

Discovering Web Page Communities for
Web-Based Data Management

A Dissertation submitted to

The Department of Mathematics and Computing
Faculty of Sciences

The University of Southern Queensland
Australia

for the degree of

Doctor of Philosophy

by

Jingyu Hou

PhD and BSc, Shanghai

December 2002

 ii

Abstract

The World Wide Web is a rich source of information and continues to expand in size
and complexity. Mainly because the data on the web is lack of rigid and uniform
data models or schemas, how to effectively and efficiently manage web data and
retrieve information is becoming a challenge problem. Discovering web page
communities, which capture the features of the web and web-based data to find
intrinsic relationships among the data, is one of the effective ways to solve this
problem.

A web page community is a set of web pages that has its own logical and
semantic structures. In this work, we concentrate on the web data in web page
format and exploit hyperlink information to discover (construct) web page
communities. Three main web page communities are studied in this work: the first
one is consisted of hub and authority pages, the second one is composed of relevant
web pages with respect to a given page (URL), and the last one is the community
with hierarchical cluster structures.

For analysing hyperlinks, we establish a mathematical framework, especially the
matrix-based framework, to model hyperlinks. Within this mathematical framework,
hyperlink analysis is placed on a solid mathematic base and the results are reliable.

For the web page community that is consisted of hub and authority pages, we
focus on eliminating noise pages from the concerned page source to obtain another
good quality page source, and in turn improve the quality of web page communities.
We propose an innovative noise page elimination algorithm based on the hyperlink
matrix model and mathematic operations, especially the singular value
decomposition (SVD) of matrix. The proposed algorithm exploits hyperlink
information among the web pages, reveals page relationships at a deeper level, and
numerically defines thresholds for noise page elimination. The experiment results
show the effectiveness and feasibility of the algorithm. This algorithm could also be
used solely for web-based data management systems to filter unnecessary web pages
and reduce the management cost.

In order to construct a web page community that is consisted of relevant pages
with respect to a given page (URL), we propose two hyperlink based relevant page
finding algorithms. The first algorithm comes from the extended co-citation analysis
of web pages. It is intuitive and easy to be implemented. The second one takes
advantage of linear algebra theories to reveal deeper relationships among the web
pages and identify relevant pages more precisely and effectively. The corresponding
page source construction for these two algorithms can prevent the results from being
affected by malicious hyperlinks on the web. The experiment results show the
feasibility and effectiveness of the algorithms. The research results could be used to
enhance web search by caching the relevant pages for certain searched pages.

For the purpose of clustering web pages to construct a community with its
hierarchical cluster structures, we propose an innovative web page similarity
measurement that incorporates hyperlink transitivity and page importance (weight).

 iii

Based on this similarity measurement, two types of hierarchical web page clustering
algorithms are proposed. The first one is the improvement of the conventional K-
mean algorithms. It is effective in improving page clustering, but is sensitive to the
predefined similarity thresholds for clustering. Another type is the matrix-based
hierarchical algorithm. Two algorithms of this type are proposed in this work. One
takes cluster-overlapping into consideration, another one does not. The matrix-based
algorithms do not require predefined similarity thresholds for clustering, are
independent of the order in which the pages are presented, and produce stable
clustering results. The matrix-based algorithms exploit intrinsic relationships among
web pages within a uniform matrix framework, avoid much influence of human
interference in the clustering procedure, and are easy to be implemented for
applications. The experiments show the effectiveness of the new similarity
measurement and the proposed algorithms in web page clustering improvement.

For applying above mathematical algorithms better in practice, we generalize the
web page discovering as a special case of information retrieval and present a
visualization system prototype, as well as technical details on visualization
algorithm design, to support information retrieval based on linear algebra. The
visualization algorithms could be smoothly applied to web applications.

XML is a new standard for data representation and exchange on the Internet. In
order to extend our research to cover this important web data, we propose an object
representation model (ORM) for XML data. A set of transformation rules and
algorithms are established to transform XML data (DTD and XML documents with
DTD or without DTD) into this model. This model capsulizes elements of XML data
and data manipulation methods. DTD-Tree is also defined to describe the logical
structure of DTD. It also can be used as an application program interface (API) for
processing DTD, such as transforming a DTD document into the ORM. With this
data model, semantic meanings of the tags (elements) in XML data can be used for
further research in XML data management and information retrieval, such as
community construction for XML data.

 iv

Certification of Dissertation

I certify that the ideas, results, analyses, and conclusions reported in this dissertation
are entirely my own effort, except where otherwise acknowledged. I also certify that
the work is original and has not been previously submitted either in whole or in part
for a degree at this or any other universities.

---------------------------------- ----------------------------
Signature of Candidate Date (DD/MM/YYYY)

ENDORSEMENT

---------------------------------- ----------------------------
Signature of Supervisor(s) Date (DD/MM/YYYY)

---------------------------------- ----------------------------

 v

Acknowledgements

I am deeply indebted to my supervisor, Associate Professor Yanchun Zhang, for his
help, guidance and encouragement throughout the course of my doctoral program at
the University of Southern Queensland, and his criticisms and constructive
suggestions on the draft of the dissertation. His patience, insights, research style and
the ability to draw results out of his students have been integral to the success of this
work and to my education as a researcher. Without his professional guidance and
help, this work would not have been possible. I am also grateful to him for providing
me with various supports to conduct this study and many invaluable suggestions for
my future academic career.

Thanks must also go to my associate supervisor, Dr Jinli Cao, for her help,
encouragement and many constructive suggestions throughout my doctoral program.
I would like to thank many anonymous referees for their comments on our papers,
which are the basis of this dissertation. A special thank should be given to Associate
Professor Chris Harman for checking the English of my papers and many other
appreciated supports.

I am grateful to the Department of Mathematics and Computing for offering me
a Postgraduate Research Scholarship, Tutor and Part-Time Lecturer positions to
support my study throughout my PhD program. I am also grateful to the Faculty of
Sciences and the Department for supplying good services and providing the finance
to travel to several conferences during my time here. My gratitude also goes to the
Head of the Department, Professor Tony Roberts, the Manager of Research and
Higher Degrees, Ms Ruth Hilton, Ms Christine Bartlett, Mrs Carla Hamilton, all
staffs in the Department and Faculty, as well as my friends for their help and
supports, which enabled me to concentrate on my research.

Finally, I would like to express my gratitude to my wife Huiming and children
Mingxi and Mingyi for their love, support, encouragement, as well as understanding
and patience.

 vi

Publications Based on This Dissertation

[1] Jingyu Hou and Yanchun Zhang, Effectively Finding Relevant Web Pages
from Linkage Information, IEEE Transactions on Knowledge & Data
Engineering, Volume 15, Number 4, July/August 2003.

[2] Jingyu Hou, Yanchun Zhang, Jinli Cao, Wei Lai and David Ross, Visual

Support for Text Information Retrieval Based on Linear Algebra, Journal
of Applied Systems Studies, Cambridge International Science Publishing,
Vol.3, No.2, 2002.

[3] Jingyu Hou, Yanchun Zhang and Jinli Cao, Eliminating Noise Pages for

Better Web Page Communities, Journal of Research and Practice in
Information Technology, 2002 (to appear).

[4] Jingyu Hou, Yanchun Zhang, Jinli Cao and Wei Lai, Visual Support for

Text Information Retrieval Based on Matrix's Singular Value
Decomposition, Proceedings of the 1st International Conference on Web
Information Systems Engineering (WISE'00), Vol. 1 (Main Program), pp
333-340, Hong Kong, China, 19-21 June, 2000.

[5] Jingyu Hou, Yanchun Zhang and Yahiko Kambayashi, Object-Oriented

Representation for XML Data, Proceedings of the 3rd International
Symposium on Cooperative Database Systems for Advanced Applications
(CODAS'2001), pp 43-52, Beijing, China, IEEE CS Press, April 23-24,
2001.

[6] Jingyu Hou and Yanchun Zhang, Constructing Good Quality Web Page

Communities, Database Technologies 2002, Proceedings of the 13th
Australasian Database Conference (ADC2002), pp 65-74, Monash
University, Melbourne, Australia, 28 January - 1 February, 2002.

[7] Jingyu Hou and Yanchun Zhang, A Matrix Approach for Hierarchical Web

Page Clustering Based on Hyperlinks, Proceedings of the 3rd International
Conference on Web Information Systems Engineering (WISE’02), First
International Workshop on Mining for Enhanced Web Search 2002
(MEWS’02), pp 207-216, Singapore, December 2002.

[8] Jingyu Hou and Yanchun Zhang, Utilizing Hyperlink Transitivity to

Improve Web Page Clustering, Proceedings of the 14th Australasian
Database Conference (ADC2003), Adelaide, Australia, 4-7 February, 2003.

[9] Jingyu Hou and Yanchun Zhang, Web Page Clustering: A Hyperlink-Based

Similarity and Matrix-Based Hierarchical Algorithms, Proceedings of the

 vii

5th Asia Pacific Web Conference (APWeb2003), Xi’an, China, 27-29
September, 2003.

 viii

Table of Contents

1 Introduction 1
 1.1 Overview …………………………………………………………... 1
 1.2 Motivation …………………………………………………………. 6
 1.3 Claims of the Dissertation …………………………………………. 15
 1.4 Outline of the Dissertation …………………………………………. 20

2 Fundamentals of Hyperlink Analysis and Web Page Community 25
 2.1 Introduction ………………………………………………………... 25
 2.2 Hyperlink Models ………………………………………………….. 27
 2.3 Matrix Expression of Hyperlinks ………………………………….. 29
 2.4 HITS Algorithm ……………………………………………………. 31
 2.5 Singular Value Decomposition of Matrix …………………………. 34
 2.6 Hyperlink Analysis Applications ………………………………….. 38

3 Eliminating Noise Pages for Good Quality Communities 43
 3.1 Introduction ………………………………………………………... 43
 3.2 Noise Pages Elimination Algorithm (NPEA) ……………………… 47
 3.3 Experimental Results ………………………………………………. 54
 3.4 Related Work and Discussions …………………………………….. 63
 3.5 Conclusions ………………………………………………………... 70
 Appendix: Noise Page Elimination Algorithm (NPEA) ………………... 71

4 Finding Relevant Web Pages for a Given Page 73
 4.1 Introduction ………………………………………………………... 73
 4.2 Extended Co-Citation Algorithm ………………………………….. 77
 4.2.1 Citation and Co-Citation Analysis ………………………….. 77
 4.2.2 Extended Co-Citation Algorithm …………………………... 80
 4.3 Latent Linkage Information (LLI) Algorithm ……………………... 86
 4.4 Experimental Results ………………………………………………. 92
 4.5 Related Work and Discussions …………………………………….. 100
 4.6 Conclusions ………………………………………………………... 104
 Appendix: Depiction of LLI (Latent Linkage Information) Algorithm … 105

 ix

5 Visualization Support for Information Retrieval 107
 5.1 Introduction ………………………………………………………... 107
 5.2 Visualization Examples & System Prototype ……………………… 112
 5.3 SVD-based Information Retrieval …………………………………. 116
 5.4 Visualization Algorithms for Information Retrieval ………………. 121
 5.4.1 Visualization Algorithm for SVD-based Retrieval ………… 123
 5.4.2 Algorithm for Match Ratio …………………………………. 125
 5.4.3 Algorithm for Displaying …………………………………... 125
 5.5 Conclusions …………………………………………………………. 127

6 Web Page Similarity Measurement and Clustering Improvement 129
 6.1 Introduction ………………………………………………………... 129
 6.2 Web Page Similarity Measurement ………………………………... 131
 6.2.1 Page Source Construction …………………………………... 132
 6.2.2 Page Weight Definition …………………………………….. 134
 6.2.3 Page Correlation Matrix ……………………………………. 136
 6.2.4 Page Similarity ……………………………………………... 140
 6.3 Hierarchical Web Page Clustering ………………………………… 145
 6.4 Evaluations ………………………………………………………… 148
 6.5 Related Work and Discussions …………………………………….. 152
 6.6 Conclusions ………………………………………………………... 156

7 Matrix-Based Hierarchical Web Page Clustering 158
 7.1 Introduction ………………………………………………………... 158
 7.2 Matrix-Based Clustering Algorithms ……………………………… 159
 7.2.1 Similarity Matrix Permutation ……………………………… 160
 7.2.2 Clustering Algorithm from Matrix Partition ………….……. 162
 7.2.3 Cluster-Overlapping Algorithm …………………………….. 165
 7.3 Evaluations ………………………………………………………… 169
 7.4 Conclusions ………………………………………………………... 174
 Appendix ………………………………………………………………... 175

8 Object Representation Model for XML Data 177
 8.1 Introduction ………………………………………………………... 177
 8.2 XML & Object Representation Model (ORM) ……………………. 181
 8.3 Transformation Rules from DTD to ORM ………………………… 191
 8.4 DTD-Tree and Transformation Procedure ………………………… 198
 8.5 Transformation Rules for XML Document with DTD to ORM …... 203

 x

 8.6 Transformation Rules from XML Document without DTD to ORM 208
 8.7 Transformation Procedures for XML Documents without DTD ….. 213
 8.8 Related Work and Discussions …………………………………….. 217
 8.9 Conclusions ………………………………………………………... 218

9 Conclusions 221
 9.1 Summary …………………………………………………………… 221

9.1.1 Mathematical Framework for Hyperlink Analysis and
Information Retrieval ……………………………………… 221

9.1.2 Strategies on Discovering Web Page Communities Using
Hyperlink Analysis ………………………………………… 223

 9.1.3 Visualization Support for Information Retrieval …………… 226
 9.1.4 Object-Oriented Data Model for XML Documents ………... 227
 9.2 Possible Future Work ……………………………………………… 228

Bibliography 232

 xi

List of Figures

1.1 Logical architecture of a web-based data management system …………. 8

2.1 Construction of approximation matrix Ak ……………………………….. 37

3.1 Getting new base set with less noise pages by applying the proposed

Algorithms ………………………………………………………………. 47
3.2 Page measurement change trends for 20 arbitrary selected pages with

different values of parameter δ ………………………………………….. 60

4.1 Page source S for the given u in the DH Algorithm ……………………... 79
4.2 Page source structure for the Extended Co-Citation algorithm …………. 81
4.3 An example of intrinsic page treatment …………………………………. 84
4.4 Comparison of bcp, dd, and sim values for the selected 10 pages ……… 99

5.1 Visual selection for constructing a query type ………………………….. 113
5.2 Visual interface of information retrieval system ………………………... 114
5.3 Visualization of the query and retrieved documents ……………………. 114
5.4 Information of the mouse pointed document ……………………………. 115
5.5 Details of retrieved document from the database ……………………….. 116
5.6 Example of cosine threshold …………………………………………….. 120

6.1 Structure of the page source S …………………………………………... 133
6.2 Example of computing distance between pages ………………………… 140
6.3 Example of the similarity ……………………………………………….. 145
6.4 Hierarchical clustering diagram …………………………………………. 145
6.5 The average base cluster accuracy with different clustering thresholds
 (T) ……………………………………………………………………….. 151
6.6 The average leaf cluster accuracy with different clustering thresholds
 (T) ……………………………………………………………………….. 151
6.7 The overall average cluster accuracy with different clustering thresholds
 (T) ……………………………………………………………………….. 151
6.8 Co-citation relationship between pages …………………………………. 154
6.9 A special situation for similarity measurement …………………………. 156

 xii

7.1 (a) A similarity matrix. (b) The permuted matrix of (a) ………………... 162
7.2 Matrix-based hierarchical clustering diagram …………………………... 165
7.3 Construction of new sub-matrix SM'1,1 ………………………………….. 168
7.4 The average leaf cluster accuracies of the eight clustering algorithms …. 171
7.5 The comparison of CA2(D), CA1(D) and WK01A on the average leaf

cluster accuracy …………………………………………………………. 172
7.6 The comparison among the leaf cluster accuracies of CA2(D), CA1(D)

and the base cluster accuracies of WK01A ……………………………… 172
7.7 The comparison of PCA2(D), PCA1(D) and WK01A on the average leaf

cluster accuracy …………………………………………………………. 173
7.8 The comparison among the leaf cluster accuracies of PCA2(D),
 PCA1(D) and the base cluster accuracies of WK01A …………………… 173

8.1 Structures of two super classes: XMLDoc and Terminal ………………... 189
8.2 Object representation model (ORM) for XML data …………………….. 190
8.3 Work description ………………………………………………………... 191
8.4 DTD-Tree of bib.dtd …………………………………………………….. 199
8.5(a) The first result of the rule application ………………………………... 202
8.5(b) The second result of the rule application …………………………….. 203
8.5(c) The third result of the rule application ……………………………….. 203
8.5(d) The fourth result of the rule application ……………………………... 203
8.5(e) The fifth result of the rule application ………………………………... 203
8.6 Structure of an XML document in DOM ……………………………….. 213

 xiii

List of Tables

3.1 Numerical results for three algorithms maxAlgo, avgAlgo and minAlgo .. 56
3.2 Ten arbitrary noise pages ………………………………………………... 59
3.3 Ten arbitrary topic-related pages ………………………………………... 59
3.4 Page measurement changes of noise pages with different values of
 parameter δ ……………………………………………………………… 60
3.5 Page measurement changes of topic-related pages with different values
 of parameter δ …………………………………………………………… 60
3.6 Top five authorities and hubs for "Harvard" before noise pages are
 eliminated ……………………………………………………………….. 61
3.7 Top five authorities and hubs for "Harvard" after noise pages are
 eliminated ……………………………………………………………….. 61
3.8 Top five authorities and hubs for "Jaguar" before noise pages are
 eliminated ……………………………………………………………….. 62
3.9 Top five authorities and hubs for "Jaguar" after noise pages are
 eliminated ……………………………………………………………….. 62

4.1 Top 10 relevant pages returned by the DH Algorithm ………………….. 94
4.2 Top 10 relevant pages returned by the Extended Co-Citation algorithm .. 94
4.3 Top 10 relevant pages returned by the Companion algorithm ………….. 95
4.4 Top 10 relevant pages returned by the LLI algorithm …………………... 95
4.5 Top 10 relevant pages returned by the "Related Pages" service of
 AltaVista ………………………………………………………………… 95
4.6 Top 10 relevant pages returned by the "Similar Pages" service of
 Google …………………………………………………………………... 96
4.7 Randomly selected 10 pages from the page source BS …………………. 99
4.8 Numerical results of bcp, dd values and similarities of 10 selected pages
 in BS ……………………………………………………………………... 99

6.1 Examples of some major clusters ……………………………………….. 152
6.2 Examples of one major cluster with hierarchical structure ……………... 152

7.1 The algorithms used for evaluations …………………………………….. 170
7.2 Examples of some major clusters ……………………………………….. 174

1

Chapter 1

Introduction

1.1 Overview

The rapid development of the World Wide Web has made itself a huge information

source that has allowed unprecedented sharing of ideas and information in a scale

never seen before. According to the figure in 2000 (CNet, 26 July 2000), the web

held about 550 billion documents. This number is growing rapidly, as well as the

number of users on the web. The boom in the use of the web and its exponential

growth are now well known, and they are causing a revolution in the way people use

computers and perform their daily tasks. On the other hand, however, the web has

also introduced new problems of its own and greatly changed the traditional ways of

information retrieval and management. Because of the absence of a well-defined

underlying data model for the web [BR99], finding useful information and managing

data on the web are frequently tedious and difficult tasks. Since the data on the web

is usually represented as web pages (documents), in this thesis, we use terms web

data and web page/document interchangeably.

Usually, the effectiveness and efficiency of information retrieval and

management are mainly affected by the logical view of data adopted by information

systems. For the data on the web, it has its own significantly different features

2

compared with the data in conventional database management systems. The features

of web data are as follows.

• The data on the web is huge. No one could have exactly estimated the data

volume on the web. Actually, the exponential growth of the web poses scaling

issues that are difficult to cope with. Even the current powerful search engine,

such as Google, can only cover a fraction (2 billions) of the total documents

on the web. The enormous data on the web makes it difficult to manage web

data using traditional database or data warehouse techniques.

• The data on the web is distributed. Due to the intrinsic nature of the web, the

data is distributed across various computers and platforms which are

interconnected with no predefined topology.

• The data on the web is heterogeneous. In addition to textual data, which is

mostly used to convey information, there are a great number of images, audio

files, video files and applications on the web. In most cases, the

heterogeneous data co-exist in a web document, which makes it not easy to

deal with them at the same time with only one technique.

• The data on the web is unstructured. It has no rigid and uniform data models

or schemas, and therefore there is virtually no control over what people can

put on the web. Different individuals may put information on the web in their

favourite ways, as long as the information arrangement meets the basic

display format requirements of web documents, such as HTML format. The

absence of well-defined structure for web data brings a series of problems,

such as data redundancy and poor data quality [BGM+97] [SG98]. On the

3

other hand, documents on the web have extreme variation internal to the

documents, and also in external meta information that might be available

[BP98a]. Although the currently used HTML format consists of some

structuring primitives such as tags and anchors [Abit97], these tags, however,

deal primarily with the presentation aspects of document and have few

semantics. Therefore, it is difficult to extract required data from web

documents and find their mutual relationships. This feature is quite different

from that of traditional database systems.

• The data on the web is dynamic. Current estimates are that there are over 150

million web pages with a life of less than one year [BP98b]. The implicit and

explicit structure of the web data may evolve rapidly, data elements may

change types, data not conforming to the previous structure may be added,

and dangling links and relocation problems will be produced when domain or

file names change or disappear [BR99]. These characteristics result in

frequent schema modifications that are another well-known headache in

traditional database systems [MAG+97].

• The data on the web is hyperlinked. Unlike "flat" document collections, the

World Wide Web is a hypertext and people are likely to surf the web using its

link graph. The hyperlinks between web pages (data) provide considerable

auxiliary information on top of the text of the web pages and establish

topological or semantic relationships among the data. This kind of

relationship, however, is not in a predefined framework, which brings a lot of

uncertainty, as well as much implicit semantic information, to the web data.

4

The above features indicate that web data is neither raw data nor very strictly typed

as in conventional database systems. It is called semi-structured data. Furthermore,

the web data contains many noise factors mainly because of the absence of well-

defined data structures or models. Therefore, the web as a whole cannot be

considered as a conventional database in a strict sense.

Because of the above web data features, web information retrieval and web data

management are becoming a challenge problem. In the last several years, much

research and development work has been done in this area. For these work, web

information search and management are always the main themes. Accordingly, the

research and development work could be roughly classified into two main sub-areas:

web search engines and web data management.

Web search engine technology has scaled dramatically with the growth of the

web since 1994 to help web users find desired information, and has resulted in a

large number of research results such as [McB94] [BP98a] [BP98b] [CGP98]

[SM98] [CVD99a] [CVD99b] [RM99] [Hock00] [DCL+00] [CG00a] [CG00b]

[NW01] [TLN+01], as well as various web search engines such as World Wide Web

Worm (WWWW), Excite, Lycos, Yahoo!, AltaVista and Google. Search engines can

be classified into two categories: one is general-purpose search engine and another

one is special-purpose search engine. The general-purpose search engines aim at

providing the capability to search as many web pages on the web as possible. The

search engines mentioned above are a few of the well-known ones. The special-

purpose search engines, on the other hand, focus on searching those web pages on

particular topics. For example, the Medical World Search (www.mwsearch,com) is a

5

search engine for medical information and Movie Review Query Engine

(www.mrqe.com) lets the users to search for movie reviews. No matter what

category the search engine is, each search engine has a text database defined by the

set of documents that can be searched by the search engine. The search engine

should have an effective and efficient mechanism to capture (crawl) and manage the

web data, as well as to provide the capabilities to handling queries quickly and

returning the most related search results (web pages) with respect to the user's

queries. To reach these goals, effective and efficient web data management is

necessary.

Web data management refers to many aspects. It includes data modelling,

languages, data filtering, storage, indexing, data classification and categorization,

data visualization, user interface, system architecture, etc. [BR99]. In general, the

purpose of the web data management is to find intrinsic relationships among the data

to effectively and efficiently support web information retrieval and other web-based

applications. It can be seen that there are intersections between the research in web

search engines and web data management. Effective and efficient web data

management is the base for a good web search engine. On the other hand, the data

management could be applied to many other web applications, such as web-based

information integration systems and metasearch engines [MYL02].

Although much work has been done in web-based data management in the last

several years, there remain many problems to be solved in this area because of the

characteristics of the web data mentioned before. How to effectively and efficiently

6

manage web-based data, therefore, is an active research area that is full of many

challenges.

1.2 Motivation

Web-based data management, in essence, belongs to information (data) management

though web data has its own characteristics. For an information system, its

efficiency and effectiveness are directly affected by the user task and the logical

view of the data adopted by the system [BR99]. The research in user task for

information systems is beyond the research scope of this work. This work

concentrates on the logical view of the data in web-based data management systems.

As web-based data management systems are a kind of information system, there

is much work trying to use traditional strategies and techniques to establish

databases and manage the web-based data. For example, many data models and

schemas have been proposed for managing web data [BBB00] [LRS+00]

[MAG+97] [SGN00] [SRL00] [YR00] [PGW95]. Some of them tried to define

schemas, which are similar to the conventional database schemas, for web data, and

use the conventional DBMS methods to manage web data. Others tried other ways

of establishing flexible data structures, such as trees and graphs, to organize web

data and proposed corresponding retrieval languages. However, since the web data is

dynamic, which is significantly different from the conventional data in database

systems, using relative fixed data schemas or structures to manage the web data

could not reflect the nature of the web data [MAG+97]. On the other hand, the

mapping of web data into a predefined schema or structure would break down the

7

contents of the web data (text, hyperlinks, images, tags etc.) into separated

information pieces, and intrinsic semantic relationship within a web page and among

the web pages would be lost. In other words, web databases alone could not provide

the flexibility to reflect the dynamics of the web data and effectively support various

web-based applications.

In this work, we take another approach, i.e. establishing good web page

communities, to support web-based management and information retrieval. A web

page (data) community is a set of web pages that has its own logical and semantic

structures. For example, a web page set with clusters in it is a community; web

pages in a set that are related to a given web page also form a community. The web

page community considers each page as a whole object, rather than breaking down

the web page into information pieces, and reveals mutual relationships among the

concerned web data. For instance, the system CiteSeer [LGB99] uses the search

engines like AltaVista, HotBot and Excite to download scientific articles from the

web and exploits the citation relationships among the searched articles to establish a

scientific literature searching system. This system reorganizes the scientific

literatures on the web and improves the search efficiency and effectiveness. The web

page community is flexible in reflecting the web data nature, such as dynamics,

heterogeneity. Furthermore, web page communities could be solely used by various

applications or be embedded in web-based databases to provide more flexibility in

web data management, information retrieval and application support. Therefore,

database & community centred web data management systems provide more

capabilities than database-centred ones in web-based data management. Figure 1.1

8

shows the logical architecture of a database & community centred web data

management system.

To construct a web page community, it is necessary to find ways of representing

pages and discover their logical or semantic relationships. Previous research

considered a web page as a piece of text or a set of words, and use traditional text

data analysis and management strategies to extract required information and to

represent a page as a vector of terms (keywords). The relationships among the web

data are then found from the relationships among vectors, such as the work in

[ZE98] [BGG+99] and the work surveyed in [MYL02]. Text-content-based data

Searched Web-Based Data

WWW

Web Page Communities

Web-Based Database

Local Applications Web-Based Applications

User Interface

Web-Based Data
Management
System

Figure 1.1. Logical architecture of a web-based data management system

9

analysis and management have been thoroughly studied in traditional data

management. However, for the web data, this approach has its own limitations.

Firstly, since the data on the web is huge, text distilling and analysis are time-

consuming and difficult tasks in practice. Secondly, due to the dynamics of the web

data, web page contents might be changed frequently by the page authors. This

would lead to different content analysis results for the same web page at different

time. Finally, because of the synonymy (different words have similar or same

meaning) and polysemy (one word has different meanings) of the words in web page

content, it is uncertain whether the text analysis results can really represent the web

data and reveal the relationships among the web data.

Although most of the early work concentrated on the content portion of the web

page, little attention was paid to the hyperlinks connecting various web pages.

However, the effectiveness and popularity of the search engine Google, which is one

of the earliest search engines exploiting hyperlink information to improve the web

search quality, have greatly increased researcher interests in using hyperlinks to

mine information from the web. The idea of hyperlink analysis originally came from

the citation analysis of literature, such as [Cam97] [Garf79] and [Hit+97], and has

been applied in many areas such as page ranking in the search engine Google

[BP98a] [BP98b] and other web-related areas [Klein99] [CDG+98] [CHH98]

[DH99]. The idea is based on a fact that if a web page A has a hyperlink to page B,

the author of page A usually considers that page B contains valuable information that

is related to page A [Klein98]. Therefore, reasonable hyperlinks reflect human

judgement of whether the linked pages are related to the linking pages. This

10

judgement is objective and independent of synonymy and polysemy of the words in

web pages. It is argued that the pages connected together by hyperlinks might be not

related. For a large number of pages, however, the hyperlink information among the

pages would show certain statistical regularities [Klein99]. Once these regularities

derived from hyperlinks are revealed (mined), they could be used to find intrinsic

relationships among web-based data for various purposes.

Hyperlink analysis has many other additional advantages. It is concise and

intuitive. Hyperlink analysis results are relatively steady. This is because any

changes in the web page text that do not affect page’s structure will not affect the

relationship between this page and other pages. In practical applications, extracting

hyperlinks is much easier than extracting required words from web pages, as

hyperlinks are marked by specific HTML tags. This would simplify web page

processing and decrease computing cost.

On the other hand, however, hyperlink analysis is a relatively new research area

and there are still many problems to be solved. For instance, because hyperlinks are

more likely to be arbitrarily added into web pages than texts, hyperlink information

would contain many noise factors and hyperlink analysis would result in unexpected

results [CDG+98] [BH98] [DH99]. It has become a challenge for hyperlink analysis

to choose reliable hyperlink information and analyse the chosen hyperlink

information such that the hyperlink analysis results can reveal real and intrinsic

relationships among web-based data.

11

In this work, we will exploit hyperlink information to construct web page

communities for web data management and information retrieval. The objective of

this research is accordingly stated as the following sub-goals:

1. To establish a framework for hyperlink analysis. For the purpose of

extracting semantic information conveyed by hyperlinks, it is necessary to

model hyperlinks within a proper framework, such that the hyperlink

information can be analysed and intrinsic relationships among pages can be

discovered with the functions provided by the framework. In this work, we

will model hyperlinks within a matrix framework and exploit linear algebra

theories and matrix operations to analyse hyperlink information, as well as

discover deeper relationships among web pages. With the support of this

framework, using hyperlink information to discover web page communities

can be carried out on a solid mathematic base.

2. To eliminate noise pages via hyperlink analysis for constructing good quality

web page communities. Web page community construction is usually based

on a concerned page set which is related to a certain topic or topics. Because

the hyperlinked pages are not always related, the concerned web page set

derived from linkages usually contains many pages that are not related to the

topics. These pages are called noise pages. Because of the existence of noise

pages, the constructed community is unsatisfactory or is irrelevant to the

topics in many cases. In this work, we firstly investigate hyperlink-based

community construction algorithms and identify the noise page source. We

then propose algorithms within a matrix framework to eliminate noise pages

12

from the original concerned page set and obtain another new page set, such

that the percentage of topic-related pages in this new page set is higher, and

in turn to improve the community quality. The noise-page eliminating

algorithms could also be used solely for web-based data management

systems or special-purpose search engines (Internet portals) to filter

unnecessary web pages, to reduce management cost and to increase the

efficiency of information retrieval.

3. To find relevant web pages with respect to a given page through hyperlink

analysis. The web page community that consists of relevant pages with

respect to a given page can be used to increase the efficiency of web

information search and web-based data management. In this work, a relevant

page with respect to a given URL (web page) is the one that addresses the

same topic as the given URL, but is not necessarily semantically identical

[DH99]. For example, given www.nytimes.com which is the online

newspaper of The New York Times, other newspapers and news

organizations on the web are relevant pages, but it is not necessary for these

pages to have tight relationships with The New York Times. A best relevant

page should be the one that addresses the same topic as the given URL and is

semantic similar to the given URL. Our purpose is to find as many best

relevant pages as possible for a given web page. It refers to two issues: one is

how to construct a page source that is rich in relevant pages; another one is

how to extract the (best) relevant pages from this page source. We will firstly

investigate mechanisms to construct a page source for relevant page finding

13

from hyperlink analysis, such that the constructed page source is rich in

relevant pages and is able to shield the influence from malicious hyperlinks.

We then take advantage of hyperlink analysis to reveal deeper relationships

among pages and find out (best) relevant pages from this page source.

4. To improve web page clustering by proposing a new reasonable hyperlink-

based similarity measurement. Clustering is another important aspect of web

page community construction. Clustering techniques are used in traditional

database systems to increase efficiency of data management and information

retrieval, especially for a large amount of data. They are suitable for dealing

with web-based data. Web page clustering usually depends on similarities

among the concerned pages. Because of the limitations of content-based

analyses and corresponding similarities for the web data, in this work, we

will propose new page similarity measurements from hyperlink information,

as well as corresponding hierarchical web page clustering algorithms, to

improve web page clustering.

5. To develop new hierarchical web page clustering algorithms that take

advantage of intrinsic relationships among pages conveyed by hyperlink

information. In this work, we will mainly focus on clustering algorithms in

addition to page similarities. The new clustering algorithms are still based on

hyperlink information, but they will be more effective in taking advantage of

intrinsic relationships among web pages to obtain better cluster results, be

easier in implementation and be more effective in avoiding human

interference during the clustering procedure.

14

6. To develop visualization algorithms for information retrieval that is based on

mathematical algorithms. Discovering or constructing a web community

within a mathematical framework refers to many mathematical methods and

operations. Although mathematical methods are effective in finding deeper

relationships and retrieving information, they are not intuitive and are

difficult for users to understand in most cases. For better applying this kind

of mathematical algorithms to practical applications, such as web and

conventional information retrieval, we will investigate mechanisms to

visualize information retrieval that is based on mathematical algorithms, and

propose corresponding visualization algorithms.

7. To propose a new object-oriented representation model for XML documents.

Hyperlink analysis is concerned about relationship between pages, rather

than the semantic relationship between different information portions within

web pages. Therefore, the semantic relationship revealed by hyperlink

analysis has also some limitations. As a matter of fact, web page content

contains most semantic information about the page, although it is a challenge

to accurately extract such semantic information. Combining web page

semantics with hyperlink analysis would greatly increase the effectiveness of

hyperlink analysis, as well as the corresponding analysis results. However,

current HTML documents (pages), which are the most popular format for

web-based data, contain little semantic information in their document

structures or schemas, because the tags in HTML documents are mainly for

presentation, not for conveying semantics. On the contrary, XML

15

documents, which are now becoming a new standard for data representation

and exchange on the Internet, allow the definition of semantically

meaningful tags, which makes it possible to extract semantic information

from web-based data. In this work, we will investigate mechanisms to extract

semantic information from XML documents and propose a new object-

oriented data model to represent XML documents. This model establishes a

base to support XML document management, as well as further research in

XML web page communities that combines semantic information with

hyperlink analysis techniques.

1.3 Claims of the Dissertation

This dissertation mainly focuses on discovering (constructing) web page

communities from hyperlink information to support web-based data management

and information retrieval. A mathematical framework is established for hyperlink

analysis and a series of algorithms are proposed to construct web page communities.

Visualization mechanisms, algorithms and XML document data models are

accordingly established to support practical application of the proposed algorithms

and further research work. The main contributions of this dissertation can be

summarized as follows:

A Mathematical Framework for Hyperlink Analysis This framework is based

on the matrix theory in linear algebra. Different from other hyperlink models such as

directed graph and probabilistic models, this framework represents hyperlinks in

16

matrices. From these hyperlink matrices, intrinsic relationships among web pages

conveyed by hyperlinks are revealed by matrix operations, such as singular value

decomposition, matrix approximation, vector operation, matrix permutation and

partitioning. Other hyperlink-based information, such as hyperlink transitivity, page

correlation degree and page similarity are also represented and revealed by matrices

and corresponding matrix operations. This framework makes it possible to

systematically analyse hyperlink information using mathematics theories in a

uniform manner, and could be adopted by or integrated into web application

systems. The framework provides a solid mathematical base for discovering various

web page communities.

Algorithms for Web Page Community Construction In this research, we

concentrate on the following web page communities:

• the community that consists of hub and authority pages;

• the community that consists of relevant pages with respect to a given page;

• the community with hierarchical clustering structures.

Here, authority pages are those that contain the most definitive, central and useful

information in the context of particular topics, while hub pages are those that points

to (via hyperlinks) many of the authority pages. For different web page

communities, different strategies and community construction algorithms are

proposed.

For the community that consists of hub and authority pages, the following

algorithm is proposed:

17

- Noise Page Elimination Algorithm (NPEA). This algorithm concentrates

on the page source from which the community is constructed. It

eliminates noise pages in the original page source to obtain another good

quality page source, which in turn improves the quality of web page

communities by combining those existing community construction

algorithms. In this algorithm, page linkage relationships are expressed in

a hyperlink matrix, singular value decomposition of matrix in linear

algebra is applied to this matrix to find deeper relationships among the

pages, and then numerical thresholds are defined to eliminate noise

pages.

The following algorithms are proposed for the community that consists of

relevant pages with respect to a given page:

- Page Source Construction Algorithm for Relevant Page Finding. This

algorithm constructs a page source from which the relevant pages are

selected. The algorithm guarantees that the constructed page source is

rich in semantic relevant pages (via hyperlinks) to the given page and can

shield the page source from being affected by malicious hyperlinks.

- Extended Co-Citation Algorithm. This algorithm is stemmed from the

traditional co-citation analysis ideas, but extends some co-citation

concepts and more effectively finds the relevant pages when it combines

with the page source construction algorithm.

- Latent Linkage Information (LLI) Algorithm. This algorithm adapts

matrix analysis methods, especially the singular value decomposition of

18

matrix, to reveal the intrinsic relationships among the web pages and

effectively find relevant pages that not only address the same topic as the

given page, but also are semantically similar to the given page.

To effectively cluster web pages for the community with hierarchical cluster

structures, the following algorithms are established in this research work:

- Page Source Construction Algorithm for Clustering. This algorithm

constructs a page source that acts as a reference system to determine the

page similarity in it for the pages to be clustered. It also guarantees the

pages in the constructed page source are related to the concerned topics.

- Page Weight Determination Algorithm. This algorithm determines the

page importance within the concerned page source such that the impact

of a page to other pages in the source can be determined numerically.

- Page Correlation Degree Algorithm. The correlation relationships among

the pages (via hyperlinks) in the concerned page source are numerically

determined as correlation degrees by this algorithm. This correlation

degree incorporates the weights of involved pages.

- Page Similarity Algorithm. The similarity between pages within the

concerned page source is determined by this algorithm. This page

similarity is derived from hyperlink information. It incorporates the

hyperlink transitivity, web page weight, and page correlation degree.

- Hierarchical Web Page Clustering Algorithm. The idea of this algorithm

is stemmed but different from the K-mean clustering ideas. The centroids

of clusters are determined dynamically during the clustering procedure.

19

The page similarity used in this algorithm is provided by the above page

similarity algorithm.

- Matrix-Based Hierarchical Clustering Algorithm without Cluster

Overlapping. This algorithm is based on operations on the page similarity

matrix, which is derived from the page similarity algorithm. It takes

advantage of intrinsic relationships among the pages to conduct

clustering without predefined similarity thresholds. This algorithm does

not take the cluster overlapping into account during the clustering

procedure.

- Matrix-Based Hierarchical Clustering Algorithm with Cluster

Overlapping. This algorithm is also based on operations on the page

similarity matrix, but it considers cluster overlapping during the

clustering procedure, which provides better clustering results.

- Other auxiliary algorithms, such as matrix permutation and partitioning

algorithms, are also established in this work to form a complete

clustering algorithm system.

Visualization Mechanism and Algorithms for Information Retrieval Hyperlink

analysis and web page community construction in this research are within a

mathematical framework equipped with various algorithms. Although this

framework and algorithms are effective in hyperlink analysis and community

construction, the mathematical algorithms are not intuitive and not easy to

understand. For the practical applicability of the framework, we generalize the

20

community construction procedures as a special case of information retrieval, and

establish a visualization mechanism, as well as a series of visualization algorithms,

to support information retrieval that is based on mathematical algorithms. This work

bridges the abstract mathematical algorithms and friendly application interfaces.

Data Model for XML Documents This object-oriented data model captures

semantic information segments in XML documents and capsulizes data

manipulation methods. Document type definition (DTD), XML documents with and

without DTDs are considered in this model, and corresponding transformation rules

and procedures from these XML data to this model are established. This model

could support XML data management and XML based web applications, as well as

further research in XML data analysis such as XML data community discovery.

1.4 Outline of the Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 describes the

basic concepts and models necessary for understanding hyperlink analysis.

Mathematical (matrix) expression of hyperlinks is presented and related

mathematical knowledge and background are provided for better understanding of

our work. Commonly used hyperlink analysis techniques and web page community

construction algorithms are reviewed and discussed, based on which this dissertation

develops. This chapter provides a foundation for further hyperlink analysis and web

page community construction in the ensuing chapters.

