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Abstract 
 
 
The World Wide Web is a rich source of information and continues to expand in size 
and complexity. Mainly because the data on the web is lack of rigid and uniform 
data models or schemas, how to effectively and efficiently manage web data and 
retrieve information is becoming a challenge problem. Discovering web page 
communities, which capture the features of the web and web-based data to find 
intrinsic relationships among the data, is one of the effective ways to solve this 
problem. 

A web page community is a set of web pages that has its own logical and 
semantic structures. In this work, we concentrate on the web data in web page 
format and exploit hyperlink information to discover (construct) web page 
communities. Three main web page communities are studied in this work: the first 
one is consisted of hub and authority pages, the second one is composed of relevant 
web pages with respect to a given page (URL), and the last one is the community 
with hierarchical cluster structures. 

For analysing hyperlinks, we establish a mathematical framework, especially the 
matrix-based framework, to model hyperlinks. Within this mathematical framework, 
hyperlink analysis is placed on a solid mathematic base and the results are reliable. 

For the web page community that is consisted of hub and authority pages, we 
focus on eliminating noise pages from the concerned page source to obtain another 
good quality page source, and in turn improve the quality of web page communities. 
We propose an innovative noise page elimination algorithm based on the hyperlink 
matrix model and mathematic operations, especially the singular value 
decomposition (SVD) of matrix. The proposed algorithm exploits hyperlink 
information among the web pages, reveals page relationships at a deeper level, and 
numerically defines thresholds for noise page elimination. The experiment results 
show the effectiveness and feasibility of the algorithm. This algorithm could also be 
used solely for web-based data management systems to filter unnecessary web pages 
and reduce the management cost. 

In order to construct a web page community that is consisted of relevant pages 
with respect to a given page (URL), we propose two hyperlink based relevant page 
finding algorithms. The first algorithm comes from the extended co-citation analysis 
of web pages. It is intuitive and easy to be implemented. The second one takes 
advantage of linear algebra theories to reveal deeper relationships among the web 
pages and identify relevant pages more precisely and effectively. The corresponding 
page source construction for these two algorithms can prevent the results from being 
affected by malicious hyperlinks on the web. The experiment results show the 
feasibility and effectiveness of the algorithms. The research results could be used to 
enhance web search by caching the relevant pages for certain searched pages. 

For the purpose of clustering web pages to construct a community with its 
hierarchical cluster structures, we propose an innovative web page similarity 
measurement that incorporates hyperlink transitivity and page importance (weight). 
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Based on this similarity measurement, two types of hierarchical web page clustering 
algorithms are proposed. The first one is the improvement of the conventional K-
mean algorithms. It is effective in improving page clustering, but is sensitive to the 
predefined similarity thresholds for clustering. Another type is the matrix-based 
hierarchical algorithm. Two algorithms of this type are proposed in this work. One 
takes cluster-overlapping into consideration, another one does not. The matrix-based 
algorithms do not require predefined similarity thresholds for clustering, are 
independent of the order in which the pages are presented, and produce stable 
clustering results. The matrix-based algorithms exploit intrinsic relationships among 
web pages within a uniform matrix framework, avoid much influence of human 
interference in the clustering procedure, and are easy to be implemented for 
applications. The experiments show the effectiveness of the new similarity 
measurement and the proposed algorithms in web page clustering improvement. 

For applying above mathematical algorithms better in practice, we generalize the 
web page discovering as a special case of information retrieval and present a 
visualization system prototype, as well as technical details on visualization 
algorithm design, to support information retrieval based on linear algebra. The 
visualization algorithms could be smoothly applied to web applications.  

