milking and low-efficiency milking. LEM - Percentage of low-efficiency milking among the 

daily total milking, the low-efficiency milking is defined with milking speed lower than 1 

kg/min or milk yield per visit lower than 10kg/visit. 

 
Figure 5-4 Diurnal patterns of robotic milking performance. [a] – pattern of MY and MS; [b] 

– a pattern of milking and low-efficiency milking. The low-efficiency milking is defined with 

milking speed lower than 1 kg/min or milk yield per visit lower than 10kg/visit. LEM - 

Percentage of low-efficiency milking among the daily total milking, the low-efficiency 

milking is defined with milking speed lower than 1 kg/min or milk yield per visit lower than 

10kg/visit. 

Table 5-3 Average performance of first, second and third robotic milking  
Var. MS MY TM The proportion in daily milking 

event 

The proportion in daily milk 

production 

Unit Kg/min Kg Time % % 

1st 2.8 11.3 06:42 AM 38 29 

2nd 2.9 13.4 08:48 AM 36 32 

3rd 3.0 14.4 09:12 AM 12 24 

 Regression analysis 

Table 5-4 shows the results of two phases segmented single linear regression between thermal 

condition, animal behaviours and robotic milking performance. These regressions also 

identified the breakpoints (thresholds) after which the influence of thermal condition (slope) 

would be significant. The heat stress significantly reduced the rumination time of cows by 6.5-

9.5 min/oC when Tmin was higher than 14oC or Tmean was higher than 19oC. Moreover, the 

efficiency of rumination (REI) started to decline with lower Tmin and Tmean (6 and 8 oC, 
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respectively). The performance of robotic milking also decreased under heat stress. The MS of 

robotic milking was reduced by 0.01-0.07 kg/min/Tmean with Tmin higher than 17oC or Tmean 

higher than 28oC. The percentage of low-efficiency milking (LEM) was increased with 2.3-

2.4%/Tmean when Tmin exceeded 12oC or Tmean exceeded 16oC.  

However, the thermal condition had no significant impacts on MF and TM. This indicated the 

cows would not adjust their milking pattern for coping with heat stress. However, the interval 

between every two milking (MI) decreased with higher Tmin and Tmean. It possibly indicated 

the cows concentrated their milking in the early morning under heat stress. Therefore, they 

could have less movement and more rest during the hot day-time. Moreover, as the water 

troughs were only provided on the way to the milking station, and cows required more drink 

of water under heat stress, which increased the ratio of their visiting to the drafting gate. As the 

performance of each robotic milking was reduced, the herd management system (drafting gate) 

allowed more access of cows to the milking robot when they were moving for water. This also 

decreased the interval between every two milking. 

Table 5-4 Summary of two phases segmented single linear regression between thermal 

condition, animal behaviours and robotic milking performance  
Unit Tmin Tmean 

Threshold Slope Sign.b R2 Thr Slope Sign. R2 

RT min 14 -6.49 *** 0.35 19 -9.45 *** 0.52 

REI Kg/cow/hour 6 -0.06 ** 0.19 8 -0.04 ** 0.14 

MS Kg/min 17 -0.01 * 0.08 28 -0.07 * 0.04 

LEM % 12 2.32 *** 0.77 16 2.41 *** 0.74 

MF Times NS NS 

TM Hour in day NS NS 

MIa Hours 0 -0.01 * 0.06 5 -0.01 * 0.09 

a – Milking interval: the time interval between every two milking of the cow 

b – Levels of significant: “***” – P<0.001, “**” – P<0.01, “*” – P<0.05, NS – Nonsignificant 

 

The simple correlation coefficients between the variables representing production factor, 

animal behaviour and robotic milking performance are listed in Table 5-5. It is still difficult to 

generate highly reliable conclusions of these correlations only depending on simple correlation, 

as they had interactions. However, some preliminary conclusions in relation to the change of 

RT, REI, robotic milking (TM, MF, LEM, MS, and MI) and DMY can be found as follows.  

RT: The cows with heavier BW had more RT (0.03min/BW), while the increase of DIM and 

Age reduced the RT (-0.19min/DIM and -9.95min/Age). Moreover, the later milking or two 

milking with a long interval (higher TM and MI) could also reduce the RT of cows (-

2.54min/TM and -2.95min/MI).  

REI: By analysis the correlation between these variables and REI, heavier cows (larger BW) 

had lower REI (-0.0034kg/cow/hour/BW), while the later milking and long interval (higher 

TM and MI) could increase the REI of cows (0.06kg/cow/hour/TM and 0.30kg/cow/hour/MI). 

In addition, the REI was also declined with a higher frequency of milking (-

0.27kg/cow/hour/MF).  

Robotic milking: The higher MF increased the LEM (6.08%/MF) and decreased the MS (-

0.09kg/min/MF), which lead to low robotic milking efficiency. In contrast, enough RT or 

higher REI could reduce the ratio of LEM (-0.05%/RT and -3.27%/REI). It was also found the 

later milking or longer interval (higher TM and MI) were able to reduce the LEM (2.96%/TM 

and -1.50%/MI). The positive correlation between MF and RT (0.0007 times/RT) indicating 

sufficient rumination could guarantee the cows to be milked with more times per day. The 
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negative correlation between TM and MF (-2.46hour/MF) implied the cows which took more 

milking per day started their milking behaviour earlier than the others.  

DMY: The DMY had positive correlations with RT and MF (0.02kg/cow/day/RT and 

4.79kg/cow/day/MF), and negative correlations with TM and MI (-1.20kg/cow/day/TM and -

1.11kg/cow/day/MI). Therefore, to provide better milk production from the cows, the robotic 

milking should be concentrated and finished during the early morning (TM) with lower interval 

(MI) and higher frequency (MF), which could allow the cows to have enough rumination time 

(RT) for the rest of the day.  
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Table 5-5 Correlation matrix between production factors, animal behaviours and robotic milking performance 

(Levels of significant: “***” – P<0.001, “**” – P<0.01, “*” – P<0.05. X – Independent variable. Y – Dependent variable) 
Var. Y 

DIM BW Age RT REI LEM MF MS TM MI DMY 

Days Kg Years min Kg/cow/h

our 

% Times Kg/min Hour in 

day 

Hours Kg/cow/d

ay 

X DIM Days 1 0.1859 

*** 

0.0023 

*** 

-0.1889 

*** 

-0.0104 

*** 

1.6232 

*** 

-0.0209 

*** 

0.0001 

*** 

0.0062 

*** 

0.0035 

*** 

-0.0436 

*** 

BW Kg - 1 - 0.0360 

*** 

-0.0034 

*** 

-0.0341 

*** 

0.0001 

*** 

0.0001 

*** 

0.0001 * -0.0003 

*** 

0.0127 

*** 

Age Years - 29.8552 

*** 

1 -9.9476 

*** 

0.3194 

*** 

-11.527 

*** 

-0.0216 

*** 

-0.0176 

*** 

0.0459 

*** 

0.0326 

*** 

1.2427 

*** 

RT min - - - 1 - -0.0544 

*** 

0.0007 

*** 

0.0007 

*** 

- - 0.0208 

*** 

REI Kg/cow/hour - - - - 1 -3.2681 

*** 

- 0.0174 

*** 

- - - 

LEM % - - - - - 1 - - - - - 

MF Times - - - 58.8600 

*** 

-0.2673 

** 

6.0812 

*** 

1 -0.0941 

*** 

-2.4600 

*** 

-1.5854 

*** 

4.7861 

*** 

MS Kg/min - - - - - - - 1 - - - 

TM Hour in day - - - -2.5407 

*** 

0.0662 

*** 

-2.9631 

*** 

- 0.0213 

*** 

1 0.6026 

*** 

-1.1992 

*** 

MI Hours - - - -2.9450 

*** 

0.3009 

*** 

-1.4955 

*** 

- 0.0047 

*** 

- 1 -1.1067 

*** 

DMY Kg/cow/day - - - - - - - 0.0152 

*** 

- - 1 
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The interactions (positive or negative correlations) between part of these variables such as the 

correlation between RT and MI cannot be ignored. For practical reasons, it was still necessary 

to know which variables should be prioritised for management control under commercial farm 

conditions. In this case, multi-phases segmented multiple linear regression (Model 1 to 9) was 

applied to select the important variables with higher significant impacts as shown in Table 5-

6. These models mainly have three categories, for the regression of RT (Model 1, 2 and 3), REI 

(Model 4, 5 and 6) and LEM (Model 7, 8 and 9). In each category, the difference are using 

Tmean, MT or MI as the segmented variable to formulate the regression. 

The fitted values from Model 1 to 9 are displayed in Figure 5-5 and 5-6 along with the original 

dataset for the regression. In Figure 5-5 [a], with the increasing of Tmean or MT, RT increased 

to the maximum value of 446 min and then decreased to the minimum value of 252 min. In 

Figure 5-5 [b], the REI decreased from the initial maximum value of 7.2kg/cow/hour to the 

minimum value of 4.1kg/cow/hour. The increased REI after exceeding the threshold of Tmean 

(25oC) or MT (41oC) could not return to the initial level.  LEM increased from nearly 15 to 

45%, which represented a serious reduction of robotic milking performance caused by heat 

stress (Figure 5-5[c]). In Figure 5-4, within 4 hours of MI, the decrease of RT and LEM, as 

well as the increase of REI can be seen clearly. The data points are concentrated around the 

regression curve, however, with more than 4 hours of MI, the trend becomes inverse and the 

data points are divergent.  