21

In Chapter 3, we investigate the web page community that consists of hub and

authority pages, and focus on improving the quality of the community by

eliminating noise pages from the concerned web page source. We firstly review the

algorithm of web page community construction and indicate that the existence of

noise pages in the page source would produce the topic drift problem in many cases

when constructing community, i.e. the obtained hub and authority pages in the

community are not related to the concerned topics. Different from other algorithms,

such as [BH98], that reduce the influence of the noise pages in community

construction procedures, we develop another approach that eliminates noise pages

from the page source before the community being constructed to improve the

community quality.

In this work, the relationships among the pages in the concerned page source are

indicated by hyperlinks, which are expressed in a hyperlink adjacency matrix.

Deeper relationships among the pages are then revealed by mathematical operations,

especially the singular value decomposition of matrix, on this matrix. From the

revealed relationships, the thresholds for eliminating noise pages are numerically

determined. Experiments are conducted to show the effectiveness of the algorithm in

eliminating noise pages.

Chapter 4 turns to the web page community that consists of relevant pages for a

given web page (URL). After reviewing the previous methods of relevant page

finding, we indicate that the relevant page finding refers to two issues. The first one

is how to construct page source for relevant page finding. The constructed page

source, from which the relevant pages are selected, should be of a reasonable size

22

and be rich in relevant pages. The second issue is how to develop effective

algorithms to find the relevant pages. The work in this chapter firstly provides

algorithms for constructing page source, which meets the above requirements. In

addition, the algorithms could also be able to shield the page source from being

affected by malicious hyperlink information. Based on the constructed page source,

we then propose two algorithms to find relevant pages. The first algorithm is the

extension of the classic co-citation algorithm, in which some co-citation concepts

are extended. This algorithm is intuitive and efficient in relevant page finding, but it

is unable to precisely identify relevant pages in many cases because it only takes

advantage of superficial hyperlink information. To solve this problem, we adapt

linear algebra methods, which are also used in Chapter 3, and propose the Latent

Linkage Information (LLI) algorithm to more effectively and precisely find relevant

pages. The effectiveness of the algorithms is demonstrated by a series of

experiments.

In Chapter 5, we investigate the visualization mechanism and propose a series of

visualization algorithms to support mathematic algorithm based information

retrieval. In this work, web page community constructions that are based on

mathematic algorithms, such as those in Chapter 3 and 4, are considered as a special

case of information retrieval. Therefore, the visualization algorithms could be

applied to traditional information retrieval, as well as web page communities. The

prototype of this visualization system is also established in this work.

In Chapter 6, we consider the web page community with hierarchical cluster

structures. To cluster web pages, it is necessary to define a similarity between pages.

23

Unlike the page similarity that is derived from web page text content analysis, the

page similarity in this chapter is derived from hyperlink information. This hyperlink-

based page similarity takes the hyperlink transitivity and web page importance

(weight) within the concerned page source into consideration, which more

objectively reflects the nature of the web data and its features. From this new web

page similarity, hierarchical algorithms are proposed to improve web page

clustering. The clustering algorithms are the extension of the traditional K-mean

algorithm, which dynamically identify cluster centroids during the clustering

procedure.

In Chapter 7, we further discuss hierarchical web page clustering algorithms

exploiting intrinsic relationships among the pages. The algorithms are also based on

the page similarity in Chapter 6, but the clustering procedure is based on matrix

operations. The similarities among the pages are expressed as a similarity matrix.

Matrix operations, such as matrix permutation and partitioning, are then introduced

to divide the similarity matrix elements into different groups. Accordingly, the web

pages are clustered hierarchically. Two situations are considered in the algorithms.

The first one is the clustering without cluster overlapping, the second one takes

clustering overlapping into consideration. The algorithms are independent of

predefined similarities for clustering and are effective in hierarchically clustering

web pages within a uniform framework as demonstrated in the experiments.

In Chapter 8, we propose an object-oriented data model to support semantic

information extraction from XML documents, XML data management, XML

document community construction and other web applications. Document type

24

definition (DTD), XML documents with and without DTD are considered in this

work. A set of transformation rules and steps are established to transform DTDs, as

well as XML documents, into this data model. In addition, DTD-tree is proposed to

represent logical structures of DTDs and describe the DTD transformation

procedures into the model. Further research, such as the research in XML data

analysis and community construction, could be carried out from this object-oriented

model.

Finally, in Chapter 9, we present the conclusions and possible future work.

25

Chapter 2

Fundamentals of Hyperlink Analysis and
Web Page Community

2.1 Introduction

The concept of hyperlinks was introduced with the invention of hypertext. A

hyperlink is a structure unit that connects two web pages. This connection is realized

by inserting a hyperlink, which indicates the URL of the destination page, at the

desired point in the source page. When a user browsing the source page clicks on the

hyperlink, the web browser interprets this action as a request to fetch the page

referenced by the hyperlink. The hyperlink was originally conceived as a mechanism

to dynamically link a citation to its actual source page, and was used for purely web

navigation purposes.

Usually, when a hyperlink is inserted in a source page, the author of the source

page has an idea in his mind that the destination page is related to the topics of the

source page. In other words, the hyperlink conveys certain human judgement of

semantic relationship between pages. Therefore, the hyperlink not only provides

topological information of the web, but also provides semantic information between

web pages. It can be use as an additional instrument in effectively mining the World

Wide Web.

26

A user can navigates from a source page to the destination page through the

hyperlink in the source page. If the destination page also has a hyperlink in it, the

user can then navigate to another destination page, and so on. This feature of

hyperlinks is called transitivity. In usual, there are many hyperlinks in a source page.

It can be imaged that a user can navigate the web as far as he can from an original

source page, as long as the hyperlinks are available. Accordingly, the semantic

information conveyed by hyperlinks is also transitive. However, after several or

many steps of web page navigation, whether the final destination page still keeps a

tight semantic relationship with the original source page is uncertain. If the semantic

relationship between the original source page and the final destination page is

weakened because of the hyperlink transitivity, how to measure the semantic

declination rate? These are also the challenge problems in using hyperlink to mine

the web.

Hyperlinks are similar to the citations in scientific literature that form link

between research papers. However, there are still many significant differences

between them. For example, the citations in a paper that has already published

cannot be altered and the citations in a paper cannot point to papers that have been

published later than the paper itself; while hyperlinks are dynamic and authors of

web pages could add hyperlinks at any time, contents and structures of destination

pages could be changed later than the source pages. On the other hand, because there

are no rigid schemas for web data, hyperlinks are more likely to be inserted

arbitrarily into pages. The information conveyed by hyperlinks, therefore, may

contain many noise factors. For instance, the destination pages may not be

27

semantically related to the source page, destination pages have been removed later

and the hyperlinks become dangling ones, etc. Because of these reasons, hyperlink

analysis is a challenge research area in web mining.

Hyperlink analysis is the name given to a collection of techniques that analyse

the hyperlink structure and semantics that exist in the web. The analysis can be for a

wide variety of purposes, ranging from ranking pages in a web search engine to

understanding the social dynamics behind the usage of the web as a whole. This

widespread use of hyperlinks has made hyperlink analysis an emerging and

important area of research.

2.2 Hyperlink Models

Hyperlink analysis starts with a basic model upon which different analysis

techniques and measures are applied, and the targeted application objective is

achieved. Different kinds of hyperlink models have been proposed. These models

either relate to the basic information unit or the process that focuses on the

application. Among them, graph structure and statistic models are the

representatives.

In the graph structure model, the web as a whole is modelled as a directed graph

containing a set of nodes and directed edges between them [BKM+00]. The nodes

represent the web pages and the directed edges are the hyperlinks. Within this

model, if there is a hyperlink from page P to page Q, then P is called a parent of Q

and Q is called a child of P. If two pages have at least one common parent page,

28

these two pages are called siblings. Other terms are also defined to describe the web

graph structure. Some commonly used terms are listed below.

- In-degree of a page. The in-degree of a page p is the number of distinct

links that point to p.

- Out-degree of a page. The out-degree of a page p is the number of

distinct links originating at p that point to other pages.

- Directed path. A directed path is a sequence of links starting from page p

that can be followed to reach page q.

- Shortest path. The shorted path is the path that has the minimal number

of links on it of all the paths between pages p and q.

More terms about the hyperlinks will be presented in the following chapters. Within

the graph structure model, from the hyperlink analysis point of view, the correlation

between a web page p and other pages is realized in two ways. One is out-links from

p to other pages, another one is in-links from other pages to p.

Compared with the graph structure model, the statistic models for hyperlinks are

dynamic. The statistic models regard hyperlinks as the paths on which the user surfs

the web. The behaviours of the user in surfing the web are modelled as a stochastic

process, and many statistical models are used, such as Markov model and

probabilistic model. The underlying principle of an m-order Markov chain is that

given the current state of a system, the evolution of the system in the future depends

only on the present state and the past m-1 states of the system. First order Markov

models have been used to model the browsing behaviour of a typical user on the

web, such as the work in [BP98b] [NZJ01a] [LM00]. Greco et al [GGZ01] and

29

Getoor et al [GST+01] also proposed probabilistic models to model the behaviours

of web surfers and mine information from the web to find hub pages and to classify

web pages. The statistic models modelling a web surfer have been used significantly

in hyperlink analysis.

2.3 Matrix Expression of Hyperlinks

In addition to the above commonly used hyperlink models, for the pages in a certain

web page set, such as the set of pages returned by a search engine with respect to a

user’s query, hyperlinks can also be expressed as a matrix. This hyperlink matrix is

usually called adjacency matrix.

Without loss of generality, we can suppose the adjacency matrix is an m×n

matrix A = [aij]m×n. Usually, the element of A is defined as follow [Klein99]: if there

is a hyperlink from page i to page j or i = j, then the value of aij is 1, otherwise the

value is 0. If this adjacency matrix is used to model the hyperlinks among the pages

in the same page set, the values of parameters m and n are the same, which indicate

the number of pages in the page set (set size). In this case, the ith row of the matrix,

which is a vector, represents the out-link relationships from page i to other pages in

the page set; the ith column of the matrix represents the in-link relationships from

other pages in the page set to page i.

However, if the adjacency matrix is used to model the hyperlinks between the

pages that belong to two different page sets, the values of parameter m and n usually

are not the same unless the numbers of pages in these two sets are the same.

Suppose one page set is A with the size of m, another page set is B with the size of n.

30

In this case, the ith row of the adjacency matrix represents the out-link relationships

from the page i in set A to all the pages in set B; the jth column of the matrix

represents the in-link relationships from all the pages in set A to the page j in set B.

Although the above adjacency matrix expression is intuitive and simple, the

values of the matrix elements only indicate whether there exist hyperlinks between

pages (i.e. value 1 of a matrix element indicates that there is a hyperlink between

two pages that correspond to this element, and value 0 indicates that there is no

hyperlink between two pages). In hyperlink analysis, this matrix expression can also

be extended to represent semantics of hyperlinks. In this case, the values of the

matrix elements are not required to be either 1 or 0. The actual element value

depends on the particular situations where the matrix expression is applied. For

example, the correlations between pages can be expressed in a matrix, where the

value of a matrix element aij, which is between 0 and 1, indicates the correlation

degrees from page i to page j, and the matrix is non-symmetric. The similarity

between pages can also be expressed in a matrix in a similar way, except that the

similarity matrix is usually a symmetric one. How to determine the page correlation

degree and similarity will be discussed in the later chapters.

Since the relationships among pages in the concerned page set can be represented

as a set of vectors (rows and columns of the corresponding matrix), it is possible to

find further deeper relationships among the pages through mathematical operations

on the matrix, or to define new metrics for pages from vector operation, such as

cosine similarity of pages from vector inner product. The hyperlink matrix can also

be directly used for other purposes, such as web page clustering through matrix

31

permutation and partitioning. More details of matrix expressions and applications

for hyperlinks will be seen in the ensuing chapters.

2.4 HITS Algorithm

HITS (Hyperlink-Induced Topic Search) algorithm is a representative in applying

pure hyperlink analysis to find out logical relationships among the pages in the

concerned page set. It is proposed by Kleinberg [Klein99]. The algorithm aims at

constructing a web page community that consists of good hub and authority pages

from hyperlink analysis. In fact, the authorities and hubs exhibit mutually reinforced

relationships: a good hub points to many good authorities; a good authority is

pointed to by many good hubs. The HITS algorithm takes this mutual influence (via

hyperlinks) among pages into consideration, and finds good hubs and authorities by

iterative operations, rather than simply counting the number of links (in-links and

out-links) for each page.

The HITS constructs a web page community from a set of pages that are returned

by a web search engine with respect to a user’s query. The algorithm consists of

three main procedures:

1. Collecting r highest-ranked pages for the user-supplied query σ from a text-

based search engine (e.g. AltaVista, Google) to form the root set of pages R.

Growing R to form the base set of pages, B, by adding to R more pages

which are pointed by or pointing to the pages in R. B is considered to be a

query specific directed graph whose nodes are pages and edges are

hyperlinks.

32

2. Associating with each page p in B a hub weight h(p) and an authority weight

a(p) with initial values of 1. Then iteratively updating the h(p) and a(p)

(p∈B) according to the following iterative operations:

∑
≠∈

→

=

pqBq
pq

qhpa

,

)()(, ∑
≠∈

→

=

pqBq
qp

qaph

,

)()(

in which "p → q" denotes "page p has a hyperlink to page q". Normalize the

vectors a and h after each iteration.

3. After iteration reaches steady point (i.e. values of vectors a and h will not

change any more), abstracting s pages (authorities) with s highest a() values

together with the s pages (hubs) with the s highest h() values to be the core

of a community.

Kleinberg [Klein99] proved that vectors a and h converge. Thus the termination of

the iteration is guaranteed. From our numerical experiment experience, with the

absolute error precision 10-4, the number of iteration is around 20.

Suppose the size of the base set B (i.e. the number of pages in B) is n. Let z

denote the vector (1,1,1, … ,1) ∈ Rn, and A be an adjacency matrix such that if there

exists at least one hyperlink from page i to page j, then Ai,j = 1, else Ai.j = 0. The

above HITS algorithm can also be expressed as the following iterative matrix

operations:

x(k) = (ATA)k-1ATz, y(k) = (AAT)kz , k = 1, 2, 3, …

where x(k) and y(k) are the authority and hub vectors respectively after k times

iteration, AT is the transposition of adjacency matrix A. Kleinberg [Klein99] proved

that the authority vector sequence {x(1), x(2), x(3), …}converges to the principal

33

eigenvector of ATA, and the hub vector sequence {y(1), y(2), y(3), …}converges to the

principal eigenvector of AAT.

When the above HITS algorithm is applied to the base set of pages, it usually

encounters the following problems [BH98]: mutually reinforcing relationships

between hosts, automatically generated links, and non-relevant pages. Mutually

reinforcing relationships between hosts occur when a set of pages on the first host

point to a single page on the second host, or one page on the first host points to

multiple pages on the second host. This would greatly and unreasonably increase the

impact of one host to the web community construction. Automatically generated

links are produced by web page generating tools. These links usually do not

represent a human's opinion. The non-relevant pages may cause the topic drift

problem, i.e. the obtained hub and authority pages are not related to the query topics.

To tackle the first problem, Bharat and Henzinger [BH98] improved the HITS

algorithm by assigning authority or hub weights to the edges of graph B. If there are

k edges from documents on the first host to a single document on the second host,

each edge will be given an authority weight (auth_wt) of 1/k. If there are l edges

from a single document on the first host to a set of documents on the second host,

each edge will be given a hub weight (hub_wt) of 1/l. Then the iterative operation in

the HITS algorithm is improved as

),(_)()(

,

pqwtauthqhpa

pqBq
pq

×= ∑
≠∈

→

,),(_)()(

,

qpwthubqaph

pqBq
qp

×= ∑
≠∈

→

.

34

The vectors a and h are normalized after each iteration. Bharat and Henzinger

[BH98] also proved that the vectors a and h converge, and the termination of the

iteration can be guaranteed.

There is also other work in improving the HITS algorithm to tackle other

problems by combining the structural analysis (hyperlink analysis) with the page

content analysis. For example, in [BH98], in order to eliminate the automatically

generated links and non-relevant pages, a similarity measurement is introduced

exploiting the content of the pages. In [CDG+98], page content analysis and

corresponding similarity are used to weight the linkage between two pages. The

ideas in HITS algorithm and its improved algorithms are heuristic to other hyperlink

analyses.

2.5 Singular Value Decomposition of Matrix

As stated in section 2.3, hyperlinks among pages can be expressed as a matrix. This

makes it possible to reveal deeper relationships (conveyed by hyperlinks) among

pages through mathematical operations, especially matrix operations. Among the

matrix operations, singular value decomposition (SVD) of matrix has its own

advantages because of its capability in revealing internal relationships among matrix

elements [DDF+90] [HZ03c] [HZ02a] [HZ02b] [HZC+02].

The SVD of a matrix is defined as follow: let A = nmija ×][be a real nm × matrix.

Without loss of generality, we suppose nm ≥ and the rank of A is rank(A) = r .

Then there exist orthogonal matrices mmU × and nnV × such that

35

 TT VUVUA Σ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Σ
=

0
1 (2.1)

where),,...,(, , 11 nn
T

m
T diagIVVIUU σσ=Σ== 01 >≥ +ii σσ for

0,11 =−≤≤ jri σ for 1+≥ rj , Σ is a nm × matrix, TU and TV are the

transpositions of matrices U and V respectively, mI and nI represent mm × and

nn × identity matrices separately. The rank of A indicates the maximal number of

independent rows or columns of A. Equation (2.1) is called the singular value

decomposition of matrix A. The singular values of A are diagonal elements of Σ

(i.e. nσσσ ,...,, 21). The columns of U are called left singular vectors and those of V

are called right singular vectors [Dat95] [GVL93]. For example, let

23
43
32
21

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=A ,

then the SVD of A is TVUA Σ= , where

33
4082.05009.07632.0
8165.01735.05506.0

4082.08480.03381.0

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−=U ,

225696.08219.0
8219.05969.0

×
⎟
⎠
⎞⎜

⎝
⎛ −=V ,

23
00

3742.00
05468.6

×
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Σ

and the singular values of A are 6.5468 and 0.3742.

The SVD could be used effectively to extract certain important properties

relating to the structure of a matrix, such as the number of independent columns or

rows, eigenvalues, approximation matrix and so on [Dat95] [GVL93]. Since the

singular values of A are in non-increasing order, it is possible to choose a proper

parameter k such that the last r-k singular values are much smaller than the first k

36

singular values, and these k singular values dominate the decomposition. The next

theorem reveals this fact.

Theorem [Eckart and Young]. Let the SVD of A be given by equation (2.1)

and U = [u1 , u2 , … , um], V = [v1 , v2 , … , vn] with),min()(0 nmArankr ≤=< ,

where iu , mi ≤≤1 is an m-vector, jv , nj ≤≤1 is an n-vector and

.0...... 121 ===>≥≥≥ + nrr σσσσσ

Let rk ≤ and define

 T
ii

k

i
ik vuA ⋅⋅= ∑

=

σ
1

. (2.2)

Then

1. rank(Ak) = k ;

2. 22
1

22

)(
...||||||||min rkFkFkBrank

AABA σσ ++=−=− +=
,

3. 122)(
||||||||min +=
=−=− kkkBrank

AABA σ ,

where 2

1 1

2 |||||| ∑∑
= =

=
n

j

m

i
ijF aA and =2

2|||| A max(eigenvalues of AAT) are measurements

of matrix A.

The proof can be found in [Dat95]. This theorem indicates that matrix Ak, which

is constructed from partial singular values and vectors (see Figure 2.1), is the best

approximation to A (i.e. conclusions 2 and 3 of the Theorem) with rank k

(conclusion 1 of the Theorem). In other words, Ak captures the main structure

information of A and minor factors in A are filtered. This important property could

be used to reveal the deeper relationships among the matrix elements, and implies

many potential applications provided the original relationships among the

37

considered objects (such as web pages) can be represented in a matrix. Since rk ≤

and only partial matrix elements are involved in constructing Ak, the computation

cost of an algorithm based on Ak could be reduced.

SVD of matrix was successfully applied in textual information retrieval

[BDO95] [DDF+90], and the corresponding method is called Latent Semantic

Indexing (LSI). In the LSI, the relationships between documents and terms (words)

are represented in a matrix, and SVD is used to reveal important associative

relationships between term and documents that are not evident in individual

documents. As a consequence, an intelligent indexing for textual information is

implemented. Papadimitriou et al [PRT+97] studied the LSI method using

probabilistic approaches and indicated that LSI in certain settings is able to uncover

semantically “meaningful” associations among documents with similar patterns of

term usage, even when they do not actually use the same terms. This merit of SVD,

as indicated in its application to textual information retrieval, could also be applied

to web data to find deeper semantic relationships provided the web data is correlated

with each other through a certain correlation pattern, such as a hyperlink pattern.

A O

O
Uk

Vk
T

k k

k k

U Σ VT

=

Ak = O

O
Uk

Vk
T

k

k

Figure 2.1. Construction of approximation matrix Ak

38

The correlation pattern between the considered objects (e.g. web pages) is the base

where the SVD is applied.

2.6 Hyperlink Analysis Applications

Hyperlink analysis has been widely used in various applications. These applications

also include those that combining hyperlink analysis with other techniques, such as

text-content analysis and web usage analysis. Although this field is relatively new,

rapid interest has led to the development of a significant body of literature,

prototypes and products. It is impossible to list all the applications that are related to

hyperlinks. Here, we only provide details of some main applications. These

applications include web page community construction, web page ranking, web page

categorization, web crawling and web usage based applications.

 Web page community construction Web page community is a mechanism

that reveals logical and semantic relationships among the pages. The community that

consists of hub and authority pages is one kind of representative communities. The

construction of this kind of community is also known as topic distillation, which is

to identify a set of pages or parts of page that are most relevant to a given topic. It

has been defined in [Chak01] as

“the process of finding authoritative Web pages and comprehensive ‘hubs’ which

reciprocally endorse each other and are relevant to a given query.”

Kleinberg’s HITS algorithm [Klein99] and its improvements [BH98] [CDG+98] are

the early hyperlink based approaches that addressed the issue of identifying web

pages related to a specific topic. A “fine-grained model”, which is based on the

39

Document Object Model (DOM) of a page and the hyperlink structure of hubs and

authorities related to a topic, is described in [Chak01] [CJT01]. This approach

reduces topic drift and helps in identifying parts of a web page relevant to a query.

There are also other hyperlink based approaches that find other kinds of web page

communities, such as the co-citation and HITS based algorithms in [Klein99]

[DH99] of finding relevant web pages for the given page, and web page clustering

algorithms in [PPR96] [PP97] [CDI98] [WVS+96] [Mar97]. More details of these

algorithms will be given in the ensuing chapters.

Web page ranking Search engines usually maintain a huge amount of

information about web pages. In order to increase the search precision with respect

to the user's query, search engines usually have a page ranking system to give a rank

for every web page. Among the page ranking techniques, the metric named

PageRank, which was developed by Brin et al [BP98a] [BP98b] for the popular

search engine Google, is the representative one. The ranking system of Google

combines textual information (title, anchor, URL, font, word capitalization

information, …) and PageRank to give final ranks for pages. It is indicated in

[BP98a] that the PageRank is an objective measure of a web page's citation

importance that corresponds well with people's subjective idea of importance, and is

an excellent way to prioritise the results of web keyword searches.

The key idea of the PageRank is that a page has high rank if the sum of the ranks

of its backlinks, i.e. links pointing to the page, is high. So the rank of a page depends

upon the ranks of the pages pointing to it. The rank of a page is determined

iteratively till the ranks of all the pages are determined. The details of PageRank are

40

as follow: Assume page A has pages P1, ..., Pn which point to it. The parameter d is a

damping factor which can be set between 0 and 1. C(Pi) is defined as the number of

links going out of page Pi. The PageRank of a page A is given as follows:

PR(A) = (1-d) + d (PR(P1)/C(P1) + ... + PR(Pn)/C(Pn)).

Usually the parameter d is set to 0.85. PageRank or PR(A) can be calculated using a

simple iterative algorithm. The PageRank has its intuitive meaning. It simulates the

behaviour of a random surfer on the web. Assume there is a "random surfer" who is

given a web page at random and keeps clicking on links, never hitting "back" but

eventually gets bored and starts on another random page. The probability that the

random surfer visits a page is its PageRank. And, the d damping factor is the

probability at each page the "random surfer" will get bored and request another

random page. PageRank is also found to be very stable. The related discussion can

be found in [NZJ01a] [NZJ01b].

Web page categorization Web page categorization determines the

category or class a web page belongs to, from a pre-determined set of categories or

classes. Attardi et al [AGS99] proposes an automatic method of web page

classification based on the link and context. The idea is that if a page is pointed to by

another page, the link would carry certain context weight since it induces someone

to read the given page from the page that is referring to it. Getoor et al [GST+01]

consider pages and links as entities in an Entity-Relationship model and use a

probabilistic relational model to specify the probability distribution over the page-

link database, and classify the pages using belief propagation method [Pear88].

41

Web crawling Each web search engine maintains massive information

collections of web pages captured with the help of web crawlers. The web crawler,

which is a set of web programs, traverses the web by following hyperlinks and

stores downloaded pages in a large database that is later indexed for efficient

execution of user queries. With the rapid increase of the web size, it has become

important to first search / crawl the web pages relevant to the interest areas.

Chakrabarti et al [CVD99b] [Chak01] proposed the “Focused Crawling” method for

efficiently crawling pages that are associated with a topic. This method identifies

good hub pages that serve as a source of outgoing links for authority pages while

crawling, and the crawler finally determines dynamically the links to be traversed

and collects the necessary information. Aggarwal et al [AAY01] proposed an

“intelligent crawler” method. The method takes into account the web linkage

structure and other features, such as the content of the page and the number of

“siblings “ that have already been crawled. These features are used to determine the

“priority value” according to which the pages will be crawled. Incorporating

hyperlink analysis in crawling research has become an interesting field.

Web usage based applications Web usage statistics can be combined with the

hyperlink analysis to produce interesting results, such as the better link predication

for adaptive web sites [PE99]. [PP99] discusses predicting user-browsing behaviour

based on past surfing paths using Markov models. Sarukkai [Saru99] proposed an

approach to use link prediction and path analysis for better user navigation. He used

Markov chain model to predict the user access pattern based on the user access logs

42

previously collected. Mobasher et al [MCS00] have used usage statistics on the

basic link structure for automatic personalization of the web.

The various applications of hyperlink analysis indicate that hyperlinks, which are

one of the most significant features of the web, play important roles in mining the

web, and would be further explored for various web-related purposes.

43

Chapter 3

Eliminating Noise Pages for Good Quality
Communities

3.1 Introduction

The proliferation of the web and the rapid development of web technologies make it

more and more difficult to manage web data and retrieve the required information on

the web. On the one hand, web search engines have to capture and maintain large

amount of information about the data on the web for web information retrieval.

Without proper strategies and techniques, it is almost impossible to manage such a

huge amount of information and meet various web-based application requirements.

On the other hand, with more and more powerful search engines available, it is also

becoming more and more difficult to manage web-searched information.

Conventional web information retrieval, by web search engines, is mainly based on

the keywords the users provide. The search result is usually a set of web pages that

may or may not contain the required information. However, the web-searched result

is also a large information source for the users in many cases, in which they cannot

identify which pages are relevant or at a high relevant rank to their query topics. For

example, if a user wants to search web pages about "Java Programming", Google

returns 1,720,000 (more than 1.5 million) web pages and AltaVista returns 1,017,878

44

(more than 1 million) web pages. It can be imagined that no users are able to browse

all the returned pages one by one to get the required information. Therefore, how to

capture the features of the web data at a higher level to realise efficient information

classification and retrieval on the web is becoming a challenge.

Web page community is a good way to support web data management and

information retrieval. For constructing a web page community, relationships among

the concerned pages should be revealed. As indicated in Chapters 1 and 2,

hyperlinks among web pages, if reasonable, conveys semantic information between

pages that reflects human judgement. Once this kind of semantic information is

revealed, it can be used to discover deeper relationships among pages, and in turn to

discover web page communities.

One commonly used web page community is the one that consists of hub and

authority pages. This kind of web page community distils a web page set that is

related to the query topics from the search results. The representative work in using

hyperlink analysis to discover web page community is the HITS (Hyperlink-Induced

Topic Search) algorithm proposed by Kleinberg [Klein99]. As described in Chapter

2, the HITS algorithm takes into consideration the mutual relationships among the

pages from their hyperlink information, and obtains web communities with good

authorities and hubs by incorporating the mutual influence of the pages within the

whole range of the concerned page space into the algorithm. Other related work (e.g.

[CDG+98] [BH98]) improved the HITS algorithm by combining page content

analysis techniques and graph edge weighting.

45

As these works observed, the page source, from which the community is

constructed, contains many pages that are unrelated to the query topics (i.e. contain

no query terms). If these pages are in high linkage density, they will dominate the

iteration operations and the obtained authority or hub pages may be not related to the

query topics, which is called topic drift problem. We call these topic unrelated pages

noise pages. Although there are other algorithms of constructing web page

communities, such as the probabilistic algorithm [GGZ01] and bipartite algorithm

[RK01], the topic drift problem still remains in these algorithms.

To tackle the topic drift problem, it is necessary to analyse the page source where

the community construction algorithms are applied. Actually, the community

construction algorithms depend on a certain web page space that has relationships

with the query topics. For a given query topic, a web search engine could retrieve

and return a set of web pages that are considered to be the most related to the query

topic. This initial set of retrieved pages is the root set R. The root set of pages could

then be extended to form a new set of pages by adding more pages to the root set.

These added pages have linkage relationships with the pages in the root set. This

extended set of root set is the base set B (details of root and base set construction are

described in section 2.4). The web community construction algorithms are based on

this base set of pages. Therefore, the quality of the base set of pages, i.e. the

percentage of topic-related pages in the base set of pages, mainly determines the

quality of the produced web page community. However, in the procedure of

extending a root set to a base set of pages, many topic-unrelated (noise) pages would

be added to the base set. This is the main source of the noise pages. Previous

46

improved algorithms (e.g. [CDG+98], [BH98], [DH99]) either partially reduce the

influence of some noise pages to the community construction algorithms or

eliminate noise pages by complex page content analysis which is fallible if the

topics are not well represented. No specific objective algorithms are proposed for

eliminating noise pages before a good quality base set is formed and the community

construction algorithm is applied.

In this chapter, an innovative algorithm is proposed to eliminate noise pages

from the base set of pages B and obtain another good quality base set B', from which

a better web community could be constructed (see Figure 3.1). This algorithm purely

makes use of the hyperlink information among the pages in B. To be precise, the

algorithm considers the linkage relationships between the pages in root set R and

pages in B-R. Here, B-R is a page set and a page in it belongs to B but does not

belong to R. These linkage relationships are expressed in a linkage (adjacency)

matrix A. With the help of singular value decomposition of the matrix A [Dat95]

[DDF+90] [HZ02], the relationships among pages at a deeper level are revealed, and

a numerical threshold could be defined to eliminate noise pages (see Figure 3.1).

This approach is based on a reasonable assumption that the pages in the root set are

topic related and noise pages are mainly brought in by the procedure of expanding

root set R to base set B. Indeed, the root set R may also contain noise pages, though

the possibility is small. However, by eliminating noise pages from the page set B-R,

the influence of the remained noise pages in root set R to the community

construction algorithm will be greatly reduced, and better communities could be

47

obtained. Therefore, the root set is used as a reference system to test if a page is a

noise page.

Figure 3.1. Getting new base set with less noise pages by applying the proposed
 algorithms

This chapter is organized as follows. In section 3.2, the algorithm for eliminating

noise pages from the base set of pages is proposed. The algorithm is based on the

singular value decomposition (SVD) of matrix described in section 2.5. Section 3.3

gives some experiment results and their analysis to show the effectiveness and

feasibility of the proposed algorithm. Some related work is discussed in section 3.4.

Conclusions are presented in section 3.5. The algorithm depiction is listed in the

appendix of this chapter.

3.2 Noise Pages Elimination Algorithm (NPEA)

As indicated above, the base set of pages is the base for constructing a web

community, and its quality has a great influence to the community quality. However,

the previous work is mainly concerned about how to reduce the influence of the

noise pages. From another point of view, if most noise pages in the base set can be

filtered or eliminated before the community construction algorithm is applied, the

quality of communities would be greatly increased. This is the point from which our

algorithm is developed.

B' B
RR

48

In this chapter, we also used the symbols introduced in section 2.4. It can be seen

from HITS algorithm that the base set of pages is derived from the root set of pages

by adding more pages in it. This procedure would bring many query topic related

pages into the base set, as well as many topic unrelated pages. For example, for the

query topic (term) "Harvard", apart from many pages about Harvard University in

the base set of pages, there are also many other pages in it that do not contain this

query term, such as the page for a beer company (http://www.johnsonbeer.com/) and

the page for a comedy club (http://www.punchline.com/), due to their links to some

pages in the root set. To eliminate these noise pages, we can reasonably assume that

the root set of pages is topic-related as in [BH98]. From our numerical experiment

experience and analysis (see section 3.3 of this chapter), if an authority page or a

hub page is a topic-drift one, it is usually located in those pages that connect to a

small part of root set (fewer connections) but link densely with each other. They

dominated the algorithm operation and caused the topic drift problem. Such pages

should be recognised as noise pages and eliminated. On the other hand, if a page has

fewer connections with the root set, it is most likely to be a topic unrelated page

(noise page) and could not be included in the base set in most cases.

However, another question has arisen. What is the threshold for "fewer

connections"? This problem cannot be solved only by directly counting the number

of links for each page. It should be solved by considering the mutual influence

between the pages in the base set and by defining an exact eliminating threshold.

The algorithm proposed in this chapter reveals the deeper relationships among the

pages within the concerned page space, and precisely defines the threshold for

49

eliminating noise pages by exploiting this revealed relationship. Actually, in this

algorithm, the linkage information among the pages is directly expressed as a

matrix. From this linkage matrix, deeper relationships among these pages are

revealed with the help of some matrix operations, especially the singular value

decomposition (SVD) of matrix in linear algebra that can reveal the internal

relationship between matrix elements (see section 2.5, as well as [DDF+90] [HZ02]

[HZC+02] [HZC+00]).

When the base set of pages is constructed for the user's query, the linkage

information among the pages is also obtained. There are two types of links to be

distinguished, transverse links and intrinsic links. The transverse links are the links

between pages with different domain names1, and the intrinsic links are the links

between pages with the same domain names. Since intrinsic links very often exist

purely to allow for infrastructure navigation of a site, they convey much less

information than transverse links about the authority of the pages they point to

[Klein99]. As in [Klein99], intrinsic links in our algorithm are deleted from the

obtained links and only the transverse links are kept. We denote the root set of pages

R as a directed graph G(R)=(R,ER): the nodes correspond to the pages, and a directed

edge (p,q)∈ER indicates a link from p to q. Similarly, the base set of pages B is

denoted as a directed graph G(B)=(B,EB). From the construction procedure of B, it

can be easily inferred that R ⊂ B and ER ⊂ EB.

Suppose the size of R (the number of pages in R) is n and the size of B is m. For

the pages in R, a linkage (adjacency) matrix nnijsS ×=)(could be constructed as

50

⎩
⎨
⎧ =∈∈

= .0
),(),(1

otherwise
jiorEijorEjiwhen

s RR
ij

It represents the link relationships between the pages in R. For the pages in B-R,

another linkage matrix nnmijaA ×−=)()(for page i∈(B-R) and page j∈R could also be

constructed as

⎩
⎨
⎧ −∈−∈

=
.0

),(),(1
otherwise

EEijorEEjiwhen
a RBRB

ij

This matrix directly represents the linkage information between the pages in the root

set and those not in the root set. The ith row of the matrix A, which is an n-

dimensional vector, could be viewed as the coordinate vector of the page i in an n-

dimensional space SR spanned by the n pages in R.

For any two vectors v1 and v2 in an n-dimensional space Sn, as known in linear

algebra, their similarity (or closeness) can be measured by their inner product (dot

product) in Sn. The elements in v1 and v2 are the coordinates of v1 and v2 in the Sn

respectively. In the page set B-R, since each page is represented as an n-dimensional

vector (a row of matrix A) in the space SR, all the similarities between any two pages

in B-R can be expressed as AAT. On the other hand, as indicated in section 2.5, there

exists a SVD for the matrix A:

T
nnnnmnmnmnnm VUA ××−−×−×− Σ=)()()()(.

Therefore, the matrix AAT can also be expressed as

TT UUAA))((ΣΣ= .

1 Domain name here means the first level of the URL string associated with a web page.

51

From this equation, it is obvious that matrix UΣ is equivalent to the matrix A, and

the ith (i = 1,…, m-n) row of matrix UΣ could be naturally and reasonably viewed

as the coordinate vector of the page i (page i ∈ B-R) in another n-dimensional

space RS ′ . Similarly, for the matrix S, there exists a SVD of S:

T
nnnnnnnn XWS ×××× Ω= .

The ith (i = 1,…, n) row of matrix WΩ is viewed as the coordinate vector of the

page i (page i ∈ R) in another n-dimensional space RS ′′ .

For the SVD of matrix A, the matrix U could be expressed as

[])()(21)()(,...,, nmnmnmnmnm uuuU −×−−−×− = where ui (i = 1,…,m-n) is a m-n dimensional

vector T
inmiii uuuu),...,,(,,2,1 −= , and matrix V as [] nnnnn vvvV ×× = ,...,, 21 where vi (i =

1,…, n) is an n dimensional vector T
iniii vvvv),...,,(,,2,1= . Suppose rank(A) = r and the

singular values of matrix A are

.0...... 121 ===>≥≥≥ + nrr σσσσσ

For a given threshold δ (10 ≤< δ), we choose a parameter k such that

δσσσ ≥− + kkk /)(1 ,

and denote

[] knmkk uuuU ×−=)(21 ,...,, , [] knkk vvvV ×= ,...,, 21 ,),...,,(21 kk diag σσσ=Σ .

Let

T
kkkk VUA Σ= .

52

As the theorem in section 2.5 indicates, Ak is the best approximation to A with rank

k. Accordingly, the ith row Ri of the matrix UkΣk is chosen as the coordinate vector

of page i (page i ∈ B-R) in a k-dimensional subspace of RS ′ :

),,...,,(2211 kikiii uuuR σσσ= i = 1, 2, …, m-n. (3.1)

Since matrix A contains linkage information between the pages in B-R and R,

from the properties of SVD and choice of parameter k, it can be inferred that

coordinate vector (3.1) captures the main linkage information between the page i in

B-R and the pages in R. The extent to which main linkage information is captured

depends on the value of parameter δ. The greater the value of δ, the more minor

linkage information is captured. From the procedure of SVD ([Dat95], [GVL93]),

coordinate vector transformation (3.1) refers to linkage information of every page in

B-R, and whether a linkage in matrix A is dense or sparse is determined by all pages

in B-R, not just by a certain page. Therefore, equation (3.1) reflects mutual influence

of all the pages in B-R and reveals their relationships at a deeper level. This situation

is similar to those in [DDF+90] [HZC+02] and [HZC+00].

In a similar way, suppose rank(S)=t and the singular values of matrix S are

.0...... 121 ===>≥≥≥ + ntt ωωωωω

The ith row iR′ of the matrix WtΩt is chosen as the coordinate vector of the page i

(page i ∈ R) in a t-dimensional subspace of RS ′′ :

),,...,,(2211 titiii wwwR ωωω=′ i = 1, 2, …, n. (3.2)

Without loss of generality, let k = min(k,t). The vector Ri can be expanded from a k-

dimensional subspace to a t-dimensional subspace as

53

),0,...,0,0,,...,,(2211 321
kt

kikiii uuuR
−

= σσσ i = 1, 2, …, m-n. (3.3)

In order to compare the closeness between a page in B-R and the root set R, we

project each page i in B-R (i.e. vector Ri of (3.3)) into the n-dimensional space

spanned by the pages in R (i.e. vectors iR′ of (3.2), i = 1,…, n). The projection of

page i (page i ∈ B-R), PRi , is defined as

),...,,(,2,1, niiii PRPRPRPR = , i = 1, 2, …, m-n, (3.4)

where

|, |||/)(, jjiji RRRPR ′′= ∑∑
==

′′×=
t

k
jk

t

k
jkik RRR

1

2/12

1

)()(, j = 1, 2, …, n .

Within the same space, which is spanned by the pages in R, it is possible to

compare the closeness between a page in B-R and the root set R. In other words, a

threshold for eliminating noise pages can be defined. In fact, for each PRi , if

avg

n

j
jii cPRPR ≥= ∑

=

2/1

1

2
,)(|||| , (3.5)

where

nRc
n

j
javg ∑

=

′=
1

|||| ,

then the page i in B-R could remain in the base set of pages B. Otherwise, it should

be eliminated from B. The parameter cavg in the above equation represents the

average link density of the root set R, and is the representative measurement of R. It

is used as a threshold for eliminating noise pages. Intuitively, if a page in B-R is a

most likely noise page, it usually has fewer links with the pages in R. Thus its

measurement ||PRi|| in (3.5) would be small and it is most likely to be eliminated. It

54

is obvious that another representative measurement of root set R can also be defined

as an elimination threshold. For example, the parameter cavg could be replaced by

||)(||max
],1[max jnj

Rc ′=
∈

 or ||)(||min
],1[min jnj

Rc ′=
∈

. We call the algorithm with parameters

minmax ,, cccavg as avgAlgo, maxAlgo and minAlgo respectively. Theoretically, the

avgAlgo is ideal for elimination in most cases. The maxAlgo sometimes is too strict

and many topic-related pages may be eliminated from the B-R. The minAlgo in some

cases is too loose to eliminate many noise pages. In the next section, we will

examine the experiment results in eliminating noise pages and see if the experiment

results are coincident with this theoretical analysis.