XML is a new standard for data representation and exchange on the Internet. In 
order to extend our research to cover this important web data, we propose an object 
representation model (ORM) for XML data. A set of transformation rules and 
algorithms are established to transform XML data (DTD and XML documents with 
DTD or without DTD) into this model. This model capsulizes elements of XML data 
and data manipulation methods. DTD-Tree is also defined to describe the logical 
structure of DTD. It also can be used as an application program interface (API) for 
processing DTD, such as transforming a DTD document into the ORM. With this 
data model, semantic meanings of the tags (elements) in XML data can be used for 
further research in XML data management and information retrieval, such as 
community construction for XML data. 
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Chapter 1 
 
Introduction 
 

 
1.1 Overview 
 
The rapid development of the World Wide Web has made itself a huge information 

source that has allowed unprecedented sharing of ideas and information in a scale 

never seen before. According to the figure in 2000 (CNet, 26 July 2000), the web 

held about 550 billion documents. This number is growing rapidly, as well as the 

number of users on the web. The boom in the use of the web and its exponential 

growth are now well known, and they are causing a revolution in the way people use 

computers and perform their daily tasks. On the other hand, however, the web has 

also introduced new problems of its own and greatly changed the traditional ways of 

information retrieval and management. Because of the absence of a well-defined 

underlying data model for the web [BR99], finding useful information and managing 

data on the web are frequently tedious and difficult tasks. Since the data on the web 

is usually represented as web pages (documents), in this thesis, we use terms web 

data and web page/document interchangeably. 

Usually, the effectiveness and efficiency of information retrieval and 

management are mainly affected by the logical view of data adopted by information 

systems. For the data on the web, it has its own significantly different features 
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compared with the data in conventional database management systems. The features 

of web data are as follows. 

• The data on the web is huge. No one could have exactly estimated the data 

volume on the web. Actually, the exponential growth of the web poses scaling 

issues that are difficult to cope with. Even the current powerful search engine, 

such as Google, can only cover a fraction (2 billions) of the total documents 

on the web. The enormous data on the web makes it difficult to manage web 

data using traditional database or data warehouse techniques. 

• The data on the web is distributed. Due to the intrinsic nature of the web, the 

data is distributed across various computers and platforms which are 

interconnected with no predefined topology. 

• The data on the web is heterogeneous. In addition to textual data, which is 

mostly used to convey information, there are a great number of images, audio 

files, video files and applications on the web. In most cases, the 

heterogeneous data co-exist in a web document, which makes it not easy to 

deal with them at the same time with only one technique. 

• The data on the web is unstructured. It has no rigid and uniform data models 

or schemas, and therefore there is virtually no control over what people can 

put on the web. Different individuals may put information on the web in their 

favourite ways, as long as the information arrangement meets the basic 

display format requirements of web documents, such as HTML format. The 

absence of well-defined structure for web data brings a series of problems, 

such as data redundancy and poor data quality [BGM+97] [SG98]. On the 
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other hand, documents on the web have extreme variation internal to the 

documents, and also in external meta information that might be available 

[BP98a]. Although the currently used HTML format consists of some 

structuring primitives such as tags and anchors [Abit97], these tags, however, 

deal primarily with the presentation aspects of document and have few 

semantics. Therefore, it is difficult to extract required data from web 

documents and find their mutual relationships. This feature is quite different 

from that of traditional database systems. 

• The data on the web is dynamic. Current estimates are that there are over 150 

million web pages with a life of less than one year [BP98b]. The implicit and 

explicit structure of the web data may evolve rapidly, data elements may 

change types, data not conforming to the previous structure may be added, 

and dangling links and relocation problems will be produced when domain or 

file names change or disappear [BR99]. These characteristics result in 

frequent schema modifications that are another well-known headache in 

traditional database systems [MAG+97]. 

• The data on the web is hyperlinked. Unlike "flat" document collections, the 

World Wide Web is a hypertext and people are likely to surf the web using its 

link graph. The hyperlinks between web pages (data) provide considerable 

auxiliary information on top of the text of the web pages and establish 

topological or semantic relationships among the data. This kind of 

relationship, however, is not in a predefined framework, which brings a lot of 

uncertainty, as well as much implicit semantic information, to the web data.          
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The above features indicate that web data is neither raw data nor very strictly typed 

as in conventional database systems. It is called semi-structured data. Furthermore, 

the web data contains many noise factors mainly because of the absence of well-

defined data structures or models. Therefore, the web as a whole cannot be 

considered as a conventional database in a strict sense.  