Models of RT: In Model 1, Tmean had a negative influence on RT when it was lower than 

11oC or higher than 23oC, which partially indicated the thermal discomfort caused by cold 

and/or heat stress. The effects of cold stress (-0.27 min/Tmean) was less serious than the heat 

stress (-5.12min/Tmean). Older Age, higher MT, later TM1, and longer MI were all leading to 

a decreased of RT. However, the influence of Age and MT had more significant influence than 

the influence of TM1 and MI. In Model 2, the significant decline of RT happened (-

61.05min/MT) when MT was higher than 40 oC. Age and TM2 also had negative impacts on 

RT. However, the strongest significant influence was found between RT and TM3. This implied 

a delay of third milking could possibly increase the RT of cows. In Model 3, the milking with 

an interval longer than 4 hours increased the RT, which partially agreed with the benefit of 

delaying the third milking in Model 2. However, the influence of MI in Model 3 was less 

significant than the influence of Age and DMY.  

Models of REI: In Model 4, the efficiency of rumination (REI) reduced when Tmean was 

between 13 and 25oC showing the influence of heat stress (-0.07 kg/cow/hour/Tmean). The 

increase of REI (0.06kg/cow/hour/Tmean) when Tmean was higher than 25oC could be 

explained by the decrease of RT becoming more dramatic than the one of DMY. It indicated 

the heat stress became more serious than the previous two stages, as rumen health might be 

compromised by the heat stress. Moreover, the significant reduction of REI was also found 

with the increase of DIM, BW and MT (-0.09kg/cow/hour/DIM, -0.04kg/cow/hour/BW, and -

0.47kg/cow/hour/MT). In Model 5, the increase of REI (2.01 kg/cow/hour/MT) was also found 

when MT was higher than 41 oC, which again indicated a higher drop rate of RT than DMY in 

this stage. The delay of second milking benefited REI (0.65kg/cow/hour/TM2). However, in 

Model 6, this influence became negative (-0.84kg/cow/hour/TM2), while the delay of first 

milking became positive (1.5kg/cow/hour/TM1). As reported in Model 3, 4 hours was identified 

as a threshold point. The REI significantly decreased with MI longer than 4 hours. Moreover, 

for the influence of MI longer than 4 hours, the significant level in Model 4 was higher than 

the one in Model 1. 

Models of LEM: Only two stages identified by the regression of LEM in Model 7, 8 and 9. 

According to Model 7 and 8, the percentage of low-efficiency milking was significantly 

increased with Tmean higher than 17 oC (1%/Tmean) or MT higher than 39 oC (10%/MT). In 

Model 9, the milking interval of 4 hours was also determined as the threshold. The LEM started 
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to increase with 8%/MI. In Model 7 to 9, the delay of first and second milking was 

demonstrated with reduction of LEM, however, the delay of third milking increased the LEM. 

The regression analysis from Model 1 to 9 demonstrated the controlling of milking interval 

might enhance the performance of robotic milking by increasing the REI of cows and 

decreasing the LEM of robotic milking. To maximize the benefit, the interval between every 

two milking needs to be controlled for around 4 hours. Moreover, the regression also 

demonstrated that most of the influence on RT and LEM from the lactation stage (DIM) was 

not as significant as internal body temperature (MT) and other production or management 

factors (i.e. MI).  

In addition, according to the regression of Model 1, 6, 7 and 9, adjusting the time of first 

milking to the later morning could reduce the RT (-10.06min/TM1), but increase the REI 

(1.5kg/cow/hour/TM1), and decrease the LEM (-3%/TM1). Delaying the time of second 

milking could reduce both RT (-30.25min/TM2, Model 2) and REI (-0.85kg/cow/hour/TM2, 

Model 6). Therefore, to improve the herd management, delaying the first milking and reducing 

the interval between first and second milking (less than 4 hours) might enhance the cows’ 

production and the robotic milking performance. As shown in Figure 5-7, the adjusted milking 

interval can potentially increase about $255 daily income of milk production and save about 

$135 daily cost of robotic milking with low efficiency.  
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Figure 5-5 The multi-phases segmented regression of Tmean and MT. [a] – the regression for 

RT; [b] – the regression for REI; [c] – the regression for LEM. 
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Figure 5-6 The multi-phases segmented regression of MI. [a] – the regression for RT and 

REI; [b] – the regression for LEM. 

 
Figure 5-7 Estimation of potential financial benefit with adjusted milking interval. The 

estimation was fomulated assuming 126 cows on farm, 0.56 $/kg as the milk price, 34.26 

kWh/milking as the energy cost and 0.28 $/kWh as the energy price.  
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Table 5-6 Result of multi-phases segmented regression for the analysis of RT, REI and LEM 
RT 

Model 1b THRs Tmean DIM BW Age MF DMY MT TM1
b TM2 TM3 MI R2 

Slope 

<11 -0.27 

0.52 0.13 -66.39 
NS 

9.02 -27.73 -10.06 
NS NS 

-12.26 
0.77 

11 to 23 3.05 

>23 -5.12 

Sig.a *** *** *** *** *** *** ** ** 

Model 2 THRs MT DIM BW Age MF DMY MT TM1 TM2 TM3 MI R2 

Slope 

<38 65.8 

NS NS 
-69.74 

NS 
7.8 

NS NS 
-30.25 43.55 

NS 0.96 
38 to 40 14.49 

>40 -61.05 

Sig. ** * ** ** *** 

Model 3 THRs MI DIM BW Age MF DMY Tmean TM1 TM2 TM3 MT R2 

Slope 

<1 -501.69 

NS NS 
-132.65 

NS 
9.59 

NS NS NS NS NS 0.89 
1 to 4 -14.49 

>4 9.92 

Sig. * ** ** 

REI 

Model 4 THRs Tmean DIM BW Age MF MT TM1 TM2 TM3 MI R2 

Slope 

<13 0 

-0.09 -0.04 1.31 
NS 

-0.47 
NS NS NS 

0.29 
0.48 

13 to 25 -0.07 

>25 0.06 

Sig.a *** *** *** *** ** *** 

Model 5 THRs MT DIM BW Age MF MT TM1 TM2 TM3 MI R2 

Slope 
<41 -0.24 

-0.01 -0.01 2.47 
NS NS 

NS 0.65 NS 

NS 0.95 >41 2.01    

Sig. *** * *** ***  ***  

Model 6 THRs MI DIM BW Age MF MT TM1 TM2 TM3 MT R2 

Slope 
<4 1.63 

-0.01 -0.01 3.61 
NS NS 

1.5 -0.84 NS 

NS 0.9 >4 -2.14    

Sig. *** *** *** ** *** ***  

LEM 

Model 7 THRs Tmean DIM BW Age MF MT TM1 TM2 TM3 MI R2 

Slope 
<17 0 

0.0006 -0.02 NS NS NS -3.21 -2.54 2.88 NS 0.81 
>17 1.02 
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Sig.a *** ** *** ** ** ** 

Model 8 THRs MT DIM BW Age MF Tmean TM1 TM2 TM3 MI R2 

Slope 
<39 0 

NS 
0.001 

NS NS NS NS 
-6.75 

NS NS 0.87 >39 10.23 

Sig. *** * *** 

Model 9 THRs MI DIM BW Age MF Tmean TM1 TM2 TM3 MT R2 

Slope 
<4 -1.01 

NS NS NS NS 
0.01 -5.58 

NS 
2.01 

NS 0.75 >4 8.09 

Sig. ** * * * 

[a] – Levels of significant: “***” – P<0.001, “**” – P<0.01, “*” – P<0.05, NS – Non-significant 

[b] – TM1 – the time of first milking, TM2 – the time of second milking, TM3 – the time of third milking,
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Discussions on the key issues 

As the routine monitoring of RT is readily available for farmers via commercially available 

instruments, previous researchers have used RT to predict the health and production performance of 

dairy cows. For example, Soriani et al. (2012) found that  RT decreased to the minimum level at 

calving day for both primiparous (PR) and pluriparous (PL) dairy cows (from 463 to 263min in PR, 

and from 522 to 278min in PL). In their research, RT raised to 504min in PR and 562min in PL in 

early lactation days, which was found to be positively correlated with DMY. This study and Bar 

(2010) also reported the reduced RT before calving could result in a reduced RT after calving for the 

cows taking a greater ratio of calving disease (e.g. endometritis or ketosis). In this paper, DIM had a 

negative correlation with RT for the whole herd, as the average DIM for the herd was about 90days. 

However, a clear increase in RT from March to May observed (Figure 5-1) when the DIM was 

decreasing. It suggested that the early lactation caused a relatively higher RT as was reported by 

Soriani et al. (2012).  