The above noise page elimination algorithm is depicted as the algorithm NPEA

and listed in Appendix of this chapter. The complexity of the algorithm is dominated

by the SVD computation of the linkage matrices A and S. Without loss of generality,

we suppose M = max(m-n, n). Then the complexity of the algorithm is

)(32 nnMO + [GVL93]. If n << m, the complexity is approximately)(2mO .

3.3 Experimental Results

In the experiment, we firstly apply the proposed algorithm NPEA to a situation

where the original HITS algorithm fails to get satisfactory results. This situation is

for a query term "Harvard". The root set of pages, which are considered to be

relevant to this term, is returned by a text-based web search engine AltaVista. The

construction of base set B is the same as that in [Klein99] or in section 2.4. The size

of B (the number of pages in B) is 8064, and the size of root set R is 200. We will

55

firstly examine the numerical results of three algorithms (avgAlgo, maxAlgo,

minAlgo) in noise page elimination with different values of parameter δ. From the

analysis of these numerical results and our experimental experience, we will suggest

which algorithm and parameter value are suitable in most cases. Meanwhile, we will

show, via the numerical results, that the algorithm NPEA enables the topic-related

pages to capture the main linkage information among the concerned pages. That is

why the algorithm works well for eliminating noise pages.

Secondly, we will apply the HITS algorithm to two situations and get two sets of

authorities and hubs in order to see if the proposed algorithm really improves the

quality of the base set and web communities. One situation to which the HITS

algorithm is applied is that the noise pages in B are not eliminated; another situation

is that the noise pages in B are eliminated by the algorithm NPEA.

For better understanding the experiment results, we give the following

definitions.

• Suspected pages are those pages that are topic-related but have at most one link

to the pages in root set R.

• Noise Page Filtering Rate (NPFR) = number of filtered noise pages / total

number of noise pages.

• Noise Page Filtering Percentage (NPFP) = number of filtered noise pages / total

number of filtered pages.

• Suspected Page Filtering Percentage (SPFP) = number of filtered suspected

pages / total number of filtered pages.

• Efficient Filtering Percentage (EFP) = NPFP + SPFP.

56

One important concept to be clarified is what page is noise page. Here, the noise

page is in the meaning of common sense, i.e. it contains no query terms. In our

experiment, the number of noise pages is 2968. Suspected pages are defined to

distinguish those pages that are most likely to be noise pages for the HITS

algorithm, but are not noise pages as commonly understood, as we stated before that

noise pages usually have fewer links to the root set R. For example, in the

experiment, the page "http://www.hugo-sachs.de" contains query term "Harvard",

but it only have one link to the pages in the root set and have many links with a set

of pages that contain no query term "Harvard" and produce an topic-drift authority

page (see Table 3.6) "http://www.biochrom.co.uk/biochrom.htm". In this case, the

page "http://www.hugo-sachs.de" is a suspected page. Therefore, the efficient

filtering percentage (EFP) reflects the highest percentage of filtered noise pages (for

HITS) in all filtered pages (i.e. if all the suspected pages are noise pages for HITS).

Table 3.1. Numerical results for three algorithms maxAlgo, avgAlgo and minAlgo

maxAlgo avgAlgo minAlgo δ ≥ 0.4 Threshold=2.999 Threshold=1.434 Threshold=0.999
No. of Filtered Pages 6496 4704 3808
No. of Filtered Noise Pages 2968 2912 2408
No. of Filtered Suspected Pages 1624 1512 1176
NPFR 1.00 0.98 0.81
NPFP 0.46 0.62 0.63
SPFP 0.25 0.32 0.31
EFP 0.71 0.94 0.94

maxAlgo avgAlgo minAlgo δ ≤ 0.3 Threshold=2.999 Threshold=1.434 Threshold=0.999
No. of Filtered Pages 6608 5096 4648
No. of Filtered Noise Pages 2968 2912 2912
No. of Filtered Suspected Pages 1624 1512 1344
NPFR 1.00 0.98 0.98
NPFP 0.45 0.57 0.63
SPFP 0.25 0.30 0.29
EFP 0.70 0.87 0.92

57

Table 3.1 shows the numerical results of three algorithms (avgAlgo, maxAlgo,

minAlgo) in noise page elimination with different value ranges of parameter δ. In

our experiment, within each value range (δ ≥ 0.4 or δ ≤ 0.3), the number of filtered

pages changes slightly with the changes of the δ value in that range. For simplicity,

these minor changes are ignored in this table. From this table, it can be seen that the

greater the value of parameter δ is, the less pages are eliminated (filtered). This is

because with greater δ value, more minor linkage information is included in the

coordinate vector of each page (equation (3.1)), thus the measurement of each page

(equation (3.5)) is increased and number of filtered pages is decreased. These

numerical results are coincident with the theoretical analysis in section 3.2.

Within the first value range of parameter δ (δ ≥ 0.4), although the noise page

filtering rate (NPFR) of maxAlgo is 100%, its efficient filtering percentage (EFP) is

only 71%. That means this algorithm eliminated too many topic related pages while

eliminating all noise pages. This is not an ideal situation. For another two algorithms

avgAlgo and minAlgo, although their efficient filtering percentages (EFPs) are the

same (94%), the noise page filtering rate (NPFR) of avgAlgo (98%) is much better

than that of minAlgo (81%). These numerical results show that within the range of δ

≥ 0.4, avgAlgo is an ideal noise page elimination algorithm in the experiment.

For the second value range of δ (δ ≤ 0.3), similar to the above analysis, maxAlgo

is not an ideal algorithm either. Although the noise page filtering rates (NPFRs) of

avgAlgo and minAlgo are the same (98%), the efficient filtering percentage (EFP) of

minAlgo (92%) is better than that of avgAlgo (87%). So in this case, the minAlgo is

an ideal algorithm for this experiment.

58

The above numerical results and analysis indicate that maxAlgo is not suitable

for noise page elimination because it eliminates too many topic related pages at the

same time. It seems that with small δ value (δ ≤ 0.3), minAlgo should be adopted

for noise pages elimination; with large δ value (δ ≥ 0.4), avgAlgo should be

adopted. But in this experiment, we found the page linkage distribution within the

root set R is relatively even. So the minimum page measurement of R (i.e.

||)(||min
],1[min jnj

Rc ′=
∈

in section 3.2) is not too small and minAlgo algorithm is suitable

for small δ value. However, according to our experimental experience, if the linkage

distribution within the root set is not even, the minimum page measurement of R

may be too small and many noise pages cannot be eliminated. In that case, only

avgAlgo algorithm is suitable. Therefore, we suggest and adopt avgAlgo algorithm

as a suitable algorithm for eliminating noise pages in most cases, and in practical

computation, the value of parameter δ is chosen as 0.5.

It has been mentioned in section 3.2 that the proposed algorithm enables the

topic-related pages to capture main linkage information among the pages. That

means topic-related (term-related) pages should keep main linkage information

among pages, while the noise pages should keep less linkage information. In other

words, when the value of parameter δ changes from large to small, the decrease of

page measurements, which are defined in (3.5), of noise pages would be much

59

Table 3.2. Ten arbitrary noise pages

Table 3.3. Ten arbitrary topic-related pages

greater than that of topic-related pages. We arbitrarily chose ten noise pages and ten

topic-related pages to see their page measurement changes with the changes of δ

value. The ten noise pages and ten topic-related pages are listed in Table 3.2 and

Table 3.3 respectively.

Table 3.4 and Figure 3.2 (pages 1-10) show the page measurement changes of

noise pages with the changes of δ value. Table 3.5 and Figure 3.2 (pages 11-20)

show the page measurement changes of topic-related pages with the changes of δ

value. It is very clear that when the value of δ changes from 0.5 to 0.3, the page

measurements of noise pages decrease at least 99% and average decrease rate is

99.6%. This indicates that noise pages do not capture main linkage information

No. URL (http://) Title
1 www.corporate-ir.net CCBN: Corporate Communications Broadcast Network
2 aero-news.net/news/ticker.htm AERO-NEWS Network: Aviation News Ticker
3 www.biochrom.co.uk/biochrom.htm Biochrom Ltd manufacturer of Amino Acid Analysers …
4 www.warnerinstruments.com Warner Instrument Corporation

5 www.theweathernetwork.com/cities/can/Till
sonburg_ON.htm The Weather Network - Weather Forecast - Tillsonburg

6 www.hugo-sachs.de Hugo Sachs Elektronik
7 www.nrc.ca/inms/time/cesium.shtml NRC Time Services: Web Clock
8 www.unionbio.com Welcome to Union Biometrica
9 www.mitoscan.com MitoScan rapid mitochondria

10 htmlgear.lycos.com/specs/guest.html Html Gear - Gear Specification - Guest Gear

No. URL (http://) Title
11 search.harvard.edu:8765 Search Harvard University
12 www.harvard.edu/listing Index to Harvard University web sites
13 www.harvard.edu/about About Harvard University
14 www.harvard.edu/academics Harvard University: Academic programs
15 www.harvard.edu/admissions Harvard University: Admissions offices
16 www.haa.harvard.edu An Online Community for Harvard University Alumni
17 www.workingatharvard.org/em-main.html Harvard University Office of HumanResources,Employment
18 www.news.harvard.edu Harvard University News Office
19 www.athletics.harvard.edu/admstaff.html Harvard University Athletics: Administrative/Coaching Staff
20 www.athletics.harvard.edu/vsports.html Harvard University Athletics: Varsity Sports

60

among pages. On the other hand, however, for the same situations, the page

measurements of topic-related pages do not decrease too much (at most 56%, at least

5% and average decrease rate is 24%). It suggests that topic related pages capture

main linkage information. These numerical results are coincident with the above

analysis, i.e. the algorithm enables the topic-related pages to capture main linkage

information, while the noise pages not to. That is why the algorithm works well in

eliminating noise pages.

Page No. 1 2 3 4 5 6 7 8 9 10
δ = 0.5 0.937 0.957 0.937 0.937 0.957 0.937 0.957 0.937 0.937 0.957
δ = 0.3 0.000 0.006 0.000 0.000 0.006 0.000 0.006 0.000 0.000 0.006

Decrease
rate 100% 99% 100% 100% 99% 100% 99% 100% 100% 99%

Average decrease rate: 99.6%

Table 3.4. Page measurement changes of noise pages with different values of
 parameter δ

Table 3.5. Page measurement changes of topic-related pages with different values of
 parameter δ

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Page

Delta=0.5
Delta=0.3

Figure 3.2. Page measurement change trends for 20 arbitrary selected pages with

 different values of parameter δ

Page No. 11 12 13 14 15 16 17 18 19 20
δ = 0.5 1.844 4.967 2.568 3.203 2.518 1.844 1.844 3.388 1.186 1.630
δ = 0.3 1.590 3.534 1.796 2.127 1.112 1.590 1.590 3.212 1.014 1.153

Decrease
rate 14% 29% 30% 34% 56% 14% 14% 5% 15% 29%

Average decrease rate: 24%

61

Next, we apply HITS algorithm to the base set of pages B in which noise pages

are not eliminated by the algorithm NPEA. For comparison, we also use algorithm

NPEA (avgAlgo algorithm with δ=0.5) to eliminate noise pages from B and get a

new base set B'. We then apply HITS to this new base set B'. The top five authorities

and hubs for each situation are listed in Table 3.6 and 3.7 respectively.

Table 3.6. Top five authorities and hubs for "Harvard" before noise pages are
 eliminated

Table 3.7. Top five authorities and hubs for "Harvard" after noise pages are
 eliminated

Top Five Authorities
Authority value URL (http://) Title

0.735 www.harvard.edu Welcome to Harvard University
0.285 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.207 www.corporate-ir.net CCBN: Corporate Communications Broadcast …
0.190 www.biochrom.co.uk/biochrom.htm Biochrom Ltd manufacturer of Amino Acid … …
0.151 highwire.stanford.edu HighWire Press

Top Five Hubs
Hub value URL (http://) Title

0.235 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.226 post.economics.harvard.edu/info/links.html Harvard Economics Links Page
0.218 www.physics.harvard.edu Harvard University Department of Physics
0.206 www.harvard.edu/academics Harvard University: Academic programs
0.192 www.harvard.edu/listing Index to Harvard University web sites

Top Five Authorities
Authority value URL (http://) Title

0.788 www.harvard.edu Welcome to Harvard University
0.283 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.213 www.economics.harvard.edu Harvard University Department of Economics
0.191 www.gsas.harvard.edu Graduate School of Arts & Science, Harvard Uni
0.143 www.law.harvard.edu HLS: The Harvard Law School Home Page

Top Five Hubs
Hub value URL (http://) Title

0.244 post.economics.harvard.edu/info/links.html Harvard Economics Links Page
0.238 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.196 post.economics.harvard.edu/people Harvard Economics Directories of Faculty, Staff ..
0.195 www.fas.harvard.edu/about About Harvard University Faculty of Arts & Sci.
0.195 www.physics.harvard.edu Harvard University Department of Physics

62

Table 3.8. Top five authorities and hubs for "Jaguar" before noise pages are
 eliminated

Table 3.9. Top five authorities and hubs for "Jaguar" after noise pages are
 eliminated

It is indicated from these two tables that before noise pages are eliminated from

the base set, HITS produces three authorities (i.e. http://www.corporate-ir.net,

http://www.biochrom.co.uk/biochrom.htm and http://highwire.stanford.edu) that

have no relationships with the term "Harvard" (Table 3.6). After noise pages are

eliminated by the algorithm NPEA, HITS algorithm produces satisfactory results

(Table 3.7), i.e. every produced authority and hub is topic-related. These experiment

results indicate that the proposed algorithm really improves the quality of base set

and web communities.

Top Five Authorities
Authority value URL (http://) Title

0.567 www.jag-lovers.org Jag-lovers - the Jaguar Enthusiasts' premier resource
0.481 www.jagweb.com A1 JagWeb - Jaguar restoration, trimming,…& spare
0.466 www.jaguar.com Jaguar Cars Global Home Page
0.243 www.classicjaguar.com Classic Jaguar: Jaguar High Performance Parts&Res.
0.191 www.jec.org.uk Jaguar Enthusiasts' Club

Top Five Hubs
Hub value URL (http://) Title

0.291 www.roadsters.com/jaguar Jaguar Sports Cars - Roadsters.com
0.270 neptune.spacebears.com/cars/jaglink.html Jaguar Link-A-Rama
0.261 www.jags.org/links.htm Jag Links
0.241 www.motorcarsltd.com/links.htm British Car Links
0.220 www.classicjaguar.com/links.html Links

Top Five Authorities
Authority value URL (http://) Title

0.584 www.jag-lovers.org Jag-lovers - the Jaguar Enthusiasts' premier resource
0.495 www.jagweb.com A1 JagWeb - Jaguar restoration, trimming,…& spare
0.490 www.jaguar.com Jaguar Cars Global Home Page
0.225 www.classicjaguar.com Classic Jaguar: Jaguar High Performance Parts&Res.
0.208 www.jec.org.uk Jaguar Enthusiasts' Club

Top Five Hubs
Hub value URL (http://) Title

0.277 www.roadsters.com/jaguar Jaguar Sports Cars - Roadsters.com
0.254 neptune.spacebears.com/cars/jaglink.html Jaguar Link-A-Rama
0.245 www.jags.org/links.htm Jag Links
0.237 www.classicjaguar.com/links.html Links
0.223 www.motorcarsltd.com/links.htm British Car Links

63

In the experiment, we also apply the noise page elimination algorithm NPEA to

the situation where HITS produces satisfactory results. The purpose is to see if the

HITS can still produce satisfactory results after noise pages are eliminated by the

algorithm. In other words, we try to see if the algorithm eliminates real noise pages,

rather than topic-related pages. This situation is for the query term "Jaguar". The

size of base set is 3,540 and the size of root set is 472. The top five authorities and

hubs before and after the noise pages are eliminated are listed in Tables 3.8 and 3.9

respectively.

It is clear from Tables 3.8 and 3.9 that the results produced by HITS after noise

pages are eliminated are still satisfactory. The only difference is that the order of the

4th and 5th hubs before and after elimination is different. When the authority and hub

pages were checked, they were closely related with the query term and meet the

definitions of authority and hub. These experiment results show that the noise page

elimination algorithm NPEA effectively eliminates noise pages and is feasible in

practical applications.

3.4 Related Work and Discussions

Apart from HITS algorithm [Klein99] and its improvements [BH98] [CDG+98],

there are also other algorithms for discovering web page communities. Greco et al

[GGZ01] proposed a probabilistic approach for finding authoritative web pages.

This approach is mainly based on the hyperlink analysis of the concerned web page

set. Actually, it also begins with the base set of pages that is the same as that in

HITS algorithm. The base set of pages is represented as V, and the number of pages

64

in V is denoted as |V|. Then the associated adjacency matrix A of the pages in V can

be constructed, where if there exists a link from page i to j, then Ai,j = 1, otherwise

Ai,j = 0. Let ci with i∈V be a weight associated to each page representing the textual

information of the page. Then the co-citation matrix is defined as C = ATA, where

Ci,i = ci, ∀i∈V.

The transition probability matrix P is defined as a |V|×|V| matrix in which each entry

is

∑ =

= ||

1 ,

,
, V

k ki

ji
ji

C

C
P .

In the probability matrix P, Pi,i denotes the probability of remaining in page i,

whereas Pi,j, with i ≠ j, denotes the probability of going from page i to page j. The

probability matrix P models the behaviour of the unitary length transitions. For

random walk with more than one link, the probability of going from page i to page j

in n steps is defined as

ji
n
ii

jkik
jk

n
kijj

n
ji

n
ji PPPPPPP ,

)1(
,

,
,

)1(
,,

)1(
,

)(
, ×+×+×= −

≠≠

−− ∑ , n ≥ 2,

where P(1)
i,j = Pi,j.

Furthermore, being in page i, the probability of going to page j with a random

walk of random length (composed with a maximum of n steps) becomes

)
111

()1()(
,

)2(
.2

)1(
,

)(
,

n
jinjiji

n
ji P

f
P

f
P

f
fT +++×−= L ,

where 1/f is a damping factor with f > 0. A higher value of ∑i∈V T(n)
i,j gives a

measure of similarity of page j with respect to all the other pages, that is, an high

value of the sum means that page j has many co-citations in common with all other

65

pages. Such a page is the authority page. In order to consider this random walk

behaviour within the whole base set, it is only needed to calculate the terms T(n)
i,j for

n→∞. Greco et al proved that

T(n) → (f - 1) × P × (f× I - P) -1, when n→∞.

So this probabilistic approach for finding authority pages is guaranteed.

Reddy et al [RK01] proposed an algorithm for abstracting a web page

community as a set of pages that form a dense bipartite graph (DBG). The algorithm

is also based on the hyperlink analysis and only considers the number of links

between pages in the hyperlink analysis. This algorithm begins with selecting a set

of pages T such that the number of common children between this set and any page

in this set is greater than a predefined threshold. At the same time, another page set

I, which is the set of children of T, is constructed. Then the algorithm iteratively

removes those pages in T when their out degrees are below a certain threshold, and

those pages in I when their in-degrees are below another certain threshold. When

this procedure is finished, the DBG, i.e. a web page community is formed.

Furthermore, the algorithm can also be used to relate the extracted communities to

build a hierarchy of communities for a given page set.

However, the above algorithms did not consider the topic drift problem either.

For example, if there are noise pages in the base set and they dominate the linkage

density of the base set, the probabilistic algorithm in [GGZ01] would increase the

possibility of these noise pages being randomly accessed and cause topic drift

problem. The situation is the same for the bipartite algorithm [RK01]. On the other

66

hand, the bipartite algorithm is directly based on page's in-degree and out-degree,

which does not produce best results in most cases [Klein99].

The ARC algorithm of Chakrabarti et al [CDG+98] tried to reduce the influence

of the noise pages and increase the influence of the topic-related pages to the HITS

algorithm by weighting the links between two pages. This improvement is based on

the text content surrounding the hyperlink (anchor window) in the source document.

The link from a page p to q is weighted as

w(p, q) = 1 + n(t),

where n(t) is the number of matches between the terms in the topic description and

those in the anchor window. Then the HITS is improved by updating the entries of

the link adjacency matrix with link weights.

For eliminating noise pages, maybe the direct approach is to find the relevance

of a page to the query topic. The noise page elimination algorithms of Bharat and

Henzinger [BH98] were proposed from this idea. The algorithms define the

similarity between a page and the query topic from the page content as the relevance

weight of a page to determine if a page is a noise page. For this purpose, the

algorithm use the pages in the root set to define a broader query, specifically, the

first 1000 words from each page in the root set are concatenated to form this broader

query Q in a term vector.

Then the relevance of a page Dj to the query topic is defined as the similarity

between this page and the query Q

∑∑
∑

==

=

×

×
=

t

i ij
t

i iq

t

i ijiq
j

ww

ww
DQsimilarity

1
2

1
2

1

)()(

)(
),(,

67

where

wiq = freqiq × IDFi,

wij = freqij × IDFi,

freqiq = the frequency of the term i in query Q,

freqij = the frequency of the term i in page Dj,

IDFi = an estimate of the inverse document frequency of term i on the World Wide

Web.

With the page relevance weights, all pages whose weights are below a threshold

are determined as noise pages and eliminated. The relevance weight can also be used

to regulate the influence of a page. If W[n] is the relevance weight of a page n, A[n]

and H[n] are the authority score and hub score respectively, then W[n]×A[n] is used

to replace A[n] and W[n]×H[n] is used to replace H[n] in the HITS algorithm. This

reduces the influence of less relevant pages on the scores of their neighbours.

To reduce the computing cost, Bharat and Henzinger also improve the above

noise page elimination algorithm by selecting only top 30 pages in the root set to

form the broader query Q. These 30 selected pages correspond to the 30 top values

of in_degree + 2 × num_query_matches + has_out_links, where

num_query_matches is the number of unique sub-strings of the URL that exactly

match a term in the user's query, and has_out_links is 1 if the page has at least one

out-link and otherwise 0. Meanwhile the term weight wiq is computed as freqiq ×

IDFi × 3. With this new broader query Q, the top 100 pages measured by the value

of 4× in_degree + out_degree are fetched, scored against Q and eliminated if their

68

score falls below the threshold. This elimination procedure can also be executed

during the iterative operation of the HITS algorithm.

These noise page elimination or noise page's influence reduction algorithms are

all based on the page content analysis. However, there are still a lot of problems that

affect the effectiveness and feasibility of these algorithms. Firstly, one of the

characteristics of the web is that the web content is dynamic. Web page authors

would frequently change the page content according to their requirements. This

would lead to different content analysis results for the same web page at different

time. Sometimes a page is recognized as a noise page, while it would be recognized

as a topic related page at another time. This will increase the maintenance cost for a

web-based data management system to keep the correctness of the web page

communities adopted by the system. Secondly, as indicated in [BH98], the success

of the algorithms greatly depends on whether the query topics are well represented.

However, because of the synonymy (different words have similar or same meaning)

and polysemy (one word has different meanings) of the words in web page content,

whether the content analysis results really reveal the relationship between the page

and the query topic is uncertain. For example, if the terms in anchor window and

topic description are synonymous in ARC algorithm (e.g. "car" and "vehicle"), the

algorithm will not consider they are the same and the link weight is unreasonably

decreased. For the same reason, whether the broader query Q, which is formed by

concatenating the first 1000 words of each page (or partial pages) in root set,

represents the query topic is uncertain either. Therefore, the relevance weights of

pages, in some cases, cannot really reflect the real relationships between the page

69

and the query topic. Thirdly, since there is no standard data format or model for

organizing web page contents and HTML tags have few semantics, it is a time-

consuming and complex procedure to extract required words from a large set of web

pages and compute the features of the words, such as IDFi in the algorithm of Bharat

and Henzinger. On the other hand, the dimension of the query topic vector, such as

the broader query Q in term vector, usually is very high. This will greatly increase

the computing overhead and decrease the efficiency of the algorithm. Fourthly, some

parameters in the above algorithm have no clear semantic meanings. For example, in

the algorithm of Bharat and Henzinger, the value of in_degree + 2 ×

num_query_matches + has_out_links is used to select top 30 pages in root set to

construct the broader query. Why the coefficient of the second term is 2 rather than

other values is not clear. Similarly, the semantic meanings of the coefficients in

computing term weight wiq = freqiq × IDFi × 3 and 4× in_degree + out_degree are

not clear either. This would lead to arbitrary decision-making.

Compared with the content analysis, hyperlink analysis has many advantages.

The hyperlink analysis results are relatively steady. This is because any change in

the hypertext of the web page that does not affect its structure will not affect the

relationship between this page and other pages. In practical applications, extracting

hyperlinks is much easier than extracting required words from web pages because

the hyperlinks are marked by the specific HTML tags. This would simplify the web

page processing and decrease the computing cost. Furthermore, the semantic

meanings the hyperlink conveys, when the hyperlink is reasonable or meaningful,

are independent of the synonymy and polysemy of the words in the contents of the

70

web pages. Actually, when the reasonable or meaningful hyperlinks are established

by the authors of the web pages, these hyperlinks reflect the human's judgement

whether the linked pages are related to the source pages. This judgement is objective

and independent of the synonymy and polysemy of the words, unless the linked

pages have been totally changed later. That's why the hyperlink analysis is

successful in many applications. At last, the hyperlink analysis is concise and

intuitive. The algorithm, as well as the experiment results, demonstrates the

effectiveness and feasibility of the hyperlink analysis.

3.5 Conclusions

This chapter presents a hyperlink-based noise page elimination algorithm (NPEA) to

eliminate noise pages from the base set of web pages. The algorithm improves the

quality of the base set, and in turn the quality of web page communities. From the

basic hyperlink information among the pages, the algorithm reveals the relationships

among the concerned pages at a deeper level and numerically defines the threshold

for eliminating noise pages. The experiment results show the effectiveness and

feasibility of the algorithm. This algorithm provides an effective approach of finding

deeper and intrinsic relationships (mathematical relationships) among the pages

from hyperlink information with the help of mathematical model, analysis and

operations. Further more, this algorithm could also be used solely to filter

unnecessary web pages and reduce the management cost and burden of web-based

data management systems, especially for special-purpose search engines (Internet

portals).

71

Appendix

Noise Page Elimination Algorithm (NPEA)

NPEA (G(R), G(B), δ)

 Input:

G(R): G(R)=(R,ER) is a directed graph of root set pages with nodes being pages

and edges being links between pages.

G(B): G(B)=(B,EB) is a directed graph of base set pages with nodes being pages

and edges being links between pages.

δ : threshold for selecting matrix approximation parameter k.

 Output:

G'(B): a new directed graph of base set pages with noise pages being eliminated

by this algorithm.

 Begin

 Get the number of pages in B, m = size(B); Get the number of pages in R, n =

 size(R);

 Construct linkage matrix between pages in R, nnijsS ×=)(;

 Construct linkage matrix between B-R and R, nnmijaA ×−=)()(;

 Compute the SVD of S and its singular values

 T
nnnnnnnn XWS ×××× Ω= ; 0...... 121 ===>≥≥≥ + ntt ωωωωω ;

 Compute the SVD of A and its singular values

72

 T
nnnnmnmnmnnm VUA ××−−×−×− Σ=)()()()(; 0...... 121 ===>≥≥≥ + nrr σσσσσ ;

 Choose parameter k such that δσσσ ≥− + kkk /)(1 ;

Compute coordinate vectors Ri (i = 1, 2, …, m-n) for each page in B-R according

to (3.1);

Compute coordinate vectors R'i (i = 1, 2, …, n) for each page in R according to

(3.2);

Compute the projection vectors PRi (i = 1, 2, …, m-n) according to (3.4);

 Compute the representative measurement of R, njRc
n

j
∑ ′=
=1

|||| ;

 if cPRi <||| | (i = 1, 2, …, m-n) then

 Begin

 Eliminate page i from B, B = B - page i ;

Eliminate links related with page i from EB

EB = EB - (page i→ p) - (p→ page i); p ∈ B, p≠ i.

 End

 return G'(B)=(B,EB);

End

73

Chapter 4

Finding Relevant Web Pages for a Given
Page

4.1 Introduction

Conventional web page search is based on user's query terms and web search

engines, such as AltaVista [Alta] and Google [Google]. The user issues the query

terms (keywords) to a search engine, and the search engine returns a set of pages

that may (hopefully) be related to the query topics or terms. For an interesting page,

if the user wants to search the relevant pages further, he/she would prefer those

relevant pages to be at hand. Here, a relevant web page is the one that addresses the

same topic as the original page, but is not necessarily semantically identical [DH99].

This kind of pages forms another kind of web page community, i.e. the community

that consists of relevant pages with respect to the given page (URL). Providing

relevant pages for a searched web page would prevent users from formulating new

queries, for which the search engine may return many undesired pages. Furthermore,

for a search engine as well as a web data management system, caching the relevant

pages for a set of searched pages would greatly speed up the web search and

increase the search (retrieval) efficiency. That is why many search engines, such as

Google and AltaVista, are concerned more about building in this functionality.

74

There are many ways to find relevant pages. For example, as indicated in

[DH99], Netscape uses web page content analysis, usage pattern information, as

well as linkage analysis to find relevant pages. Among the approaches of finding

relevant pages, hyperlink analysis has its own advantages as indicated in Chapters 1

and 2. When hyperlink analysis is applied to the relevant page finding, its success

depends on how to solve the following two problems: (i) how to construct a page

source that is related to the given page, and (ii) how to establish effective algorithms

to find relevant pages from the page source. Ideally, the page source, a page set from

which the relevant pages are selected, should have the following properties:

1. The size of the page source (the number of pages in the page source) is

relatively small.

2. The page source is rich in relevant pages.

The best relevant pages of the given page, based on the statement in [DH99], should

be those that address the same topic as the original page and are semantically

relevant to the original one.

The representative work of applying hyperlink analysis to find relevant pages is

presented in [Klein99] and [DH99]. The page source for relevant page finding in

[Klein99] is derived directly from a set of parent pages of the given page.

Kleinberg's HITS (Hyperlink-Induced Topic Search) algorithm is applied directly to

this page source, and the top authority pages (e.g. 10 pages) with the highest

authority weights are considered to be the relevant pages of the given page. This

algorithm is improved by the work in [DH99] in two aspects: firstly, the page source

is derived from both parent and child pages of the given page, and the way of

75

selecting pages for the page source is different from that of [Klein99]. Secondly, the

improved HITS algorithm [BH98], instead of the Kleinberg's HITS algorithm, is

applied to this new page source. This algorithm is named Companion Algorithm in

[DH99]. The improved HITS algorithm reduces the influence of unrelated pages in

the relevant page finding. These algorithms focus on finding authority pages (as

relevant pages) from the page source, rather than on directly finding relevant pages

from page similarities. Therefore, if the page source is not constructed properly, i.e.

there are many topic unrelated pages in the page source, the topic drift problem

[BH98][HZ02] would arise and the selected relevant pages might be not actually

related to the given page.

Dean and Henzinger [DH99] also proposed another simple algorithm to find

relevant pages from page similarities. The page source of this algorithm, however,

only consists of the sibling pages of the given page, and many important

semantically relevant pages might be neglected. The algorithm is based on the page

co-citation analysis (details will be given in the following section), and the similarity

between a page and the given page is measured by the number of their common

parent pages, named co-citation degree. The pages that have higher co-citation

degrees with the given page are identified as relevant pages. Although this

algorithm is simple and efficient, the deeper relationships among the pages cannot

be revealed. For example, if two or more pages have the same co-citation degree

with the given page, this algorithm could not identify which page is more related to

the given page. Detailed discussions about the above algorithms will be given latter

in this chapter.

76

On the other hand, the experiments of the above work show that the identified

relevant pages are related to the given page in a broad sense, but are not

semantically relevant to the given page, in most cases. For example, given a page

(URL): http://www.honda.com, which is the home page of Honda Motor Company,

the relevant pages returned by these algorithms are those home pages of different

motor companies (e.g. Ford, Toyota, Volvo and so on). Although these relevant

pages all address the same topic "motor company", there are no relevant pages

referring to Honda Motor Company, Honda Motor or anything else about Honda,

and furthermore there exist no hyperlinks between the most of the relevant pages

and the given page (URL). This kind of relevant pages could be considered relevant

in a broad sense to the given page. In practical web search, however, users usually

would prefer those relevant pages that address the same topic as the given page, as

well as being semantically relevant to the given page (best relevant pages).

In this chapter, we propose two algorithms that use page similarities to find

relevant pages. The new page source based on which the algorithms are established

is constructed with required properties. The page similarity analysis and definition

are based on hyperlink information among the web pages. The first algorithm,

Extended Co-Citation algorithm, is a co-citation algorithm that extends the

traditional co-citation concepts. It is intuitive and concise. The second one, named

Latent Linkage Information (LLI) algorithm, finds relevant pages more effectively

and precisely by using linear algebra theories, especially the singular value

decomposition (SVD) of matrix, to reveal deeper relationships among the pages.

Experiments are conducted and it is shown that the proposed algorithms are feasible

77

and effective in finding relevant pages, as the relevant pages returned by these two

algorithms contain those that address the same topic as the given page, as well as

those that address the same topic and are semantically relevant to the given page.

This is the ideal situation for which we look. Some techniques and results, such as

the hyperlink based page similarity, could also be used further to other web-related

areas such as web page clustering.

In the following section 4.2, the Extended Co-Citation algorithm is presented

with a new page source construction. Section 4.3 gives another effective relevant

page finding algorithm - Latent Linkage Information (LLI) algorithm. Section 4.4

presents some experimental results of the two proposed algorithms and other related

algorithms. Numerical analysis for the experimental data and comparison of the

algorithms are also conducted in this section. Some related work is presented and

discussed in section 4.5. Finally, we give conclusions in section 4.6. The depiction

of the LLI algorithm is listed in the appendix of this chapter.

4.2 Extended Co-Citation Algorithm

The citation and co-citation analysis were originally developed for scientific

literature indexing and clustering, and then extended to the web page analysis. For

better understanding of the algorithms to be proposed, we firstly present some

background knowledge of the citation and co-citation analysis, and then give the

Extended Co-Citation algorithm for relevant page finding.

4.2.1 Citation and Co-Citation Analysis

78

The citation analysis was developed in information science as a tool to identify core

sets of articles, authors, or journals of particular fields of study [Lars96]. The

research has long been concerned with the use of citations to produce quantitative

estimates of the importance and impact of individual scientific articles, journals or

authors. The most well-known measure in this field is Garfield's impact factor

[Garf72], which is the average number of citations received by papers (or journals)

and was used as a numerical assessement of journals in Journal Citation Reports of

the Institution for Scientific Information.

The co-citation analysis has been used to measure the similarity of papers,

journals or authors for clustering. For a pair of documents p and q, if they are both

cited by a common document, documents p and q is said to be co-cited. The number

of documents that cite both p and q is referred to as co-citation degree of documents

p and q. The similarity between two documents is measured by their co-citation

degree. This type of analysis has been shown to be effective in a broad range of

disciplines, ranging from author co-citation analysis of scientific subfields to journal

co-citation analysis. For example, Chen and Carr [CC99] used author co-citation

analysis to cluster the authors, as well as the the research fields. In the context of the

web, the hyperlinks are regarded as citations beween the pages. If a web page p has

a hyperlink to another page q, page q is said to be cited by the page p. In this sense,

citation and co-citation analyses are smoothly extended to the web page hyperlink

analysis. For instance, Larson [Lars96], Pitkow and Pirolli [PP97] have used the co-

citation to meaure the web page similarities.

79

The above co-citation analyses, whether for scientific literatures or for web

pages, are mainly for the purpose of clustering, and the page source to which the co-

citation analysis is applied is usually a pre-known page set or a web site. For

example, the page source in [PP97] was the pages in a web site of Georgia Institute

of Technology, and the page source in [Lars96] was a set of pages in Earth Science

related web sites. When the co-citation analysis is applied for relevant page finding,

however, the situation is different. Since there exists no pre-known page source for

the given page and co-citation analysis, the success of co-citation analysis mainly

depends on how to effectively construct a page source with respect to the given

page. Meanwhile, the constructed page source should be rich in related pages with a

reasonble size.

Dean and Henzinger [DH99] proposed a co-citation algorithm to find the

relevant pages. Hereafter, we denote it as the DH Algorithm. In their work, for a

given page (URL) u, the page source S with respect to u is constructed in the

following way: the algorithm firstly

chooses up to B (e.g. 2000) arbitrary

parents of u; for each of these parents p,

it adds to S up to BF (e.g. 8) children of p

that surround the link from p to u. The

elements of S are siblings of u as indicated in Figure 4.1. Based on this page source

S, the co-citation algorithm for finding relevant pages is as follow: for each page s in

S, the co-citation degree of s and u is determined; the algorithm finally returns 10

pages that have the highest co-citation degrees with u as the relevant pages.

u

P1 PB

P1,1 P1,i P1,BF PB,1 PB,j PB,BF

…

… … … …

S

Figure 4.1. Page source S for the given
 u in the DH Algorithm

80

Although the DH Algorithm is simple and the page source is of a reasonable size

(controlled by the parameters B and BF), the page source construction only refers to

the parents of the given page u. It is actually based on an assumption that the

possible related pages fall into the set of siblings of u. Since the child pages of u,

accordingly the page set derived from these child pages, are not taken into account

in the page source construction, many semantically related pages might be excluded

in the page source and the final results may be unsatisfactory. This is because the

semantic relationship conveyed by the hyperlinks between two pages is mutual. If a

page p is said to be semantically relevant (via hyperlink) to another page q, page q

could also be said to be semantically relevant to page p. From this point of view, the

children of the given page u should be taken into consideration in the page source

construction.

4.2.2 Extended Co-Citation Algorithm

For a given page u, its semantic details are most likely to be given by its in-view and

out-view [MH97]. The in-view is a set of parent pages of u, and out-view is a set of

child pages of u. In other words, the relevant pages with respect to the given page

are most likely to be brought into the page source by the in-view and out-view of the

given page. The page source for finding relevant pages, therefore, should be derived

from the in-view and out-view of the given page, so that the page source is rich in

the related pages.

Given a web page u, its parent and child pages could be easily obtained. Indeed,

the child pages of u can be obtained directly by accessing the page u; for the parent

81

pages of u, one way to obtain them is to issue an AltaVista query of the form link: u,

which returns a list of pages that point to u [BH98]. The parent and child pages of

the given page could also be provided by some professional servers, such as the

Connectivity Server [BBH+98]. After the parent and child pages of u are obtained, it

is possible to construct a new page source for u that is rich in related pages. The new

page source is constructed as a directed graph with edges indicating hyperlinks and

nodes representing the following pages:

1. page u,

2. up to B parent pages of u, and up to BF child pages of each parent page that

are different from u,

3. up to F child pages of u, and up to FB parent pages of each child page that

are different from u.

The parameters B, F, BF and FB are used to keep the page source to a reasonable

size. In practice, we choose B = FB =

200, F = BF = 40. This new page

source structure is presented

intuitively in Figure 4.2. Before

giving the Extended Co-Citation

algorithm for finding relevant pages,

we firstly define the following

concepts.

P1 PB

S1,1 S1,i S1,BF SB,1 SB,j SB,BF

…

… … … …

BS

u
C1 CF …

… … … …
A1,m A1,FBA1,1 AF,1 AF,n AF,FB

FS

Figure 4.2. Page source structure for the
 Extended Co-Citation algorithm

82

Definition 1: Two pages p1 and p2 are back co-cited if they have a common parent

page. The number of their common parents is their back co-citation degree denoted

as b(p1, p2). Two pages p1 and p2 are forward co-cited if they have a common child

page. The number of their common children is their forward co-citation degree

denoted as f (p1, p2).

Definition 2: The pages are intrinsic pages if they have same page domain name.

Definition 3 [DH99]: Two pages are near-duplicate pages if (a) they each have

more than 10 links and (b) they have at least 95% of their links in common.

Based on the above concepts, the complete Extended Co-Citation algorithm to

find relevant pages of the given web page u is as follow:

Step 1: Choose up to B arbitrary parents of u.

Step 2: For each of these parents p, choose up to BF children (different from u) of p

that surround the link from p to u. Merge the intrinsic or near-duplicate

parent pages, if they exit, as one whose links are the union of the links from

the merged intrinsic or near-duplicate parent pages, i.e. let Pu be a set of

parent pages of u,

Pu = {pi | pi is a parent page of u without intrinsic and near-duplicate pages,
 i∈[1, B]},

let

Si = {si,k | si,k is a child page of page pi , si,k ≠ u , pi∈Pu , k∈[1, BF]}, i ∈ [1, B].

Then step 1 and 2 produce the following set

83

U
B

i
iSBS

1=

= .

Step 3: Choose first F children1 of u.

Step 4: For each of these children c, choose up to FB parents (different from u) of c

with highest in-degree. Merge the intrinsic or near-duplicate child pages, if

they exist, as one whose links are the union of the links to the merged

intrinsic or near-duplicate child pages, i.e. let Cu be a set of child pages of u,

Cu = {ci | ci is a child page of u without intrinsic and near-duplicate pages,

i∈[1, F]},

let

Ai = {ai.k | ai,k is a parent page of page ci , ai,k and u are neither intrinsic nor

near-duplicate

pages, ci∈Cu, k∈[1,FB]}, i ∈ [1, F].