Because of the above web data features, web information retrieval and web data 

management are becoming a challenge problem. In the last several years, much 

research and development work has been done in this area. For these work, web 

information search and management are always the main themes. Accordingly, the 

research and development work could be roughly classified into two main sub-areas: 

web search engines and web data management. 

Web search engine technology has scaled dramatically with the growth of the 

web since 1994 to help web users find desired information, and has resulted in a 

large number of research results such as [McB94] [BP98a] [BP98b] [CGP98] 

[SM98] [CVD99a] [CVD99b] [RM99] [Hock00] [DCL+00] [CG00a] [CG00b] 

[NW01] [TLN+01], as well as various web search engines such as World Wide Web 

Worm (WWWW), Excite, Lycos, Yahoo!, AltaVista and Google. Search engines can 

be classified into two categories: one is general-purpose search engine and another 

one is special-purpose search engine. The general-purpose search engines aim at 

providing the capability to search as many web pages on the web as possible. The 

search engines mentioned above are a few of the well-known ones. The special-

purpose search engines, on the other hand, focus on searching those web pages on 

particular topics. For example, the Medical World Search (www.mwsearch,com) is a 
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search engine for medical information and Movie Review Query Engine 

(www.mrqe.com) lets the users to search for movie reviews. No matter what 

category the search engine is, each search engine has a text database defined by the 

set of documents that can be searched by the search engine. The search engine 

should have an effective and efficient mechanism to capture (crawl) and manage the 

web data, as well as to provide the capabilities to handling queries quickly and 

returning the most related search results (web pages) with respect to the user's 

queries. To reach these goals, effective and efficient web data management is 

necessary. 

Web data management refers to many aspects. It includes data modelling, 

languages, data filtering, storage, indexing, data classification and categorization, 

data visualization, user interface, system architecture, etc. [BR99]. In general, the 

purpose of the web data management is to find intrinsic relationships among the data 

to effectively and efficiently support web information retrieval and other web-based 

applications. It can be seen that there are intersections between the research in web 

search engines and web data management. Effective and efficient web data 

management is the base for a good web search engine. On the other hand, the data 

management could be applied to many other web applications, such as web-based 

information integration systems and metasearch engines [MYL02]. 

Although much work has been done in web-based data management in the last 

several years, there remain many problems to be solved in this area because of the 

characteristics of the web data mentioned before.  How to effectively and efficiently 
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manage web-based data, therefore, is an active research area that is full of many 

challenges.  

 

1.2 Motivation  
 
Web-based data management, in essence, belongs to information (data) management 

though web data has its own characteristics. For an information system, its 

efficiency and effectiveness are directly affected by the user task and the logical 

view of the data adopted by the system [BR99]. The research in user task for 

information systems is beyond the research scope of this work. This work 

concentrates on the logical view of the data in web-based data management systems. 

As web-based data management systems are a kind of information system, there 

is much work trying to use traditional strategies and techniques to establish 

databases and manage the web-based data. For example, many data models and 

schemas have been proposed for managing web data [BBB00] [LRS+00] 

[MAG+97] [SGN00] [SRL00] [YR00] [PGW95]. Some of them tried to define 

schemas, which are similar to the conventional database schemas, for web data, and 

use the conventional DBMS methods to manage web data. Others tried other ways 

of establishing flexible data structures, such as trees and graphs, to organize web 

data and proposed corresponding retrieval languages. However, since the web data is 

dynamic, which is significantly different from the conventional data in database 

systems, using relative fixed data schemas or structures to manage the web data 

could not reflect the nature of the web data [MAG+97]. On the other hand, the 

mapping of web data into a predefined schema or structure would break down the 
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contents of the web data (text, hyperlinks, images, tags etc.) into separated 

information pieces, and intrinsic semantic relationship within a web page and among 

the web pages would be lost. In other words, web databases alone could not provide 

the flexibility to reflect the dynamics of the web data and effectively support various 

web-based applications. 