In the assessment of the heat stress, Soriani et al. (2013) demonstrated the negative correlation 

between RT and temperature humidity index (THI), which was -2.2min RT/THI. Moreover, it was 

found that nearly 60% of daily rumination happened during night-time when the heat stress was not 

as serious as day-time (-1.128 and -5.191min/ THI, for night-time and day-time, respectively)(Soriani 

et al., 2012; Soriani et al., 2013). Previous research has reported that the ambient temperature (Tmin 

or Tmean) can provide the same performance as THI for predicting heat stress in the sub-tropical 

region (Ji et al., Submitted-a; Ji et al., Submitted-b). In the current study, the regression between RT 

and Tmin had a higher slope (-6.49min/Tmin) than the one for the regression between RT and Tmean 

(-9.45min/Tmean). As the proportion of rumination activities during day-time and night-time was 

unknown from the current study, it was still difficult to conclude that more cooling during day-time 

could increase the daily rumination, in comparison with more cooling during night-time. However, 

the regression analysis of this study still indicated that cows had less heat stress during night-time, 

therefore additional heat stress mitigation should be performed during the day-time, which is the 

routine mitigation strategy on farms anyhow. 

Identifying the thresholds of different stages in heat stress were important for providing accurate 

mitigations. The regression of Model 1 in the current study identified 11oC of Tmean with RT starting 

to decrease significantly. This value was equal to the threshold of effective heat stress (with 

significant decreasing of DMY, -0.09kg/cow/day/Tmean) as reported by Ji et al. (Submitted-b). 

However, the significant increase of RT was found with Tmean between 11 and 23 oC 

(3.05min/Tmean). Therefore, the threshold identified by RT for predicting heat stress had 

inconsistency with the threshold identified by DMY. In this case, using the threshold of Tmean 

identified by REI in Model 4 could gain more consistency. The threshold was 13oC with a slope of -

0.07kg/cow/hour/Tmean when exceeding. This was between the thresholds of effective and critical 

heat stress (11 to 16oC) as found by Ji et al. (Submitted-b), which implied another stage of heat stress 

when the cows’ milk production started to decrease even with sufficient rumination time. This could 

be explained by their reduced ruminal digestion efficiency (Christopherson and Kennedy, 1983) or 

unwillingness to move and milk under heat stress (Klaas et al., 2003). The RT started to decrease 

with -5.12min/Tmean when Tmean was higher than 23 oC. However, the decline of RT became more 

significant than the decline of DMY, as the REI started to increase with 0.06kg/cow/hour/Tmean 

when Tmean was higher than 25 oC. This might indicate compromised health and/or welfare of the 

animals, as the reduction of RT became irrelevant with the decline of the production performance 

(DMY). However, due to the time and financial limitations of this study, it was impossible to conduct 

physiological experiments on cows. Therefore, further studies are needed to understand the 

biochemical or metabolic mechanism driving these identified trends. 

The positive correlation between RT and MF is shown in Table 5-5, which was 58.86 min more 

rumination time with 1-time increase of milking frequency. Österman and Redbo (2001) found the 

cows with 3 milking per day had more lying down rumination than the cows with 2 milking per day. 

This could be explained by the relief of udder pressure with higher MF, which enhanced the comfort 

of lying down, and increased the RT. However, without other behaviour monitors, we were unable to 
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classify the specific behaviour (lying down, getting up, standing or moving) during rumination in the 

current study. As the first and second milking behaviour accounted for 74% of daily milking event 

and the herd could be considered as having 2 milking per day, thus more milking was recommended 

according to the positive correlation between RT and MF. In addition, the impact of MF on RT was 

insignificant when compared with the impact of thermal condition (e.g. Tmean) and other factors 

(e.g. DIM and BW) in Model 1-3. The MF and TM were also found with insignificant correlation 

with thermal condition (Table 5-4). This suggested that the cows could not adjust their milking 

behaviours (MF or TM) to cope with heat stress. Moreover, only adjusting the MF could not lead to 

an increase in RT under heat stress. 

In RMS, cow traffic is a key factor to ensure a competitive efficiency of milking compared with RMS 

(John et al., 2016). For semi-free with guided traffic system, cows had to pass through a selection 

unit (drafting gate) before entering the milking station or feeding area. The control of the milking 

interval (MI) was one of the important management strategies for optimizing the traffic system and 

milk production. However, the correlation between MI and production performance (e.g. DMY) had 

different values from different studies (Penry et al., 2018; Hogeveen et al., 2001; Mollenhorst et al., 

2011). The farm evaluated in this study applied a control algorithm that disallowed cows to revisit 

the milking stations within 5h interval if they have reached a certain milk yield pre-set by the system 

(e.g. 15 kg/milking for 2 milking per day). The milk yield was set based on their lactation status. Thus 

for cows in early lactation, higher milk yield would be set, resulting in more frequent milking 

permitted by the system. However, the result shown in Figure 5-2 and Table 5-3 implied the control 

of MI did not meet the expectation of five hours between two milking. It can be related to the low-

efficiency milking (LEM) in early mornings, as most of the cows did not fulfil their estimated milk 

yield (nearly 60% LEM between 05:00 AM to 07:00 AM). The animals were allowed to revisit the 

milking robot several times within 5 hours in the morning. However, the analysis of Model 3, 6, and 

9 found the MI between 1 and 4 hours could reduce the RT (-14.49min/MI), but increase the REI 

(1.63kg/cow/hour/MI) and decrease the LEM (-1.01%/MI). As the average REI was around 4-

6kg/cow/hour, while the RT was between 350 to 450 minutes, the increase of REI (nearly 17%) was 

larger than the reduction of RT (nearly 4%). Therefore, four hours window can be applied as the 

control threshold of milking interval instead of the five hours with more benefits for REI. After 

applying the suggested adjustments, an estimation of the potential financial benefits is shown in 

Figure 5-5. Daily earnings on this farm can potentially increase with approximately $400 due to the 

combined effects of increased income and reduced cost. As this profit increase was only estimated in 

relation to a particular farm, the results might vary on other farms. Therefore, the implementation of 

these recommendations might need to be modified according to the specific circumstances of other 

farms (i.e. climate and breeding). However, even if only 50% of the potential benefits can be realised, 

a significant income increase can still be expected when applying such adjustments to RMS, 

especially on farms with larger number of cows (holding 1000-10000 cows).  

Another reason for the early morning milking with low efficiency was caused by the position of the 

watering trough, as the cows had to move to pass the drafting gate for drinking. The drafting gate 

then allowed the cows to enter milking station as their daily recording of milk yield was refreshed in 

the early morning although they were not under the best status of milking as shown in Figure 5-2. 

According to the analysis of Model 1, 6, 7 and 9, delay the first milking by 1 hour would reduce 

nearly 2.5% of RT, but increase nearly 30% of REI and decrease 3% of LEM. Therefore, delaying 

the time of first milking and adjusting the milking interval to 4 hours would improve the herd 

production and robotic milking performance for the farm of this study. However, general 

recommendations still require more data and analysis collected from different farms applying RMS.  

5.5. Conclusions 

This study focused on the influence of heat stress on animal behaviours and the performance of 

robotic milking machines. According to the regression analysis, when exceeding the thresholds, 1oC 

raising of daily mean temperature decrease 5.12 minutes of rumination time, reduce 0.07kg/cow/hour 

of rumination efficiency, and increase 1% of low-efficiency milking. Moreover, for the herd traffic 
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of RMS observed by this study, the time of daily first milking was recommended to be delayed, 

whereas the milking interval was suggested to be 4 hours to maximize the benefits on milk production 

and robotic milking performance.  
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 Modelling of heat stress in a robotic dairy farm. Part 4: Lag 

and cumulative effect of heat stress 
 

6.1. Abstract 

The assessment of heat stress is usually conducted by using thermal comfort indices (TCIs) 

that calculates an integrated value of temperature, humidity, wind speed and solar radiation. 

However, the influence of heat stress is not only related to the intensity but also related to the 

duration of heat stress. This study was implemented to develop thermal indices which could 

quantify both the intensity and duration of heat stress. The analysis was conducted using the 

production data collected on a robotic farm, and climate data obtained from data-loggers on 

the farm and also from local weather stations. The thresholds associated with daily maximum, 

minimum and mean temperatures with heat stress were identified by using single broken-line 

regressions between daily milk yields (DMY) and daily mean temperatures. An intensity 

duration index (IDI) was proposed to evaluate daily short-term heat stress by multiplying the 

mean temperature of the heat stress period with the duration of the period. The threshold of IDI 

was than detected by using multi-phases segmented regression between DMY, IDI and other 

essential production factors (age, body weight and days in milk). Multiple levels of heat stress 

were identified by the thresholds of IDI with a different decline rate of DMY (-0.01 to -0.13 

kg/cow/oC). For long-term heat stress, the lag and cumulative effect of heat stress were 

demonstrated by the negative correlation between heat stress during the dry-off period and the 

production performance of the next lactation period. By analysing the correlation between test 

day’s DMY and temperature of previous days, the lag effect was found to be 3-4 days. 