Then step 3 and 4 produce the following set

U
F

i
iAFS

1=

= .

Step 5: For a given selection threshold δ, select pages from BS and FS such that their

back co-citation degrees or forward co-citation degrees with u are greater

than or equal to δ. These selected pages are relevant pages of u, i.e., the

relevant page set RP of u is constructed as:

RP = { pi | pi ∈ BS with δ≥),(upb i OR pi ∈ FS with δ≥),(upf i }.

1 The order of children is coincident with the order they appear in the page u.

84

It can be seen from this algorithm that, in the parent page set Pu and child page

set Cu of u, the intrinsic or near-duplicate pages are merged as one. This treatment is

necessary for the success of the algorithm. Firstly, this treatment can prevent the

searches from being affected by malicious hyperlinks. In fact, for the pages in a web

site (or server) that are hyperlinked purposely to maliciously improve the page

importance for web search, if they are imported into the page source as the parent

pages of the given page u, their children (the siblings of u) most likely come from

the same site (or server), and the back co-citation degrees of these children with u

would be unreasonably increased. With the merger of the intrinsic parent pages, the

influence of the pages from the same site (or server) is reduced to a reasonable level

(i.e. the back co-citation degree of each child page with u is only 1) and the

malicious hyperlinks are shielded off. For example, in Figure 4.3, suppose the parent

pages P1, P2, P3 and their children S1,1, …, S3,2 be intrinsic pages. In situation (a), the

back co-citation degree of page S2,2 with u is unreasonably increased to 3, which is

the ideal situation the malicious hyperlink creators would like. The situation is the

same for the pages S1,2 and S3,1. With the above algorithm, the situation (a) is treated

as the situation (b) where P is a logic page representing the union of P1, P2, P3, and

the contribution of each child page from the same site (or server) to the back co-

u

P1 P2 P3

S1,2 S1,1 S2,2S2,1 S3,2S3,1

u

P

S1,2S1,1 S2,2 S2,1 S3,2 S3,1

(a) (b)

Figure 4.3. An example of intrinsic page treatment

85

citation degree with u is only 1, no matter how tightly these intrinsic pages are

linked together.

Secondly, for those pages that are really relevant to the target page u and located

in the same domain name, such as those in web sites that are concerned about certain

topics, the above intrinsic page treatment would probably decrease their relevance to

the given page u. However, since we consider the page relevance to the given page

within a local web community (page source), not just within a specific web site or

server, this intrinsic page treatment is still reasonable in this sense. Under this

circumstance, there exists a trade-off between avoiding malicious hyperlinks and

keeping as much useful information as possible. Actually, if such pages are still

considered as relevant pages within the local web community, they would be finally

identified by the algorithm. The above reasons for intrinsic parent page treatment are

the same for the intrinsic child page treatment, as well as the near-duplicate page

treatment.

It is also worth noticing that even if the given page u contains active links (i.e.

links to hub pages that are also cited by other pages), the algorithm, especially the

pages set Ai, can also shield off the influence of malicious hyperlinks from the same

site or server or mirror site of u. On the other hand, however, this page set Ai would

probably filter those possible relevant pages that come from the same domain name

of u. The trade-off between avoiding malicious hyperlinks and keeping useful

information still exists in this circumstance. If the algorithm is only used within a

specific web site or domain name, it can be simplified without considering the

intrinsic page treatment. In other words, in the Extended Co-Citation algorithm, the

86

influence of each web site (or server) to the page relevance measurement is reduced

to a reasonable level, and a page's relevance to the given page is determined within a

local web community (page source), rather than only within a specific web site or

server.

4.3 Latent Linkage Information (LLI) Algorithm

Although the Extended Co-Citation algorithm is simple and easy to be implemented,

it is unable to reveal the deeper relationships among the pages. For example, if two

pages have the same back (or forward) co-citation degree with the given page u, the

algorithm cannot tell which page is more relevant to u. This is because the co-

citation algorithm has its own limitations. We take the parent pages and the sibling

page set BS of the given page u as an example. The co-citation algorithm only

considers sibling pages when considering the page relevance to u (computing the

back co-citation degrees with u), the parent pages are only used as a reference

system in the back co-citation computation, their influence (importance) to the page

relevance measurement, however, is omitted. The above situation is the same for the

child pages and the page set FS of the given page u.

However, from the point of view of parent pages, as well as child pages, of the

given page u, the influence of each parent or child page of u to the page relevance

degree computation is different. For example, if a parent page P of u has more links

to the siblings of u than other parent pages, it would pull together more pages on a

common topic related to u, such as the hubs in [Klein99]. We call this type of page

P as a dense page (with respect to a certain threshold). For two pages in BS with the

87

same back co-citation degree with u, one page that is back co-cited with u by more

dense parent pages should be more likely related to the given page u than another

one. This situation is also applied to the child pages of u and pages in FS. The co-

citation algorithms, unfortunately, are unable to reveal this type of deeper

relationship among the pages.

To measure the importance of parent or child pages by directly using their out-

degrees or in-degrees is not a proper approach [Klein99]. The page importance

should be determined within the concerned page space (page source) combining

with the mutual influence of the pages. On the other hand, the topologic

relationships among the pages in a page source can be easily expressed as a linkage

matrix. This matrix makes it possible, by matrix operations, to reveal the deeper

relationships among the pages and effectively find relevant pages. Fortunately, the

singular value decomposition (SVD) of matrix in linear algebra (section 2.5) has

such properties that reveal the internal relationship among the matrix elements

[DDF+90] [HZC+02] [HZC+00]. In this work, we adapt it and propose the Latent

Linkage Information (LLI) algorithm to effectively and precisely find relevant

pages.

In this section, we still adapt the symbol system introduced in section 4.2.2. We

suppose the size of BS is m (e.g. the number of pages in BS is m) and size of Pu is n,

the sizes of FS and Cu are p and q respectively. Without loss of generality, we also

suppose m > n and p > q. The topological relationships between the pages in BS and

Pu are expressed in a linkage matrix A, and the topological relationships between the

pages in FS and Cu are expressed in another linkage matrix B. The linkage matrices

88

A and B are concretely constructed as follow: nmijaA ×=)(where

⎩
⎨
⎧= ∈∈

 .
,

otherwise0
,,ofchildaiswhen1 uPBS jpageipagejpageipage

ija

qpijbB ×=)(where

⎩
⎨
⎧= ∈∈

 .
,

otherwise0
,,ofparentaiswhen1 uCFS jpageipagejpageipage

ijb

These two matrices imply more beneath their simple definitions. In fact, the ith

row of matrix A can be viewed as the coordinate vector of page i (page i ∈ BS) in an

n-dimensional space spanned by the n pages in Pu, and the ith row of matrix B can

be viewed as the coordinate vector of page i (page i ∈ FS) in a q-dimensional space

spanned by the q pages in Cu. Similarly, the jth column of matrix A can be viewed as

the coordinate vector of page j (page j ∈ Pu) in an m-dimensional space spanned by

the m pages in BS. The meaning is similar for the columns in matrix B. In other

words, the topological relationships between pages are transferred, via the matrices

A and B, to the relationships between vectors in different multi-dimensional spaces.

Since A and B are real matrices, there exist SVDs of A and B: T
nnnmmm VUA ××× Σ= ,

T
qqqppp XWB ××× Ω= . As indicated above, the rows of matrix A are coordinate vectors

of pages of BS in an n-dimensional space. Therefore, all the possible inner products

of pages in BS can be expressed as TAA , i.e. (TAA)ij is the inner product of page i

and page j in BS. Because of the orthogonal properties of matrices U and V, we have

TT UUAA))((ΣΣ= . Matrix UΣ is also an nm × matrix. It is obvious from this

expression that matrix UΣ is equivalent to matrix A, and the rows of matrix UΣ

89

could be viewed as coordinate vectors of pages in BS in another n-dimensional

space. Since the SVD of a matrix is not a simple linear transformation of the matrix

[Dat95] [GVL93], it reveals statistical regulation of matrix elements to some extent

[PRT+97] [Dat95] [GVL93] [DDF+90] [HZC+02] [HZ02]. Accordingly, the

coordinate vector transformation from one space to another space via SVD makes

sense. For the same reason, the rows of matrix VΣ T, which is an mn × matrix, are

coordinate vectors of pages in Pu in another m-dimensional space. Similarly, for

matrix B, the rows of matrix WΩ are coordinate vectors of pages in FS in another q-

dimensional space, and the rows of matrix XΩT are coordinate vectors of pages in Cu

in another p-dimensional space.

Next, we discuss matrices A and B separately. For the SVD of matrix A, matrices

U and V can be denoted respectively as [] mmmmm uuuU ×× = ,...,, 21 and

[] nnnnn vvvV ×× = ,...,, 21 , where ui (i = 1, … , m) is a m-dimensional vector

T
imiii uuuu),...,,(,,2,1= and vi (i = 1, … , n) is a n-dimensional vector

T
iniii vvvv),...,,(,,2,1= . Suppose rank(A) = r and singular values of matrix A are as

follow:

.0...... 121 ===>≥≥≥ + nrr σσσσσ

For a given threshold ε (10 ≤< ε), we choose a parameter k such

that εσσσ ≥− + kkk /)(1 . Then we denote [] kmkk uuuU ×= ,...,, 21 ,

[] knkk vvvV ×= ,...,, 21 ,),...,,(21 kk diag σσσ=Σ , and T
kkkk VUA Σ= .

From the theorem in section 2.5, the best approximation matrix Ak contains main

linkage information among the pages and makes it possible to filter those irrelevant

90

pages, which usually have fewer links to the parents of given u, and effectively find

relevant pages. In this algorithm, the relevance of a page to the given page u is

measured by the similarity between them. For measuring the page similarity based

on Ak, we choose the ith row Ri of the matrix UkΣk as the coordinate vector of page i

(page i ∈ BS) in a k-dimensional subspace S:

),,...,,(2211 kikiii uuuR σσσ= i = 1, 2, …, m. (4.1)

For the given page u, since it is linked by every parent page, it is represented as a

coordinate vector with respect to the pages in Pu:),...,,(21 ngggu = where 1=ig ,

],1[ni∈ . The projection of coordinate vector u in the k-dimensional subspace S is

represented as

),...,,(21 kkk ggguVu ′′′=Σ=′ (4.2)

where iti

n

t
ti vgg σ∑

=

=′
1

, i = 1, 2, …,k .

The equations (4.1) and (4.2) map the pages in BS and the given page u into the

vectors in the same k-dimensional subspace S, in which it is possible to measure the

similarity (relevance degree) between a page in BS and the given page u. We take

the commonly used cosine similarity measurement for this purpose, i.e. for two

vectors),...,,(21 kxxxx = and),...,,(21 kyyyy = in a k-dimensional space, the

similarity between them is defined as

,
||||||||
||),(

22 yx
yxyxsim ⋅

= where i

k

i
i yxyx ∑

=

=⋅
1

, xxx ⋅=2|||| .

In this way, the similarity between a page i in BS and the given page u is defined as

91

,
||||||||
||),(

22 uR
uRuRsimBSS

i

i
ii ′

′⋅
=′= i =1, 2,...,m. (4.3)

For the given selection threshold δ, the relevant pages in BS with respect to the

given page u is the set

BSR = { pi | δ≥iBSS , pi ∈ BS, i =1, 2, ..., m}.

In the same way, for the SVD of matrix T
qqqppp XWB ××× Ω= , we suppose rank(B)

= t and singular values of matrix B are .0...... 121 ===>≥≥≥ + qtt ωωωωω For a

given threshold ε (10 ≤< ε)2, we choose a parameter l such that

εωωω ≥− + lll /)(1 . Then we denote T
llll XWB Ω= , where

lpjil wW ×=][, , lqjil xX ×=][, ,),...,,(21 ll diag ωωω=Ω .

The ith row R'i of the matrix WlΩl is the coordinate vector of page i (page i ∈ FS) in

a l-dimensional subspace L:

),,...,,(2211 liliii wwwR ωωω=′ i = 1, 2, …, p. (4.4)

The projection of coordinate vector u in the l-dimensional subspace L is represented

as

),...,,(21 lll ggguXu ′′′′′′=Ω=′′ (4.5)

where

iji

q

j
ji xgg ω∑

=

=′′
1

, i = 1, 2, …,l .

Therefore, the similarity between a page i in FS and the given page u is

2 In practice, the threshold here may be different from that (ε) for matrix A. For simplicity, we
choose the same ε.

92

,
||||||||
||),(

22 uR
uRuRsimFSS

i

i
ii ′′′

′′⋅′
=′′′= i =1, 2,...,p. (4.6)

For the given selection threshold δ, the relevant pages in FS with respect to the

given page u is the set

FSR = { pi | δ≥iFSS , pi ∈ FS, i =1, 2, ..., p}.

Finally, the relevant pages of the given page (URL) u is a page

set FSRBSRRP ∪= .

The detailed depiction of the LLI algorithm is listed in the appendix of this

chapter. The complexity or computational cost of the LLI is dominated by the SVD

computation of the linkage matrices A and B. Without loss of generality, we suppose

m = max(m, p) and n = max(n, q). Then the complexity of the LLI algorithm is

)(32 nnmO + [GVL93]. If n << m, the complexity is approximately)(2mO . Since the

number of pages in the page source can be controlled by the algorithm, and this

number is relatively very small compared with the number of pages on the web, the

LLI algorithm is feasible for application.

4.4 Experimental Results

In our experiment, we selected an arbitrary web page u = "http://www.jaguar.com/ ",

which is the home page of Jaguar Motor Company, as the given page (URL). The

page source for this given page was obtained by AltaVista web search engine [Alta].

For comparison, the Extended Co-Citation algorithm, LLI algorithm, DH Algorithm

and Companion algorithm [DH99] were applied to this page source. Meanwhile, the

relevant pages returned by the "Related Pages" service of AltaVista search engine

93

and the "Similar Pages" service of Google search engine were also provided. Based

on the experiment results, algorithm comparison was conducted. Numerical

experiment was also conducted on the co-citation algorithms (the DH Algorithm and

Extended Co-Citation algorithm) and the LLI algorithm to show that LLI algorithm

is able to reveal deeper relationships among the pages. Since there is no numerical

standard to define the relevance between a page and the given page u, in the

experiment, we have adapted the relevant page definition in [DH99] to analyse the

experiment results, i.e., the relevant pages are those that address the same topic as

the given page u, but are not necessarily semantically identical; the best relevant

pages are required to be semantically relevant to the given page at the same time. A

small-scale user experiment was conducted among the colleagues in our research

group to evaluate the performance of the algorithms. Exactly identifying relevant

pages is a difficult task, since what is relevant for user A is not always relevant for

user B. To enable the evaluation to be more objective, a large-scale user experiment

is needed and it is in our plan for the future.

Firstly, we compare the DH Algorithm and the Extended Co-Citation algorithm

based on their experiment results. As in [DH99], we chose top 10 returned relevant

pages of each algorithm for comparison. They are listed respectively in Table 4.1

and Table 4.2.

In Table 4.1, the relevant pages returned by the DH Algorithm fall into the same

category as the given page (http://www.jaguar.com), i.e. they are all the motor

company home pages. But by checking these home pages, it is found that apart from

Ford Company home page, which has only one link to the given page, all other 9 top

94

relevant pages have no links to or semantic relationships with the given page. These

pages could only be regarded as the relevant ones to the given URL in a broad sense,

which is not the ideal situation the user wishes in many cases. In contrast to the

results in Table 4.1, the results returned by the Extended Co-Citation algorithm in

Table 4.2 have more semantically relevant pages (first 4 pages, 40% of the 10 top

relevant pages) in term "Jaguar motor" and they address the same topic "motor".

The results indicate that the Extended Co-Citation algorithm increases the

effectiveness of relevant page finding.

URL (http://) Title Comment
1 www.honda.com American Honda - Official Home Page Honda Company, no links to Jaguar
2 www.ford.com Ford Motor Company Home Page Ford Company, one link to Jaguar
3 www.porsche.com Dr. Ing. h.c. F. Porsche AG – Inter. Porsche car, no links to Jaguar
4 www.volvocars.com Volvo Global Home Page Volvo Company, no links to Jaguar
5 www.mercuryvehicles.com Mercury: Live Life in your own lane. Mercury Company, no links to Jaguar
6 www.landrover.com Welcome to the Land Rover Inter. Land Rover Motor Company, no links to Jaguar
7 www.lexus.com Lexus.com Lexus car, no links to Jaguar
8 www.mazda.com Welcome to Mazda.com Mazda Motor Company, no links to Jaguar
9 www.bmw.com BMW BMW Group, no links to Jaguar
10 www.lincolnvehicles.com Lincoln. American Luxury. Lincoln car, no links to Jaguar

Table 4.1. Top 10 relevant pages returned by the DH Algorithm

URL (http://) Title Comment
1 autopedia.com/html/MfgSitesLong.html Worlwide MFG Internet Sites All Jaguar companies in the world
2 www.autoguide.ca/manufacturers/jaguar.shtml Jaguar @ AutoGuide.net Most Jaguar companies in the world
3 www.autopartsconnect.com/carman/Jaguar.htm Jaguar All Jaguar companies in the world
4 www.jaguar-s-type.com/global/europe.html Jaguar S-TYPE Europe Home Jaguar Europe companies
5 www.honda.com American Honda - Official H. Honda Company, no links to Jaguar
6 www.ford.com Ford Motor Company Home P Ford Company, one link to Jaguar
7 www.porsche.com Dr. Ing. h.c. F. Porsche AG - Porsche car, no links to Jaguar
8 www.volvocars.com Volvo Global Home Page Volvo Company, no links to Jaguar
9 www.mercuryvehicles.com Mercury: Live Life in your … Mercury Company, no links Jaguar
10 www.landrover.com Welcome to the Land Rover I Land Rover Motor , no links Jaguar

Table 4.2. Top 10 relevant pages returned by the Extended Co-Citation algorithm

The Companion algorithm [DH99], which is different from co-citation

algorithms, finds relevant pages by applying the improved HITS algorithm [BH98]

to the page source. The relevant pages returned by this algorithm are listed in Table

4.3. Tables 4.4, 4.5 and 4.6 give the relevant pages returned respectively by the LLI

95

algorithm. AltaVista's "Related Pages" service and Google's "Similar Pages"

service.

Results in Tables 4.3, 4.5 and 4.6 indicate that the relevant pages found by

Companion algorithm, AltaVista and Google are similar. They are all relevant to the

given URL in a broad sense, rather than in a semantic sense. On the contrary, the

URL (http://) Title Comment
1 www.porsche.com Dr. Ing. h.c. F. Porsche AG - International Porsche car, no links to Jaguar
2 www.honda.com American Honda - Official Home Page Honda Company, no links to Jaguar
3 www.lexus.com Lexus.com Lexus car, no links to Jaguar
4 www.bmw.com BMW BMW Group, no links to Jaguar
5 www.ford.com Ford Motor Company Home Page Ford Company, one link to Jaguar
6 www.fiat.com HOMEPAGE FIAT Fiat Motor Company, no links to Jaguar
7 www.4adodge.com 2002 Dodge Homepage Dodge Motor Company, no links to Jaguar
8 www.mazda.com Welcome to Mazda.com Mazda Motor Company, no links to Jaguar
9 www.isuzu.com ISUZU.COM Isuzu Motor Company, no links to Jaguar
10 www.landrover.com Welcome to the Land Rover International Site Land Rover Motor Company, no links to Jaguar

Table 4.3. Top 10 relevant pages returned by the Companion algorithm

URL (http://) Title Comment
1 autopedia.com/html/MfgSitesLong.html Worlwide MFG Internet Sites All Jaguar companies in the world
2 www.autoguide.ca/manufacturers/jaguar.shtml Jaguar @ AutoGuide.net Most Jaguar companies in the

world
3 www.autopartsconnect.com/carman/Jaguar.htm Jaguar All Jaguar companies in the world
4 www.jaguar-s-type.com/global/europe.html Jaguar S-TYPE Europe Home Jaguar Europe companies
5 www.kamaz.ru/cars/jaguar/index.htm Auto World - Jaguar Jaguar World
6 www.euregio.net/edu/zawe/kfz/auto3.htm Autohersteller im Internet Many Motor companies including

Jaguar
7 www.honda.com American Honda - Official H Honda Company, no link to Jaguar
8 www.porsche.com Dr. Ing. h.c. F. Porsche AG - Porsche car, no links to Jaguar
9 www.lexus.com Lexus.com Lexus car, no links to Jaguar
10 www.bmw.com BMW BMW Group, no links to Jaguar

Table 4.4. Top 10 relevant pages returned by the LLI algorithm

URL (http://) Title
1 www.isuzu.com Isuzu
2 www.honda.com American Honda - Official Home Page
3 www.jeepunpaved.com 2001 Jeep
4 www.lamborghini.com Automobili Lamborghini SpA
5 www.hyundai-motor.com HYUNDAI
6 www.landrover.com Welcome to the Land Rover International Site
7 www.ferrari.it Ferrari
8 www.kia.com Kia
9 www.lotuscars.com Welcome to Lotus Cars USA

10 www.mercedes-benz.com Mercedes-Benz

Table 4.5. Top 10 relevant pages returned by the "Related Pages" service of
AltaVista

96

URL (http://) Title
1 www.chevrolet.com 2002 Chevrolet.com
2 www.volvo.com Welcome
3 www.infiniti.com www.infiniti.com/
4 www.ferrari.it Ferrari
5 www.porsche.com Dr. Ing. hc F. Porsche AG - International
6 www.bmw.com BMW
7 www.mercedes-benz.com Mercedes-Benz
8 www.saab.com Saab Global, Saab Cars
9 www.honda.com American Honda - Official Home Page

10 www.toyota.com 2001 Toyota

Table 4.6. Top 10 relevant pages returned by the "Similar Pages" service of Google

LLI algorithm (Table 4.4) returns more semantically relevant pages: six of ten (60%)

top pages are relevant to the given page in a semantic sense. They are all about the

"Jaguar motor". Meanwhile, the returned pages also contain some relevant pages in

a broad sense, i.e. home pages of some motor companies. It is also shown in this

experiment that the LLI algorithm is better than the Extended Co-Citation algorithm

in semantically relevant page finding.

Next, we conducted a numerical experiment to see if the LLI algorithm is able to

reveal deeper relationships among the pages and effectively identify the relevant

pages, for example, effectively distinguish those pages that have the same (back or

forward) co-citation degrees with u. Here, we only present the numerical experiment

results, as well as concepts, for the pages in BS. For the pages in FS, the situation is

the same. Before analysing the numerical results, we introduce some concepts. The

symbols used here are in accordance with those in section 4.3.

As in section 3.3, the linkage matrix between the pages in BS and the pages in Pu

is nmijaA ×=)(. The first concept introduced here is the back co-citation percentage

of a page Pi in BS, denoted as bcp(Pi). It is defined as the number of its parent pages

in Pu divided by the size of Pu , i.e.

97

bcp(Pi) = na
n

j
ij /

1
∑
=

 , Pi ∈ BS , i ∈ [1, m].

This definition is actually another form of back co-citation degree of page Pi with

the given page u. The second concept is the back density of a page Pui in Pu, denoted

as bd(Pui). It is defined as the number of its child pages in BS divided by the size of

BS, that is

bd(Pui) = ma
m

k
ki /

1
∑
=

, Pui ∈ Pu , i ∈ [1, n].

The last concept is the drift degree of a page Pi in BS, denoted as dd(Pi). It is defined

as

)(/)(1)(
 ofparent a is

∑∑
∈

−=
uujiui PP

uj
PP

uii PbdPbdPdd .

It could be inferred from the above definitions that

• The back density (bd) of a page in Pu reflects the density of this page. If a page

in Pu has more child pages in BS, its back density would be higher. Accordingly,

the pages in Pu with higher back densities are called dense parents and those with

lower back densities are called sparse parents. In practice, the meaning of

"higher" or "lower" is relative.

• The drift degree (dd) of a page in BS reflects the relationship between this page

and the dense parents in Pu. Indeed, under the circumstance where two pages in

BS have the same bcp value, if one page has more connections with dense pages

in Pu, its drift degree (dd) would be lower, otherwise, its drift degree would be

higher. Lower drift degree means the page is more likely to be related to the

given page u.

98

The back co-citation percentage (bcp) of a page in BS, and in turn the co-citation

algorithm, could not reflect above latent relationships revealed by the back density

and drift degree. On the other hand, however, drift degree (dd) still could not more

precisely reflect the relationships among the pages. For example, if one page in BS

has some connections with dense parent pages but has few connections to the sparse

parent pages, another page has fewer connections to the dense parent pages but has

many connections to the sparse parent pages, the dd values of these two pages might

be the same, or nearly the same. In this case, these two pages could not be

distinguished either only by their drift degrees. In order to see if the LLI algorithm is

able to reveal more deeper relationships among the pages and more effectively find

the relevant pages, we randomly selected 10 pages from BS, which are listed in

Table 4.7, and calculated their bcp, dd values, as well as their similarities sim(Pi,u)

to the given page u according to the LLI algorithm. The numerical results are

presented in Table 4.8.

It is indicated in Table 4.8 that although bcp(P5), bcp(P6) and bcp(P8) are the

same, their drift degrees are different (dd(P5) = 0.54, dd(P6) = 0.60 and dd(P8) =

0.62). In this case, the value of page drift degree (dd) is able to divide the page set

(P4, P5, P6, P7, P8, P9), which has the same bcp value, into three groups (P4, P5), (P6,

P7) and (P8, P9). Similarly, pages P2 and P3 can be distinguished by their drift

degrees, but cannot be distinguished by their bcp values. However, the value of page

drift degree is unable to further distinguish the pages that have the same dd values,

such as P3, P4 and P5. On the contrary, the numerical results in the last row of this

table indicate that the LLI algorithm is able to distinguish almost all of these pages,

99

Page No. URL (http://)
P1 www.honda.com
P2 www.porsche.com
P3 www.ford.com
P4 www.lexus.com
P5 www.bmw.com
P6 www.mercuryvehicles.com
P7 www.landrover.com
P8 www.volvocars.com
P9 www.mazda.com
P10 www.lincolnvehicles.com

Table 4.7. Randomly selected 10 pages from the page source BS

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
bcp(Pi) 0.40 0.35 0.35 0.30 0.30 0.30 0.30 0.30 0.30 0.25
dd(Pi) 0.43 0.48 0.54 0.54 0.54 0.60 0.60 0.62 0.62 0.68
sim(Pi,u) 0.85 0.79 0.68 0.76 0.75 0.68 0.71 0.69 0.68 0.63

Table 4.8. Numerical results of bcp, dd values and similarities of 10 selected pages
 in BS

and suggest that LLI reveals deeper relationships among the pages. This merit is

intuitively shown in Figure 4.4.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Page

bcp value
dd value
sim value

Figure 4.4. Comparison of bcp, dd, and sim values for the selected 10 pages

It can be seen from Figure 4.4 that the changes of page similarities sim(Pi,u) are

coincident with the changes of page drift degrees dd(Pi) in common sense meaning,

i.e., if a page has lower drift degree, it would have higher similarity to the given

URL u. It is also clearly indicated in the figure that the sim value change trend of the

LLI algorithm is the same as the bcp value change trend of the co-citation algorithm,

but the LLI algorithm gives a more precise trend description. For example, pages P4

100

and P5 could not be distinguished by their bcp values (co-citation algorithm) and dd

values, but could be distinguished by their sim values (LLI algorithm). These are the

situations we seek. The above numerical results and analysis indicate that the LLI

algorithm reveals deeper relationships among the pages and finds relevant pages

more precisely and effectively.

4.5 Related Work and Discussions

The hyperlink, because it usually conveys semantics between the pages, has

attracted much research interest. When hyperlink analysis is applied to the relevant

page finding, the situation is different from most other situations where hyperlink

analysis is applied. Firstly, finding relevant pages of a given page is different from

Web search. In traditional Web search, the input to the search process is a set of

query terms; while in relevant page finding, the input is a given Web page (URL)

[DH99]. Secondly, the object to which hyperlink analysis is applied for finding

relevant pages is uncertain; while in most other situations where the hyperlink

analysis is applied, the objects are certain, for example the object might be a set of

Web searched pages [Klein99], all the pages in a Web site [Chen97] [MH97], or all

the pages on the Web [BP98a].

As indicated in section 4.1, the success of finding relevant pages of a given page

depends on two essential aspects: (i) how to effectively construct a page source from

which the real relevant pages can be found; (ii) how to establish effective algorithms

to extract real relevant pages from the page source. Different relevant page finding

algorithms have different page source construction strategies. In Kleinberg's work

101

[Klein99], which applies the HITS algorithm to find relevant pages, the page source

is derived from the parents of the given page, ie, the page source consists of parent

pages and those pages that point to, or are pointed to by, the parent pages. However,

since the pages pointing to the parents connect to the given page via two-level

hyperlinks (ie, these pages hyperlink to the given page u via the parents of u) and a

Web page usually refers to multiple topics, they might have weak semantic

relationships (relevance) with the given page, and in turn the page source might not

be rich in related pages.

Dean and Henzinger [HD99] construct page source in a different way for their

relevant page finding algorithm Companion. Their pages source consists of parent

and child pages of the given page u, as well as those pages that are pointed to by the

parent pages of u and those pages that point to the child pages of u. This page source

construction is more reasonable, as all the pages in the page source are at the same

link level with the given page u, and have close relationships with u. The hyperlinks

between the pages on the same host are omitted in this page source construction,

which might filter some semantically relevant pages on the same host about certain

topics. This page source construction does not consider intrinsic page treatment in

the parent and child page sets of u, which might result in the algorithm being easily

affected by malicious hyperlinks.

Mukherjea and Hara [MH97] observed that, for a given page u, its semantic

details are most likely to be given by its in-view and out-view. The in-view is a set

of parent pages of u, and out-view is a set of child pages of u. In other words, those

pages that have relationships with the in-view and out-view of u are most likely to

102

be relevant pages. This is the base on which our page source is constructed. The

page source in this work is different from that of [DH99]. In our page source

construction, links between pages on the same host are permitted, but the

mechanisms of intrinsic and near-duplicate page treatment are established at the

same time. Therefore, the new page source avoids some semantically relevant pages

being omitted and prevents the algorithm from being affected by malicious

hyperlinks.

Apart from page source construction, effective algorithms for finding out the

relevant pages are another important aspect in relevant page finding. Kleinberg

[Klein99] applies his HITS algorithm, and Dean and Henzinger [HD99] apply their

improved HITS algorithm, to their own page source. Instead of finding relevant

pages from page similarities, they find authority pages as relevant ones from mutual

page relationships that are conveyed by hyperlinks. As stated in section 1, if the

page source is not constructed properly, the selected relevant pages might be

unsatisfactory because of the topic drift problem.

For the algorithms that find relevant pages from page similarities, how to

measure the page similarity is the key for the success of algorithms. Among them,

the co-citation algorithm has its own advantages because of its intuitiveness and

simplicity. Chen and Carr [CC99] use co-citation analysis to cluster the authors, as

well as research fields, in the Hypertext area. Larson [Lars96], Pitkow and Pirolli

[PP97] have used the co-citation to meaure the page similarity and cluster the Web

pages. Dean and Henzinger [DH99] also apply co-citation analysis to find relevant

pages, and declare that their co-citation algorithm is 51% better than the "What's

103

Related" service of Netscape for the 10 highest ranked pages, although Netscape

uses both content and usage pattern information in addition to connectivity

information to get the related pages. But the corresponding page source for this co-

citation algorithm is derived only from the parent pages of the given page, and many

semantically related pages that have relationships with the child pages of the given

page might be omitted. The experimental results in [DH99] therefore contain few

semantically relevant pages. The Extended Co-Citation algorithm in this chapter is

different from that in [DH99] mainly because of the difference in page source

construction. The co-citation algorithms measure the similarity between the pages

only based on the number of their common links, no deeper relationships among the

pages are revealed and exploited.

For effectively measuring page similarity, much work has been done. For

example, Chen [Chen97] combines hyperlinks, content similarity and browsing

patterns as a measure of similarity. Weiss et al. [WVS+96] use hyperlinks and

content similarity to measure the page similarity and to cluster Web pages. Similar

work can also be seen in [MFH94] [MF95] [KKA98]. Theoretically, these page

similarities could also be used for finding relevant pages. But the LLI algorithm in

this chapter takes an alternative approach to measure page similarity. Firstly, the LLI

algorithm only takes the hyperlinks into consideration, which allows for a great deal

of flexibility since it allows for the addition of hypermedia functionality to pages,

multimedia or otherwise, without changing the original page's format or embedding

mark-up information within pages [EHD+01]. Secondly, page similarities in the LLI

algorithm are measured by the deeper (mathematical) relationships among the pages

104

that are revealed within the whole of the concerned page source by mathematical

operations, especially the SVD of a matrix, not measured by simply counting the

number of links. The last difference is that the similarities of the pages in the subsets

BS and FS of the page source are measured separately, ie these two page subsets are

treated separately, rather than being considered as united in the Companion

algorithm of [DH99]. This page source treatment avoids page similarities in one

subset being influenced by the pages in another subset, and guarantees the

semantically relevant pages being selected. The experimental results show the merit

of this page source treatment.

4.6 Conclusions

In this chapter, we propose two algorithms to find relevant pages of a given page:

the Extended Co-Citation algorithm and the LLI (Latent Linkage Information)

algorithm. These two algorithms are based on hyperlink analysis among the pages

and take a new approach to construct the page source. The new page source reduces

the influence of the pages in the same web site (or mirror site) to a reasonable level

in page similarity measurement, avoids some useful information being omitted, and

prevents the results from being distorted by malicious hyperlinks. These two

algorithms could identify the pages that are relevant to the given page in a broad

sense, as well as those pages that are semantically relevant to the given page.

Furthermore, the LLI algorithm reveals deeper (mathematical) relationships among

the pages and finds out relevant pages more precisely and effectively. Experimental

results show the advantages of these two algorithms.

105

Appendix

Depiction of LLI (Latent Linkage Information) Algorithm

LLI (Pu, Cu, BS, FS, ε, δ)

 Input:

Pu: the set of parent pages of given URL u, its size does not exceed the

restriction B,

Cu: the set of child pages of u, its size does not exceed the restriction F,

BS: one part of page source derived from Pu, its size does not exceed the

restriction B×BF,

FS: another part of page source derived from Cu, its size does not exceed the

restriction F×FB,

ε : threshold for selecting matrix approximation parameters k and l,

δ : threshold for selecting related pages.

 Output:

RP: the set of relevant pages with respect to the given URL u.

 Begin

 Get the number of pages in BS, m = size(BS); Get the number of pages in Pu,

 n = size(Pu);

Get the number of pages in FS, p = size(FS); Get the number of pages in Cu,

q = size(Cu);

 Construct linkage matrices nmA × and qpB × ;

 Compute the SVD of T
nnnmmm VUA ××× Σ= ; Compute the SVD of

106

 T
qqqppp XWB ××× Ω= ;

 Select parameter k such that εσσσ ≥− + kkk /)(1 ;

Select parameter l such that εωωω ≥− + lll /)(1 ;

 For i = 1 to m do

 Computing the vector),...,,(2211 kikiii uuuR σσσ= according to (4.1);

 For i = 1 to p do

 Computing the vector),...,,(2211 liliii wwwR ωωω=′ according to (4.4);

 Compute the vector),...,,...,,(
11 1

22
1

11 ∑∑ ∑∑
== ==

=′
n

t
ktk

n

t

n

t
itit

n

t
t vvvvu σσσσ

 according to (4.2);

 Compute the vector

),...,,...,,(
11 1

22
1

11 ∑∑ ∑∑
== ==

=′′
q

j
ljl

q

j

q

j
ijij

q

j
j xxxxu ωωωω according to (4.5);

 For i = 1 to m do

 Computing
22 ||||||||

||][
uR
uRiBSS

i

i

′
′⋅

= according to (4.3);

 For i = 1 to p do

 Computing
22 ||||||||

||][
uR
uRiFSS

i

i

′′′
′′⋅′

= according to (4.6);

Construct the set BSR = { pi | δ≥][iBSS , pi ∈ BS, i =1, 2, ..., m};

Construct the set FSR = { pi | δ≥][iFSS , pi ∈ FS, i =1, 2, ..., p};

Return set FSRBSRRP ∪= ;

 End

107

Chapter 5

Visualization Support for Information
Retrieval

5.1 Introduction

The work in the previous two chapters indicates that the singular value

decomposition (SVD) of matrix, because of its merit in revealing main correlation

relationships among the elements, can be successfully applied to a wide range of

information retrieval and management on the web. It is also indicated that when

SVD of matrix is used to find more deep relationships among the data, the following

two requirements need to be met.

1. A data (information) space where the SVD is applied should be defined. For

example, the data space for eliminating noise pages and constructing web

page community is the base set of pages with respect to the query topics.

2. The correlation pattern between the data should be established within a

matrix framework. This requirement implies two aspects. The first aspect is

that what kind of information is used to represent the concerned data. The

second aspect is how to model the correlation between the data that is

represented by the selected information. In the context of the web, hyperlink

108

information among pages can be used to represent relationships among pages

and to model their correlations, like the work in the previous two chapters.

As long as the above two requirements are met, the SVD of matrix can also be

successfully applied to conventional textual information retrieval. Actually, the SVD

based algorithms for web page community construction could be regarded as special

cases of SVD based information retrieval algorithms. Among the SVD based textual

information retrieval algorithms, the LSI (Latent Semantic Indexing) method in

[BDO95] [DDF+90] is a representative. In the LSI, the information used to represent

data (documents) is terms (keywords). A document is represented as a vector of

keywords. The document-term relationships within the whole data space (database)

are expressed as a matrix, i.e. if one document contains a term, the corresponding

element value in the matrix is 1 (or a weight), otherwise is 0. The correlation

relationships between documents are analysed through SVD within the document-

term matrix.

Although mathematical algorithms, such as SVD based algorithms, are effective

in information retrieval, the correlation relationships (e.g. similarities) revealed by

mathematical operations are not intuitive to understand. For better applying this kind

of algorithms in practice, it is necessary to establish an intuitive and feasible

mechanism such that the results returned by this kind of mathematical algorithms are

easy to understand. This mechanism is also necessary for traditional information

retrieval. In traditional information retrieval, a user's query is usually compared with

documents in a database through database management systems. The information

that matches the user's query is retrieved and returned to the user. However, in many

109

cases, users may not be able to formulate an exact query, and often give an

approximation at the beginning and then refine the query according to the initial

results. Thus the amount of retrieved information might be very large, and may not

be relevant to the final results. Therefore, new effective information retrieval

mechanisms are also needed.

On the other hand, visualization has become increasingly important to data

management and information retrieval. Using visualization techniques, the retrieved

information (data) can be mapped onto visualization objects in a simpler format

(sometimes points), which refer to the corresponding information in the database or

other data sources. The visualization objects enable users to understand retrieved

data intuitively. Moreover, these visualization objects capture major information

about the relationship between the query and the retrieved data, for instance, the

relativity between the retrieved data and the query can be expressed as a relative

distance between them. Because of this, visualization objects will lead users to

choose more appropriate query conditions, search information and narrow the search

space gradually according to the visualised search information.

With the guide of visualization objects, users can find what they really require

and understand the retrieved results intuitively. Finally, users can obtain details of

the retrieved data using the visualization interface. Since only partial information

about the retrieved data is needed for retrieval visualization during the retrieval

procedure, the retrieval efficiency will be increased. Due to its intuitive, interactive

and efficient advantages, visualization is becoming a very practical method for

110

traditional information retrieval, as well as for web information management and

retrieval, which attracts more and more research interests recently.

Over the past few years, a number of models for integrating visualization into

information retrieval and management systems have been developed, such as the

work in [HM90], [ISO91], [JS98], [Kauf91], [Keim96], [Rob98] and [Ups89].

However, these investigations are mainly based on computer graphic

implementation. For data visualization processing, the idea originally proposed by

Haber and McNabb [HM90] has been accepted widely. It is said that there are three

main transformations to be carried out on the data in order to convert the original

data into an image object that can be displayed:

(1) Data Enrichment/Enhancement. This transformation takes the raw data and

alters it into a format that can act as input for the required visualization

operations. This might involve interpolation of results to obtain additional

results, or the filtering of noise from the system. The input of this

transformation is the raw data, and the output is the derived data.

(2) Visualization Mapping. Once the data has been translated into a usable format,

it can be used to construct an imaginary object called an abstract visualization

object (AVO). The AVO is used to represent the data that has been modelled.

The input of this transformation is the derived data, and the output is AVO.

(3) Displaying/Rendering. The final stage in visualization involves displaying, or

rendering, the object on the screen. This stage will frequently make use of

standard computer graphics techniques to transform the AVO into a displayable

image. The input of this transformation is the AVO, and the output is an image.

111

In this chapter, we focus on the visualization mechanism for mathematic

operation based, especially the SVD-based, textual information retrieval algorithm.

Since the mechanism is based on SVD and other mathematical operations, the

corresponding visualization algorithms could also be smoothly applied to SVD

based web information management and retrieval, such as the work in the previous

two chapters, to support various web-based applications.