In this work, we take another approach, i.e. establishing good web page 

communities, to support web-based management and information retrieval. A web 

page (data) community is a set of web pages that has its own logical and semantic 

structures. For example, a web page set with clusters in it is a community; web 

pages in a set that are related to a given web page also form a community. The web 

page community considers each page as a whole object, rather than breaking down 

the web page into information pieces, and reveals mutual relationships among the 

concerned web data. For instance, the system CiteSeer [LGB99] uses the search 

engines like AltaVista, HotBot and Excite to download scientific articles from the 

web and exploits the citation relationships among the searched articles to establish a 

scientific literature searching system. This system reorganizes the scientific 

literatures on the web and improves the search efficiency and effectiveness. The web 

page community is flexible in reflecting the web data nature, such as dynamics, 

heterogeneity. Furthermore, web page communities could be solely used by various 

applications or be embedded in web-based databases to provide more flexibility in 

web data management, information retrieval and application support. Therefore, 

database & community centred web data management systems provide more 

capabilities than database-centred ones in web-based data management. Figure 1.1 
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shows the logical architecture of a database & community centred web data 

management system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To construct a web page community, it is necessary to find ways of representing 

pages and discover their logical or semantic relationships. Previous research 

considered a web page as a piece of text or a set of words, and use traditional text 

data analysis and management strategies to extract required information and to 

represent a page as a vector of terms (keywords). The relationships among the web 

data are then found from the relationships among vectors, such as the work in 

[ZE98] [BGG+99] and the work surveyed in [MYL02]. Text-content-based data 

Searched Web-Based Data 

WWW

Web Page Communities 

Web-Based Database 

Local Applications Web-Based Applications

User Interface 

Web-Based Data 
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Figure 1.1. Logical architecture of a web-based data management system 
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analysis and management have been thoroughly studied in traditional data 

management. However, for the web data, this approach has its own limitations. 

Firstly, since the data on the web is huge, text distilling and analysis are time-

consuming and difficult tasks in practice. Secondly, due to the dynamics of the web 

data, web page contents might be changed frequently by the page authors. This 

would lead to different content analysis results for the same web page at different 

time. Finally, because of the synonymy (different words have similar or same 

meaning) and polysemy (one word has different meanings) of the words in web page 

content, it is uncertain whether the text analysis results can really represent the web 

data and reveal the relationships among the web data. 

Although most of the early work concentrated on the content portion of the web 

page, little attention was paid to the hyperlinks connecting various web pages. 

However, the effectiveness and popularity of the search engine Google, which is one 

of the earliest search engines exploiting hyperlink information to improve the web 

search quality, have greatly increased researcher interests in using hyperlinks to 

mine information from the web. The idea of hyperlink analysis originally came from 

the citation analysis of literature, such as [Cam97] [Garf79] and [Hit+97], and has 

been applied in many areas such as page ranking in the search engine Google 

[BP98a] [BP98b] and other web-related areas [Klein99] [CDG+98] [CHH98] 

[DH99]. The idea is based on a fact that if a web page A has a hyperlink to page B, 

the author of page A usually considers that page B contains valuable information that 

is related to page A [Klein98]. Therefore, reasonable hyperlinks reflect human 

judgement of whether the linked pages are related to the linking pages. This 
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judgement is objective and independent of synonymy and polysemy of the words in 

web pages. It is argued that the pages connected together by hyperlinks might be not 

related. For a large number of pages, however, the hyperlink information among the 

pages would show certain statistical regularities [Klein99]. Once these regularities 

derived from hyperlinks are revealed (mined), they could be used to find intrinsic 

relationships among web-based data for various purposes.  