However, the cumulative effect could last around 2 months. Next, the heat stress mean 

temperature (THS mean) was established by calculating the mean of maximum/minimum 

temperature of the period with heat stress during the 2 months before the test day. The 

regression between test day’s DMY and the newly developed THS mean was demonstrated to be 

higher R2 (0.73-0.77) than the regression with the same day’s temperature (0.65-0.68). 

6.2. Introduction 

Assessment of the heat stress in dairy cows is necessary for developing mitigation strategies to 

maintain health and productivity of the system. As reviewed in the previous papers of this 

series (Ji et al., Submitted-a; Ji et al., Submitted-b; Ji et al., Submitted-c), a number of thermal 

comfort indices (TCIs) have been established via modelling thermal parameters and cow 

responses (LCI, 1970; Buffington et al., 1981; Mader et al., 2006; Brown-Brandl et al., 2005; 

Gaughan et al., 2008b). By using the published TCIs, the effect of heat stress on production 

efficiency can be predicted and evaluated, but only for conditions that they have been 

developed. However, when they applied for the prediction of cattle responses under different 

thermal environments, the accuracy of TCIs are always constrained (Bohmanova et al., 2007; 

Silva et al., 2007; Kendall et al., 2006; Hammami et al., 2013; Li et al., 2009). In sub-tropical 

regions, past studies have even suggested the direct application of ambient temperature (dry 

bulb temperature, Tdb) (Dikmen and Hansen, 2009) instead of the application of TCIs. This is 

so, because ambient temperature measurements can provide similar performance to TCIs with 

fewer measurements, thus making ambient temperature measurements a more economical 

proposition. .  

The limitation of TCIs performance is also related to the method of data collection and 

processing. Previous indices only utilised the data of test day, however, it was shown that 

thermal conditions in the days preceding the measurements of cow responses were more 
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important than the condition on the day of measurement (West et al., 2003; Garcia-Ispierto et 

al., 2007a; Morton et al., 2007b) because of lag in animal response. In addition, the processing 

of TCIs’ value as daily maximum or mean value ignored the cooling-off period (night-time 

cooling) (Vitali et al., 2009) that allows the cow to recover from heat stress (Scott et al., 1983). 

In a study of short-term (acute) heat stress in a climate chamber, Garner et al. (2017) found the 

cows exposed to heat-wave conditions with temperature humidity index (THI) of 74-84, for 

four days resulted in reduced milk production by 53%. Moreover, the cows required at least 

seven days within thermal neutral conditions (THI 55-61) to return to the pre-experimental 

production performance. In practical dairy farming, acute heat stress can easily occur without 

enough cooling in the summertime. Moreover, unlike in laboratory studies, cows may not have 

enough recovery period under thermal neutral conditions. Thus the combined effects of heat 

stress over an extended period of time can potentially lead to long-term (chronic) effects. 

Previous study has demonstrated that the reproduction performance of cows could be reduced 

by 20-30% in summer and the observed negative after-effects could persist during the autumn 

period as well (Rensis and Scaramuzzi, 2003). In relation to the long-terms effect on milk 

production; the current understanding is still insufficient. However, studies have found that 

heat stress experienced by cows during the dry-off period could reduce milk production of the 

next lactation period (Do Amaral et al., 2009; Tao et al., 2011). To evaluate health condition 

under heat stress, blood sample tests were taken for nearly 80 days around calving (from -35 

to +42 days, 0 is the day of caving) and the results demonstrated the long lasting (chronic) 

effects of heat stress on lactating cows (Do Amaral et al., 2009).  

Therefore, both of the severity and duration of heat stress need to assessed in order to improve 

the overall evaluation of heat stress effects of cows. While evaluating the severity and duration 

of heat stress, both the lag and cumulative effects can be studied. Modelling efforts of 

cumulative effects are still rare in the literature on dairy cows (e.g. two weeks (Berry et al., 

1964), 24-48 hours (Spiers et al., 2004), and 2 days (West et al., 2003). For heat stress on 

human, Rocklov et al. (2012) developed a model of temperature-related mortality. The model 

included heat-intensity, as well as the heat duration effects in consecutive three days. They 

demonstrated a better correlation between heat stress and mortality by adding the duration 

effect. Kong et al. (2010) also developed a statistical method for the analysis of nonlinear long-

term cumulative effects. The performance of this model was tested by describing the effect of 

air pollutants on respiratory disease, and immunity of human against influenza in France. In 

medical science, the weighted cumulative exposure model (WCE) was developed to estimate 

the effects of time-varying exposures (Sylvestre and Abrahamowicz, 2009). The formulation 

of these time-related indices was referenced and modified in this study to develop an index for 

cows. 

This paper is therefore aimed at evaluating the effect of heat stress on dairy cows with different 

time lags and durations while the impact of heat stress during the dry-off period is also 

included. Based on a large dataset (Ji et al., Submitted-a; Ji et al., Submitted-b; Ji et al., 

Submitted-c) of thermal conditions and cow responses from a commercial robotic dairy farm, 

a new index was developed based on heat stress intensity and duration. The ultimate aim of the 

study was to quantify the cumulative effect of heat stress and provide a better assessment of 

the likely production loss associated with cumulative heath stress on dairy farms.  

6.3. Materials and Methods 

Data collection 

The data collection was undertaken in a robotic dairy farm using robotic milking system 

(RMS). The details of the farm, cow and measurement were explained in detail in associated 

publications  (Ji et al., Submitted-a; Ji et al., Submitted-b; Ji et al., Submitted-c), so only a brief 
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description will be given here. In this study, the short-term impact of heat stress was analysed 

by using the thermal data collected on the farm using HOBO data-loggers (Onset Computer, 

Bourne, MA) between April 2016 and November 2017 with data logging interval of 0.5 hours. 

The long-term effects were identified by using the data downloaded from the local weather 

station, which provided the daily result of temperature measurements. The manager of the study 

farm has aimed to provide a consistent and standardised diet to the cows throughout the year. 

Cows on this farm were predominantly fed in the buildings using a total ration diet. Therefore 

the impacts of seasonal pasture and forage availability were not considered in this study. The 

name and definition of variables and indices utilized in this paper are listed in Table 6-1. 

Table 6-1 List of variables and indices 
Category Name Unit Definition 

Animal 

status and 

production  

Age Years Age of individual animal 

BW Kg Body weight of individual animal  

DIM Days Days in milk, or lactation days 

DMY Kg/cow/day Daily milk production of individual animal 

LD Days Lactation duration 

Total MP Kg/cow The sum of daily milk production over the lactation period 

Total MF oC The sum of daily milking frequency over the lactation period 

Total Fat Kg/cow The sum of daily fat content over the lactation period 

Total Protein Kg/cow The sum of daily protein content over the lactation period 

Environment 

Tmin oC 
Daily minimum temperature, represent the night time 

cooling, which was measured by local weather station 

Tmax oC 
Daily minimum temperature, represent the maximum heat 

stress, which was measured by local weather station 

Tmean oC 
Daily average temperature, represent the all day thermal 

condition, which was measured by local weather station 

T_daytime oC 
Average temperature between 06:00 AM and 18:00PM, 

which was measured by on-farm data-loggers 

T_nighttime oC 
Average temperature between 18:00PM and 06:00 AM+1, 

which was measured by on-farm data-loggers 

T_allday oC 
Average temperature between 06:00 AM and 18:00PM, 

which was measured by on-farm data-loggers 

IDI oC * hour Intensity duration index  

Tmax or min 

WCEmean 
oC 

Daily maximum or minimum temperature adjusted by 

weighted cumulative effect  

Tmax or min 

HSmean 
oC 

Mean of maximum or minimum temperature during the days 

under heat stress  

NumHSTmin Days 
Duration of long-term heat stress with daily minimum 

temperature exceeding the threshold 

NumHSTmax Days 
Duration of long-term heat stress with daily maximum 

temperature exceeding the threshold 

 

Data processing and statistical analysis 

The collected data was filtered by excluding outliers following the procedures described in 

previous papers of this series (Ji et al., Submitted-a; Ji et al., Submitted-b; Ji et al., Submitted-

c). Moreover, dataset to link heat stress during the dry-off period and the production 

performance of cows in the follow-up lactation period was created from another 5 years’ 

dataset, based on an individual recording of 126 Holstein lactating cows held on the farm.  

 Intensity duration index (IDI) for short-term heat stress 

The duration under general thermal conditions with a temperature of 15, 20, 25 and 30 oC was 

used for the basic analysis of the relationship between the intensity of thermal conditions and 

the duration. Then, the duration of heat stress was calculated as the hours or days with heat 

stress. The heat stress was identified as a temperature higher than the threshold values identified 
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for the herd in a previous study (Ji et al., Submitted-b). For short-term effect, the mean value 

of Tdb during day-time (6:00AM-18: 00 PM), night-time (18:00 PM to 6:0AM+1), and all-day 

was used to compare with the threshold and calculate the hours under heat stress. The mean 

temperature of the hours identified with heat stress was then calculated and multiplied by the 

duration, which was defined as the Intensity Duration Index (IDI) of heat stress. Multi-phases 

segmented linear regression between daily milk yield (DMY) and the independent factors of 

intensity duration index (IDI), age, body weight (BW) and days in milk (DIM) was applied to 

identify the threshold of IDI, which followed same procedures as described by Ji et al. 