When applying the above idea to information retrieval visualization at the Data

Enrichment step, suitable algorithms must be used to retrieve required data or

information from the database or data sources according to the user's query. This

retrieved data is called derived data. For textual database retrieval, more and more

mathematical algorithms and models are being developed currently to reveal the

semantic relationship among the key words and increase the efficiency and precision

of information retrieval [BDO95] [DDF+90] [Rob98] [KT99]. Singular value

decomposition (SVD) based retrieval algorithm is the one among them. Using the

SVD method in linear algebra, implicit higher-order structure in the association of

terms and documents can be revealed and intelligent retrieval can be implemented

[BDO95] [DDF+90] [KT99]. There are also other linear algebra based retrieval

algorithms, such as those based on eigenvalue and eigenvector of matrix [KT99]

[KCK00] [BP98a] [Klein99]. However, it does not mean that this derived data can

be used directly for visualization. This is because this derived data usually only

reveals the inter-mathematical relationship between the retrieved data and the query.

There is also a need to convert the derived data, i.e. inter-mathematical relationship,

112

into AVO. After an AVO has been obtained, strategies are needed for displaying it.

As we can see, the algorithm for data enrichment is the base for visualization.

In the following section 5.2, we introduce our system prototype through

visualization examples, interfaces and layouts. In section 5.3, we present SVD-based

textual information retrieval algorithm and investigate visual support mechanisms

for this kind of algorithms. Section 5.4 gives technical details of the visualization

algorithm and implementation. Conclusions are presented in section 5.5.

5.2 Visualization Examples & System Prototype

We have developed a visualization system for supporting the user’s query and

information retrieval from a database. The system includes two parts. The first part

provides a conceptual level interface for formulating query type based on conceptual

schema, E-R diagram in this example. The second part provides an interface for

users to refine the query and do further selections at the instance level.

Figure 5.1 shows an on-line web diagram interface for database information

visualization. We choose a small database which stores papers and other information

related to them, such as, journals and authors. The system presents the objects and

their relations in this small database into an Entity-Relationship model, and then

visualizes this model using an E-R diagram (see Figure 5.1).

113

Figure 5.1. Visual selection for constructing a query type

The user is allowed to interact with this E-R diagram by selecting objects to

construct a query type. Suppose that the user select the entity ‘Paper’ and its

attributes ‘Keyword’, the system would know that the user would like to do the

query of using keyword to search papers. Another interface (see Figure 5.2) is then

shown to the user. This interface allows the user to choose keywords and some

interactive operations for refining the query.

Figure 5.2 shows the frame of the data visualization and the document points

whose coordinates are calculated directly according to the mathematical equation in

section 5.3. It can be seen that some displayed document points are overlapped. This

is because no visualization algorithms are used at this stage. The top text area is used

to display the user's query or details of the retrieved information. The central area is

the visualization display area. At the bottom, there are function buttons and choice

boxes for users to formulate queries.

114

Figure 5.2. Visual interface of information retrieval system

Figure 5.3 shows the visualized user's query of "application OR introduction"

and retrieved documents that are visualized as points according to our algorithms.

Here the user's query is mapped into the original point of the coordinate system,

which is marked as "Query". The actual match ratio of each retrieved document to

the query is shown in a pair of parentheses at the upper left corner of the display

area. The number beside the point is the paper number in database.

Figure 5.3. Visualization of the query and retrieved documents

115

When the mouse moves into the display area and close to the retrieved document

(point), brief information about the title of this paper will appear beside this

document. At the same time, the colour of this document number and its match ratio

at the upper left corner of the display area will change accordingly. This mechanism

gives the user a clue about the retrieved document. Figure 5.4 shows this situation,

in which the mouse moved to the document 3.

Figure 5.4. Information of the mouse pointed document

In Figure 5.5, the details of document 3, which is one of the closest documents

related to the user's query, are obtained from the database through JDBC and

displayed on the top text area of the interface. Details of other query-related

documents can also be obtained from the database and displayed by clicking the

corresponding document points with mouse.

116

Figure 5.5. Details of retrieved document from the database

Once a document is selected, the keywords of this document and corresponding

semantic related keywords from the database are fetched by the system, from which

new queries can be formed automatically and the user can continue his search.

In the following sections, we introduce more details about our method and

visualization algorithms used in this system.

5.3 SVD-based Information Retrieval

The first phase of SVD-based information retrieval is to construct a matrix of terms

(keywords) by documents [BDO95] [DDF+90]. The elements of the term-document

matrix A are the occurrences of each term (keyword) in a particular document, that is

nmijaA ×=][

where ija denotes the frequency in which term i occurs in document j, m is the

number of terms and n is the number of documents. Considering the local and global

117

weights to increase or decrease the importance of terms within or among documents,

ija can usually be written as [BDO95]

)(),(iGjiLaij ×= ,

where),(jiL is the local weight for term i in document j,)(iG is the global weight

for term i .

Since the term-document matrix A is a real matrix, there exists a SVD of A

TVUA Σ=

where],...,,[21 muuuU = is an mm × orthogonal matrix,],...,,[21 nvvvV = is an

nn × orthogonal matrix, and Σ is defined as in section 2.5. From the SVD of A, a

proper parameter k (relatively small) can be chosen to construct the matrix Ak as the

best approximation of the original term-document matrix A in k-space. For example,

we chose k = 2 for two-dimensional space, and k = 3 for three-dimensional space.

The choice of k is a non-trivial issue - there is a trade-off between the amount of

dimension-reduction and the accuracy of the resulting document representation

[KT99]. This is out of our discussion in this work. More details about this topic can

be found in [Dum91]. As we know, Ak is the closest matrix to A with rank k. Denote

knkkkmkk vvvVuuuU ×× ==],...,,[,],...,,[2121 ,

).(),,...,,(21 Arankkdiag kk <=Σ σσσ

Then

 T
kkkk VUA Σ= (5.1)

is a nm × matrix.

118

The coordinates of terms and documents in k-space can be obtained from

equation (5.1). In fact, the dot product between two row vectors of Ak reflects the

extent to which two terms have a similar pattern of occurrence across the set of

documents. The matrix T
kk AA , which is a square symmetric matrix, contains all

these term-to-term dot products. Since kΣ is diagonal and kU , kV are orthogonal,

the matrix T
kk AA can be expressed as

T
kkkk

T
kkk

T
kk UUUUAA)(2 ΣΣ=Σ= ,

which means that the i, j element of T
kk AA can be obtained by taking the dot

product between the i and j rows of kkU Σ . That is to say, if we consider the rows of

kkU Σ as coordinates for terms, dot products between these points give the

comparison between terms. Similarly, we also consider rows of kkV Σ as coordinates

for documents. In this way, terms and documents can be represented as points in k-

dimensional space. For example, suppose k = 2, the x-coordinates of m terms can be

obtained by using the first column of U2 multiplied by the first singular value 1σ ,

the y-coordinates of m terms can be obtained by using the second column of U2

multiplied by the second singular value 2σ . Similarly, the first column of V2

multiplied by 1σ is the x-coordinates of documents, and the second column of V2

multiplied by 2σ is the y-coordinates of documents. Thus, the terms and documents

can be represented in a two-dimensional Cartesian plane.

119

For a user's query q, which is presented as an m-vector of terms (keywords),

k
T Aq contains the dot products of query-to-document. In the similar way, the

coordinates of query q in k-dimensional space are defined as [BDO95] [DDF+90]:

 1' −Σ= kk
TUqq . (5.2)

Since kΣ is a diagonal matrix, the effect of 1−Σk on the coordinates of q is just

deciding if the vector q in k-dimensional space has been stretched or shrunk in

proportion to the corresponding diagonal elements of 1−Σk .

Thus, from the equation (5.1), we can compute term-term similarities, document-

document similarities and term-document similarities on certain similarity

measurement, for example, the cosine measurement.

In k-dimensional space, 'q is a k-vector whose elements are the coordinates of a

query in k-dimensional space. Especially, with k = 2, the user's query can be

represented as a point in a two-dimensional Cartesian plane. The query vector can

then be compared to all document vectors using some similarity measurements. The

commonly used similarity measurement is the cosine between the query vector and

the document vector [BDO95] [DDF+90]. The documents exceeding the cosine

threshold are returned to the user. For example, suppose the coordinates of a user's

query in two-dimensional space are (x, y), the coordinates of one document are

(dd yx ,), the user's query vector from the original point of the two-dimensional

Cartesian system to (x, y) is vectorQ and the document vector from the same original

point to (dd yx ,) is vectorD. The angle difference between these two vectors is ϑ as

shown in Figure 5.6. We select 0.90 as the cosine threshold, that is to say if

120

90.0|)cos(| ≥ϑ , then this document will be returned to the user, otherwise this

document is not the one the user needs.

Figure 5.6. Example of cosine threshold

In general, for 2>k , let),...,,(21 kxxxx = and),...,,(21 kyyyy = be two document

vectors, the cosine similarity between them,),(yxsim , is defined as

,
||||||||
||),(

22 yx
yxyxsim ⋅

=

where i

k

i
i yxyx ∑

=

=⋅
1

, xxx ⋅=2|||| .

It can be seen from the above discussion that similarity reveals the relationship

of relative position between two vectors in k dimensional space, and this relationship

(distance) can be mapped into a two-dimensional space and visualized. So the

visualization mechanisms for 2=k and 2>k are the same. This principle applies

to term-document similarities, as well as term-term and document-document

similarities, and, to some extent, intelligent retrieval can be realized.

In fact, in information retrieval, a query and documents are in the vector form of

terms in k dimensional space. For a given query, new queries can be constructed

automatically according to the term-term similarity. Similarly, for a retrieved

document, more documents can also be retrieved automatically according to the

o

vectorD

),(dd yx vectorQ
),(yx

x
ϑ

y

121

document-document similarity. On the other hand, the retrieved document is

expressed in a term vector as well, thus new queries can be constructed from the

terms in this vector and term-term similarities in the databases. As a consequence,

from a user's query or initial retrieved documents, consecutive new queries are

constructed automatically, which are semantic related to the original query, and

intelligent information retrieval is carried out continuously. During this procedure,

caching techniques can be used for increasing the retrieval efficiency, which is

beyond our discussion.

Apart from traditional information retrieval, this algorithm is also used for

searching web information resources, such as [KCK00], which is based on term-

term similarity. Experiments show that by use of this SVD based retrieval algorithm,

information is retrieved based on meaning rather than literal term usage [BDO95]

[DDF+90].

5.4 Visualization Algorithms for Information
 Retrieval

The SVD based algorithm in section 5.3 solves the problem of data enrichment in

the visualization process. Although all documents and users queries can be

represented in k-space as vectors by using the SVD based algorithm in section 3, the

cosine threshold of similarity measurement makes it hard for the user to understand

the retrieved results and decide which documents are the required ones, especially

when 3>k . In other words, the direct use of the SVD based algorithm is not

intuitive. Furthermore, in practice, a user's query usually consists of several sub-

122

queries and can be expressed as a set of sub-queries. This set of sub-queries cannot

be mapped directly into an AVO in the k dimensional space by using above SVD

algorithm. For these reasons, how to visualise the user's query as just one AVO and

how to visualise the related retrieved results intuitively are the motivations for

constructing visualization algorithms. That is to say, the visualization algorithms

will realise visualization mapping from derived data to AVO.

Since two-dimensional space is the most commonly used space in visualization,

for intuitiveness, the approach for constructing visualization algorithms are proposed

for two-dimensional space or a Cartesian coordinate system (k=2). For simplicity, a

point in two-dimensional space is chosen to be the abstract visualization object

(AVO). The cosine similarity of the document to the query is converted to the

distance of this document to the query in two-dimensional space, not by using the

cosine threshold directly. As stated in section 5.3, for 2>k , the visualization

support mechanism is the same and ideas in these algorithms can also be used in the

same way.

Accordingly, the visualization algorithms should solve the following problems:

(i) how to map the user's query into a point in a two-dimensional display area;

(ii) how to retrieve the documents that meet the retrieval conditions; and

(iii) how to determine the distance between the retrieved documents and the query.

For simplicity, the global and local weights of the term are not considered in the

following algorithms.

123

5.4.1 Visualization Algorithm for SVD-based
 Retrieval

Suppose the number of terms is m, the number of documents is n, a user's query

consists of s sub-queries and can be expressed as the following set

}1|{)(siqQ i ≤≤= ,

where)(iq , corresponding to a sub-query, is such an m-vector that each of its

element is either 1 or 0.

(1) Define function f such that

1
22

)()()()(
2

)(
1)(ˆ)ˆ,ˆ(−Σ=== Uqqfqqq

Tiiiii ,

where)(
1ˆ

iq and)(
2ˆ iq are x-coordinate and y-coordinate of the sub-query

)(iq respectively. Denote the set

}),()ˆ,ˆ(|)ˆ,ˆ{()()()(
2

)(
1

)(
2

)(
1 QqqfqqqqQP iiiiii ∈== .

Then for a user's query, we can map the user's query as a point Query(x,y) where

sqx i

si
/)ˆ()(

1
1
Σ
≤≤

= , sqy i

si
/)ˆ()(

2
1
Σ
≤≤

= .

Suppose

),ˆ(min),ˆ(max)(
11

)(
min

)(
11

)(
max

i

si

xi

si

x qQqQ
≤≤≤≤

==

)ˆ(min),ˆ(max)(
21

)(
min

)(
21

)(
max

i

si

yi

si

y qQqQ
≤≤≤≤

== ,

we have

)(
max

)(
min

xx QxQ ≤≤ ,)(
max

)(
min

yy QyQ ≤≤ ,

124

which means the user's query Query(x,y) can be displayed properly only if the

related sub-queries)(iq , si ≤≤1 can be displayed properly.

(2) We denote ,,...,2,1),,(niyx ii = to be the coordinates of all documents obtained

from equation (5.1) in section 5.3 with k = 2. The cosine threshold for similarity

measurement is 10 ≤< ε . Define

)arctan(jjj xy=α ,)ˆˆarctan()(
1

)(
2

)(iii qq=α where QPqq ii ∈)ˆ,ˆ()(
2

)(
1 ,

||)()(i
j

i
j ααϑ −= ,

then the retrieved document set corresponding to the sub-query)(iq is

}cos,,...,2,1|),{()(εϑ ≥== i
jjji njyxR , si ≤≤1 ,

and the retrieved document set for the user's query is as follows

U
si

iRR
≤≤

=
1

 .

Denote set

}),(,,...,2,1|{ RyxnjjJ jj ∈== .

(3) For Ryx jj ∈),(, the distance of),(jj yx to QPqq ii ∈)ˆ,ˆ()(

2
)(

1 is defined as

constcd i
jji ×−=)cos()(ϑ , Jjsi ∈≤≤ ,1 ,

and the parameters c and const are constants that depend on the actual size of the

display area to ensure the distances are suitable for display. For instance, we can

chose c = 1.2, const = 500 and pixel to be the unit of distance as an option.

Accordingly, the distance from),(jj yx to Query(x,y) is defined as

125

jisij dd
≤≤

=
1
min , Jj∈ ,

and the set of distances from the retrieved documents Ryx jj ∈),(to point

Query(x,y) is as follows

}|{ JjdD j ∈= .

For some more complex queries, the visualization algorithms can also be

constructed by combining the above algorithms.

5.4.2 Algorithm for Match Ratio

The match ratio of a document to user's query is another aspect to express similarity

in information retrieval, which shows the similarity numerically. As we defined

above, the distance from a retrieved document to the user's query is in the form of

δϑ ×−=)cos(cd , where 1>c and 0>δ are parameters decided according to the

actual display area. Then it is natural that the match ratio is defined as

δ/dcr −= .

Since 1cos0 ≤≤< ϑε , 1>c and 0>δ , thus

δδ cdc <≤−)1(, cdc <≤− δ/)1(,

1/0 ≤−=< δdcr .

Then the percentage form of match ratio is defined as

%100×= rp .

5.4.3 Algorithm for Displaying

126

The last phase of visualization is displaying the AVOs (points). The user's query is

mapped into the point Query(x,y) and the set of distances from retrieved documents

to Query(x,y) is obtained from the algorithms above. With the point Query(x,y) and

distance set D in mind, we can visualise the user's query and retrieved documents.

The first step of displaying is to display the user's query Query(x,y) at a proper

position on the display area. As we know, the original point of the coordinate system

(X) for display area is usually located at the upper left corner of the display area. But

users are used to the coordinate system (X ′) in which the original point is located at

the centre of the display area. Suppose the width of the display area is w, the height

is h, then the coordinates of the original point of X ′ is

2/wOx = , 2/hOy =

and the coordinates (), yx ′′ of Query(x,y) in X ′ is as follow

xx xOx δ*+=′ , yy yOy δ*−=′ ,

where yx δδ , are parameters that depend on the size of display area. Thus the point

Query(x,y) in X is mapped into the point Query(yx ′′,) in X ′ . Especially, if we

chose 0== yx δδ , then Query(x,y) is mapped into the original point of X ′ .

The second step is to display the retrieved documents. Since the relationship

between the ith retrieved document and the Query(x,y) is only expressed as the

distance Ddi ∈ , there will most likely exist cases where some displayed document

points have the same distances or are too close to be distinguished on the display

area. We can use the following strategy to solve this problem. Suppose the size of

127

set D (the number of elements in D) is D.size, P is a set of points that will be

displayed, the strategy is described in pseudo-programming language as:

For (int i = 1; sizeDi .≤ ; i++)
{
 boolean condition = false;
 while (! condition)
 {
 double angle= π∗∗2()random ;

 double)cos(angledxx itmp ∗+′= ;

 double)sin(angledyy itmp ∗−′= ;

 define a temporal point),(tmptmptmp yxP ;

 if(distance from tmpP to any δ>∈ Pp)

 {

 add tmpP to P ;

 condition = true ;
 }
 }
}
display points in P ;

where parameter δ is the pre-defined criterion. The properly displayed document

points are connected with actual documents in the database. The detail information

of documents can be obtained and displayed from the database through certain

mechanisms, such as JDBC (Java Database Connectivity) in Java. As indicated in

section 5.3, new queries will be constructed automatically by the system from the

user's query or retrieved documents, and intelligent information search will be

carried out continuously until the required information is obtained.

5.5 Conclusions

In this chapter, we examine the data retrieval algorithm based on linear algebra and

investigate the mechanism for visualization support. The SVD-based data retrieval

algorithm reveals the higher-order structure of the data in the database and

128

implements intelligent retrieval. Based on this kind of retrieval algorithm and

visualization mechanism, we propose visualization algorithms and strategies to

implement the visualization support for information retrieval. The mathematical data

retrieval algorithm usually reveals the mathematical relationship between the query

and retrieved results, not visualization relationship between them. The visualization

algorithms bridge over this gap and can measure the similarity of a retrieved

document to the user's query numerically. The feasibility of the proposed

visualization algorithms is demonstrated in the prototype implemented in Java. The

algorithms could be smoothly applied to web-based applications.

129

Chapter 6

Web Page Similarity Measurement and
Clustering Improvement

6.1 Introduction

Web data is very huge, even if the searched results returned by web search engines

with respect to the users’ queries. Apart from the web page communities presented

in Chapters 3 and 4 that can be used to support web data management and

information retrieval, another effective web page community is the one with cluster

structures. Clustering techniques have been proven effective in managing data,

especially a large amount of data, in conventional database systems. The application

of clustering techniques to web data, such as the work in [WVS+96] [WLW+01]

[ZE98] and [PP97], would make it possible to use conventional database

management techniques to establish index on the web pages, and implement

efficient information classification, navigation, storage, retrieval and integration. For

these reasons, the research in web page clustering attracts much research attention.

The key for implementing effective web page clustering is to find the intrinsic

relationships, especially the similarities, among the pages. For this purpose, web

page content, hyperlinks and usage data (server log files) could be utilized. Among

them, hyperlink analysis has its own advantages as indicated in chapter 2. One

130

example of directly using hyperlink to cluster web pages can be found in [PP97]. Its

one-level clustering algorithm was based on web page co-citation analysis via

hyperlinks. No page similarity was defined for this algorithm. Other examples of

using hyperlink analysis, or combining hyperlink and content analyses, to

hierarchically cluster web pages can be found in [WVS+96] [WK01] [PP97]

[Mar97] and [PPR96]. Most of the work only utilized hyperlinks at the first level,

i.e. the hyperlink analysis only focused on direct links between the pages.

However, the hyperlinks between web pages usually are transitive. In other

words, even though there is no direct link between two pages, they may also have

certain indirect semantic relevance via other pages. Page similarity measurement for

clustering should take this important property into consideration. The page similarity

measurement in [WVS+96] incorporated hyperlink transitivity, but it defined the

similarity directly from hyperlinks with an over-simplified assumption that if there

is a direct link between two pages, their similarity will be 0.5 (50%). [Mar97] used

hyperlink transitivity to measure page content similarity between a page and the

query, in which, however, only out-hyperlinks of pages were considered and no

page similarity was directly defined from hyperlink analysis.

On the other hand, the role each page plays in the page similarity measurement is

different. If a page within a certain web page space is dense (i.e. it has higher in-

degree or out-degree), its opinion has more impact to other pages and it will play

more important role in page similarity measurement within this page space. The

authority and hub pages in a web page community [Klein99] are the examples. Up

131

to now, however, there is no such web page similarity measurement that

incorporates page importance.

In this chapter, we propose a hyperlink-based approach to measure web page

similarity. It incorporates hyperlink transitivity and page importance. The page

similarity is derived from page relevance, rather than direct hyperlinks. This

similarity more precisely reflects mutual relationships among the web pages and the

nature of the web. With this new similarity measurement, an effective hierarchical

web page clustering algorithm is proposed to improve web page clustering.

The following section 6.2 gives the new web page similarity measurement which

incorporates hyperlink transitivity and page importance. The hierarchical clustering

algorithm based on this new similarity is proposed in section 6.3. Some primary

evaluations of the proposed algorithm are given in section 6.4. In section 6.5, some

related work and discussions are presented. Finally, section 6.6 gives the

conclusions of this work.

6.2 Web Page Similarity Measurement

A web page similarity usually refers to a certain page space. Since we are concerned

about clustering web-searched results in this work, we focus on a page space that is

related to the user's query topics. The ideas and analysis techniques in the following

sections, however, could also be used to other concerned web spaces, such as those

in [WVS+96] and [PP97]. In this section, we firstly establish a page source (space)

that is related to the query topics. Within this page source, we incorporate hyperlink

transitivity and page importance to propose a new page similarity measurement.

132

6.2.1 Page Source Construction

The page source construction is based on the web-searched results. For users, they

are usually concerned about a part of searched results, say the first r highest-ranked

pages returned by the search engine. From the hyperlink analysis point of view, the

pages that link to or are linked to these r highest-ranked pages are also related to the

query topics to some extent. Therefore, the page source S with respect to user's

query topics is constructed as follow:

Step 1: Select r highest-ranked pages from the searched results to form a root

page set R.

Step 2: For each page p in R, select up to B pages, which point to p and whose

domain names are different from that of p, and add them to the back vicinity set

BV of R.

Step 3: For each page p in R, select up to F pages, which are pointed to by p and

whose domain names are different from that of p, and add them to the forward

vicinity set FV of R.

Step 4: Page source S is constructed by uniting sets R, BV, FV and adding

original links between pages in S.

Figure 6.1 shows the structure of the page source S.

In the above page source construction algorithm, parameters B and F are used to

guarantee that the page source S is of a reasonable size. For example, we choose

value 200 for B and F from our experiment experience. When constructing sets BV

133

and FV, it is required that for

each page p in R, the domain

names of its parent pages and

child pages are different from

the domain name of the page p.

This requirement filters those

parent and child pages coming from the same website where the page p is located.

The reason, as indicated in [WK01][BH98], is that the links within the same website

are more likely to reveal the inner structure than to imply a certain semantic

relationship.

During the page source construction procedure, it is possible to bring some mirror

pages into the page source. There are several reasons for not being required to

remove these mirror pages. Firstly, there is no standard currently to identify whether

two pages are mirror pages or not just from their linkage analysis, and identifying

mirror pages will add extra computing cost. Secondly, if two pages are mirror pages,

they have the same hyperlink structure and are most likely to be clustered into one

cluster, in which the user or an algorithm can identify them easily. Therefore,

keeping a proper mirror page redundancy in the page source S is reasonable.

It is worth indicating that the web pages and their linkage information required

for page source construction could be obtained in many ways. For example, the

child pages of a certain page and their links can be directly obtained from that page,

while the parent pages of that page and their links can be found by the functions

provided by some web browsers, such as the search function link:URL provided by

P1 Pr

A1,1 A1,i A1,B Ar,1 Ar,j Ar,B

…

… … … …
BV

… … … …
D1,m D1,FD1,1 Dr,1 Dr,n Dr,F

FV

S

Figure 6.1. Structure of the page source S

134

AltaVista and Google. Bharat et al [BBH+98] proposed a specific system to obtain

linkage information from the Web. Usually, web search engines use crawlers

(spiders) to obtain the web pages with hyperlink information, and the obtained

information is stored in a specific database for further use [BP98a].

6.2.2 Page Weight Definition

The role each page plays in similarity measurement is different in a concerned page

source S. For instance, two kinds of pages need to be noticed. The first one is the

page whose out-link contribution to S (i.e. the number of pages in S that are pointed

to by this page) is greater than the average out-link contribution of all the pages in

the page source S. Another kind is the page whose in-link contribution to S (i.e. the

number of pages in S that point to this page) is greater than the average in-link

contribution of all the pages in the page source S. The pages of the first kind are

called index pages in [BS91] (hub pages in [Klein99]), and those of the second kind

are called reference pages in [BS91] (authority pages in [Klein99]). These pages are

most likely to reflect certain topics related to the query within the concerned page

source. If two pages are linked by or linking to some pages of these kinds, these two

pages are more likely to be located in the same topic group and have higher

similarity.

It also needs to be noticed that index web pages in common sense, such as

personal bookmark pages and index pages on some special-purpose web sites, might

not be the index pages in the concerned page source S if their out-link contribution

to S is below the average out-link contribution in S. For the same reason, some pages

135

with high in-degrees on the web, such as home pages of commonly used search

engines, might not be the reference pages in the concerned page source S. For

simplicity, we filter the home pages of commonly used search engines (e.g. Yahoo!,

AltaVista, Google and Excite) from the concerned page source S, since these pages

are not related to any specific topics. To measure the importance of each page within

the concerned page source, we define a weight for each page.

For each page Pi in the page source S, similar to the HITS algorithm in [Klein99],

we associate a non-negative in-weight Pi,in and a non-negative out-weight Pi,out with

it. Due to the hyperlink transitivity in the page source, the in-weight and out-weight

for the page Pi in S are iteratively calculated as follow [Klein99]:

∑
→∈

=
ijj PPSP
outjini PP

,
,, ,

∑
→∈

=
jij PPSP
injouti PP

,
,, .

In order to guarantee the convergence of the above iterative operations, it is required

that the in-weight vector and out-weight vector are normalized after each iteration,

i.e.

12
, =∑

∈SP
ini

i

P , 12
, =∑

∈SP
outi

i

P .

We denote the average in-weight of S as µ, and the average out-degree of S as λ.

That is

)(/, SsizeP
SP

ini
i

∑
∈

=µ ,)(/, SsizeP
SP

outi
i

∑
∈

=λ ,

where size(S) is the number of pages in S. Then the page weight for Pi is defined as

))/()(),/()max((1 ,, outoutoutiinininii mMPmMPw −−−−+= λµ (6.1)

136

where Min , min , Mout and mout are defined as follow:

)max(

,
SP

injin
j

PM
∈

= ,)min(

,
SP

injin
j

Pm
∈

= ,

)max(

,
SP

outjout
j

PM
∈

= ,)min(

,
SP

outjout
j

Pm
∈

= .

The page weight definition in (6.1) indicates that if a page's in-weight and out-

weight in S are below their corresponding average values µ and λ, its weight will be

less than 1, which means its influence to the similarity measurement is relatively

less. For the same reason, if a page's in-weight or out-weight in S is above the

average value (e.g. an index page or a reference page), its weight will be greater than

1 and its influence to the similarity measurement is relatively greater. In other

words, the page weight defined in (6.1) reflects the importance of each page's role in

the concerned page source. This page importance will be incorporated in the page

similarity measurement.

6.2.3 Page Correlation Matrix

For each web page, its correlation with other pages, via linkages, is expressed in two

ways: one is out-links from it, another is in-links to it. In this work, the similarity

between two pages is measured by their own correlations with other pages in the

page source S, rather than being derived directly from the links between them. For

measuring the page correlation, we firstly give the following definitions.

Definition 1. If page A has a direct link to page B, then the length of path from

page A to page B is 1, denoted as l(A,B) = 1. If page A has a link to page B via n

other pages, then l(A,B) = n+1. The distance from page A to page B, denoted as

137

sl(A,B), is the shortest path length from A to B, i.e. sl(A,B) = min(l(A,B)). The length

of path from a page to itself is zero, i.e. l(A,A) = 0. If there are no links from page A

to page B (direct or indirect), then l(A,B) = ∞.

It can be inferred from this definition that l(A,B) = ∞ does not imply l(B,A) = ∞,

because there might still exist links from page B to page A in this case.

Definition 2. The correlation weight between two pages i and j (i ≠ j), denoted as

wi,j, is the maximal weight of their weights, i.e. wi,j = max(wi,wj) where wi and wj are

the page weights for pages i and j respectively. If i = j, wi,j is defined as 1.

The following definition defines how much two pages correlate with each other if

there exists a direct link between them.

Definition 3. Correlation factor, denoted as F, 0<F<1, is a constant that

measures the correlation rate between two page with direct link, i.e. if page A has a

direct link to page B, then the correlation rate from page A to page B is F.

How to determine the value of this correlation factor F to more precisely reflect

the correlation relationship between pages is beyond the scope of this work. Further

research could be done in this area. In this work, similar to the work in [WVS+96],

the value of F is chosen as 1/2. That means, if page A has a direct link to page B, the

correlation from page A to page B is 50%. It is argued that not each pair of pages

that are hyperlinked has 50% semantic relationship with each other. However, in the

context of the web, the research focuses on finding certain statistical regularities

from a large number of pages. Therefore, certain imprecise relationship descriptions

are permitted as in [WVS+96]. For general purpose, we still use F in the following

algorithm to represent this correlation factor. It can be seen that hyperlinks between

138

pages are used to measure the correlations between pages, rather than to directly

measure the similarities.

With the above definitions, a correlation degree between any two pages can be

defined. This correlation degree depends on the value of correlation factor F, the

distance between the two pages (the farther the distance, the less the correlation

degree), and the correlation weights of involved pages along the shortest path. The

following definition gives this function.

Definition 4. The correlation degree from page i to page j, denoted as cij, is

defined as

),(
,2,11,

jisl
jknkkkiij Fwwwc L= , (6.2)

where F are correlation factor, sl(i,j) is the distance from page i to page j, and wi,k1,

wk1,k2, …, wkn,j are correlation weights of the pages i, k1, k2 , …, kn, j that form the

distance sl(i,j), i.e. i → k1→ k2 → …→ kn → j. If i = j, then cij is defined as 1.

For the concerned page source S, we suppose the size of the root set R is m, the

size of the vicinity set V = BV ∪ FV is n. Then the correlation degrees of all the

pages in S can be expressed in a (m+n)×(m+n) matrix C = (cij)(m+n)×(m+n), called

correlation matrix. This correlation matrix C is a numerical format that converts the

hyperlinks (direct or indirect) between pages in S into the correlation degrees,

incorporating the hyperlink transitivity and page importance.

The key for computing the correlation degree cij in (6.2) is the distance sl(i,j)

between any two pages i and j in S. This distance can be computed via some

operations on the matrix elements of a special matrix called primary correlation

matrix. The primary correlation matrix A = (aij)(m+n)×(m+n) is constructed as follow

139

⎪⎩

⎪
⎨
⎧

= =
≠

otherwise0
 if1

 , to fromlink direct a is thereif
ji

jij iF
aij

Based on this primary correlation matrix, the algorithm for computing the distance

sl(i,j) between any two pages i and j is described as follows:

Step 1: For each page i ∈ S, choose factor = F and go to step 2;

Step 2: For each element aij , if aij = factor, then set k = 1 and go to step 3. If

there is no element aij (j = 1, …, m+n) such that aij = factor, then go back to step

1;

Step 3: If ajk ≠ 0 and ajk ≠ 1, calculate factor*ajk ;

Step 4: If factor*ajk > aik, then replace aik with factor*ajk, change k = k+1 and go

back to step 3. Otherwise, change k = k+1 and go back to step 3;

Step 5: Change factor = factor*F and go to step 2 until there are no changes to

all element values aij ;

Step 6: Go back to step 1 until all the pages in S have been considered.

After element values of matrix A are updated by the above algorithm, the distance

from page i to page j is

]log[log),(/ Fajisl ij= .

The example in figure 6.2 gives an intuitive execution demonstration of the above

algorithm. In this example, five pages (numbered 1 to 5) and their linkages are

represented as a directed graph. Their primary correlation matrix A is also shown in

the figure. The dashed arrows in matrix A show the first level operation sequence

(factor = F) of the above algorithm for page 1. The procedure of other level

140

operations for other pages is similar except for changing the values of variable factor

according to the above algorithm. The final updated primary correlation matrix and

the corresponding distance matrix D are presented in the figure. It is clear from these

results that although there are several paths from page 1 to page 4, the distance from

page 1 to page 4 is 2, which is consistent with the real situation. The situation is the

same for page 3 and page 5 in this example.

This distance computation algorithm could be adapted for computing the

correlation degrees (6.2). The above algorithm also provides a numerical method to

find the shortest path between any two nodes in a directed graph. If page correlation

weights are not considered in computing the correlation degrees cij, the above

algorithm could be directly used to produce correlation matrix C.

6.2.4 Page Similarity

In this work, we focus on clustering web-searched pages in the root set R with a new

page similarity measurement. The new page similarity is measured by the page

2

3 4

5

1
1 F 0 0 F
0 1 0 0 F
0 F 1 F 0
0 F 0 1 0
0 0 0 F 1

 1 2 3 4 5

1
2
3
4
5

 * F

 * F

1 F 0 F2 F
0 1 0 0 F
0 F 1 F 0
0 F 0 1 0
0 0 0 F 1

 1 2 3 4 5
1 F 0 F2 F
0 1 0 F2 F
0 F 1 F F2
0 F 0 1 F2
0 F2 0 F 1

 1 2 3 4 5

A

0 1 ∞ 2 1
∞ 0 ∞ 2 1
∞ 1 0 1 2
∞ 1 ∞ 0 2
∞ 2 ∞ 1 0

 1 2 3 4 5

1
2
3
4
5

D =

Figure 6.2. Example of computing distance between pages

1 2

141

correlation degrees within the concerned page source. For simplicity and better

understanding of this new similarity, we divide the correlation matrix C into four

blocks (sub-matrices) as follow:

The elements in sub-matrix 1 represent the correlation relationships between the

pages in R. Similarly, the elements in sub-matrices 2 and 3 represent the correlation

relationships between the pages in R and V, and sub-matrix 4 gives the correlation

relationships between the pages in V. It can be seen that the correlation degrees

related with the pages in R are located in three sub-matrices 1, 2 and 3. Therefore,

the similarity measurement for the pages in R only refers to the elements in these

three sub-matrices.

Note: If the similarity between any two pages in the whole source space S is to be

measured, the whole correlation matrix C will be used and the similarity definition is

the same as follows.

In the correlation matrix C, the row vector that corresponds to each page i in R is

in the form of

micccrow nmiiii ,...,2,1),,...,,(,2,1, == + .

From the construction of matrix C, it is known that rowi represents out-link

relationship of page i in R with all the pages in S, and element values in this row

vector indicate the correlation degrees of this page to the linked pages. Similarly,

the column vector that is in the form of

R V
1

3

2

4

R

V (m+n)×(m+n)

C = (cij)(m+n) × (m+n) =

142

miccccol inmiii ,...,2,1),,...,,(,,2,1 == + ,

represents in-link relationship of page i in R with all the pages in S, and its element

values indicate the correlation degrees from the pages in S to page i.

Each page i in R, therefore, is represented as two correlation vectors: rowi and

coli. For any two pages i and j in R, their out-link similarity is defined as

||||||||

),(
,

ji

jiout
ji rowrow

rowrow
sim

⋅
= ,

where

kj

nm

k
kiji ccrowrow ,

1
,),(∑

+

=

= , 2/1

1

2
,)(|||| ∑

+

=

=
nm

k
kii crow .

Similarly, their in-link similarity is defined as

||||||||

),(
,

ji

jiin
ji colcol

colcol
sim

⋅
= .

Then the similarity between any two pages i and j in R is defined as

in
jiij

out
jiij simsimjisim .,),(⋅+⋅= βα , (6.3)

where αij and βij are the weights for out-link and in-link similarities respectively.

The similarity weights αij and βij are determined dynamically as:

ij

ji
ij MOD

rowrow || || || || +
=α ,

ij

ji
ij MOD

colcol || || || || +
=β ,

where MODij = || rowi || + || rowj || + || coli || + || colj || . As a special case, for any pair

of pages i and j in R, if their out-link modes ||row|| and in-link modes ||col|| are

approximately the same, the weights αij and βij could be simply chosen as (αij , βij)

= (1/2, 1/2).

143

It is argued that hyperlink transitivity would bring noise factors into the page

similarity measurement. One source of the noise factors is the noise pages that are

not query topic related but are densely linked with each other in the page source.

The noise pages will have unreasonable high page weights and mislead the page

correlation degrees. These noise pages, however, can be eliminated from the page

source by many existing algorithms, such as [BH98] [HZ02a] [HZC02] and the

work in Chapter 3. Therefore, in this work, we can reasonably assume that the pages

in the page source are query topic related. Another noise factor source is taking

every path between two pages into consideration in the page correlation degree

measurement. Under this situation, minor page correlations between two pages

could be accumulated such that the final correlation degrees are unreasonably

increased in some cases. In this work, however, the page correlation degree only

takes the shortest path between two pages into account, so the noise factors are

omitted. On the other hand, the page correlation degree decreases quickly with the

increase of the shortest path length (distance). So, the contribution of hyperlink

transitivity to the page correlation degree is minor if there exists a long distance

between two pages. This would also eliminate many noise factors in the page

similarity measurement.

The above page similarity measurement is derived from the page correlation

degrees, rather than the direct hyperlinks between the pages. It seems that this idea

comes from the co-citation analysis. The intension of this new similarity, however,

is different from that of co-citation analysis based similarities (e.g. [PP97][WK01]).

In the co-citation analysis, the influence of each page to the similarity measurement

144

is the same, and the similarity between any two pages only depends on the number

of direct common pages (common parent and child pages). In this new similarity

measurement (6.3), the influence of each page to the similarity is different, which is

reflected by the page weight. Furthermore, this new similarity not only depends on

the number of direct common pages, but also depends on the number of indirect

common pages and the correlation degrees of the involved pages. Figure 6.3 gives

an example that shows these intrinsic differences.

In this example, the values for the weights αij and βij are simply chosen as (αij ,

βij) = (1/2, 1/2). The number in a pair of parentheses beside a page number is the

weight of that page, the number beside a link arrow indicates the correlation degree

between the two pages if the correlation factor F = 1/2. For the situation (a) in this

example, if the co-citation analysis is applied, the similarity of pages 1 and 2 is the

same as that of pages 2 and 3. But, if the similarity measurement (6.3) is applied to

this situation, we get sim(1,2) = 0.09 and sim(2,3) = 0.17. The similarity sim(2,3) is

greater than sim(1,2) because the common page 5 of pages 2 and 3 are more

important than common page 4 of pages 1 and 2. The simple co-citation analysis,

however, is unable to reflect this difference.

For the situation (b), the similarity between pages 4 and 5 is zero if the co-citation

analysis is applied, because they have no direct common (parent) pages. Actually,

there still exists a relative weak relationship between them via page 1, and their

similarity should not be zero. By applying (6.3) to this situation, we get sim(4,5) =

0.02, which reflects the influence of the indirect common pages to the page

145

similarity measurement. If pages 2 and 3 have higher page weights, sim(4,5) would

be higher.

6.3 Hierarchical Web Page Clustering

With the page similarity measurement (6.3) and the correlation matrix C, a

hierarchical web page clustering algorithm could be established. This hierarchical

clustering algorithm consists of two phases. The first one is single layer clustering,

in which the pages in R are clustered at the same level without hierarchy. The

second phrase is hierarchical clustering, in which the pages in the clusters produced

by the first phase are clustered further to form a cluster hierarchical structure. Figure

6.4 gives this hierarchical clustering diagram.

The details of the hierarchical clustering algorithm are described as follow.

Phase 1: Single Layer Clustering

[Input]: A set of web pages R = {p1, p2, …, pm}, clustering threshold T.

[Output]: A set of clusters CL = {CLi}.

[Algorithm]: BaseCluster(R, T)

1(1) 2(1) 3(1)

4(1) 5 (1.5)

 0.5 0.5
 0.75

0.75 3(1)

1(1)

2(1)

4(1) 5(1)

0.5

0.5

 0.5

0.5
(a) (b)

Figure 6.3. Example of the similarity
t

 …
 Base Clusters

 …
…

Phase 1

Page Source

Figure 6.4. Hierarchical clustering diagram

Phase 2

…

…

…
Hierarchical Clusters

146

Step 1. Select the first page p1 as the initial cluster CL1 and the centroid of this

cluster, i.e. CL1 = {p1} and CE1 = p1.

Step 2: For each page pi ∈ R, calculate the similarity between pi and the centroid

of each existing cluster sim(pi, CEj).

Step 3: If sim(pi, CEk) =)),((max jij
CEpsim > T, then add pi to the cluster CLk and

recalculate the centroid CEk of this cluster that consists of two vectors

∑
∈

=
kCLj

j
k

row
k row

CL
CE

||

1 , ∑
∈

=
kCLj

j
k

col
k col

CL
CE

||

1 ,

where |CLk| is the number of pages in CLk.

Otherwise, pi itself initiates a new cluster and is the centroid of this new cluster.

Step 4: If there are still pages to be clustered (i.e. pages that have not been

clustered or a page that itself is a cluster), go back to step 2 until all cluster

centroids no longer change.

Step 5: Return clusters CL = {CLi}.

The above phase 1 of the clustering algorithm produces a set of single layer

clusters called base clusters. Recursively applying the above algorithm, with

increasing clustering threshold T, to each base cluster would produce downward

hierarchical clusters. This procedure is stopped when the number of pages in each

leaf cluster is below a certain predefined threshold NP. Then the whole hierarchical

cluster structure is produced. The procedure is described as the phase 2 of the

clustering algorithm.

Phase 2: Hierarchical Clustering

147

[Input]: A set of base clusters CL = {CLi}, parameter NP and clustering threshold T

in phase 1.

[Output]: Hierarchical clusters HCL = {HCLi}.

[Algorithm]: HierarchyCluster(CL, NP, T)

Step 1: Set HCL = CL, and let CL to be the set of clusters at layer 1 (base layer),

i.e. CL1 = {CLi
1} = {CLi}. Assign l = 1 and T ′= T.

Step 2: Recursively increase T ′ , l and call algorithm BaseCluster(CLi
l, T ′) for

those clusters CLi
l in CLl that contain more than NP pages. Add the clusters at

each layer to HCL.

Step 3: Return the produced set of hierarchical clusters HCL.

The clustering threshold T in the algorithm is determined by practical

requirement. It should guarantee that the pages are clustered into a reasonable

number of clusters. For example, T could be chosen as the average page similarity of

all the pages in R. The increase rate for the hierarchical clustering threshold T ′

could be chosen as a certain percentage of the threshold T.

The parameter NP (e.g. 10) is used to control the number of downward levels of

the hierarchical cluster structure. If the number of pages in a cluster ≤ NP, this

cluster should not be divided into some smaller clusters (at a lower level) any more.

If the hierarchical cluster structure is for web page navigation, the value of NP is

usually determined by the number of pages in a cluster that users can tolerate for

navigation. Proper NP value would also be able to reduce the execution cost of the

algorithm.

148

It can be inferred from the phase 1 of the algorithm that a page in R only belongs

to a cluster. In practice, a page might belong to multiple clusters. This requirement

can be easily met by only changing the clustering condition in the step 3 of the phase

1, i.e. changing the condition " If sim(pi, CEk) =)),((max jij
CEpsim > T " to " If sim(pi,

CEk) > T ". For computation simplicity, we still assume that a page only belongs to a

cluster.

As stated in [WLW+01], for this kind of hierarchical clustering algorithm, it has

been proved [Wang97] that the algorithm is independent of the order in which the

pages are presented to the algorithm if the pages are properly normalized. Since the

page normalization is guaranteed in the similarity measurement (6.3), the above

hierarchical clustering algorithm is independent of the page order. It is not difficult

to prove that the complexity of this algorithm is O (M*N*logN), where M is the

number of generated clusters and N is the number of pages to be clustered.

6.4 Evaluations

Primary clustering experiments were conducted on a real web page source. The page

source was for the search topic "Jaguar". The search engine we used was Google.

The number of pages in the root page set was 472, the total number of pages in the

page source was 3,540, and the number of hyperlinks in the page source was 17,793.

We named the hierarchical clustering algorithm with static similarity weights, i.e.

(αij , βij) = (1/2, 1/2) in (6.3), as HCA(S), and that with dynamic similarity weights

as HCA(D). We also implemented the clustering algorithm in [WK01] which was

purely based on the hyperlink analysis but did not consider the hyperlink transitivity

149

and page importance. It was declared in [WK01] that this algorithm was better than

the Suffix Tree Clustering (STC) algorithm in [ZE98], which was based on the

snippets attached with web pages. Since the clustering algorithm in [WK01] was

non-hierarchical, for comparison, we extended this algorithm as a hierarchical

algorithm by recursively applying it to each non-hierarchical cluster. Accordingly,

we called this extended hierarchical algorithm WK01A. All the above algorithms

were implemented in Java.

It is a difficult task to measure the effectiveness of a hierarchical clustering

algorithm. In this work, we adapt the precision concept in information retrieval

[BR99] and modify it as a notation of clustering accuracy to measure the clustering

algorithm effectiveness. Given a page source, we denote its real clusters as the set

{RCi} and its experimental clusters as the set {ECj}. For an experimental cluster

ECj, its accuracy is defined as

||

) || (max
)(

j

iji
j EC

RCEC
ECAccuracy

∩
= ,

where | ECj | is the number of pages in cluster ECj. For a single-page cluster, its

accuracy is defined as 0.

In our primary evaluation, we manually checked each web page to be clustered

and gave the (real) clusters according to our judgement. This method might lead to

bias in the evaluation though we tried our best to objectively classify the web pages,

but it was reasonable to use it as a relative standard for algorithm comparison at this

stage. The further user experiment will be conducted in our plan for the future.

150

In the hierarchical cluster structures produced separately by the above HCA(D),

HCA(S) and WK01A algorithms, three kinds of accuracy comparison were

conducted. The first one was average base cluster accuracy comparison, the second

was average leaf cluster accuracy comparison, and the third one was overall average

cluster accuracy comparison. The results of these three kinds of comparison with

different clustering threshold (T) values are shown in figures 6.5, 6.6 and 6.7

separately.

Note: Theoretically, with the increase of clustering similarity threshold, the

clustering accuracy should increase accordingly. In this experiment, when the

clustering similarity threshold increases, the number of single-page clusters also

increases. Since the clustering accuracy definition in this work defines the accuracy

of a single-page cluster as 0, the experimental results here do not follow this

accuracy change trend.

It is shown from these results that the algorithm with dynamic similarity weights

αij , βij , i.e. HCA(D), usually performs better than that with static similarity weights

HCA(S). In general, the algorithms HCA(D) and HCA(S), which adopt the new page

similarity, have higher cluster accuracy than the algorithm WK01A, which does not

consider the hyperlink transitivity and page importance, for all three kinds of

comparison. The above evaluation results indicate the effectiveness of the new page

similarity and the corresponding hierarchical clustering algorithm in web page

clustering improvement.

151

0
0.2
0.4
0.6
0.8

1

0.05 0.1 0.15 0.2 0.25 0.3

Clustering Threshold (T)

HCA(D)
HCA(S)
WK01A

Figure 6.5. The average base cluster accuracy with different clustering thresholds
 (T)

0

0.2

0.4

0.6

0.8

0.05 0.1 0.15 0.2 0.25 0.3

Clustering Threshold (T)

HCA(D)
HCA(S)
WK01A

Figure 6.6. The average leaf cluster accuracy with different clustering thresholds (T)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0.05 0.1 0.15 0.2 0.25 0.3

Clustering Threshold (T)

HCA(D)
HCA(S)
WK01A

Figure 6.7. The overall average cluster accuracy with different clustering thresholds
 (T)

Finally, we give examples of some major clusters produced by the algorithm

HCA(D) in tables 6.1 and 6.2. The table 6.2 gives examples with a hierarchical

structure. The clustering results are satisfactory as the pages in the same cluster

share the same topic.

152

Table 6.1. Examples of some major clusters

Topic: Jaguar Car and Club
www.jaguar.com // Jaguar Cars Home Page
www.classicjaguar.com // Classic Jaguar
www.jaguarvehicles.com // Jaguar Cars Home Page
www.jagweb.com // A1 JagWeb - Jaguar…
www.jag-lovers.org // Jag-lovers: …
www.jec.org.uk // Jaguar Enthusiasts' Club
www.seattlejagclub.org // Jaguar car club in Seattle
www.jags.org // Jaguar Associates Group

Topic: Jaguar Car Topic: Jaguar Car Club
www.jaguar.com www.jec.org.uk
www.classicjaguar.com www.seattlejagclub.org
www.jaguarvehicles.com www.jags.org
www.jagweb.com
www.jag-lovers.org

Table 6.2. Examples of one major cluster with hierarchical structure

6.5 Related Work and Discussions

There are many ways to cluster web pages, such as using linkage analysis [CDI98]

[PP97] [WK01], content analysis [ZE98] [WLW+01] and link-content analysis

[Mar97] [PPR96] [WVS+96]. We present and discuss some representative work

here that is based on hyperlink analysis.

Topic: Jaguar Game
atarijaguardirectory.com // Atari Jaguar Directory
www.atarihq.com/interactive // Jaguar Interactive II
www.atari.org // The Definitive Atari Resource

Topic: Jaguar Big Cat
dspace.dial.pipex.com/agarman/jaguar.htm //Jaguar
www.animalsoftherainforest.com/jaguar.htm //Jaguar
www.bluelion.org/jaguar.htm // Jaguar

Topic: Jaguar Reef Touring
www.jaguarreef.com // Jaguar Reef Lodge
www.divejaguarreef.com // Dive Jaguar Reef Lodge
www.belizenet.com/jagreef.html // Jaguar Reef

153

The early representative work of hyperlink analysis can be found in [Klein99]

[BH98] [CDG+98] [DH99] [BP98a] [BP98b]. These works reveal that hyperlinks

convey semantics among the web pages and can be used in many areas.

For clustering web pages, Pitkow et al [PP97] proposed two methods that directly

used hyperlink analysis. The methods were all based on co-citation (via hyperlink)

analysis, which builds upon the notion that when a page A contains links to pages B

and C, then B and C are related in a manner (Figure 6.8 (a)). Pages B and C are said

to be co-cited. When co-citation analysis was applied to the web page clustering in

[PP97], firstly, pages whose cited frequencies fell above a specific threshold were

selected. Then co-citation pairs of pages with their frequencies of co-occurrence

were formed. These co-citation page pairs were considered as the original clusters.

One way to further cluster these original clusters was iteratively adding pairs of co-

cited pages to the cluster that had at least one page in common with the added pairs.

The produced clusters were non-hierarchical. Although this method was simple, the

sizes of clusters were large, useful structures could not be revealed and the co-

occurrence frequencies of co-cited pairs were not sufficiently exploited.

To solve these problems, Pitkow and Pirolli [PP97] also proposed another

hierarchical clustering method. The co-occurrence frequencies of co-cited pairs were

expressed in a co-citation matrix, an Euclidean distance matrix was calculated to

measure the similarities between pages and then used to hierarchically cluster the

pages. While this work provided two approaches from co-citation analysis to cluster

web pages, the co-citation analysis was based on mono-direction linkage. In other

words, it only considered the relationship between two pages, e.g. pages B and C in

154

figure 6.8(a), that were cited simultaneously by the citing page(s), e.g. page A in

figure 6.8(a). From the hyperlink analysis point of view, however, if there exist links

between two pages, there would be a certain semantic relationship between these

two pages in most cases. Therefore, if pages A and B have links to some common

pages, such as page C in figure 6.8(b), it could also be inferred that A and B are

related to some extent even if there are no direct links between A and B. Co-citation

analysis, as well as the clustering algorithms based on it, should consider the bi-

direction linkage relationships between pages, not just mono-direction ones.

Meanwhile, the work in [PP97] did not take the hyperlink transitivity into

consideration.

 The work in [WK01] proposed a clustering algorithm for web-searched pages,

making use of the bi-direction linkage relationships between pages. Each page to be

clustered was expressed as two vectors. One represented out-links of the page to

other pages. Another one represented in-links of the page from other pages. The

page similarity was measured by the cosine similarity of the vectors, rather than the

Euclidean distance measurement. The clusters were also non-hierarchical. However,

this algorithm only considered the linkage relationships between the web-searched

pages and those pages that have links (linking or being linked) to the searched

pages. The linkage relationships among the searched pages were omitted. So, if two

searched pages have no common child and parent pages but have links between

A

B C

A B

C

(a) (b)

Figure 6.8. Co-citation relationship between pages

155

them, there will be no similarity between them. The reason is that the page linkage

relationships were not considered within the whole page space. This work did not

consider the hyperlink transitivity either.

Marchiori [Mar97] was aware of the hyperlink transitivity and made use of this

property to improve the content-based web search. In his work, the information a

page A contained with respect to a query consists of two parts: TEXTINFO(A) and

HYPERINFO(A). The TEXTINFO(A) was the textual information measurement of

page A with respect to a certain query, while HYPERINFO(A) was a textual

information measurement of other pages that were directly or indirectly pointed to

by the page A. The HYPERINFO(A) is a function of the hyperlink distances from A

to other pages. The hyperlink in this work was actually used to define weights for

incorporating other pages' information into the page A. The similarity discussed in

that work was the content similarity between the page A and the query. No page

similarity was directly defined from hyperlinks. Although the transitive hyperlink

analysis was incorporated in the web page content analysis, the hyperlink analysis

was mono-directed (i.e. only hyperlinks from the page A to other pages were

considered). The work was not for clustering web pages; the page importance was

not identified and incorporated in the page content measurement.

The work in [WVS+96] proposed a clustering algorithm that combined page

content similarity and hyperlink similarity. The hyperlink similarity between two

pages was a linear combination of three components. The first component was

measured by the hyperlinks between the two pages, the second one was measured by

the common ancestor hyperlinks of the two pages, and the third component was

156

measured by the common descendant hyperlinks of the two pages. Precisely, the

first hyperlink similarity component of two pages di and dj with the shortest paths

between them was defined directly from the hyperlink as

)()(2

1

2

1
jiij splspl

spl
ijS += ,

where splij was the shortest path from di to dj , and splji was the shortest path from dj

to di . From this definition, it can be inferred that if there exits only one direct link

from page di to dj, their similarity is 0.5 (50%). Furthermore, for the situation in

figure 6.9, the similarity between pages di and dj is 1 (100%) according to the above

similarity definition, which means these two pages can be considered as the same.

This similarity measurement between pages is over-simplified.

The algorithm in [WVS+96] took the hyperlink transitivity into consideration.

However, it regarded the influence of each page to the similarity measurement as the

same. The page importance was not considered.

Different from the previous work, the work in this chapter effectively

incorporates hyperlink transitivity, page importance and bi-direction hyperlink

analysis to form a new web page similarity measurement. The effectiveness of the

corresponding hierarchical clustering algorithm shows the reasonableness and

effectiveness of this new similarity measurement.

6.6 Conclusions

 di dj

Figure 6.9. A special situation for similarity measurement

157

This chapter proposes a new web page similarity measurement and a corresponding

hierarchical clustering algorithm. This new similarity measurement is purely based

on hyperlinks among the pages in the concerned page source, and effectively

incorporates hyperlink transitivity, page importance and bi-direction hyperlink

analysis. The similarity is measured by the page correlation degrees in the

concerned page source. The clustering improvement shown in the primary

evaluations demonstrates the effectiveness and reasonableness of this web page

similarity, and the effectiveness of the proposed clustering algorithm as well.

 158

Chapter 7

Matrix-Based Hierarchical Web Page
Clustering

7.1 Introduction

For web page clustering algorithms, the main previous work, such as [PP97]

[WVS+96] [ZE98] [WK01] and [WLW+01], either adapted K-mean and

agglomerative hierarchical clustering algorithms in information retrieval, or used

page merging methods, or improved the K-mean algorithm. The clustering quality

and structure of the K-mean algorithm depend on the choice of k values and k initial

centroids of clusters, while other algorithms depend on (or are sensitive to) the

predefined similarity or merging thresholds for clustering. If the initial values or

predefined thresholds are not chosen properly, the final clustering results might be

unsatisfactory.

In Chapter 6, a new web page similarity measurement and corresponding

hierarchical clustering algorithm are proposed. Although this new web page

similarity measurement incorporates hyperlink transitivity, web page importance

and more naturally reflects the relationships among web pages, the clustering

algorithm still falls into above categories.

 159

This chapter proposes a matrix-based hierarchical web page clustering approach

with two algorithms, as the hierarchical clustering produces better clusters [DJ88]

though the time complexity is a little higher. This approach is still based on the web

page similarity measurement proposed in Chapter 6, which effectively incorporates

hyperlink transitivity and page importance. However, the matrix-based hierarchical

clustering algorithms in this chapter do not require predefined similarity thresholds

for clustering, and are independent of the order in which the web pages are presented

to the algorithms. They exploit intrinsic relationships among the web pages to

cluster pages, and therefore, avoid much influence of human interference in the

clustering procedure and the clustering results are stable. These algorithms are easy

to be implemented within a uniform matrix framework for web applications.

In this chapter, the matrix-based hierarchical clustering algorithms are given in

section 7.2. Some primary evaluations of the proposed algorithms are presented in

section 7.3. Finally, some conclusions are given in section 7.4.

7.2 Matrix-Based Clustering Algorithms

In this work, we still focus on the page source constructed in section 6.2.1, and

adopt the concepts and symbols in Chapter 6. For the concerned page source S, we

suppose the size of the root set R is m, the size of the vicinity set V = BV ∪ FV is n.

With the new page similarity measurement (6.3), a new m×m symmetric matrix SM,

called similarity matrix for R, can be constructed as SM = (smi,j)m×m for all the pages

in the root set R, where

 160

⎩
⎨
⎧

=
≠

=
. if 1
, if),(

, ji
jijisimsm ji

The matrix-based web page clustering is implemented by partitioning the page

similarity matrix. With the partition of the similarity matrix, the pages are

accordingly clustered into clusters. To guarantee the effectiveness of matrix-based

algorithms in page clustering, it is needed to conduct similarity matrix permutation

before partition.

7.2.1 Similarity Matrix Permutation

The similarity matrix permutation is to put those closely related pages together in

the similarity matrix SM, such that the page position in the matrix more reasonably

reflects the relevance between pages within the whole range of concerned pages. For

measuring how close two pages are related, we define the affinity of two pages i and

j∈ R as:

kj

m

k
ki smsmjiAF .

1
,),(×= ∑

=

.

The corresponding affinity matrix is denoted as AF. Two pages with higher affinity

would be more related with each other and should have more chance to be put in the

same cluster. However, since the pages in the matrix have mutual effects, the final

page positions of the similarity matrix should be determined within the whole range

of concerned pages in the matrix. For globally optimising the page position, we

define the global affinity of matrix SM as

∑ ∑
= =

++−=
m

i

m

j
jiAFjiAFjiAFSMGA

1 1
)]1,()1,()[,()(, (7.1)

 161

where AF(i,0) = AF(i, m+1) = 0. GA(SM) contains all the affinities of pages in R

with their neighbouring pages. The higher the GA(SM), the more likely the closely

related pages are put together as neighbouring pages. The purpose of the similarity

matrix permutation is to get the highest GA(SM), under which the close related

pages are located closely to each other in the matrix.

The highest GA(SM) can be obtained by swapping the positions of every pair of

columns (accordingly rows) in matrix AF. In fact, we denote the permuted affinity

matrix as PA. Similar to the work in [OV91], the algorithm for generating PA with

the highest GA(SM) consists of three steps:

1. Initiation. Place and fix one of the columns of AF arbitrarily into PA.

2. Iteration. Pick each of the remaining m-i columns (where i is the number of

columns already placed in PA) and try to place them in the remaining i+1

positions in the PA. Choose the placement that makes the greatest

contribution to the global affinity. Continue this step until no more columns

remain to be placed.

3. Row ordering. Once the column ordering is determined, the placement of the

rows should also be changed so that their relative positions match the relative

positions of the columns.

The detailed depiction of this algorithm is listed in the appendix of this chapter.

When the highest GA(SM) is achieved, the page positions in SM are permuted

according to the actual page positions in the permuted affinity matrix PA. As a

result, the closely related pages are located closely to each other in the new

 162

permuted similarity matrix. For simplicity, hereafter, we still denote this permuted

similarity matrix as SM.

Figure 7.1 gives an example of the similarity matrix permutation. There are 9

pages (marked P1, P2, … , P9) in this example. The original and permuted similarity

matrices are shown in figure 7.1(a) and (b) separately. It can be seen that the closely

related pages are located closely to each other in the permuted similarity matrix (b)

with the highest global affinity.

7.2.2 Clustering Algorithm from Matrix Partition

The matrix-based page clustering is implemented by decomposing the permuted

matrix SM into four sub-matrices along its main diagonal, i.e.

1 0 0 0 .47 0 .6 0 0

0 1 0 0 0 0 .49 0 0

0 0 1 0 0 0 0 .7 .66

0 0 0 1 0 0 0 0 .42

.47 0 0 0 1 0 .9 0 0

0 0 0 0 0 1 0 .92 .45

.6 .49 0 0 .9 0 1 0 0

0 0 .7 0 0 .92 0 1 0

0 0 .66 .42 0 .45 0 0 1

P1 P2 P3 P4 P5 P6 P7 P8 P9

P1

P2

P3

P4

P5

P6

P7

P8

P9

1 .47 .6 0 0 0 0 0 0

.47 1 .9 0 0 0 0 0 0

.6 .9 1 .49 0 0 0 0 0

0 0 .49 1 0 0 0 0 0

0 0 0 0 1 .42 0 0 0

0 0 0 0 .42 1 .66 0 .45

0 0 0 0 0 .66 1 .7 0

0 0 0 0 0 0 .7 1 .92

0 0 0 0 0 .45 0 .92 1

P1 P5 P7 P2 P4 P9 P3 P8 P6

P1

P5

P7

P2

P4

P9

P3

P8

P6

D

Figure 7.1. (a) A similarity matrix. (b) The permuted matrix of (a)

(a)

(b)

 163

Since the rows (or columns) of the permuted similarity matrix SM correspond to the

pages to be clustered, the pages corresponding to the sub-matrices SM1,1 and SM2,2

form two clusters, while the elements of sub-matrix SM1,2 (or SM2,1 , since SMT
2,1 =

SM1,2) represent similarities between the pages that separately belong to these two

clusters.

It is clear that the partition of matrix SM is equivalent to finding a dividing point

D along the main diagonal of SM. To find this dividing point D, we define a

measurement for the sub-matrix SMp,q (1≤ p, q ≤ 2) as

∑ ∑−−+

+−=

−−+

+−=
=

)1(*)(

1*)1(

)1(*)(

1*)1(,.)(
pdmd

dpi

qdmd

dqj jiqp smSMM , 1≤ p, q ≤ 2,

where d stands for the row (and column) number of D. The dividing point D is

selected such that the following function is maximized

FD = M(SM1,1)* M(SM2,2) - M(SM1,2)* M(SM2,1). (7.2)

So, the determination of the dividing point D makes the pages with high affinity to

be located in the same cluster (sub-matrix), and the similarity between the clusters to

be low. Once the dividing point D is determined, two clusters SM1,1 and SM2,2 are

settled down. For instance, the pages in the example of figure 7.1 are clustered into

two clusters: SM1,1 = {P1, P5, P7, P2}, SM2,2 = {P4, P9, P3, P8, P6}, while the row (an

column) number of D is 4.

This matrix partition could be recursively applied to the matrices SM1,1 and SM2,2

until the number of pages in every new produced cluster is less than or equal to a

preferred number pn (e.g. 20). All clusters produced during this procedure

 m×m
SM = (smi,j)m×m =

SM1,1 SM1,2

SM2,1 SM2,2
D

 164

hierarchically cluster the web pages. Figure 7.2 shows this clustering diagram. The

clustering procedure is depicted as the following Algorithm1, Clustering1, where |

SM | stands for the number of rows (columns) of the square matrix SM.

[Algorithm1] Clustering1 (SM, pn)

[Input] SM: similarity matrix; pn: preferred page number in each cluster;

[Output] CL = {CLi}: a set of hierarchical clusters;

Begin

 Set CL = ∅; Permute SM such that (7.1) is maximized;

 Decompose SM such that (7.2) is maximized;

 If | SM1,1 | ≤ pn, then do

 converting SM1,1 into the next CLi; CL = CL ∪ {CLi };

 else do

converting SM1,1 into the next CLi; CL = CL ∪ { CLi };

 Clustering1 (SM1,1 , pn);

 If | SM2,2 | ≤ pn, then do

 converting SM2,2 into the next CLi; CL = CL ∪ {CLi };

 else do

 converting SM2,2 into the next CLi; CL = CL ∪ { CLi };

 Clustering1 (SM2,2 , pn);

 Return CL;

End

 165

7.2.3 Cluster-Overlapping Algorithm

For the above algorithm Clustering1, there exists no overlapping among the clusters

that are produced at the same level. Each page belongs to only one of the clusters at

the same level. In practice, however, it is reasonable that a page might belong to

several same level clusters. On the other hand, the non-zero element values in SM1,2

or SM2,1 represent the similarity between two pages, named cross-related pages, that

belong to two different clusters. If a cross-related page in one cluster has a higher

similarity with another cluster, it is possible for this page to be added to another

cluster (sub-matrix) to form a new cluster in case it will be missed out. For these

reasons, the hierarchical clustering algorithm Clustering 1 could be improved such

that the cluster overlapping among the same level clusters is permitted.

To determine whether a cross-related page in one cluster could be added to

another cluster, we define a centroid of the cluster SMp,p (1≤ p ≤ 2) as CE(SMp,p) =

Similarity Matrix

m×m
Page Source

Figure 7.2. Matrix-based hierarchical clustering diagram

SM

CL1 CL2

CL3 CL4

 CL7 CL8 CL9 CL10

 CL5 CL6

 CL11 CL12

 CL1

 CL2

Matrix partition

Hierarchical Clusters

 166

{CE row(SMp,p), CE col(SMp,p)}, which consists of two vectors (row and column

vectors) that are constructed from the correlation matrix C as

∑
∈

=
ppSMj

j
pp

pp
row row

SM
SMCE

,
||

1
)(

,
, , ∑

∈

=
ppSMj

j
pp

pp
col col

SM
SMCE

,
||

1
)(

,
, . (7.3)

The centroid of a cluster is a logical page representing this cluster. For a pair of

cross-related pages p∈ SM1,1 and q∈ SM2,2, if sim(p, CE(SM2,2)) ≥ t , then page p

could be added to SM2,2 to form a new cluster (sub-matrix) SM'2,2 with the

dimension being increased by 1, where t is a threshold defined as the average non-

zero similarities in SM1,2 . The page q could be treated in the similar way. The

following Algorithm2 Extending depicts this cross-related page treatment.

[Algorithm2] Extending (SM)

[Input] SM: similarity matrix with sub-matrices SM1,1 , SM2,2 , SM1,2 and SM2,1 ;

[Output] SM'1,1 , SM'2,2 : new sub-matrices (clusters) with some added cross-

related pages;

Begin

 Compute the centroids CE(SM1,1) and CE(SM2,2) according to (7.3);

 Compute the threshold t, which is the average non-zero similarities in SM1,2;

 Set N1 = [| SM1,1 | * 0.15]; N2 = [| SM2,2 | * 0.15]; N = min(N1, N2);

 Construct page set P = {p | at least one smp, j ≠ 0, 1≤ p ≤ d, d+1≤ j ≤ m};

 Construct page set Q = {q | at least one smi,q ≠ 0, 1≤ i ≤ d, d+1≤ q ≤ m};

 Compute P_SM22 = {sim(p, CE(SM2,2) | p ∈ P, sim(p, CE(SM2,2) ≥ t};

 Compute Q_SM11 = {sim(q, CE(SM1,1) | q ∈ Q, sim(q, CE(SM1,1) ≥ t};

 Add up to N pages in SM2,2 that correspond to the N highest values in

 167

Q_SM11 into SM1,1 to form a new sub-matrix SM'1,1 ;

 Add up to N pages in SM1,1 that correspond to the N highest values in

P_SM22 into SM2,2 to form a new sub-matrix SM'2,2 ;

 Return SM'1,1 and SM'2,2 ;

End

The parameter d is the row (or column) number of the dividing point D in SM.

The parameter N in this algorithm is used to restrict the number of pages to be added

to SM1,1 and SM2,2 , which guarantees the recursive execution of the matrix partition.

This parameter, on the other hand, also guarantees that the added cross-related pages

could not change (or dominate) the main property of the original clusters, i.e. the

most number of cross-related pages added to a cluster is less than or equal to 15% of

the original page number in this cluster. This percentage could be adjusted

according to the practical requirements.

When n pages that belong to cluster SM2,2 are added into cluster SM1,1, the

corresponding new sub-matrix SM'1,1 is formed by adding n columns of SM1,2 and n

rows of SM2,1 into the original SM1,1 with the dimension being increased by n. These

added columns and rows correspond to these n added pages. The main diagonal

elements of the newly produced n×n lower-right sub-matrix of SM'1,1 are set to 1,

and other elements in this sub-matrix are set to 0. The construction of SM'1,1 is

intuitively shown in figure 7.3. For the construction of SM'2,2 , the procedure is the

same.

 168

Based on the above cluster overlapping treatment algorithm Extending, the

matrix-based hierarchical clustering algorithm with cluster overlapping is depicted

as the following Algorithm3 Clustering2.

[Algorithm3] Clustering2 (SM, pn)

[Input] SM: similarity matrix; pn: preferred page number in each cluster;

[Output] CL = {CLi}: a set of hierarchical clusters;

Begin

 Set CL = ∅; Permute SM such that (7.1) is maximized;

 Decompose SM such that (7.2) is maximized;

 {SM'1,1 , SM'2,2 } = Extending (SM);

 If | SM'1,1 | ≤ pn, then do

 converting SM'1,1 into the next CLi; CL = CL ∪ {CLi };

 else do

 converting SM'1,1 into the next CLi; CL = CL ∪ { CLi };

 Clustering2 (SM'1,1 , pn);

 * * * * … * …

 * * * * … * …

 … … … … …

 * * * * … * …

* * ……… *
* * ……… *
* * ……… *
* * ……… * … … … ……

* * ……… * … … … ……

q1 q2 qn

 q1

 q2

 qn

SM1,1

SM2,2

 * * … *
 * * … *
 ………….
 * * … *

* * ……… * 1
* * ……… * 1 … … … ……

* * ……… * 1

q1 q2 qn

 q1
 q2

 qn

SM1,1

0
0

SM SM'1,1

Figure 7.3. Construction of new sub-matrix SM'1,1

 169

 If | SM'2,2 | ≤ pn, then do

 converting SM'2,2 into the next CLi; CL = CL ∪ {CLi };

 else do

 converting SM'2,2 into the next CLi; CL = CL ∪ { CLi };

 Clustering2 (SM'2,2 , pn);

 Return CL;

End

This clustering algorithm enables some pages in R to be clustered into several

same level clusters, which is reasonable in practice and enables users to find some

pages from different paths in the hierarchical cluster structure. It is not difficult to

prove that the complexity of the above clustering algorithms is O(m2), where m is

the number of pages to be clustered.

7.3 Evaluations

We chose "Jaguar" as the search topic for the primary evaluations. The search

engine used for getting web pages was Google. The number of source pages was

3,540 and the number of hyperlinks was 17,793. The number of pages to be

clustered was 472. In order to compare our algorithms with other ones, we also

implemented the K-mean style clustering algorithm in [WK01] which was purely

based on the hyperlink analysis but did not consider the hyperlink transitivity and

page importance. It was declared in [WK01] that this algorithm was better than the

Suffix Tree Clustering (STC) algorithm in [ZE98], which was based on the snippets

attached with web pages. Since the clustering algorithm in [WK01] was non-

 170

hierarchical, for comparison, we extended this algorithm to be a hierarchical

algorithm by recursively applying it to each non-hierarchical cluster as we did in our

algorithms. Accordingly, we called this extended hierarchical algorithm WK01A. All

the clustering algorithms used in the evaluations are listed in Table 7.1. They were

implemented in Java.

Algorithm Meaning
CA2(D) The algorithm Clustering2 with dynamic similarity weights (αij , βij) in (6.3).

CA2(S) The algorithm Clustering2 with static similarity weights (αij , βij) = (1/2, 1/2) in
(6.3).

CA1(D) The algorithm Clustering1 with dynamic similarity weights (αij , βij) in (6.3).

CA1(S) The algorithm Clustering1 with static similarity weights (αij , βij) = (1/2, 1/2) in
(6.3).

PCA2(D) The algorithm Clustering2 with dynamic similarity weights (αij , βij) in (6.3),
without considering hyperlink transitivity and page importance.

PCA2(S) The algorithm Clustering2 with static similarity weights (αij , βij) = (1/2, 1/2) in
(6.3), without considering hyperlink transitivity and page importance.

PCA1(D) The algorithm Clustering1 with dynamic similarity weights (αij , βij) in (6.3),
without considering hyperlink transitivity and page importance.

PCA1(S) The algorithm Clustering1 with static similarity weights (αij , βij) = (1/2, 1/2) in
(6.3), without considering hyperlink transitivity and page importance.

WK01A The extended hierarchical clustering algorithm of [WK01].

Table 7.1. The algorithms used for evaluations

The clustering accuracy definition that measures effectiveness of hierarchical

clustering algorithms is the same as that in 6.4. We firstly evaluated the algorithms

proposed in this work. The average accuracies of the leaf clusters in the hierarchical

structures produced by these algorithms are shown in figure 7.4. It is indicated that

the algorithms incorporating hyperlink transitivity and page importance (CA2(D),

CA2(S), CA1(D) and CA1(S)) have higher clustering accuracy than those algorithms

not incorporating hyperlink transitivity and page importance (PCA2(D), PCA2(S),

PCA1(D) and PCA1(S)). It is also shown that the algorithms considering cluster-

overlapping perform better than those without considering cluster-overlapping, such

 171

as CA2(D) and CA1(D), PCA2(D) and PCA1(D). For the same kind of algorithms,

the algorithm with dynamic similarity weights produces better results, such as the

algorithms CA1(D) and CA1(S).

0

0.2

0.4

0.6

0.8

1

CA2(D) CA2(S) CA1(D) CA1(S) PCA2(D) PCA2(S) PCA1(D) PCA1(S)

Clustering Algorithm

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 7.4. The average leaf cluster accuracies of the eight clustering algorithms

The comparison results of algorithms CA2(D), CA1(D) and WK01A on the

average leaf cluster accuracy are shown in figure 7.5. For the WK01A, we chose the

predefined clustering similarity thresholds from 0.05 to 0.30 with the step of 0.05,

and the corresponding algorithms were marked as W0.05, …, W0.30. The merging

threshold was 0.75. The average leaf cluster accuracy for all these thresholds was

marked WK01A in the figure. These results show that the algorithms (e.g. CA2(D),

CA1(D)) considering hyperlink transitivity and page importance (whether

considering cluster-overlapping or not) produce better clusters than the algorithm

(e.g. WK01A) without considering hyperlink transitivity and page importance.

This property is also demonstrated in figure 7.6, where the comparison results

among the average leaf cluster accuracies of the CA2(D) and CA1(D) and the

average base cluster accuracies of the WK01A with different clustering thresholds

are presented. The base clusters of the WK01A are the first level clusters produced

by the WK01A. Although some base cluster accuracies of WK01A are satisfactory,

 172

for example those for W0.05 and W0.10, the average base cluster accuracy for all

the thresholds, marked WK01A, is only 0.56, which is lower than the average leaf

cluster accuracies of CA2(D) and CA1(D).

0

0.2

0.4

0.6

0.8

1

CA2(D) CA1(D) W 0.05 W 0.10 W 0.15 W 0.20 W 0.25 W 0.30 WK01A

Clustering Algorithm

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 7.5. The comparison of CA2(D), CA1(D) and WK01A on the average leaf

 cluster accuracy

0

0.2

0.4

0.6

0.8

1

CA2(D) CA1(D) W 0.05 W 0.10 W 0.15 W 0.20 W 0.25 W 0.30 WK01A

Clustering Algorithm

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 7.6. The comparison among the leaf cluster accuracies of CA2(D), CA1(D)

 and the base cluster accuracies of WK01A

For the matrix-based clustering algorithms PCA2(D) and PCA1(D) that do not

incorporate hyperlink transitivity and page importance, their leaf cluster accuracy

comparisons with the leaf cluster accuracy and base cluster accuracy of the

algorithm WK01A are presented in figure 7.7 and 7.8 separately. Although in figure

7.8, the accuracies of W0.05 and W0.10 are higher than those of the PCA2(D) and

PCA1(D), the average base cluster accuracy of the WK01A is still lower than the

average leaf cluster accuracies of the PCA2(D) and PCA1(D). These comparison

results indicate that even if the hyperlink transitivity and page importance are not

 173

incorporated, the matrix-based clustering algorithms produce better clusters than the

K-mean style clustering algorithm WK01A.

0

0.2

0.4

0.6

0.8

1

PCA2(D) PCA1(D) W 0.05 W 0.10 W 0.15 W 0.20 W 0.25 W 0.30 WK01A

Clustering Algorithm

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 7.7. The comparison of PCA2(D), PCA1(D) and WK01A on the average leaf

 cluster accuracy

0

0.2

0.4

0.6

0.8

1

PCA2(D) PCA1(D) W 0.05 W 0.10 W 0.15 W 0.20 W 0.25 W 0.30 WK01A

Clustering Algorithm

A
ve

ra
ge

 A
cc

ur
ac

y

Figure 7.8. The comparison among the leaf cluster accuracies of PCA2(D), PCA1(D)
 and the base cluster accuracies of WK01A

The above evaluations demonstrate that the matrix-based clustering algorithms,

incorporating hyperlink transitivity and page importance in their similarity

measurements, effectively improve the clustering results. Especially, when the

cluster overlapping is taken into account in the algorithms, better clustering results

are produced. Different from the K-mean style algorithm, such as WK01A, that is

sensitive to the choice of predefined clustering similarity threshold, the matrix-based

algorithms are independent of any predefined similarity thresholds.

 174

Finally, we give concrete examples of some major clusters produced by the

CA2(D) in Table 7.2. The results are satisfactory as the main web pages sharing the

same topic are really clustered into one cluster.

Topic: Jaguar Car Topic: Jaguar Car Club
www.jaguar.com www.jec.org.uk
www.classicjaguar.com www.seattlejagclub.org
www.jagweb.com www.jag-lovers.org

Topic: Jaguar Big Cat Topic: Jaguar Reef Touring
dspace.dial.pipex.com/agarman/jaguar.htm www.jaguarreef.com
www.animalsoftherainforest.com/jaguar.htm www.divejaguarreef.com
www.bluelion.org/jaguar.htm www.belizenet.com/jagreef.html

Table 7.2. Examples of some major clusters

7.4 Conclusions

In this chapter, a matrix-based hierarchical web page clustering approach with two

algorithms are proposed based on the hyperlink-related page similarity

measurement. Two situations, cluster-overlapping and non-cluster-overlapping, in

the clustering procedure are considered in these two algorithms respectively. The

proposed algorithms do not require predefined similarity thresholds for clustering,

are independent of the order in which the pages are presented, and produce stable

clustering results. The algorithms exploit intrinsic relationships among web pages

within a uniform matrix framework, avoid much influence of human interference in

the clustering procedure, and are easy to be implemented for applications. The

primary evaluations on the real page source (set) demonstrate the effectiveness of

the matrix-based hierarchical clustering algorithms in web page clustering

improvement, as well as the effectiveness of the new page similarity measurement in

Chapter 6. When the cluster overlapping is considered and the dynamic similarity

weights are used in the algorithms, the clustering results could be better improved.

 175

Appendix

The algorithm for generating permuted affinity matrix with the highest global

affinity

Input: AF: affinity matrix (m×m matrix)

Output: PA: permuted affinity matrix

Begin

 PA(•, 1) ← AF(•, 1); PA(•, 2) ← AF(•, 2);

 index ← 3;

 While index ≤ m do

 Begin

 For i from 1 to index-1 by 1 do

 calculate cont(Ai-1, Aindex, Ai);

 End-for

 calculate cont(Aindex-1, Aindex, Aindex+1)

 loc ← placement given by maximum cont value

 For j from index to loc by –1 do

 PA(•, j) ← PA(•, j-1);

 End-for

 PA(•, loc) ← AF(•, index);

 index ← index+1;

 End-while

 176

 order the rows according to the relative ordering of columns;

End

Here,

cont(Ai, Ak, Aj) = 2bond(Ai, Ak) + 2bond(Ak, Aj) – 2bond(Ai, Aj),

bond(Ax, Ay) = ∑
=

m

z

yzAFxzAF
1

),(),(.

 177

Chapter 8

Object Representation Model for XML
Data

8.1 Introduction

XML (eXtensible Markup Language) [XML98] has been recommended by W3C

(World Wide Web Consortium) as a new standard document markup language for

representing and exchanging data on the Internet. Compared with the main

traditional markup language HTML, which defines a fixed set of tags and deals

primarily with the presentation aspects of documents on the Internet, XML allows

the definition of semantically meaningful tags for information exchange. Therefore,

XML assigns semantic and structural meanings to the data on the Internet. This

makes it possible for web applications and web data management systems to extract

semantic information from XML data, and implement effective and efficient web

data manipulation, management and retrieval on the Internet. Furthermore, XML can

also be used to define data transfer format, data manipulation algorithm or represent

semi-structured data. For example, in [Bier00], a set of meaningful XML tags are

defined in a DTD (Document Type Definition) file, then objects are represented as

XML documents that are used as interchange formats. Due to its inherent flexibility,

XML has attracted much research attention recently.