(Submitted-b). The thresholds were finally described in figures with intensity and duration as 

the x and y-axis.  

 Statistical modelling for evaluation of the lag effect 

In this study, the ‘lag effect’ used in the analysis was defined as the effect of heat stress during 

a given period before the day when DMY was recorded. This lag effect can be as short as a day 

or can stretch over a number of months/weeks. Two steps were undertaken to evaluate the lag 

effect. First, the relationship between cow responses (e.g. DMY) on the test day and the thermal 

conditions (Tdb) on the days before were tested using a single correlation coefficient test. The 

range of proceeding days was chosen between -1 to -90 days.  

Next, the relationship between heat stress during the dry-off period and the production 

performance of cow in the coming lactation period was tested using multiple linear regression 

with backwards stepwise selection as formulated below: 

𝑦 = 𝑎 + 𝑏𝐴𝑔𝑒 + 𝑐𝐵𝑊 + 𝑑𝐷𝐷 + ∑ 𝑒𝑖𝐻𝐷𝑖 +  𝜀 

Where y is the dependent variable of cow production performance including lactation duration, 

total milk production, total fat/protein ratio of the milk, and the number of milking. The 

parameter ‘a’ to ‘e’ are the intercept and slopes for age, BW, dry-off duration (DD) and heat 

stress duration (HD), respectively. The variable of HDi included six time durations with 

different level of heat stress. Three of the durations were defined with daily maximum Tdb 

ranges of 20-25, 25-30, >30 °C. The other three were defined with daily minimum Tdb of 15-

20, 20-25, >25 °C.  

 Define and evaluation of the long-term cumulative effect index  

The long-term cumulative effect index was established by modifying the WCE model 

developed for medical science (Sylvestre and Abrahamowicz, 2009) and the model developed 

for assessing heat stress mortality (Rocklov et al., 2012). The first model was adjusted from 

the WCE model by defining a new weight curve as follows: 

𝑇𝑊𝐶𝐸 𝑚𝑒𝑎𝑛 =  ∑
𝑤(𝑢 − 𝑡)𝑇𝑡

𝑢
𝑡≤𝑢 

 

𝑤(𝑢 − 𝑡) =
𝐶𝑜𝑟(𝑇𝑡 , 𝐷𝑀𝑌0)

𝐶𝑜𝑟(𝑇0, 𝐷𝑀𝑌0)
 

Where, TWCE mean is the mean value of dry bulb temperature adjusted by weighted cumulative 

effect, ‘u’ is the time duration of the cumulative effect, t is time, u-t is the lag days of the effect 

(u-t equal to 0 means the current day’s effect), Tt is the average temperature at time t (t≤u), 

w(u-t) is the weight of the heat stress intensity, T0 and DMY0 are the temperatures and milk 

yield of current day . In this study, the w(u-t) is defined as the ratio between the effect of 

previous days’ heat stress and the effect of the current day’s heat stress. The effect was 

calculated as the coefficient of temperature in the regression with DMY. 
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The second model was adjusted from the model of heat stress mortality 

 

𝑇𝐻𝑆 𝑚𝑒𝑎𝑛 =  ∑
ℎ(𝑢 − 𝑡)𝑇(𝑡)

𝑑
𝑡≤𝑢 

 

ℎ(𝑢 − 𝑡) =  {
1,   𝑇(𝑡) ≥ 𝑇ℎ𝑟 
0,   𝑇(𝑡) < 𝑇ℎ𝑟 

 

Where, THS mean is the mean value of dry bulb temperature of the days under heat stress, u is 

the number of days to be considered in the calculation, d is the number of days with heat stress, 

u-t is the lag days of the effect (if u-t equals 0 means the current day), T(t) is the dry bulb 

temperature at time t (t≤u), h(u-t) is a value to identify heat stress. The Thr is the thresholds of 

heat stress identified using the method from the previous analysis (Ji et al., Submitted-a; Ji et 

al., Submitted-b; Ji et al., Submitted-c). 

The Twce mean and THS mean were evaluated comparing their performance of predicting production 

loss in the multiple linear regression. The formulation of this model was illustrated as below: 

𝑦 = 𝑎 + 𝑏𝐴𝑔𝑒 + 𝑐𝐵𝑊 + 𝑑𝐷𝐼𝑀 +  𝑒𝑇 +  𝜀 
Where y is the dependent variable of cow responses (e.g. DMY). The parameter a, b, c, and d 

are intercept and slopes of the basic model with cow production factors of Age, BW, days in 

milk (DIM) and rumination time (RT). The parameter e is the slope of thermal factor (T), which 

are daily temperature or the cumulative effect index (𝑇𝑊𝐶𝐸 𝑚𝑒𝑎𝑛 or 𝑇𝐻𝑆 𝑚𝑒𝑎𝑛).  

All data processing and statistical analysis performed using R 3.4.3. (R Development Core 

Team, 2017). The application of functions and packages were described in detail by Ji et al. 

(Submitted-a); Ji et al. (Submitted-b); Ji et al. (Submitted-c).  

6.4. Results and discussion  

Description of the observed dataset 

The raw dataset of DMY, daily minimum temperature (Tmin) and daily maximum temperature 

(Tmax) are presented in Figure 6-1. It can be seen that the values of DMY are changing in 

relation to Tmin and Tmax, but a lag or delay can been seen between the different curves. This 

could indicate that thermal conditions are no necessarily the primary factors affecting herd 

production, but the single linear regression between DMY and temperature (Tmin and Tmax) 

was still statistically significant (R2 =0.31) Interestingly, this R2 was higher than the R2 of 

regression between DMY and DIM (R2 = 0.29). However, it is recognised that the interactions 

between thermal conditions and other factors (e.g. DIM) can also influence herd production. 

For example, cows with early-lactation stage (DIM<40) entering heat stress (high Tmin and 

Tmax) might yield more milk than in their later-lactation stage (DIM>100) without heat stress. 

These kind of interactions were considered by multiple linear regression in the follow up 

analysis. As DIM (days in milk) is a time related factor (which is important in the modelling 

of DMY), time related factors of heat stress (duration of heat stress) may also gain meaningful 

impacts in the analysis. Such factors are also expected to qualify and quantify the lag or delay 

that might exist in relation to the impact of heat stress. 

To calculate the time related factors of heat stress, the thresholds identified in previous studies 

were modified for this study (Ji et al., Submitted-b) as shown in Figure 6-2. For the long-term 

analysis, thresholds of Tmin and Tmax were found as 11.1 and 21.3 oC. For the short-term 

analysis, thresholds of day-time, night-time and all-day mean temperature were determined as 

22.4, 17.3 and 20.4 oC. The number of days (duration) with Tmin and Tmax higher than 11.1 

and 21.3 oC during the previous two months of each test day are displayed in Figure 6-3. The 

long-term heat stress categorized into three levels from this figure: 
 Level I: the duration of night-time and day-time heat stress start increasing; 
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 Level II: the duration of day-time heat stress reached to the peak value, while the one 
of night-time heat stress keep increasing; 

 Level III: the duration of day-time and night-time heat stress all reached to the peak 
value. 

 

 
Figure 6-1 The observed DMY, Tmin, and Tmax. Data from 2016-August to 2017-November 

was applied for short-term heat stress analysis.  

 
Figure 6-2 Threshold identification for long/short term period, using broken-line single linear 

regression. [a] – For the long-term period, the threshold of Tmax and Tmin are 11.1 and 21.3 
oC. [b] –  For short-term period the thresholds for day-time (T_day-time), night-time 

(T_night-time) and daily temperature (T_all-day) are 22.4, 17.3, and 20.4 oC.  
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Figure 6-3 The number of the day in heat stress for the previous two months period before 

test day. NumHSTmin: the number of days with night-time heat stress when daily Tmin 

higher than the threshold value (11.1 oC). NumHSTmax: the number of days with day-time 

heat stress when daily Tmax higher than the threshold value (21.3oC).  

Influence of short-term heat stress 

The regression between DMY and durations of heat with a temperature higher than 15, 20, 25 

and 30 oC were analysed and shown in Figure 6-4. For the day-time thermal condition (Figure 

6-4 [a]), there was no significant correlation between DMY and the duration with a temperature 

higher than 15 oC. The decline of DMY also did not occur when cows remained less than 2 

hours in a day-time temperature higher than 20 oC or 4 hours with a day-time temperature 

higher than 25 oC. When exceeding these time ranges, significant declines of DMY were 

observed when day-time temperature above 20oC (-0.26 kg/cow/day/hour), and 25 oC (-0.41 

kg/cow/day/hour). With temperatures higher than 30oC, a significant decline of DMY (-0.37 

kg/cow/day/hour) was observed from the beginning, which indicated no tolerance existed in 

comparison with encountering 20 oC or 25 oC. The decline of DMY were -3.84, -3.19 and -

2.26 kg/cow/day/hour when the duration of heat stress was longer than 8, 10 and 11 hours with 

a day-time temperature higher than 20, 25 and 30 oC.  