 178

In general, XML data is an instance of semi-structured data, which has no rigid

schema. The structure, as well as the contents, of the XML data evolves frequently

and un-predictively. Therefore, suitable data models for XML data are necessary as

the bases for effectively extracting semantics and efficiently processing XML data,

such as constructing communities for XML data. From the point of view of

information management, there is much work trying to model XML data into

conventional data models, such as relational and object-relational models, for

example the work in [BBB00], [LRS+00], [SGN00], [SRL00] and [YR00].

However, from the point of view of data usage and web application development for

XML data, object-oriented data model is more suitable. The use of object model is

driven by a number of factors [Man98], including:

• The desire to build software from reusable components;

• The desire for software to more directly and completely reflect enterprise

concepts, rather than information technology concepts;

• The need to support enterprise processes that involve legacy information

systems;

• The tendency for major software vendors to incorporate object concepts and

facilities in key software products.

On the other hand, for information management, there exist mature object-oriented

technologies.

Many contributions have been made to the object-oriented model for XML data.

For example, the representative work can be seen in [GMW99] and [DOM98]. In

[GMW99], the OEM (Object Exchange Model) [PGW95] for semi-structured data is

 179

extended to XML data. XML data in this model is described intuitively as a labelled,

directed graph. The nodes in the graph represent the data elements and the edges

represent the element-subelement relationship. However, this data model is a

lightweight object model and it does not require the definition of classes or types, it

does not support encapsulation and object behavior [Man98]. W3C's Document

Object Model (DOM) [DOM98] provides a mechanism for scripts or programs to

access and manipulate parsed XML content as a collection of objects. DOM

represents a document as a hierarchy of objects, called nodes, which are derived

from an XML document source. Based on these objects, DOM defines an object-

oriented API for processing the document. But there are still limitations for this

model. It defines its API at a general object level, not at application object level. For

example, for an XML document containing <AUTHOR> and <EDITOR> elements,

DOM provides objects of types node, element and so on, rather than objects of

types author and editor. Furthermore, there is no application-specific object

behaviour defined in this model and it is suitable for applications that operate on the

document as a whole [Man98]. Particularly, DOM is best suited for the following

situations [MTU99]:

• When structurally modifying an XML document;

• When sharing the document in memory with other applications.

However, for web applications and information management, the requirements are

more, such as the need of treating, storing and exchanging the elements in the

documents as relative independent objects. Therefore, these models have limitations

when they are applied to web applications. There are also other attempts to model

 180

XML document in application-specific object model, such as the work in [LRK00]

[CAC+94]. But these models do not define object behaviour either and application

of these models requires users have the knowledge of the object structure. The

manipulation of the object relies on the external application programs and the

dynamical updating of the object status is complex and difficult.

In this chapter, we propose an object representation model (ORM) for XML data

and establish a set of transformation rules and steps for transforming XML data into

ORM. XML data referred to in this chapter means DTD files and XML documents

(with or without DTD). Our model is pure object-oriented. It captures features of

XML data and defines object behaviours. Therefore, application algorithms can be

easily implemented on this model, and semantic meanings of the tags (elements) in

XML data can be used for many applications, such as community construction for

XML data. We choose Java object for our model, because Java objects are suitable

for web applications and are supported by the new object-oriented database

management standard [Cat+00] as stated in [Bier00]. This Java-styled object model

can be easily converted into other style object models for other object-oriented

application systems. Meanwhile, we define DTD-Tree to represent DTD and

describe the procedure to use DTD transformation rules. The DTD-Tree can also be

used as a logical interface for DTD processing. For XML documents, we use DOM

as an interface to process them and describe the transformation procedure.

In this chapter, section 8.2 provides some XML background and presents our

object representation model for XML data. In section 8.3, transformation rules for

transforming DTD into ORM are established. DTD-Tree is defined in section 8.4. It

 181

is used to represent the structure of DTD and describe the procedure of using

transformation rules for DTD. In section 8.5, a set of transformation rules are

proposed for building objects from XML documents with accompanying DTD. For

XML documents without DTD, transformation rules and procedures for building

objects of ORM from XML documents are proposed in section 8.6 and 8.7

separately. In section 8.8, we discuss some related work. Finally, we give

conclusions for this work in section 8.9.

8.2 XML & Object Representation Model (ORM)

XML Background XML is a semantic describing language that allows users to

define meaningful tags to produce meaningfully annotation text. Because the text is

marked up semantically, it is much easier for humans to read and computers to

process. An XML document is a file starting with a root element and containing

nested elements. An XML document is known as a well-formed if its elements nest

properly within each other and create a tree-like structure (e.g. tags must be balanced

and matched, empty element tags must either end with a /> or be explicitly closed).

XML element can have attributes attached to it and the attribute values must be in

quotes. The following example shows a simple well-formed XML document:

 <?xml version="1.0" standalone="yes">

 <!-- This is an example of well-formed XML document -->

 <person id="123">

 <surname> McDonald </surname>

 <givenname> Phillip </givenname>

 <address>

 182

 <street>26 William Street </street>

 <city> Townsmore </city>

 <state> Queensland </state>

 <country> Australia </country>

 </address>

 <phone> 9231 7436 (o), 9267 4538 (h) </phone>

 </person>

The first line of this example is called prolog. Every XML document starts with

a prolog. In this example, the prolog indicates that the XML document follows

XML version 1.0, is stand-alone (no accompanying DTD). The second line is

comment. The element tagged person has an attribute id with the value of 123. The

element tagged address has four sub-elements tagged street, city, state and country

separately. The character string between a pair of matched elements is the value of

that element, for example, McDonald is the value of element tagged surname. Every

XML document must have a root element specified in the header area. In this

example, element tagged person is the root element. If element B is within element

A, then A is called the parent element of B and B is called the child element or sub-

element of A. For instance, in the above example, <address> is the parent element

of <street> and <street> is the sub-element of <address>.

XML documents may have DTDs (Document Type Definition) to define their

structure and constraints on them. DTD allows users specify the set of tags, the order

of tags, and attributes associated with each tag. A well-formed XML document that

conforms to its DTD is called valid. DTDs are not mandatory for XML documents.

Therefore an XML document may conform to a DTD or not. If an XML document

 183

conforms to a DTD, the DTD should be declared in the prolog using the !DOCTYPE

tag. The following is a DTD example for bibliography documents. The name of this

DTD is bib.dtd.

 <!ELEMENT bib(book+)>

 <!ELEMENT book(author+, title, publisher?, year?, section*,

 abstract?)>

 <!ATTLIST book isbn CDATA #IMPLIED>

 <!ELEMENT author(#PCDATA)>

 <!ATTLIST author id ID #REQUIRED>

 <!ELEMENT title(#PCDATA)>

 <!ELEMENT publisher(#PCDATA)>

 <!ELEMENT year(#PCDATA)>

 <!ELEMENT section((title,(para+))|(title,(para*),

(subsection+)))>

<!ELEMENT para (#PCDATA)>

<!ELEMENT subsection(title|(title,(para+)))>

<!ELEMENT abstract ANY>

!ELEMENT statement is called element definition. It defines tags that can be used in

XML documents. Elements can have zero or more attributes, which are declared

using the tag !ATTLIST. For example, element book has one attribute isbn, which

has optional character data type (CDATA). Attributes can be optional (#IMPLIED),

required (#REQUIRED) or fixed (#FIXED). The optional character following a

name governs whether the element may occur one or more (+), zero or more (*), or

zero or one time (?). The absence of such an operator means that the element or

content particle must appear exactly once.

 184

Elements in DTD may have sub-elements, for instance, elements book and

section in the above example have sub-elements. There are three kinds of sub-

elements in DTD: sequence, choice and mixed sub-elements. Sequence sub-elements

are those elements that appear in an order. Choice sub-elements are those elements

in an alternative list. A choice is indicated by the logical operator " | ". Sequence and

choice sub-elements can contain each other and are called mixed sub-elements. For

example, element book in the above example has sequence sub-elements, element

section has mixed sub-elements.

Elements in DTDs or XML documents can be either nonterminal or terminal.

Nonterminal elements contain sub-elements. Terminal elements can be declared as

parsed character data (#PCDATA) or as EMPTY. For simplicity of describing our

ORM for XML data, we define the terminal element with attribute(s) as pseudo-

terminal element. For example, the element tagged book in the above example is a

nonterminal element with sequence sub-elements. The element tagged title is a

terminal element and the element author is a pseudo-terminal element. An element

declared as ANY can contain sub-elements of any declared type, as well as character

data. For instance, the element tagged abstract in the above is declared as ANY.

DTD with ANY element does not fully describe the structure of XML document,

which is called the problem of DTD incompleteness.

The following example shows an XML document that conforms to the above

DTD.

 <?xml version="1.0">

 <!DOCTYPE bib SYSTEM "bib.dtd">

 <bib>

 185

 <book isbn="0-13-968793-6">

 <author id="Wilson-001"> Wilson, G. </author>

 <author id="Bond-007"> Bond, J. H. </author>

 <title> XML Introduction </title>

 <publisher> Addison-Wesley </publisher>

 <year> 1999 </year>

 <section>

 <title> XML Summary </title>

 <para> This section gives a summary of XML syntax

 and …

 </para>

 </section>

 <section>

 <title> XML in Application </title>

 <para> This section presents some representative

 applications of XML …

 </para>

 </section>

 </book>

 <book>

 <author id="Simons-002"> Simons,R. </author>

 <title> Programming Language </title>

 <publisher> Prentice Hall </publisher>

 <section>

 <title> Java Programming Language </title>

 <subsection>

 <title> Java Classes </title>

 <para> This subsection introduces Java classes

 186

 commonly used in programming.

</para>

 </subsection>

 </section>

 <abstract> This book introduces many popular programming

 languages and concentrates on object-oriented

 programming languages, such as Java, C++. It

 is a book suitable for …

 </abstract>

 </book>

 </bib>

From above examples, it can be seen that DTD is a bit similar to class definition

in object-oriented data model, and instances (objects) of classes can be produced

from XML documents that conform the DTD. For XML documents without DTD,

objects should be produced directly from XML documents with looser constraints

because there is no pre-defined schema represented by the DTD. Therefore, the

object representation model (ORM) for XML data should extract the elements and

features of DTD and XML documents, and objects for concrete XML documents

can be produced from this ORM.

Data Model Design Criteria The data model should satisfy the following criteria

[HZK01]:

• Simplicity: simplicity means that the model is easy to understand and use by the

general public without requiring any special knowledge.

• Completeness: completeness means that the model covers all elements of XML

data.

 187

• Extensibility: extensibility means that the model should give room for extending

the functions to meet the further requirements from applications, systems and

users.

Object Representation Model (ORM) To ensure the completeness of the

model, it is necessary to observe what kinds of information are contained in XML

data. Actually, XML data contain three kinds of information through a proper

structure: element attributes, element values (text contents) and element containment

relationship (element-subelement relationship). Therefore, an element is a basic

information unit and is suitable to be modelled as a class or object in the ORM. As

mentioned above, one feature of XML data is that the tags (elements) have semantic

meanings, so the corresponding object model should allow the users to identify the

objects by the tag names. Apart from static information in elements, elements or

objects should be assigned behaviours to maintain and manipulate their status or

communicate with other objects (in this work. we will not consider the

communication between objects). On the other hand, as a data model for XML data

on the Internet, the proposed object model should satisfy the above data model

design criteria. Based on the above considerations, the ORM for XML data should

have the following features:

• Object identification

An element in XML data is modelled as an object or class. Since an element

may appear several times with the same element name in an XML document, it

is needed to have a class variable to identify the objects of the same class. This

object identification can also be used to mark the order of the objects.

 188

• Object name

The object name should be the same as that of the corresponding element in an

XML document. Therefore the semantics meanings of the elements (tags) can be

reflected in the object model and used in applications. The combination of

object name with the above object identification can uniquely identify an object

in a set of objects with the same object name.

• Collections of attributes, values and sub-elements

Sub-elements, as well as attributes and values, of an element are modelled as

different type objects and put into their corresponding collections. The

containment relationship between an element and its sub-elements is reflected in

the sub-element collection. This will make it easy for applications or object

methods to process different kind of information.

• Class methods

Since the structure of the class or object is certain, it is easy to define the

required class methods to manipulate the information contained in the object,

such as add, delete, update, fetch and search object information. Therefore, the

usage of the objects does not require users to have the inner structure knowledge

of the objects. More functions can be added to this model to meet the more

requirements from applications. This will make it flexible and extensible for the

model to reflect frequent changes of the XML documents and requirements from

applications.

These model features reflect the features and usage of elements in XML data.

Therefore in our ORM, one super class for XML elements can be established with

 189

the above features. Different classes or objects can be derived from XML data under

this super class. This supper class in our ORM is named as XMLDoc. On the other

hand, terminal elements, element attributes and values have their common features

and characteristics. They have no sub-elements and only contain character data. The

object methods assigned to them are relatively simple compared with those assigned

to the nonterminal elements. To reflect these features of terminal elements, element

attributes, values and similar elements, another super class should be established. In

our ORM for XML data, this super class is called Terminal. The structures of these

two super classes are described in figure 8.1.

Our ORM integrates the above two super classes. From this ORM, classes and

objects can be produced separately from DDT files and XML documents. The

element-subelement containment relationship is expressed in this model by the

collection of sub-objects of the class or object. Intuitively, the ORM is defined as a

tree-like structure of classes (objects) in figure 8.2.

Figure 8.1. Structures of two super classes: XMLDoc and Terminal

XMLDoc class

class variables:
 oid: object identification
 oname: object name
 collection of attribute objects
 collection of value objects
 collection of subelements (sub-objects)

class methods:
 constructor
 methods for adding data into class
 methods for deleting data from class
 methods for updating data in class
 methods for fetching data from class
 methods for searching sub-objects
 other required methods

Terminal class

class variables:
 oid: object identification
 oname: object name
 charData: character data

class methods:
 constructor
 methods for deleting data from class
 methods for updating data in class
 methods for fetching data from class
 other required methods

(a) (b)

 190

In figure 8.2, an oval box represents a super class and a rectangular box

represents a class or objects. An arrow indicates the containment relationship. The

super class Object is the unique super class in Java. One super class Terminal is not

shown in this figure for the simplicity reason. It is implicitly referred in the structure

of the class or object, as we will state next. Class methods are not indicated in the

structure of the class or object in this figure.

Figure 8.2. Object representation model (ORM) for XML data

It can be seen from this model that attributes and values of an element, which are

modeled as attribute objects and value objects of super class Terminal respectively,

are stored in the collection of attribute objects (CA) and collection of value objects

(CV) separately. The sub-elements of an element, which are modelled as sub-objects

of super class XMLDoc, are stored in the collection of sub-objects (CS). This ORM

is in a uniform structure, which is easy to understand, covers all three kinds of

information in XML data and is extensible. That means the ORM meets the model

design criteria stated previously.

Object

XMLDoc

oi
d

on
am

e
C

S
C

V

C
A

C
S

C
V

C

A

on
am

e
oi

d

oi
d

on
am

e
C

S
C

V

C
A

oi
d

on
am

e
C

S
C

V

C
A

oi
d

on
am

e
C

S
C

V

C
A

oi
d

on
am

e
C

S
C

V

C
A

…
…

… …
…

… …
…

… …
…

…

…

…

…

 191

The ORM defines a framework for XML object organization. In order to

represent DTDs and XML documents in this ORM, we still need some

transformation rules. The following figure 8.3 logically describes this work.

Figure 8.3. Work description

From above analysis and model, it is known that there are three kinds of

transformation rules: one for DTD, one for XML documents with DTD and another

one for XML documents without DTD. Transformation rules for DTD mainly deal

with transforming DTD into classes in the ORM, while transformation rules for

XML documents deal with transforming XML documents into objects in ORM.

8.3 Transformation Rules from DTD to ORM

As indicated above, DTD describes a schema for a set of XML documents. From a

DTD, a collection of XML documents that conform to it can be produced. The

function of DTD here is just similar to that of class definition in an object-oriented

model (i.e. from a class definition a collection of objects can be produced).

Therefore, the transformation rules for DTD are for transforming a DTD into a set of

classes in the ORM. Based on these classes, objects can be produced from concrete

XML documents, which will be discussed in the later section.

DTD

XML

Objects ApplicationORM &
Mapping Rules

Classes &
Mapping Rules

Mapping
Rules

 XML

 192

Since two super classes, XMLDoc and Terminal, are the bases classes in the

ORM, they should be established firstly. That is the following rule.

Rule 8.3.1. Two super classes, named XMLDoc and Terminal, are created. The

structures of them are the same as those defined in figure 8.1. XMLDoc is for

nonterminal elements and other similar elements. Terminal is for terminal elements,

element attributes, element values and other similar elements.

For different object definition format, the implementation of the Rule 8.3.1 is

different. For example, the collections of attribute objects, value objects and sub-

objects in XMLDoc class can be implemented in Java using the following format:

 class XMLDoc{

 …

 Vector attributes = new Vector();

 Vector values = new Vector();

 Vector subObjects = new Vector();

 …

 }

Rule 8.3.2. A new class is created for every element, including attribute, in DTD.

The class name is the same as the element or attribute name.

This rule defines a principle that every information unit in DTD or XML

documents is treated as a class or an object, not as an attribute of an object. For

terminal, pseudo-terminal and nonterminal elements, because of their characteristics,

 193

they will be modelled as different classes. The following two rules indicate these

different cases.

Rule 8.3.3. A class is created as a sub-class of Terminal for every terminal element

or attribute in DTD. The class name is the same as the terminal element name or

attribute name.

For example, for a DTD statement

 <!ELEMENT publisher (#PCDATA)>,

the following class named publisher is created:

 class publisher extends Terminal{

 public publisher(String ObjectID, String ObjectName,

 String Cdata){

 super(ObjectID, ObjectName, Cdata);

 }

 }

Rule 8.3.4. A class is created as a sub-class of XMLDoc for every nonterminal or

pseudo-terminal element in DTD. The class name is the same as the element name.

This rule is also applied to the element declared as ANY or EMPTY.

The following rules define the containment relationships among the classes

(element-subelement relationship).

Rule 8.3.5. The containment relationship between an element E and its sub-elements

is implemented by the constructor method(s) of the class defined by that element E.

 194

This rule guarantees the containment relationship defined in DTD can be

expressed in the ORM. In fact, a mechanism can be built in the class constructor(s),

according to the containment definition in DTD, to check the sub-element type,

order etc. When an object of this class is to be produced, the sub-objects of this

object will be checked strictly by the class constructor(s). If the check is passed, this

object will be produced. Otherwise, this object is rejected, which means the related

XML document does not conform to this DTD. For some extreme cases where the

containment relationship is uncertain, for example the element declared as ANY,

containment relationship can be implemented by programming and using the class

methods.

Rule 8.3.6. For a nonterminal element E, its every (or a set of) possible sub-

element(s) is mapped as an object collection of the class defined by that sub-

element. This object collection is one parameter of the constructor of class E. 1) If

the sub-element is a terminal element, the components of its object collection are put

into the CV of the parent class E. 2) If the sub-element is a nonterminal element, the

components of its object collection are put into the CS of the parent class E.

Rule 8.3.7. For an element E (pseudo-terminal or nonterminal element) that has

attribute(s), its each attribute is mapped as an object of the class defined by the

attribute name. This object is one parameter of the constructor of class E, and is put

into the CA of the class E.

For example, for the following simple definition in a DTD:

 …

 195

 <!ELEMENT employee (name, address)>

 <!ATTLIST employee id ID #REQUIRED>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT address (#PCDATA)>

 …

a class for element employee is created like this:

 class employee extends XMLDoc {

 public employee (String objectID, String objectName,

 id employeeID, Vector nameVector, Vector

 addressVector){

 …

// employeeID is an object of class id

// It is put into CA.

// nameVector is a Vector for passing name objects.

// Its components are put into CV.

// addressVector is a Vector for passing address

objects.

// Its components are put into CV.

 }

 …

 }

Rule 8.3.8. For a pseudo-terminal or nonterminal element E that contains

#PCDATA type, this type is mapped as an object collection of class Terminal. This

 196

object collection is one parameter of the constructor of class E. The component of

this object collection is put into the CV of the class E.

For example, for the following element definitions:

 …

 <!ELEMENT LeaseContracts (#PCDATA, (Lessee, Lessor)*, Year?)+>

 <!ELEMENT Lessee (LesseeName, Address, Phone)>

 <!ELEMENT Lessor (LessorName, Address, Phone)>

 <!ELEMENT Year (#PCDATA)>

 …

a class for nonterminal element LeaseContracts is created according to the rules of

8.3.5, 8.3.6 and 8.3.8:

 class LeaseContracts extends XMLDoc{

 public LeaseContracts(String objectID, String objectName,

 Vector terminalData, Vector LesseeVector, Vector

 LessorVector, Vector YearVector){

 …

 // termninalData is a Vector for passing Terminal

// objects (#PCDATA). Its components are put into CV.

// LesseeVector is a Vector for passing Lessee objects.

// Its components are put into CS.

// LessorVector is a Vector for passing Lessor objects.

// Its components are put into CS.

// YearVector is a Vector for passing Year objects.

 197

// Its components are put into CV.

 }

 …

 }

Rule 8.3.9. If a nonterminal element E has choice sub-elements (indicated by the

logical operator " | "), for each choice, one constructor method is created for this

class E. If the nonterminal element only has sequence sub-elements, only one

constructor method is created for this class E.

For example, for the following definition:

<!ELEMENT subsection(title|(title,(para+)))>

a class for nonterminal element subsection is defined like this:

 class subsection extends XMLDoc{

 public subsection(String objectID, String objectName,

 Vector titleVector){

 …

 }

 public subsection(String objectID, String objectName,

 Vector titleVector, Vector paraVector){

 …

 }

 …

 }

Remark: For sub-elements indicated by " * " or " ? ", different constructor methods

can also be defined to respond to the possible appearances of the sub-elements. This

 198

work is easy but redundant. For simplicity, we will not discuss this situation in

detail.

8.4 DTD-Tree and Transformation Procedure

We define a DTD-Tree to describe the logical and structural relationship among the

elements in a DTD (in this case, we temporarily do not consider object reference or

linking which will be for the further discussion). A DTD-Tree can be produced from

application programs by parsing a DTD file. Just like document object mode (DOM)

for XML document [DOM98], DTD-Tree can be an application program interface

(API) for processing DTD, for example producing classes from a DTD by the above

DTD transformation rules. This DTD-Tree can also be used to express the procedure

to use transformation rules for a DTD file.

DTD-Tree is a directed and labelled tree. In the DTD-Tree, nodes represent

elements in DTD, leaf nodes represent the data type (e.g. #PCDATA), directed

edges represent the containment relationship between an element and its sub-

elements, a label on the edge indicates the optional relation (*, +, ?, |). Attributes

defined for an element are indicated beside that node. The node with no name

indicates a collection of sub-elements. A directed edge without label indicates the

sub-element appears one time in its super-element. For example, the bib.dtd can be

represented as a DTD-Tree in figure 8.4.

 199

Figure 8.4. DTD-Tree of bib.dtd.

This DTD-Tree expresses the element-subelement relationship and optional

relation in DTD. Although there are many tree schemas for describing XML data

currently, such as those in [GMW99] [DOM98] [QZL+00] and [KB00], our DTD-

Tree definition is different from them. For example, tree schemas in [GMW99]

(OEM) and [DOM98] are for XML document not for DTD file, therefore the

optional relations in DTD cannot be expressed. The tree schemas in [QZL+00] and

[KB00] are for DTD, but the schemas just express the simple element-subelement

relationship, the optional relations as well as optional collection of sub-elements in

DTD can not be expressed.

When the DTD transformation rules are applied to the DTD (i.e. DTD-Tree), the

procedure begins from the leaf nodes, producing a set of classes by rules 8.3.2,

8.3.3, 8.3.4, 8.3.5, 8.3.7 and 8.3.8. Then from the bottom to the top (root) of the tree,

the rules are applied level by level and finally all classes for the DTD are produced.

Let LN = {all leaf nodes of original DTD-Tree}, the transformation procedure is

described by the following algorithm.

bib

book

author title publisher year section abstract

ANY #PCDATA#PCDATA#PCDATA#PCDATA

subsection title para

#PCDATA

title title para

#PCDATA #PCDATA #PCDATA

para title

#PCDATA #PCDATA #PCDATA

*

?

+

|

+ ? ?

|

| |

*

+

+

+

isbn

id

 200

Step 1. Create super classes XMLDoc and Terminal by the rule 8.3.1;

Step 2. Read DTD file and produce DTD-Tree;

Step 3. For (n∈LN)

 {

 If (n's parent node name is different from names of created classes)

 {

 If (n's name is #PCDATA)

 {

 If (n's parent node has only one child node and has no attributes)

 {

 a new class (sub-class of Terminal) is created for n's parent node by

rules 8.3.2 and 8.3.3;

n's parent node is marked as class;

delete n from the DTD-Tree;

 }

 If (n's parent node has only one child node and has attributes)

 {

 a new class (sub-class of XMLDoc) is created for n's parent node by

rules 8.3.2, 8.3.4, 8.3.5, 8.3.7, 8.3.8;

n's parent node is marked as class;

delete n from the DTD-Tree;

 }

 }

 201

 If (n's name is ANY or EMPTY)

 {

 a new class (sub-class of XMLDoc) is created by rules 8.3.2, 8.3.4 for

 n's parent node without overriding the super class constructor;

 n's parent node is marked as class;

 delete n from the DTD-Tree;

 }

 }

 Else

 {

 n's parent node is marked as class;

 delete n from the DTD-Tree;

 }

 }

Step 4. For (every node n in the DTD-Tree)

 {

 If (n's name is different from names of created classes)

 {

 If (n's all child nodes are marked as class OR the names of n's all

 unmarked child nodes are #PCDATA or null)

 {

 a new class (sub-class of XMLDoc) is created for n by rules 8.3.2,

 8.3.4, 8.3.5, 8.3.6, 8.3.7, 8.3.9;

 202

 n is marked as class;

 delete n's all child nodes from the DTD-Tree;

 }

 }

 Else

 {

 n is marked as class;

 delete n's all child nodes from the DTD-Tree;

 }

 }

Figure 8.5(a) - (e) shows this procedure for the DTD-Tree in figure 8.4, where

oval boxes represent elements or data types in the DTD, and rectangle boxes

represent the produced classes. The applied rules are also indicated in the figures.

Figure 8.5(a). The first result of the rule application

bib

book

author title publisher year section abstract

subsection title para

title title para

para title
*

?

+

|

+
?

?

|

| |

*

+

+

+

isbn

Rules 8.3.2, 3, 4, 5, 7, 8

DTD-Tree of
bib.dtd

 203

Figure 8.5(b). The second result of the rule application

Figure 8.5(c). The third result of the rule application

Figure 8.5(d). The fourth result of the rule application

Figure 8.5(e). The fifth result of the rule application

8.5 Transformation Rules for XML Document with
 DTD to ORM

subsection

title title para

| |

+
subsection

Rules 8.3.2, 4, 5, 6, 9

section

subsection title para para title
*

| |

++

section
Rules 8.3.2, 4, 5, 6, 9

book

author title publisher year section abstract
?

+
?

?
*

isbn

book
Rules 8.3.2, 4, 5, 6, 7, 9

bib

book
+ bib

Rules 8.3.2, 4, 5, 6, 9

 204

The rules for XML document with DTD describe how to produce instances (objects)

of classes in ORM from XML documents. These classes have been produced by

processing DTDs with the DTD transformation rules. We consider XML documents

conforming to the same DTD as the same data source. In this work, we just discuss

the situation where every XML document in the data source has a DTD which it

strictly conforms to. For the situation where there is no DTDs, we will discuss it in

the later section.

Rule 8.5.1. For each matched pair of tags in XML document, an object is produced.

The object type (class) is the same as the name of the tag. The name of the object is

the same as the object type.

For example, for the following simple statement in an XML document:

 <publisher> Addison-Wesley </publisher>

an object is produced like this:

 String idNo="pub_01";

 String name="Addison-Wesley";

 publisher object_pub01= new publisher(idNo,"publisher",name);

Another example is as follow. For the following XML document segment:

 …
<subsection>

 <title> Java Classes </title>

 <para> This subsection introduces Java classes

 commonly used in programming.

 </para>

</subsection>

 205

…

objects (object_tit, object_para and object_subsec) are produced like this:

 …

 Vector titleVec=new Vector();

 Vector paraVec=new Vector();

 String idNo="title-04";

 String cData="Java Classes";

 title object_tit=new title(idNo,"title",cData);

 titleVec.addElement(object_tit);

 idNo="para-03";

 cData="This subsection introduces Java …";

 para object_para=new para(idNo,"para",cData);

 paraVec.addElement(object_para);

 idNo="subsec-01";

 subsection object_subsec=new subsection(idNo,"subsection",

 titleVec, paraVec);

 …

Rule 8.5.2. For a character string between a matched pair of tags, if this tag is

declared as a nonterminal or pesudo-terminal element in DTD, an object of type

(class) Terminal is produced for this string and put into a same object collection.

For example, for the following XML document segment:

 …

 <LeaseContracts>

 It is an agreement that <Lessee> Star Development Company

 </Lessee> agrees to lease the property at 26 Shanton St.

 206

 from <Lessor> Blue-Moon Real Estate </Lessor> for 10

 months.

 <Year> 2000 </Year>

 </LeaseContracts>

 …

suppose objects of type Lessee, Lessor and Year have been produced and stored

separately in three Vectors lesseeVec, lessorVec and yearVec as above, then an

object of type LessContracts is produced as follow:

 …

 Vector charVec=new Vector();

 String idNo="CS-01";

 String name="CharString";

 String Cstring="It is an agreement that";

 Terminal CS_1=new Terminal(idNo,name,Cstring);

 charVec.addElement(CS_1);

 idNo="CS-02";

 Cstring="agrees to … from";

 Terminal CS_2=new Terminal(idNo,name,Cstring);

 charVec.addElement(CS_2);

 idNo="CS-03";

 Cstring=" for 10 months.";

 Terminal CS_3=new Terminal(idNo,name,Cstring);

 charVec.addElement(CS_3);

 idNo="LC-01";

 name="LeaseContracts";

 LeaseContracts object_LC= new LeaseContracts

 (idNo,name,charVec,lesseeVec,lessorVec,yearVector);

 207

 …

Rule 8.5.3. If a pair of tags is declared as ANY in DTD, just an object of that class is

produced. Other elements between this pair of tags are processed by using the above

rules and the class methods defined in super class XMLDoc.

For example, element abstract is declared as ANY in bib.dtd. For the following

XML document segment:

 …

 <abstract> This book introduces many popular programming

 languages and concentrates on object-oriented

 programming languages, such as Java, C++. It

 is a book suitable for …

 </abstract>

 …

an object object_abs is produced as following:

 …

 abstract object_abs=new abstract();

 String idNo="CS-08";

 String name="CharString";

 String Cstring="This book … suitable for …";

 Terminal object_char=new Ternimal(idNo,name,Cstring);

 object_abs.addValue(object_char);

 …

In practice, to process an XML document by accessing internal structure, we

need to use application program interfaces (APIs). Document Object Model (DOM)

 208

[DOM98] is such an API. In DOM, an XML document is represented as a tree

whose nodes are elements, text, and so on [MTU99]. DOM provides a set of APIs to

access and manipulate these nodes in the DOM tree. DOM for an XML document

can be generated by many XML processors, such as XML for Java [MTU99]. Based

on the DOM of an XML document, an application can be developed to produce

objects from the XML document by the above transformation rules for XML

document. Just as the situations in processing DTD, the application of the

transformation rules for XML document also starts with the leaf nodes in DOM,

produces objects level by level from the bottom to the top of the DOM. Since we

will use DOM to describe the transformation procedure (algorithm) for XML

documents without DTD in the later section, the DOM-based algorithm details for

this procedure, which are similar to those in the later section, are omitted here.

8.6 Transformation Rules from XML Document
 without DTD to ORM

Although rules have been established in the previous sections for transferring DTD

and XML document with DTD to the ORM, the situation for XML documents

without DTD is different. This is mainly because a DTD defines a schema for a set

of XML documents, the elements, structure and constraints are certain. The rules for

transferring DTD to the ORM deal with how to produce classes from the schema

defined by the DTD, and in turn produce objects from XML documents with DTD.

The constraints are included in the class definition. However, for XML documents

without DTD, since there is no pre-defined schema for them, it is impossible to

 209

know in advance what elements will be contained in the XML documents, what the

structures will be for XML documents and what the constraints are. Therefore,

classes cannot be produced in advance and objects are produced without predefined

constraints. The rules for transferring XML documents without DTD should be

different from and looser than those for DTD and XML documents with DTD, in

order to be suitable for different possible situations.

Although it is impossible to produce classes from the DTD in advance, the two

super classes XMLDoc and Terminal, which are defined before, are available for

producing concrete objects from XML documents. Therefore, the first rule for XML

documents without DTD is similar to that for DTDs.

Rule 8.6.1. Two super classes, named XMLDoc and Terminal, should be established.

The structures of these two super classes are the same as those defined in figure 8.1.

XMLDoc is for nonterminal elements in XML documents, Terminal is for terminal

elements, element attributes, element values and other similar elements in XML

documents.

Rule 8.6.2. An object of XMLDoc class is produced for a nonterminal element in

XML documents. The object name variable oname is the same as that of the

element.

Rule 8.6.3. An object of Terminal class is produced for a terminal element or an

element attribute, or one unit of element value in XML documents. The object name

variable oname is the same as that of the terminal element or attribute name. For the

 210

element value unit, the object name variable oname is the same as that of element

containing this element value unit.

Rule 8.6.2 and Rule 8.6.3 insure that an XML document is totally modelled as a

set of objects, and the element names in the XML document are reserved in the

objects. This treatment captures the feature of XML documents and makes it easy

for applications to identify objects and retrieve information by the element names.

The following example shows how to apply Rule 8.6.2 and Rule 8.6.3 to produce

objects from an XML document. Suppose the class constructors for XMLDoc and

Terminal classes are as follow separately:

 public XMLDoc(String ObjectID, String ObjectName){

 oid = ObjectID;

 oname = ObjectName;

 }

 public Terminal(String ObjectID, String ObjectName, String

CharacterData){

 oid = ObjectID;

 oname = ObjectName;

 charData = CharacterData;

 }

For the following XML segment:

<person id="123">

 This is a manager:

 <surname> McDonald </surname>

 …

 </person>

 211

The objects produced from this XML segment by the Rules 8.6.2 and 8.6.3 will be:

 XMLDoc object_person = new XMLDoc("person-01", "person");

 Terminal object_id = new Terminal("id-01", "id", "123");

 String dataValue = "This is a manager";

 Terminal object_value= new Terminal("personValue-01",

 "person", dataValue);

 Terminal object_surname= new Terminal("surname-01", "surname",

 "McDonald");

 …

The above rules define how to transfer elements in XML documents into objects

in the ORM. The next rules will define the containment relationship among these

objects.

Rule 8.6.4. If an element B has parent element A, then the object B is added into the

object A. Otherwise, object B is the root object in the ORM.

This rule indicates that each object for an element in XML documents belongs to

a certain parent object, unless this object is the root object. From the characteristics

of XML documents, the ORM for each XML document has only one root object.

The following rules further define how the objects for different elements in XML

documents are added into their parent objects.

Rule 8.6.5. For attributes of an element E in the XML document, the objects for

these attributes are added into the CA of the object E.

 212

Rule 8.6.6. For values and child terminal elements of an element E in the XML

document, the objects for these values and terminal elements are added into the CV

of the object E.

Rule 8.6.7. For child nonterminal or pseudo-terminal elements of an element E in

the XML document, the objects for these nonterminal or pseudo-terminal elements

are added into the CS of the object E.

The definitions of Rule 8.6.5 and 8.6.7 are obvious. In Rule 8.6.6, we add the

objects for child terminal elements into the CV, not the CS, of their parent object.

This is because, although these objects are the child (sub) objects of their parent

object, they belong to the class Terminal. This treatment makes the CS of an object

only contain objects of class XMLDoc, CA and CV only contain objects of class

Terminal. This uniform structure of the ORM will make it easy for algorithm design

and application development.

For instance, applying the Rule 8.6.4, 8.6.5 and 8.6.6 to the above example, we

have the following results:

 object_person.attributes.addElement(object_id);

 object_person.values.addElement(object_value);

 object_person.values.addElement(object_surname);

 …

Based on these transformation rules, transformation procedures can be provided

subsequently for reading and processing XML documents.

 213

8.7 Transformation Procedures for XML
 Documents without DTD

As indicated in section 8.5, in order to process XML documents, we need to access

the internal structures of them. DOM (Document Object Model) [DOM98] provides

this function. DOM defines an object-oriented API for XML documents and

represents a document as a hierarchy of objects of classes such as Element,

Attribute, Text etc., which closely models the actual structure of the document. For

example, the DOM structure of the first XML document in section 8.2 is described

as the following figure 8.6.

From the DOM of an XML document, we can access the internal structure and

elements of the XML document using the various methods provided by the DOM.

There have been many DOM implementations already, such as XML for Java from

IBM [MTU99]. From these implementations, we can extract ORM objects from

XML documents.

Figure 8.6. Structure of an XML document in DOM

person

id

surname

givenname

street

city

phone

country

state

address

"123"

"McDonald"

"Phillip"

"26 William Street"

"Townsmore"

"Queensland"

"Australia"

"9231 7436 (o), 9267 4530 (h)"

 214

Although DOM provides methods for accessing and manipulating the nodes in it,

a DOM-based XML processor creates the entire structure of an XML document in

memory. So DOM is suitable for applications that operate on the document as a

whole, particularly it is best suited for structurally modifying an XML document and

sharing the document in memory with other applications [MTU99]. Our ORM,

however, provides objects for XML documents. These objects can be stored (in

memory or not in memory) and manipulated as a whole or individually. For

example, the ORM objects can be managed by OO database management systems,

but DOM object cannot be. Furthermore, our ORM for XML documents does not

model the actual structure of the documents, but model the logical relationships

among the elements in the documents. This makes the algorithm design (such as

search algorithm) easier, since there is no need to traverse all objects in most cases,

while in DOM it would have to know "what to look for" and traverse various

element objects to find that information [Man98].

Based on the DOM and transformation rules in above section, the transformation

procedures and algorithms can be described as follows:

Step 1: Create super classes XMLDoc and Terminal by Rule 8.6.1;

Step 2: Read and parse the XML document, produce a DOM structure for the

document;

Step 3: Create a root object for the root element (R) of DOM by Rule 8.6.2 and

8.6.4;

Step 4: For (every subelement E of element (R) in DOM)

 {

 215

 if (E is an attribute of element R)

 {

 create an object of class Terminal for E and add it into the CA of R by

 Rules 8.6.3, 4 and 5;

 }

 else if (E is a terminal element or value of element R)

 {

 create an object of class Terminal for E and add it into the CV of R by

 Rules 8.6.3, 4 and 6;

 }

 else if (E is a nonterminal element of element R)

 {

 create an object of class XMLDoc for E and add it into the CS of R by

 Rules 8.6.2, 4 and 7;

 repeat Step 4 for the element (E); // recursively

 }

 }

As an example, applying the above transformation procedures and algorithms to

the first XML document in section 8.2, whose DOM structure is showed in figure

8.6, we can obtain the following results:

 // Step 1 and Step 2

…

// Step 3

 XMLDoc object_person = new XMLDoc("person-01", "person");

 216

 // Step 4 for object_person

Terminal object_id = new Terminal("id-01", "id", "123");

 object_person.attributes.addElement(object_id);

 Terminal object_surname = new Terminal("surname-

 01","surname","McDonald");

 object_person.values.addElement(object_surname);

 Terminal object_givenname = new Terminal("givenname-01",

 "givenname", "Phillip");

 object_person.values.addElement(object_givenname);

 XMLDoc object_address = new XMLDoc("address-01", "address");

 object_person.subObjects.addElement(object_address);

 // Recursion of Step 4 for object_address

Terminal object_street = new Terminal("street-01", "street",

 "26 William Street");

 object_address.values.addElement(object_street);

 Terminal object_city = new Terminal("city-01", "city",

 "Townsmore");

 object_address.values.addElement(object_city);

 Terminal object_state = new Terminal("state-01", "state",

 "Queensland");

 object_address.values.addElement(object_state);

 Terminal object_country = new Terminal("country-

 01","country","Australia");

 object_address.values.addElement(object_country);

 // Step 4 for object_person

 Terminal object_phone = new Terminal("phone-01", "phone",

 "9231 7436 (o), 9267 4530 (h)");

 object_person.values.addElement(object_phone);

 217

 …

Then, we get a set of ORM objects from the XML document:

{object_person, object_id, object_surname, object_givenname, object_address,

object_street, object_city, object_state, object_country, object_phone}.

These objects can be stored or manipulated individually or as a whole by

applications and management systems.

8.8 Related Work and Discussions

Currently, the representative related work can be seen in [BBB00], [GMW99] and

[LRK00]. [BBB00] gives an object view of an XML document, but this view is not

for DTD. Because this work mainly considers the transformation between XML

documents and relational databases, concrete and complete object model is not

proposed for XML documents and DTD. The data model in [GMW99] is the

extension of that for semi-structured data, OEM. This data model describes logical

relationship of the elements in XML documents. There is no concrete object

representation model for the objects in this model. To apply this data model, a

proper object representation model should be established to meet the requirements

of application or systems.

In [LRK00], a set of translation rules is proposed for translating XML data, with

or without DTDs, into classes or objects for a mediator. Terminal elements, as well

as attributes of elements, in XML data are modelled as attributes (not sub-objects) of

the object. However, the application of this model requires users have the

knowledge of the object structure and the object variables are manipulated directly.