For the night-time thermal conditions (Figure 6-4[b]), the DMY also significantly declined (-

0.04 kg/cow/day/hour) if the duration with a temperature higher than 15 oC was longer than 10 

hours. The decline of DMY with a temperature higher than 20 oC had two phases (-0.17 and -

0.67 kg/cow/day/hour), with a threshold of 5 hours. For other levels of night-time thermal 

condition (25 and 30 oC), the decline of DMY were -0.76 and -2.05 kg/cow/day/hour when the 

duration of heat stress was higher than 0 hours.  

For the all-day thermal condition (Figure 6-4 [c]), the duration less than 22, 8 and 4 hours with 

a temperature higher than 15, 20 and 25 oC had a non-significant impact on DMY. With the 

all-day mean temperature higher than 20oC, the decline of DMY had two phases (-0.19 and -

0.89 kg/cow/day/hour) with a threshold of 20 hours. The same level of DMY’s decline was 

found with a temperature higher than 25 and 30 oC, which were -0.60 kg/cow/day/hour. 

The correlation between DMY and the duration of cooling with a temperature below 15, 20, 

25 and 30 oC were analysed and displayed in Figure 6-5. For the day-time cooling (Figure 6-5 

[a]), the duration longer than 1, 2, 3 and 5 hours with a temperature below 15, 20, 25 30 oC 

provide a significant increase of DMY, which were 2.72, 2.94, 1.21 and 1.80 kg/cow/day/hour. 

For the night-time cooling (Figure 6-5 [b]), the cooling with the temperature only below 30 oC 

had a non-significant increase of DMY. The thresholds of duration with other night-time 

cooling (temperature below 15, 20 and 25 oC) were 1, 4, and 6 hours. The significant increase 

in DMY with a duration below these thresholds were 2.91, 1.32 and 1.24 kg/cow/day/hour. For 

the all-day cooling (Figure 6-5 [c]), the increase of DMY were 2.78, 0.7, 0.5, and 0.4 
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kg/cow/day/hour with 1, 6, 20 and 24 hours of cooling when temperature below 15, 20, 25 and 

30 oC, respectively.  

According to the analysis in Figure 6-4 and 5, the correlation between the temperature and the 

thresholds of duration was obvious. The general mechanism between the intensity 

(temperature) and duration could be expressed as an inverse function. Therefore, the threshold 

of their product (IDI) was identified using multi-phases segmented multiple linear regression. 

The dataset and regression results were plotted in Figure 6-6. The R2 were 0.63, 0.74 and 0.76 

for the modelling of day-time, night-time and all-day. With the regression for day-time and 

night-time, the thresholds of IDI were identified as 184 and 251. These two values were 

illustrated with the inverse function of temperature (15 to 40 oC) and duration (0 to 12 hours) 

in Figure 6-7. The short-term heat stress was then categorized into 3 levels based on the 

thresholds of day-time and night-time IDI, which were non-heat stress, heat stress during day-

time but release during night time, and heat stress during both day-time and night-time. 

Moreover, it was also found that the decline of DMY when day-time IDI exceeding the 

threshold (184) was only -0.03 kg/cow/day/oC*hour, while for the night-time (IDI higher than 

251) the decline was -0.10 kg/cow/day/oC*hour. However, when IDI higher than 251, the cows 

were entering both day-time and night-time heat stress, it was difficult to prove that the impact 

of night-time heat stress was being more important than day-time heat stress. Using the IDI 

thresholds of all-day thermal condition (IDI 170, 529 and 728), 4 levels of heat stress were 

categorized considering both the intensity (15 to 40 oC) and duration (0 to 24 hours) of heat 

stress. The decline of DMY changed from non-significant (positive value) to -0.13 

kg/cow/day/oC*hour.  
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Figure 6-4 Multi-phases segmented single linear regression between DMY and the duration 

of heat with a temperature higher than different level (15, 20, 25 and 30 oC). [a] – for the day-

time durations, heat with a temperature higher than 15 oC has no significant impact; [b] – for 

the night-time durations, and [c] for the overall daily durations. 
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Figure 6-5 Multi-phases segmented single linear regression between DMY and the duration 

of cooling with a temperature lower than different level (15, 20, 25 and 30 oC). [a] – for the 

day-time durations; [b] – for the night-time durations, cooling to keep the temperature lower 

than 30oC has no significant impact, and [c] for the overall daily durations. 
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Figure 6-6 Multi-phases segmented regression between DMY and IDI. [a] – for the day-time, 

two phases identified with a threshold value 184 oC*hour, slope value before and after 

threshold are 0.02 and -0.03 kg/cow/day/ oC*hour, R2 equals 0.63. [b] – for the night time, 

two phases identified with a threshold value 251 oC*hour, slope value before and after 

threshold are 0.01 and -0.10 kg/cow/day/ oC*hour, R2 equal to 0.74. [c] – for the all-day time, 

four phases identified with thresholds value 170, 529 and 728 oC*hour, slope value for the 

four phases are 0.02, -0.01, -0.03 and -0.13 kg/cow/day/ oC*hour, R2 equals to 0.75. 
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Figure 6-7 Differently coloured areas showing the IDI phases related to temperature and 

duration of day-time and night-time heat stress. Level I: thermal comfort during day-time and 

night-time with short duration of heat stress; Level II: heat stress during the day-time, but 

release during night-time; and Level III: heat stress happened during both day-time and night-

time.  

 
Figure 6-8 Differently coloured areas showing the IDI phases related to temperature and 

duration of all-day heat stress. Level I: thermal comfort with DMY 0.02 kg/cow/day/ 

oC*hour; Level II: effective heat stress with DMY -0.01 kg/cow/day/ oC*hour; Level III: 

critical heat stress with DMY -0.03 kg/cow/day/ oC*hour; and Level IV severe heat stress 

with DMY -0.13 kg/cow/day/ oC*hour. 

Influence of long-term heat stress 

The R2 and slope of single linear regressions between the DMY of test day and the Tmin and 

Tmax of the previous day (-90 to 0 days) were displayed as curves in Figure 6-9 [a] to show 

the changes of the lag effect. The short-term lag effect could be demonstrated according to the 

increasing of R2 and decreasing of slope from 0 days to -3 or -4 days. The R2 of regression with 

Tmin increased from 0.31 to 0.34, while the one of regression with Tmax increased from 0.14 

to 0.20. The slope of regression with Tmin decreased from -0.37 to -0.40 kg/cow/day/oC, 

whereas the one of regression with Tmax decreased from -0.27 to -0.33 kg/cow/day/oC. The 



112 

 

long-term lag effect was also determined as the R2 kept increasing, while the direction of slope 

was varied. . The R2 of regression with Tmin achieved the maximum value of 0.39 by the time 

of -28 days, while the one of regression with Tmax reached to the maximum value of 0.34 by 

the time of -45 days. In the meantime, the slope decreased to -0.42 and -0.44 kg/cow/day/oC 

for Tmin and Tmax, respectively. The regression including Age, BW, DIM (using the data of 

test day), Tmin and Tmax (using the data of 0 to -90 days) was then applied to recheck the lag 

effect when considering multiple factors, which is shown in Figure 6-9 [b]. A 4 days short-

term lag effect was also demonstrated by the increasing of R2 (0.68 to 0.69) and decreasing of 

slope (-0.18 to -0.19 and 0 to – 0.05, kg/cow/day/oC for Tmin and Tmax, respectively). For the 

long-term lag effect, the R2 reached to its maximum value of 0.74 at -60 days, and the slope of 

Tmax decreased to the minimum value of -0.15 kg/cow/day/oC at -66 days. However, the slope 

of Tmin increased after 4 days, which indicated the long-term lag effect of Tmin was less than 

the one with Tmax.  

 

 
Figure 6-9 Slope and R2 of the linear regression between DMY and the temperature (Tmin 

and Tmax) of 0 to -90 days before test day. [a] – using the single linear regression; [b] – 

using the multiple linear regression including Age, BW, DIM, Tmin and Tmax in one 

modelling.
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Table 6-2 Multiple linear regression between production performance after dry off period and heat stress in dry off period 

Significant label: “***” - P<0.001, “**” - P<0.01, “*” - P<0.05, “.” – P<0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Producti

on after 

dry off 

days 

R2 Intercept BW Age Dry off 

Duration 

Dry off 

Tmin 

Number 

of days 

with 

Tmin 15-

20 

Number 

of days 

with 

Tmin 20-

25 

Number 

of days 

with 

Tmin>25 

Dry off 

Tmax 

Number 

of days 

with 

Tmax 

20-25 

Number 

of days 

with 

Tmax 

25-30 

Number 

of days 

with 

Tmax>3

0 

LD 0.36 180.25 

*** 

NS NS 11.54 

*** 

NS 2.16 

. 

-3.14 

* 

-28.23 

* 

NS -12.78 

*** 

-11.40 

*** 

-9.18 

** 

Total 

MF 

0.27 719.42 

*** 

-0.29 

. 

NS 28.09 

** 

NS 7.21 

. 

-8.39 

. 

-66.06 

. 

-59.93  

* 

-31.18 

* 

-27.47 

** 

-24.13 

* 

Total MP  0.31 3119.58 

* 

NS NS 282.99 

* 

NS 132.86 

** 

-1075.26 

** 

NS -692.86  

. 

-272.52 

* 

-260.84 

** 

-264.17 

* 

Total Fat  0.30 558.33 

* 

NS 43.20 

* 

47.19 

** 

NS 10.54 

. 

-14.10 

* 

-122.07 

* 

NS -49.76 

** 

-43.62 

** 

-36.44 

* 

Total 

Protein  

0.33 713.19 

*** 

NS NS 38.12 

*** 

NS NS -10.93 

* 

NS NS -42.82 

*** 

-36.61 

*** 

-31.09 

** 
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Table 6-3 Comparing the models of DMY using different thermal parameters  
Model 

Num 

Intercept Slope of Independent R2 

DIM BW Age Thermal parameter 

1 3.59 

*** 

-0.08 

*** 

-0.001 

. 

8.71 

*** 

- - 0.65 

2 3.52 

*** 

-0.06 

*** 

-0.001 

* 

8.81 

*** 

Tmin -0.18 

*** 

0.68 

3 3.95 

*** 

-0.07 

*** 

-0.001 

* 

8.87 

*** 

Tmax -0.05 

** 

0.65 

4 12.54 

*** 

-0.05 

*** 

0.002 

** 

5.98 

*** 

Tmin 

WCE mean 

-0.30 

*** 

0.77 

5 14.92 

*** 

-0.04 

*** 

0.002 

** 

7.09 

*** 

Tmax 

WCE mean 

-0.24 

*** 

0.73 

6 22.40 

*** 

-0.05 

*** 

0.003 

*** 

6.03 

*** 

Tmin 

HS mean 

-0.93 

*** 

0.77 

7 17.29 

*** 

-0.04 

*** 

0.002 

* 

7.36 

*** 

Tmax 

HS mean 

-0.50 

*** 

0.73 

8 10.15 

*** 

-0.04 

*** 

0.002 

*** 

5,64 

*** 

NumHSTmin -0.07 

*** 

0.77 

9 7.98 

*** 

-0.06 

*** 

NS 7.72 

*** 

NumHTTmax -0.08 

*** 

0.70 

Significant label: “***” - P<0.001, “**” - P<0.01, “*” - P<0.05, “.” – P<0.1 
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The regression between production performance after a dry-off period and the heat stress during the 

dry-off period was summarized in Table 6-2. The BW and Age only had a significant impact on total 

milking frequency (MF) and fat percentage. The duration of dry-off had a significant positive impact 

on all production performance. No significant correlations were found with the mean of Tmin during 

the dry-off period. However, the duration with different levels of Tmin had different significant 

impacts. The duration with Tmin between 15 and 20 oC had a significant positive impact, while the 

duration with Tmin higher than 20 oC had significant negative impacts. The mean Tmax during the 

dry-off period and the duration with different level of Tmax all had negative effects on total MF and 

milk production (MY). The results from this Table 6-explain the lag effect of heat stress, as the heat 

stress during the dry-off period significantly affected the production performance of the next lactation 

period.  

The results of multiple linear regression with different thermal parameters were shown in Table3. The 

regression with DIM, BW and Age (Model 1) had the same R2 as the regression include Tmax as the 

thermal parameter (Model 3). However, the newly created parameters HSmean and WCEmean 

(Model 4-7) improved the modelling and gained higher R2 (0.70-0.77). The maximum slope of 

thermal parameters was found with HSmean calculated according to the Tmin higher than the 

threshold value, which was -0.93 kg/HSmean. It was also interesting to find the model using the 

historical duration of days in heat stress (Model 8 and 9) can also provide higher R2 than Model 1-3, 

which indicated the duration of heat stress should be taken more seriously than the intensity of heat 

stress. 

Discussions of key issues 

The importance of taking into account the duration of heat stress was demonstrated in this study. The 

analysis found the time-related heat stress could be categorized as short-term (hours in heat stress) 

and long-term effect (days in heat stress).  

For the short-term effect, the duration (e.g. less than 4 hours) with a day-time temperature higher than 

25oC (Figure 6-4 [a]) did not lead to the significant decline of DMY, which indicated that cows could 

adapt to the heat stress within a limited duration (West, 2003). However, with a duration of longer 

than 8 hours, the DMY could have significant decline with a temperature higher than 20 oC. These 

variations indicated the potential inadequacy of heat stress mitigation techniques (e.g. ventilation) 

when only considering thermal parameters. Time-related heat stress with a same value of IDI had the 

same level of influence on cows’ DMY e.g. 6 hours with a day-time temperature higher than 30 oC 

and 9 hours with a day-time temperature higher than 20oC. This proposed index (IDI) enabled a more 

comprehensive evaluation of heat stress. The day-time IDI (184) was lower than the night-time IDI 

(251), which suggests the ability of animals to endure higher temperature and longer duration of heat 

stress at night-time. This could be caused by the reduced solar radiation at night-time (Spain et al., 

2001), as well as the reduced production activities (Allen et al., 2015). However, as the day-time 

temperature was always higher than the night-time temperature, most of the days with night-time IDI 

of greater than 251 could result in a greater IDI in the following day. In our study, it was theoretically 

impossible to exclude the influence of day-time heat stress when analysing the data of night-time heat 

stress, as we assumed that the potential negative effects of day-time heat stress already impacted on 

the experimental animals. Therefore, the decline of DMY with night-time IDI higher than 251 (-0.10 

kg/cow/day/oC*hour) was 3 times greater than those with day-time IDI higher than 184 (-0.03 

kg/cow/day/oC*hour).  This might be so, because the night-time heat stress could potentially account 

for both day-time and night-time heat stress. The all-day IDI identification generated four levels of 

time-related heat stress (Fig 8). The level IV with all-day IDI greater than 728 had the same level of 

decline (-0.13 kg/cow/day/oC*hour) in DMY with the night-time IDI higher than 251 (-0the .10 

kg/cow/day/oC*hour), as it represented both day-time and night-time heat stress.  

As the study farm did not have any cooling facilities, the analysis of cooling duration was based on 

the natural changes in weather parameters, as shown in Figure 6-5. The DMY started to significantly 

increase by applying a cooling strategy that relied on shorter cooling duration but using lower 

temperatures. However, the DMY under different cooling condition and duration only improved to 

the same level as the DMY before heat stress, which was a very interesting finding of this study. This 
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suggested that cooling of cows might only alleviate the decline of their milk production, rather than 

enhancing their production performance. This is again, an important finding of this study. The general 

cooling strategy employed on modern dairy farms mainly include all-day cooling, cooling with 

segmented periods or cooling before feeding and milking (Silva and Maia, 2011; Avendano-Reyes et 

al., 2006; Avendaño-Reyes et al., 2012). However, most of the current cooling strategies tend to apply 

constant duration of cooling. It might be necessary to develop a dynamic cooling pattern according 

to the ambient temperature, as overcooling would not benefit the milk production. Moreover, the 

cows kept under conditions of long-term over cooling might have a compromised  heat tolerance, as 

overcooling might limits their ability to adapt to  heat stress (Mader et al., 2007). Therefore, further 

studies are needed under practical conditions (i.e. farms with appropriate cooling facilities) to verify 

the results of this study (Figure 6-5). This could in turn, provide a potential optimization of cooling 

strategies (i.e. dynamic duration of ventilation) by considering the combination of animals’ self-

adaptation to heat stress and their need for cooling.  

In relation to the long-term effect, this paper demonstrated two specified categories including the lag 

effect and cumulative effect. The lag effect was found as 3-4 days between the increase of temperature 

(Tmin or Tmax) and the decline of DMY. The lag days identified in the current study was longer than 

the one (1-3 days) reported by West et al. (2003), which might be caused by the different heat 

tolerance between the study animals. It is assumed that in Australia cows develop certain level of 

tolerance to heat stress over a period of time. Previous works (e.g. West et al. (2003) have not reported 

any correlation between DMY and the lag effect with longer than 3 days, thus it was unclear whether 

the correlation decreased after 3 days or increases. In the current study, the correlation between DMY 

and lag effect of temperature decreased after 3-4 days. However, the value increased 6-7 days and 

reached to the maximum level of 1-2 months lag. It was impossible to consider this increase as a lag 

effect, as it was difficult to forecast that the test day’s milk production could be influenced by 

temperatures 30-60 days before the test day. However, the increased correlation indicated a 

cumulative effect. As described in Figure 6-3, the test day with relatively low ambient temperature 

(e.g. after the hot season) might have a high historical duration of heat stress (the days under heat 

stress before the test day). Garner et al. (2017) reported that after 4 days of heat stress, 7 days recovery 

period without heat stress was necessary for cows to return to their production performance before 

the heat stress. However, when entering the hot season, the daily temperature kept increasing which 

would not provide recovery period for the cows, and their production performance was influenced by 

the heat stress cumulatively. The analysis of heat stress impact during the dry-off period in this study 

also demonstrated the possibility of a long-term cumulative effect. The analysis found that the 

duration of heat stress during the dry-off period had a more significant impact on productivity than 

the mean of temperature. Therefore, appropriate mitigation against heat stress during dry-off period 

should be as important as the mitigation in lactation period, enabling a well-prepared body condition 

for the subsequent lactation, such as  improving innate and acquiring immune status (Do Amaral et 

al., 2011).  