 218

Furthermore, for the use of this model, special methods must be used to distinguish

which object attribute is for the terminal element and which is for the attribute of an

element in the original XML document. For the changes of terminal elements or

element attributes, these special methods must be changed accordingly. The

extensibility of this model is limited.

For the element declared as ANY in DTD, it causes the problem called

incompleteness of DTD because it can contain any declared types. It is relatively

difficult to deal with this kind of element in a model for XML data. In [LRK00], to

deal with ANY element, it has to define new types dynamically when read XML

documents or update object variables frequently from object attributes to sub-

objects. It is complex and difficult in application development.

Sometimes the order of the elements in XML documents is important for

applications. But similar models for XML data in [LRK00] and [BBB00] did not

consider this situation. With our ORM, the above problems can be solved or

techniques for processing XML data can be improved.

8.9 Conclusions

In this chapter, we propose an object representation model (ORM) for XML data

(DTD and XML documents). A set of transformation rules and algorithms for

transforming DTD and XML documents into this ORM is established. Compared

with other similar models for XML documents, this ORM does not model actual

structure of the documents, but model logical relationships among the elements in

documents, and is pure object-oriented. It capsulizes elements of XML data and data

 219

manipulation methods in a uniform structure. This model meets the XML data

model design criteria of simplicity, completeness and extensibility, and has abilities

to reflect the dynamical changes of the XML data. The logical organisation of the

objects in the ORM also makes it easy to design application-specific algorithms,

such as those for object recognition, searching and element order treatment.

Furthermore, the ORM objects extracted from the XML documents can be stored,

shared and manipulated by applications and management systems, not just at

memory level. Therefore, this ORM is suitable for web applications and information

retrieval.

This ORM for XML data can be used to the situation where the element order in

an XML document needs to be considered, because the class variable oid in the

model can be used to record the order. Retrieval by element name and value can also

be easily implemented in this ORM, because the element name (without change) and

value are capsulized in an object. Different objects with the same element (object)

name can be identified by the object identification oid.

Due to the pure object-oriented characteristics, this ORM is suitable for dealing

with the problem of incompleteness of DTD. Instead of dynamically defining new

types (classes) or updating object variables when read XML document, our model is

in an uniform manner of producing an object for ANY element and using the class

methods to deal with any elements contained within that ANY element pair.

DTD-Tree defined in this work can be used to describe logical structure of a

DTD. It also can be used as an API for processing DTD, which is similar to DOM

 220

for XML document processing. In this work, it is used to express the procedure of

using transformation rules.

221

Chapter 9

Conclusions

9.1 Summary

9.1.1 Mathematical Framework for Hyperlink Analysis and

Information Retrieval

Web data is huge and lack of uniform data models or schemas. For the purpose of

finding intrinsic relationships among the web data to implement effective and

efficient web data management and information retrieval, it is necessary to establish

a framework within which the data relationships could be modelled, and further

(deeper) intrinsic relationships could be discovered with a series of algorithms of

this framework. In this work, we focus on the web data relationships that are

expressed by hyperlinks among the pages, and establish a mathematical framework,

especially the matrix-based framework, to model hyperlinks. With matrix models,

the hyperlink relationship (in-link and out-link) between a page and other pages can

be expressed as vectors, and deeper relationships among the pages could be

discovered through mathematical algorithms (operations). Because of the tight

relationship between the web data management and information retrieval (web-

based and conventional), the proposed mathematical framework could also be

222

applied to general situations of information retrieval. The framework and its

algorithms are based on a solid mathematic theory background, and the produced

results are reliable.

Originally, a matrix A = (aij) is used to model the existence of hyperlinks among

the web pages. In this case, if there is a hyperlink from page i to page j, the

corresponding matrix element aij will have a value of 1; otherwise the value is 0. For

example, the algorithms for eliminating noise pages in Chapter 3 and algorithms for

finding relevant pages in Chapter 4 are based on such hyperlink matrix model. This

matrix model can also be extended to model the containment relationship between a

text document and a set of keywords in conventional data management systems.

Similarly, if a text document i contains the jth keyword, the corresponding matrix

element aij will possess a value of 1; otherwise the value is 0. The mathematical

information retrieval algorithms in Chapter 5 are the concrete examples that are

based on such extended matrix model. It can be inferred that this kind of matrix

model could be extended to other similar situations provided the relationships

among the concerned objects can be modelled as two statuses, such as existence and

non-existence.

 Apart from the above original matrix models, a matrix can also be used to

model the tightness rates of the relationships (via hyperlinks) among the web pages.

In this case, the element values 0 and 1 are usually used to represent two extreme

situations: 0 represents that there is no relationship between the two pages through

the hyperlink; 1 represents that the two pages are the same. The matrix element

values usually fall into a range between 0 and 1, and the value represents the

223

tightness rate of the relationship between two pages. Matrix models in Chapters 6

and 7 are the examples of this type of matrix model. In Chapter 6, the primary

correlation relationships and correlation relationships among the concerned pages

are expressed as primary correlation matrix and correlation matrix respectively, in

which the element values represents the correlation degrees (0≤ correlation degree ≤

1) between the pages. In Chapter 7, the similarity between pages is also expressed in

a similarity matrix. Similarly, this kind of matrix model can also be extended to

information retrieval and other areas. For example, in Chapter 5, the element values

of the term-document matrix A, which models the containment relationships

between documents and a set of keywords, are defined as)(),(iGjiLaij ×= , where

),(jiL is the local weight for term (keyword) i in document j,)(iG is the global

weight for term i.

The mathematical framework (matrix model) paves the way of using mathematic

theory to analyse relationships among the concerned objects, such as web pages, and

taking advantage of various mathematic operations to discover their deeper

relationships and get reliable results.

9.1.2 Strategies on Discovering Web Page Communities
Using Hyperlink Analysis

Strategies for discovering web page communities are based on the proposed

mathematic (matrix) models and corresponding mathematic operations, such as the

singular value decomposition of matrix. These strategies or algorithms form the core

224

of the framework for hyperlink analysis and web page community construction. In

this work, we mainly concentrate on three kinds of web page communities:

• the community that consists of hub and authority pages;

• the community composed of relevant web pages with respect to a given page

(URL);

• the community with hierarchical cluster structures.

For different web page communities, different strategies (algorithms) are proposed

from hyperlink analysis within the mathematical framework.

For the web page community that consists of hub and authority pages, since

there exist many methods of how to construct this kind of community, in this work,

we focus on how to eliminate noise pages from the web page source to obtain

another good quality web page source, and in turn to construct a good quality web

page community. The proposed noise page elimination algorithms could also be

used solely to filter unnecessary web pages and reduce the management cost and

burden of web-based data management systems, especially for special-purpose

search engines (Internet portals).

In order to eliminate noise pages from the page source (base page set), the web

pages that are returned directly by the search engine (root page set) with respect to

the users’ queries are used as a reference system to test whether other pages are

noise pages or not. For this purpose, a matrix model (adjacency matrix) is

established to model the hyperlink relationships between the pages in the root page

set and other pages in the base page set. A singular value decomposition based

225

algorithm is proposed to capture main hyperlink information from the original

adjacency matrix, and numerically define thresholds for eliminating noise pages.

For the community that is composed of relevant pages with respect to the given

page (URL), the situation is different. Discovering such a community refers to two

issues: one is how to construct a page source with respect to the given URL for

relevant page finding, such that the page source is rich in relevant pages and is of

reasonable size; another one is how to effectively find the relevant pages. In this

work, we propose a page source construction algorithm. The produced page source

meets the requirements and the algorithm can also prevent the page source from

being affected by malicious hyperlinks on the web. For effectively finding relevant

pages, we propose two algorithms. The first one is the extension of traditional co-

citation algorithms. It is intuitive, concise and easy to implement. The second one is

based on a hyperlink matrix model, singular value decomposition of matrix, and

other mathematical operations such as vector and projection operations. It reveals

deeper relationships among the pages and more effectively finds relevant pages, i.e.

the relevant pages returned by this algorithm not only include those that address the

same topic as the given page, but also include those that address the same topic and

are semantically relevant to the give page.

In order to cluster web pages to discover a community with its own hierarchical

cluster structures, we propose a new hyperlink-based web page similarity

measurement. This new similarity metric incorporates web page importance

(weight), hyperlink transitivity and is derived from page correlation degrees within

the concerned page source, rather that the direct hyperlinks. It more objectively

226

reflects the nature of the web. With this new page similarity, we propose two types

of hierarchical clustering algorithms to improve web page clustering. The first one is

the improvement of the conventional K-mean algorithms. It is effective in improving

page clustering, but is sensitive to the predefined similarity thresholds for clustering.

Another type is the matrix-based hierarchical algorithm. Two algorithms of this type

are proposed in this work. One takes cluster-overlapping into consideration, another

one does not. The matrix-based algorithms do not require predefined similarity

thresholds for clustering, are independent of the order in which the pages are

presented, and produce stable clustering results. The algorithms exploit intrinsic

relationships among web pages within a uniform matrix framework, avoid much

influence of human interference in the clustering procedure, and are easy to be

implemented for applications.

A series of experiments have been conducted to demonstrate the effectiveness

and efficiency of the proposed algorithms in discovering various web page

communities.

9.1.3 Visualization Support for Information Retrieval

The mathematical framework, as well as its various mathematic algorithms, is

effective in many application areas. However, these mathematical models,

algorithms and results are not easy to understand. For better applying this kind of

algorithms in practice, we investigate the visualization mechanism and propose a set

of visualization algorithms to provide a visualization support for various

applications that are based on mathematical algorithms.

227

In this work, we generalize the web page community construction as a special

case in information retrieval, and extend the mathematic algorithms, especially the

SVD based algorithms, to the conventional text information retrieval. As in the web

community construction, the SVD-based text information retrieval algorithm reveals

the higher-order structure of the data in the database and implements intelligent

retrieval. A set of algorithms is proposed to provide visualization support for this

kind of application. The visualization algorithms could also be smoothly applied to

web applications. The feasibility of the proposed visualization algorithms is

demonstrated in the prototype implemented in Java.

9.1.4 Object-Oriented Data Model for XML Documents

In order to enable our research to cover another important type of web data - XML

document, which is now becoming a new standard for data representation and

exchange on the Internet, we propose an object-oriented data model for XML data,

the object representation model (ORM), to support semantic information extraction

and XML data management. A set of rules and algorithms is established for

transforming XML data (DTD, XML document with or without DTD) into this

object-oriented data model. The DTD-tree for DTD is also proposed to describe

logical structure of a DTD. It also can be used as an API for processing DTD, such

as transforming a DTD document into the ORM.

The ORM models logical relationships among the elements in XML documents,

and capsulizes elements of XML data and data manipulation methods in a uniform

structure. The logical organization of the objects in the ORM makes it easy to design

228

application-specific algorithms for various XML based applications. With this data

model, semantic meanings of the tags (elements) in XML data can be extracted for

further research in XML data management and information retrieval, such as

community construction for XML data.

9.2 Possible Future Work

Some possible means of extending the research presented in this dissertation are

given below:

• For eliminating noise pages in Chapter 3, the root set of pages is considered as

topic-related, which is reasonable in most cases especially with more and more

precise search engines emerging. In practice, however, the root set could also

contain noise pages though the possibility is small. The hyperlink-based noise

pages elimination techniques could also be used to prune these (at least most)

noise pages and select a subset (with smaller size) of the root set, which is more

related to the query topics, as a better reference system to identify noise pages in

the base set. This treatment would reduce the computing cost of the current noise

page elimination algorithms. On the other hand, although the eliminated pages

are considered as topic unrelated, they are usually in dense connection (linkage)

and maybe imply other useful web communities. The further treatment of the

eliminated noise pages would lead to finding more useful information about the

query topics or roughly clustering the searched pages. Following this direction,

other researches could be carried out, such as proposing more precise clustering

algorithms for these roughly clustered pages.

229

• The algorithms for finding relevant pages in this work, as well as the previous

work in this area, find relevant pages statically, as they only deal with the "static"

links among the pages. If they are implemented on the top of a hyperlink server

such as the Connectivity Server [BBH+98], they are at most semi-dynamic since

the hyperlink information they use depends on the information update in the

hyperlink database of the server. Extending the current algorithms to deal with

dynamic links, such as those produced by a CGI script, is a valuable and

challenge problem. For the LLI algorithm in Chapter 4, the impact of choosing

approximation matrix (i.e. the approximation parameter k) to the final results is

also worthy of study in the future, although we choose ε = 0.5 to determine k in

this work. The page similarity in the LLI algorithm could also be adapted for

page clustering if the number of pages to be clustered is not huge. Assigning

more semantics to hyperlinks, especially for XML documents, is another

promising approach to increase the effectiveness in finding relevant pages

(documents), clustering pages (documents) and so on.

• For the visualization support of information retrieval, further research on visual

reasoning could be carried out to make the system more ‘intelligent’ to guess the

user’s intention by using the similar mathematic algorithms in information

retrieval. Moreover, applying caching techniques to increase the search

efficiency of the visualization is also a promising research direction, especially

for web information search.

230

• Although hyperlink analysis and hyperlink-based algorithms is successful in

many cases, such as web page clustering, the hyperlink only partially conveys

semantics among the web pages. A proper combination of effective page

hyperlink analysis with effective page content analysis might be another

approach to greatly increase the effectiveness and efficiency of web data

relationship discovery, such as web page clustering. Meanwhile, some problems

in hyperlink analysis still remain to be solved, such as how to reasonably and

precisely determine the page correlation factor F in Chapter 6. More large-scale

user experiments need to be conducted to further demonstrate the feasibility of

the proposed algorithms. The page similarity in Chapter 6 could also be applied

to other web-related areas, such as web search improvement, relevant web page

finding and XML document clustering.

• The object representation model for XML data should be able to deal with the

extending capability of XML, such as addressing and linking, internal and

external entities [Berg00] [McG98]. The ORM could be improved in the further

work to deal with such cases. Other directions of the further work with this data

model are: how to design effective algorithms for managing and accessing ORM

objects, how to define the issues about the application requirements based on the

ORM, how to modify the ORM to meet the application requirements, and how to

combine the strategies for HTML data with this model to construct XML

communities. It is another promising research direction to combine the ORM

with XML document clustering algorithms to implement efficient XML data

storage and management.

231

• The ideas, research results, as well as other future research results related to the

work in this dissertation, could be integrated into web data management systems

to improve the effectiveness and efficiency of the systems, and to provide

various supports for web-based applications, such as e-commerce.

 232

Bibliography

[Abit97] S. Abiteboul, Querying Semi-Structured Data, Proceedings of ICDT, pp 1-
18, Delphi, Greece, January 1997.

[AAY01] C.C. Aggarwal, F. Al-Garawi, P.S. Yu, Intelligent Crawling on the World
Wide Web with Arbitrary Predicates, Proceedings of the 10th International WWW
Conference, Hong Kong, May 2001.

[Alta] AltaVista search engine, http://www.altavista.com/.

[AGS99] G. Attardi, A. Gulli, F. Sebastiani, Automatic Web Page Categorization by
Link and Context Analysis, Proceedings of the 1st European Symposium on
Telematics, Hypermedia and Artificial Intelligence (THAI’99), 1999.

[BR99] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval,
Addison Wesley, ACM Press, 1999.

[Berg00] A. Bergholz, Extending Your Markup: An XML Tutorial, IEEE Internet
Computing, Vol. 4, No. 4, pp 74-79, July/August 2000.

[BDO95] M. W. Berry, S. T. Dumais, G. W. O'Brien, Using linear Algebra for
Intelligent Information Retrieval, SIAM Review, Vol. 37, No. 4, pp. 573-595, 1995.

[BBH+98] K. Bharat, A. Broder, M. Henzinger, P. Kumar, and S.
Venkatasubramanian, The Connectivity Server: fast access to linkage information on
the Web, Proceedings of the 7th International World Wide Web Conference, pp 469-
477, 1998.

[BH98] K. Bharat, M. Henzinger, Improved Algorithms for Topic Distillation in a
Hyperlinked Environment, Proc. the 21st International ACM Conference of
Research and Development in Information Retrieval (SIGIR98), pp 104-111, 1998.

[Bier00] G. M. Bierman, Using XML as an Object Interchange Format, Technical
Proposal, Department of Computer Science, University of Warwick, UK, 17 May,
2000.

[BGG+99] D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar,
B. Mobasher and J. Moore, Partitioning-Based Clustering for Web Document
Categorization, Decision Support Systems, 27, pp 329-341, 1999.

 233

[Bot93] R. A. Botafogo, Cluster Analysis for Hypertext Systems, Proceedings of
ACM 16th Annual International SIGIR'93, Pittsburgh, PA, June 1993.

[BRS92] R. A. Botafogo, E. Rivlin, and B. Shneiderman, Structural Analysis of
Hypertexts: Indentifing Hierarchies and Useful Metrics, ACM Transactions on
Information Systems, Vol 10, No 2, pp 142-180, April 1992.

[BS91] R. A. Botafogo and B. Shneiderman, Identifying Aggregates in Hypertext
Structures, Proceedings of Hypertext'91, pp 63-74, December 1991.

[BBB00] R. Bourret, C. Bornhovd, A. Buchmann, A Generic Load/Extract Utility
for Data Transfer Between XML Documents and Relational Databases, Proceedings
of Second International Workshop on Advance Issues of E-Commerce and Web-
Based Information Systems (WECWIS'00), Milpitas, California, USA, 8-9 June,
2000.

[BP98a] S. Brin and L. Page, The Anatomy of a Large-Scale Hypertextual Web
Search Engine, Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, April 1998.

[BP98b] S. Brin and L. Page, The PageRank Citation Ranking: Bringing Order to
the Web, January 1998, http://www-db.stanford.edu/~backrub/pageranksub.ps.

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R.
Stata, A. Tomkins and J. Wiener, Graph Structure in the Web, Proceedings of the 9th
International WWW Conference, Amsterdam, May 15-19, 2000.

[BGM+97] A. Broder, S. Glassman, M. Manasse, and G. Zweig, Syntactic
Clustering of the Web, Proceedings of the 6th International WWW Conference, pp
391-404, Santa Clara, CA, USA, April 1997.

[Cam97] R. D. Cameron, A Universal Citation Database As a Catalyst for Reform in
Scholarly Communication, First Monday, April 1997.

[CHH98] L. A. Carr, W. Hall, S. Hitchcock, Link Services or Link Agents?,
Proceedings of the 9th ACM Conference on Hypertext and Hypermedia
(HyperText98), pp 113-122, 1998.

[CK97] J. Carriere, R. Kazman, WebQuery: Searching and Visualizing the Web
through Connectivity, Proceedings of the 6th International world Wide Web
Conference, 1997.

[Cat+00] R. G. G. Cattell et al, The Object Data Standard: ODMG 3.0, Morgan
Kaufmann, 2000.

 234

[Chak01] S. Chakrabarti, Integrating the Document Object Model with Hyperlinks
for Enhanced Topic Distillation and Information Extraction, Proceedings of the 10th
International WWW Conference, Hong Kong, 1-5 May 2001.

[CDG+98] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan and S.
Rajagopalan, Automatic Resource Compilation by Analyzing Hyperlink Structure
and Associated Text, Proc. the 7th International World Wide Web Conference, pp
65-74, 1998.

[CDI98] S. Chakrabarti, B. Dom, P. Indyk, Enhanced Hypertext Categorization
Using Hyperlinks, Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD'98), pp 307-318, Seattle, USA, 1998.

[CJT01] S. Chakrabarti, M. Joshi, V. Tawde, Enhanced Topic Distillation Using
Text, Markup Tags, and Hyperlinks, Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pp
208-216, New Orleans, USA, 9-13 September 2001.

[CVD99a] S. Chakrabarti, M. van den Berg and B. Dom, Focused crawling: A New
Approach to Topic-Specific Web Resource Discovery, Proceedings of the 8th
International World Wide Web Conference, Toronto, Canada, May 11-14, 1999.

[CVD99b] S. Chakrabarti, M. van den Berg and B. Dom, Distributed Hypertext
Resource Discovery Through Examples, Proceedings of the 25th International
Conference on Very Large Data Bases, pp 375-386, Edinburgh, Scotland,
September 1999.

[Chen97] C. Chen, Structuring and Visualising the WWW by Generalised Similarity
Analysis, Proceedings of the 8th ACM Conference on Hypertext (Hypertext97), pp
177-186, 1997.

[CC99] C. Chen, L. Carr, Trailblazing the Literature of Hypertext: Author Co-
Citation Analysis (1989-1998), Proceedings of the 10th ACM Conference on
Hypertext and Hypermedia (Hypertext99), pp 51-60, 1999.

[CGP98] J. Cho, H. Garcia-Molina and L. Page, Efficient Crawling through URL
Ordering, Proceedings of the 7th International World Wide Web Conference,
Brisbane, Australia, April 1998.

[CG00a] J. Cho and H. Garcia-Molina, Synchronizing a Database to Improve
Freshness, Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp 117-128, May 2000.

[CG00b] J. Cho and H. Garcia-Molina, The Evolution of the Web and Implications
for an Incremental Crawler, Proceedings of the 26th International Conference on
Very Large Data Bases, pp 200-209, Cairo, Egypt, September 2000.

 235

[CAC+94] V. Christophides, S. Abitteaboul, S. Cluet and M. Scholl, From
Structured Documents to Novel Query Facilities, ACM SIGMOD Conf.,
Minneapolis, 1994.

[CBS99] T. Connolly, C. Begg, A. Strachan, Database Systems, A Practical
Approach to Design, Implementation, and Managenment, second edition. Addison
Wesley Longman Limited, 1999.

[CDF+98] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K.
Nigam and S. Slattery, Learning to Extract Symbolic Knowledge from the World
Wide Web, Proceedings of the 15th National Conference on Artificial Intelligence
(AAAI98), pp 509-516, 1998.

[Dat95] B.N. Datta, Numerical Linear Algebra and Application, Brooks/Cole
Publishing Company, 1995.

[DH99] J. Dean and M. Henzinger, Finding Related Pages in the World Wide Web,
Proc. the 8th International World Wide Web Conference, pp 389-401, 1999.

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, Indexing by Latent Semantic Analysis. J. Amer. Soc. Info. Sci., 41(6):
pp. 391-407, 1990.

[DCL+00] M. Diligenti, F. Coetzee, S. Lawrence, C. Giles and M. Gori, Focused
Crawling Using Context Graphs, Proceedings of the 26th International Conference
on Very Large Data Bases, pp 527-534, Cairo, Egypt, September 2000.

[DOM98] Document Object Model (DOM) Level 1 Specification Version 1.0.
http://www.w3.org/TR/REC-DOM-Level-1, 1998.

[DJ88] R. J. Dubes and A. K. Jain, Algorithms for Clustering Data, Prentice Hall,
1988.

[Dum91] S. T. Dumais, Improving the Retrieval of Information from External
Sources, Behavior Research Methods, Instruments and Computers, 23(2), pp. 229-
236, 1991.

[EHD+01] S. R. El-Beltagy, W. Hall, D. De Roure, and L. Carr, Linking in Context,
Proceedings of the 12th ACM Conference on Hypertext and Hypermedia
(HyperText01), pp 151-160, 2001.

[FBY92] W. B. Frakes and R. Baeza-Yates, Information Retrieval Data Structures
and Algorithms, Prentice Hall, Englewood Cliffs, NJ, 1992.

 236

[Garf79] E. Garfield, Citation Indexing: Its Theory and Application in Science,
Technology, and Humanities, John Wiley & Sons, New York, 1979.

[Garf72] E. Garfield, Citation Analysis as a Tool in Journal Evaluation, Science, pp
471-479, 178(1972).

[GGR+00] M.N. Garofalakis, A. Gionis, R. Rastogi, S. Seshadri, K. Shim,
XTRACT: A System for Extracting Document Type Descriptors from XML
Documents, SIGMOD Record, Vol 29, Issue 2, pp165-176, June 2000.

[GST+01] L. Getoor, E. Segal, B. Tasker, D. Koller, Probabilistic Models of Text
and Link Structure for Hypertext Classification, The Seventeenth International Joint
Conference on Artificial Intelligence Workshop on “Text Learning: beyond
Supervision”, Seattle, WA, August 4-10, 2001.

[GKR98] D. Gibson, J. Kleinberg, P. Raghavan, Inferring Web Communities from
Link Topology, Proc. the 9th ACM Conference on Hypertext and Hypermedia
(HyperText98), pp. 225-234, 1998.

[GMW99] R. Goldman, J. McHugh, J. Widom, From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language, Proceedings of the 2nd
International Workshop on the Web and Databases (WebDB'99), Philadelphia,
Pennsylvania, June 1999.

[GVL93] G. H. Golub, C. F. Van Loan, Matrix Computations, second edition, The
Johns Hopkins University Press, 1993.

[Google] Google search engine, http://www.google.com/.

[GGZ01] G. Greco, S. Greco, E. Zumpano, A Probabilistic Approach for Distillation
and Ranking of Web Pages, Journal of World Wide Web, 4: pp 189-207, 2001.

[Gus97] D. Gusfield, Algorithms on strings, trees and sequences: computer science
and computational biology, chapter 6, Cambridge University Press, 1997.

[HM90] R. B. Haber, D.A. McNabb, Visualization Idioms: A Conceptual Model for
Scientific Visualization Systems, Visualization in Scientific Computing, IEEE Press,
Los Alamitos, CA, 1990.

[Hit+97] S. Hitchcock et al., Citation Linking: Improving Access to Online Journals,
Proceedings of the 2nd ACM International Conference on Digital Libraries, ACM
Press, pp 115-122, New York, 1997.

[Hock00] R. Hock, The Extreme Searcher's Guide to Web Search Engines: A Hand
Book for the Serious Searcher, CyberAge Books Publisher, New Jersey, USA, 2000.

 237

[HZ03a] J. Hou and Y. Zhang, Utilizing Hyperlink Transitivity to Improve Web
Page Clustering, Proceedings of the 14th Australasian Database Conference
(ADC2003), February 4-7, 2003, Adelaide, Australia.

[HZ03b] J. Hou and Y. Zhang, Web Page Clustering: A Hyperlink-Based Similarity
and Matrix-Based Hierarchical Algorithms, Proceedings of the 5th Asia Pacific Web
Conference (APWeb 2003), Xi’an, China, 23-25 April 2003.

[HZ03c] J. Hou and Y. Zhang, Finding More Relationships from Web Page
Hyperlink Patterns, to be submitted.

[HZC02] J. Hou, Y. Zhang and J. Cao, Eliminating Noise Pages for Better Web
Page Communities, Journal of Research and Practice in Information Technology,
2002 (to appear).

[HZ02a] J. Hou, Y. Zhang, Constructing Good Quality Web Page Communities,
Database Technologies 2002, Proceedings of the 13th Australasian Database
Conferences (ADC2002), pp. 65-74, Monash University, Melbourne, Australia, 28
January - 1 February, 2002.

[HZ02b] J. Hou and Y. Zhang, Effectively Finding Relevant Web Pages from
Linkage Information, IEEE Transactions on Knowledge & Data Engineering
(TKDE), to appear.

[HZ02c] J. Hou and Y. Zhang, A Matrix Approach for Hierarchical Web Page
Clustering Based on Hyperlinks, Proceedings of the 3rd International Conference on
Web Information Systems Engineering (WISE’03), First International Workshop on
Mining for Enhanced Web Search 2002 (MEWS’02), pp 207-216, Singapore,
December 2002.

[HZC+02] J. Hou, Y. Zhang, J. Cao, W. Lai, D. Ross, Visual Support for Text
Information Retrieval Based on Linear Algebra, Journal of Applied Systems Studies,
Cambridge International Science Publishing, Vol.3, No.2, 2002.

[HZK01] J. Hou, Y. Zhang and Y.Kambayashi, Object-Oriented Representation for
XML Data, Proceedings of the 3rd International Symposium on Cooperative
Database Systems for Advanced Applications (CODAS'01), pp. 43-52, Beijing,
China, April 23-24, 2001.

[HZC+00] J. Hou, Y. Zhang, J. Cao, W. Lai, Visual Support for Text Information
Retrieval Based on Matrix's Singular Value Decomposition, Proceedings of the 1st
International Conference on Web Information Systems Engineering (WISE'00),
Vol.1 (Main Program), pp. 333-340, Hong Kong, China, 19-21 June, 2000.

[ISO91]. Information Technology-Computer Graphics-Reference Model, ISO DIS
11072, 1991.

 238

[JD88] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice Hall,
1988.

[Java] Java Tutorial: A practical guide for programmers,
http://java.sun.com/docs/books/tutorial/.

[JS98] D. F. Jerding, J. T. Stasko, The Information Mural: A Technique for
Displaying and Navigating Large Information Spaces, IEEE Transactions on
Visualization and Computer Graphics, Vol.4, No.3, pp. 257-271, 1998.

[JLW01] H. Jiang, W. Lou and W. Wang, Three-tier Clustering: an Online Citation
Clustering System, Proceedings of the Second international Conference on Web-Age
Information Management (WAIM2001), pp 237-248, Xi'An, China, 9-11 July, 2001.

[KKA98] H. Kaindl, S. Kramer, L. M. Afonso, Combining Structure Search and
Content Search for the World-Wide Web, Proceedings of the 9th ACM Conference
on Hypertext and Hypermedia (HyperText98), pp 217-224, 1998.

[Kauf91] A. Kaufman, Volume Visualization. IEEE Computer Society Press, 1991.

[Keim96] D.A. Keim, Pixel-Oriented Database Visualizations, SIGMOD Record,
Special Issue on Information Visualization, 1996.

[KCK00] Y. Kiyoki, X. Chen, T. Kitagawa, A Semantic Associative Search Method
for WWW Information Resources, Proceedings of The 1st International Conference
on Web Information Systems Engineering (WISE'00), Vol. 1, pp. 216-223, 2000.

[Klein99] J. Kleinberg, Authoritative Sources in a Hyperlinked Environment,
Journal of the ACM 46(1999).

[KT99] J. Kleinberg, A. Tomkins, Applications of linear algebra to information
retrieval and hypertext analysis, Proceedings of ACM Symposium on Principles of
Database Systems, 1999.

[KB00] E. Kotsakis, K. Böhm, XML Schema Directory: A Data Structure for XML
Data Processing, Proceedings the 1st International Conference on Web Information
Systems Engineering (WISE'00), Vol. 1, pp 56-63, Hong Kong, China, 19-21 June,
2000.

[LRS+00] A. H. F. Laender, B. Ribeiro-Neto, A. S. da Silva, and E. S. Silva,
Representing Web Data as Complex Objects, Electronic Commerce and Web
Technologies, Proceedings of the First International Conference, EC-Web 2000, pp
216-228, London, UK, September 2000.

 239

[Lars96] R. Larson, Bibliometrics of the World Wide Web: An Exploratory
Analysis of the Intellectual Structure of Cyberspace, Ann. Meeting of the American
Soc. Info. Sci., 1996.

[LGB99] S. Lawrence, C. L. Giles and K. Bollacker, Digital Libraries and
Autonomous Citation Indexing, IEEE Computer, Vol. 36, No. 6, pp 67-71, 1999.

[LM00] R. Lempel and S. Moran, The Stochastic Approach for Link-Structure
Analysis (SALSA) and the TKC Effect, Proceedings of the 9th International WWW
Conference, Amsterdam, May 15-19, 2000.

[LRK00] H. Lin, T. Risch, T. Katchaounov, Object-Oriented Mediator Queries to
XML Data, Proceedings the 1st International Conference on Web Information
Systems Engineering (WISE'00), Vol. 2, pp 38-45, Hong Kong, China, 19-21 June,
2000.

[LF78] S. Y. Lu and K. S. Fu, A sentence-to-sentence clustering procedure for
pattern analysis, IEEE Transactions on Systems, Man and Cybernetics, 8: 381-389,
1978.

[Man98] F. Manola, Towards a Web Object Model, OBJS Technical Report, Object
Services and Consulting, Inc. (OBJS), February 1998,
http://www.objs.com/OSA/wom.html.

[Mar97] M. Marchiori, The Quest for Correct Information on the Web: Hyper
Search Engines, Proceedings of the 6th International Word Wide Web Conference,
1997.

[MTU99] H. Maruyama, K. Tamura, N. Uramoto, XML and Java: Developing Web
Applications, Addison-Wesley, Reading, Massachusetts, 1999.

[McB94] O. A. McBryan, GENVL and WWWW: Tools for Taming the Web,
Proceedings of the First International World Wide Web Conference, CERN,
Geneva, Switzerland, May 25-27, 1994.

[MNR+00] A. K. McCallum, K. Nigam, J. Rennie and K. Seymore, Automating the
Construction of Internet Portals with Machine Learning, Journal of Information
Retrieval, vol. 3, pp 127-163, Kluwer Academic Publisher, 2000.

[MSW72] W. T. McCormick, P. J. Schweitzer and T. W. White, Problem
Decomposition and Data Reorganization by a Clustering Technique, Oper. Res.
20(5): pp. 993-1009, 1972.

[McG98] S. McGrath, XML by Example: Building E-Commerce Applications,
Prentice Hall PTR, Upper Saddle River, NJ, 1998.

 240

[MAG+97] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, J. Widom, Lore: A
Database Management System for Semistructured Data, SIGMOD Record, Vol. 26,
No. 3, pp 54-66, September 1997.

[MYL02] W. Meng, C. Yu and K. Liu, Building Efficient and Effective Metasearch
Engines, ACM Computing Surveys, 34(1), pp 48-84, March 2002.

[MCS00] B. Mobasher, R. Cooley and J. Srivastava, Automatic Personalization
Based on Web Usage mining, Communications of the ACM, Vol. 43, No. 8, 2000.

[MF95] S. Mukherjea, J. D. Foley, Visualizing the World-Wide Web with the
Navigational View Builder, Computer Networks and ISDN Systems, 27: pp. 1075-
1087, 1995.

[MFH94] S. Mukherjea, J. D. Foley, S. E. Hudson, Interactive Clustering for
Navigating in Hypermedia Systems, Proceedings of the 1994 ACM European
Conference on Hypermedia Technology (ECHT94), pp. 136-145, 1994.

[MH97] S. Mukherjea and Y. Hara, Focus+Context Views of World-Wide Web
Nodes, Proceedings of the 8th ACM Conference on Hypertext (Hypertext97), pp 187-
196, 1997.

[NW01] M. Najork and J. Wiener, Breadth-first search crawling yields high-quality
pages, Proceedings of the 10th International World Wide Web Conference, Hong
Kong, May 1-5, 2001.

[NZJ01a] A.Y. Ng, A.X. Zheng, and M.I. Jordan, Stable Algorithms for Link
Analysis, Proceedings of the 24th International Conference on Research and
Development in Information Retrieval (SIGIR), 2001.

[NZJ01b] A.Y. Ng, A.X. Zheng, and M.I. Jordan, Link Analysis, Eigenvectors and
Stability, Proceedings of the Seventeenth International Joint Conference on
Artificial Intelligence (IJCAI-01), Seattle, WA, August 4-10, 2001.

[OV91] M. T. Özsu and P. Valduriez, Principle of Distributed Database Systems,
Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1991.

[PRT+97] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala, Latent
Semantic Indexing: A Probabilistic Analysis, Proceedings of ACM Symposium on
Principles of Database Systems, 1997.

[PGW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom, Object Exchange
Across Heterogenous Information Sources, Proceedings of the Eleventh
International Conference on Data Engineering, pp 251-260, Taipei, Taiwan, March
1995.

 241

[Pear88] J. Pearl, Probabilistic Learning in Intelligent Systems, Morgan Kaufmann,
1988.

[PE99] M. Perkowitz and O. Etzioni, Towards Adaptive Web Sites: Conceptual
Framework and Case Study, Proceedings of the 8th International WWW Conference,
1999.

[PP99] P. Pirolli, J. Pitkow, Distribution of Surfer’s Path Through the World Wide
Web: Empirical Characterization, World Wide Web 1: 1-17, 1999.

[PPR96] P. Pirolli, J. Pitkow, R. Rao, Silk from a Sow's Ear: Extracting Usable
Structures from the Web, Proceedings of ACM SIGCHI Conference on Human
Factors in Computing, 1996.

[PP97] J. Pitkow, P. Pirolli, Life, Death, and Lawfulness on the Electronic Frontier,
Proceedings of ACM SIGCHI Conference on Human Factors in Computing (CHI
97), pp 383-390, March 1997.

[QZL+00] W. Qian, L. Zhang, Y. Liang, H. Qian, W. Jin, A Two-Level Method for
Clustering DTDs, Proceedings of the First International Conference on Web-Age
Information Management (WAIM'00), pp 41-52, Shanghai, China, 21-23 June, 2000.

[RK01] P. K. Reddy and M. Kitsuregawa, An Approach to Relate the Web
Communities through Bipartite Graphs, Proceedings of the 2nd International
Conference on Web Information Systems Engineering (WISE2001), pp 307-316,
Kyoto, Japan, 3-6 December, 2001.

[RM99] J. Rennie and A. McCallum, Using Reinforcement Learning to Spider the
Web Efficiently, Proceedings of the International Conference on Machine Learning
(ICML), 1999.

[Rob98] K. A. Robbins, Visualization of Scientific Video Data Using KL
Decomposition, IEEE Transactions on Visualization and Computer Graphics, Vol.4,
No.4, pp. 330-343, 1998.

[Saru99] R.R. Sarukkai, Link Prediction and Path Analysis Using Markov Chains,
Proceedings of the 8th International WWW Conference, 1999

[SGN00] F. Sha, G. Gardarin, L. Nemirovski, Managing Semistructured Data in
Object-Relational DBMS, Networking and Information Systems Journal, Vol. 1, No.
1, pp 7-25, 2000.

[SL01] Y. Shen and D. L. Lee, A Meta-search Method Reinforced by Cluster
Descriptors, Proceedings of the 2nd International Conference on Web Information
Systems Engineering (WISE2001), pp 129-136, Kyoto, Japan, 3-6 December, 2001.

 242

[SG98] N. Shivakumar and H. Garcia-Molina, Finding Near-Replicas of Documents
on the Web, Workshop on Web Databases, Valencia, Spain, March 1998.

[SS02] V. Shkapenyuk, T. Suel, Design and Implementation of a High-Performance
Distributed Web Crawler, Proceedings of 18th International Conference on Data
Engineering (ICDE'02), pp 357-368, San Jose, California, USA, 26 February - 1
March 2002.

[SM98] W. Sonnenreich and T. Macinta, Web Developer.Com Guide to Search
Engines, John Wiley & Sons, Inc., USA, 1998.

[SRL00] B. Surjanto, N. Ritter and H. Loeser, XML Content Management based on
Object-Relational Database Technology, Proceedings of the 1st International
Conference on Web Information Systems Engineering (WISE2000), Vol. 1, pp 64-
73, Hong Kong, China, 19-21 June, 2000.

[TLN+01] J. Talim, Z. Liu, P. Nain and E. Coffman, Controlling Robots of Web
Search Engines, Proceedings of SIGMETRICS Conference, June 2001.

[TH98] L. Terveen and W. Hill, Finding and Visualizing Inter-site Clan Graphs,
Proceedings of ACM SIGCHI Conference on Human Factors in Computing (CHI
98): Making the Impossible Possible, pp 448-455, April 1998.

[Ups89] Upson, C. et al, The Application Visualization System: A Computational
Environment for Scientific Visualization, IEEE Computer Graphics and
Applications, 9(4), pp. 30-44, 1989.

[Wang97] L.Wang, On Competitive Learning, IEEE Transaction on Neural
Networks, Vol.8, No.5, pp 1214-1217, September 1997.

[WK01] Y. Wang and M. Kitsuregawa, Use Link-based Clustering to Improve Web
Search Results, Proceedings of the 2nd International Conference on Web
Information Systems Engineering (WISE2001), pp 119-128, Kyoto, Japan, 3-6
December, 2001.

[WVS+96] R. Weiss, B. Vélez, M.A. Sheldon, C. Namprempre, P. Szilagyi, A.
Duda and D.K. Gifford, HyPursuit: A Hierarchical Network Search Engine that
Exploits Content-Link Hypertext Clustering, Proceedings of the Seventh ACM
Conference on Hypertext, pp 180-193, 1996.

[WLW+01] C. W. Wen, H. Liu, W. X. Wen and J. Zheng, A Distributed
Hierarchical Clustering System for Web Mining, Proceedings of the Second
International Conference on Web-Age Information Management (WAIM2001), pp.
103-113, Xi'An, China, 9-11 July, 2001.

 243

[XZJ+01] J. Xiao, Y. Zhang, X. Jia and T. Li, Measuring Similarity of Interests for
Clustering Web-Users, Proceedings of the 12th Australasian Database Conference
(ADC2001), pp107-114, Gold Coast, Australia, January 2001.

[XML98] Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/1998/REC-xml-19980210

[Yahoo] Yahoo! search engine, http://www.yahoo.com/.

[YR00] J. P. Yoon and V. Raghavan, Multi-Level Schema Extraction for
Heterogeneous Semi-Structured Data, Proceedings of the First International
Conference on Web-Age Information Management (WAIM'00), pp 411-422,
Shanghai, China, 21-23 June, 2000.

[ZE98] O. Zamir and O. Etzioni, Web Document Clustering: A Feasibility
Demonstration, Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR'98), pp
46-54, Melbourne, Australia, August 24-28, 1998.