To quantify the cumulative effect, WCEmean and HSmean temperature indices were developed in 

this study. The correlation between DMY and such new indices were greater than the one between 

DMY and test day’s temperature. As the indices considering both intensity and duration of heat stress 

were rare in publications, it was difficult to compare the new indices with the indices from other 

studies. However, these new indices might be able to improve previously published indices in the 

future, such as THI (Davis and Mader, 2003). As the weighted cumulative effect model was used in 

medical science (Sylvestre and Abrahamowicz, 2009); the weight curve could not be applied to heat 

stress. The WCEmean temperature was calculated by using the correlation coefficient (slope value) 

of temperature in past days as the weight. More studies will be required to find accurate weight of 

temperatures in past days. The HSmean temperature was recommended by this study, as it just 

calculated the mean temperature of the days in heat stress, and achieved the same performance as the 

WCEmean temperature in the regression with DMY. 

6.5. Conclusions 
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In this study, the time-related heat stress was investigated as a short-term and long-term effect. For 

short-term effect, the intensity-duration index (IDI) was developed for day-time, night-time, and all-

day heat stress. The thresholds of IDI were illustrated as areas of heat stress quantifying different 

durations and temperatures. For long-term heat effect, the lag effect with 3-4 days between 

temperature and milk production was determined. The cumulative effect was found to last for 1-2 

months. Heat stress mean temperature (THS mean) was developed to quantify the cumulative effect, 

which provides better correlation with DMY (R2 = 0.73 – 0.77) compared with the mean temperature 

of test day (R2 = 0.65 – 0.68). Further studies are required to link the short-term and long-term effect. 

Another recommendation of the study would be to refine the short-term IDI by considering the long-

term cumulative effects which were not considered in the current study.  
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 General conclusion 

7.1.  Conclusions 

This research conducted a number of analysis and modelling in relation to heat stress on a dairy 

farm with RMS. The outcome from analysis and modelling demonstrated several applicable 

ways to apply routinely collected dataset from RMS for a more accurate heat stress assessment. 

By applying and comparing the published TCIs using the collected dataset, this study found: 

 A general threshold for high-producing lactation cows (DMY = 31 kg/cow/day) was 

identified by this study as THI greater than 64, which indicated a basic alert of heat 

stress for farm managers. 

 Instead of using TCIs, which need to measure several thermal parameters and animal 

responses indicators, the prediction of heat stress using Tdb can provide similar good 

performance for subtropical climate region.  

 The government’s online dataset of climate parameters can be applied to reduce the 

cost of implementing on-farm measurement, which was proven to achieve similar 

accuracy in forecasting heat stress. 

To establish a dynamic threshold algorithm, this study reported several new findings as 

follows: 

 By using the indicators of MT and DMY, four stages of heat stress were identified 

including Stage I - no stress, Stage II - innocuous heat stress, Stage III - effective heat 

stress and Stage IV - critical heat stress, which described a gradual coping of cows 

against heat stress. These levels were categorized with different thresholds of daily 

minimum and mean Tdb.  

 Decision tree algorithm was formulated to estimate specific threshold of Stage IV - 

critical heat stress. By input different BW, DIM and Age of cows, the algorithm could 

modify the threshold value and indicate different heat tolerances or cooling demands 

with 79-94% overall accuracy.   

By using the dataset recording individual cow’s health and production performance, the 

analysis of this study found: 

 A new index REI was developed for evaluating the efficiency of cows’ rumination that 

was influenced by heat stress. The value of REI significantly decreased with the raising 

of temperature. However, when temperature exceeded 25 oC, the value started 

increasing due to the reduction of RT becoming more significant than the decline of 

DMY, which possibly indicated a more compromised health/welfare status of cows. 

 As the farm observed by this study applied semi-free traffic, there was no forced 

movement of cows. All of their milking events happened voluntarily. It was found that 

86% of the milking event occurred between 07:00AM and 09:00AM, which had non-

significant correlation with heat stress.  

 Adjustment of milking interval and time of milking were found can be able to benefit 

cows’ REI, as well as the performance of robotic milking (reduce the rate of low 

efficiency milking). This proposed adjustment was estimated to potentially increase 

income of the study farm by approximately $400 per day.   

To deal with the lag and cumulative effects of heat stress within short and long term periods, 

this study found: 

 For short-term heat stress, another new index IDI was established to quantify the 

cumulative and lag effect of heat stress by involving time as a parameter in the model. 

The decline of DMY along with the raising of IDI ranged from -0.01 to 0.13 

kg/cow/day/IDI.  
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 For long-term heat stress, the mean temperature of days under heat stress before test 

day was found to be able to quantify a nearly 2 months’ cumulative effect. The duration 

of heat stress during dry-off period was also demonstrated to have significant impact 

on the production performance of the following lactation period.  

7.2. Limitations 

This study has been conducted to demonstrate the possibility of developing better heat stress 

assessment and prediction relying on the management database of RMS, which routinely 

records health and production information of individual cow. However, a number of limitations 

should be acknowledged in relation to data collection and the results of analysis. These 

limitation may include: 

 The on-farm measurement of thermal parameter was occasionally interrupted due to 

electricity interrupt, internet failure and farm management issues. Therefore, the 

comparison between on-farm measured dataset and online climate dataset was only 

performed during a set period of time. Nonetheless, the researchers involved in this 

study are confident that the on-line climatic data can be used effectively for on farm 

heat stress management within practical precision.   

 The accuracy of sensors in RMS measuring cows’ health and production indicators 

were not tested. Therefore the reliability of such measurements’ results was only 

maintained by routine calibration of RMS conducted by farmers and technicians of the 

manufacturer. However, the system error or uncertainty of measurements was 

minimized by the large number of daily replications.  

 The identification and quantification of cows’ behaviour (i.e. milking event) were only 

depended on the data measured by RMS, while no video recording or vision observation 

were taken for rechecking. Again, it was assumed that the large data set used 

compensated for any potential measurement inaccuracies.  

 The feed and nutrition supply for the cows of this study was confirmed by farm 

managers to be standardized and was not influenced by seasonal forage availability. 

However, the farmers did not provide any specific nutritional or feed intake 

information. Therefore, nutritional variables were not considered in the analysis. It was 

assumed that the standardised diet would eliminate any nutritional variability within 

the dataset.  

 The programming of traffic control system was not made available for us. Therefore 

the adjustment of control algorithm (i.e. optimized interval of milking events) was not 

implemented and evaluated under practical farm condition. Further studies need to be 

undertaken to verify the calculated results.  

 The understanding of cows’ responses to heat stress was obtained by data analysis and 

no physiological and biochemical measurements were performed to gain deeper 

understanding of the potential internal metabolic reactions of cows. However, the main 

aim of this study was to generate practical outcomes that can be implemented under on-

farm conditions. Therefore further (potentially laboratory based) studied will be needed 

to look into the underlining physiological responses of cows to heat stress.  

 Although the number of cows observed by this study was large (approximately 150 

lactating cows) and the duration of measurements lasted for nearly 5 years, the 

universality of the results from this study is still need to be verified. In addition, 

modification of models might be necessary if and when outcomes of this study 

implemented in the future on other farms.  
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7.3.  Further research 

This study also identified several related areas with further research interest, which are: 

 Future studies are required to not only develop new TCIs, but also establish reliable 

approach to modify the models considering specific farm and climate conditions.  

 Research similar to this study should be replicated in multiple farms with RMS, which 

could generate more generalized results and suggestions for practical applications. The 

proposed study farms should be selected from different climate regions.  

 The models established by this study can be refined by including more parameters 

associated with physiological reactions of cows. However, to consider the feasibility in 

practical applications, this kind of data should be collected from commercial devices 

which has automated measurement functions such as rumen bolus.  

 Research related to ventilation system can apply similar analysis performed in this 

study, which may be able to generate a dynamic ventilation pattern that can save energy 

cost and prevent the loss of heat tolerance due to over-cooling. 

 Optimization of RMS management was predicted to benefit the milk production and 

robotic milking performance. However, more studies are required to implement such 

adjustments in practical RMS operations and evaluate the financial outcomes. 

 Further study should consider the combined effect of short-term and long-term heat 

stress influence, thus a more comprehensive duration and intensity index could be 

developed to provide a more accurate estimation of cumulative and lag effects. 
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