Hyperlink analysis has many other additional advantages. It is concise and 

intuitive. Hyperlink analysis results are relatively steady. This is because any 

changes in the web page text that do not affect page’s structure will not affect the 

relationship between this page and other pages. In practical applications, extracting 

hyperlinks is much easier than extracting required words from web pages, as 

hyperlinks are marked by specific HTML tags. This would simplify web page 

processing and decrease computing cost. 

On the other hand, however, hyperlink analysis is a relatively new research area 

and there are still many problems to be solved. For instance, because hyperlinks are 

more likely to be arbitrarily added into web pages than texts, hyperlink information 

would contain many noise factors and hyperlink analysis would result in unexpected 

results [CDG+98] [BH98] [DH99]. It has become a challenge for hyperlink analysis 

to choose reliable hyperlink information and analyse the chosen hyperlink 

information such that the hyperlink analysis results can reveal real and intrinsic 

relationships among web-based data.  
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In this work, we will exploit hyperlink information to construct web page 

communities for web data management and information retrieval. The objective of 

this research is accordingly stated as the following sub-goals: 

1. To establish a framework for hyperlink analysis. For the purpose of 

extracting semantic information conveyed by hyperlinks, it is necessary to 

model hyperlinks within a proper framework, such that the hyperlink 

information can be analysed and intrinsic relationships among pages can be 

discovered with the functions provided by the framework. In this work, we 

will model hyperlinks within a matrix framework and exploit linear algebra 

theories and matrix operations to analyse hyperlink information, as well as 

discover deeper relationships among web pages. With the support of this 

framework, using hyperlink information to discover web page communities 

can be carried out on a solid mathematic base. 

2. To eliminate noise pages via hyperlink analysis for constructing good quality 

web page communities. Web page community construction is usually based 

on a concerned page set which is related to a certain topic or topics. Because 

the hyperlinked pages are not always related, the concerned web page set 

derived from linkages usually contains many pages that are not related to the 

topics. These pages are called noise pages. Because of the existence of noise 

pages, the constructed community is unsatisfactory or is irrelevant to the 

topics in many cases. In this work, we firstly investigate hyperlink-based 

community construction algorithms and identify the noise page source. We 

then propose algorithms within a matrix framework to eliminate noise pages 
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from the original concerned page set and obtain another new page set, such 

that the percentage of topic-related pages in this new page set is higher, and 

in turn to improve the community quality. The noise-page eliminating 

algorithms could also be used solely for web-based data management 

systems or special-purpose search engines (Internet portals) to filter 

unnecessary web pages, to reduce management cost and to increase the 

efficiency of information retrieval. 

3. To find relevant web pages with respect to a given page through hyperlink 

analysis. The web page community that consists of relevant pages with 

respect to a given page can be used to increase the efficiency of web 

information search and web-based data management. In this work, a relevant 

page with respect to a given URL (web page) is the one that addresses the 

same topic as the given URL, but is not necessarily semantically identical 

[DH99]. For example, given www.nytimes.com which is the online 

newspaper of The New York Times, other newspapers and news 

organizations on the web are relevant pages, but it is not necessary for these 

pages to have tight relationships with The New York Times.  A best relevant 

page should be the one that addresses the same topic as the given URL and is 

semantic similar to the given URL. Our purpose is to find as many best 

relevant pages as possible for a given web page. It refers to two issues: one is 

how to construct a page source that is rich in relevant pages; another one is 

how to extract the (best) relevant pages from this page source. We will firstly 

investigate mechanisms to construct a page source for relevant page finding 
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from hyperlink analysis, such that the constructed page source is rich in 

relevant pages and is able to shield the influence from malicious hyperlinks. 

We then take advantage of hyperlink analysis to reveal deeper relationships 

among pages and find out (best) relevant pages from this page source.  

4. To improve web page clustering by proposing a new reasonable hyperlink-

based similarity measurement. Clustering is another important aspect of web 

page community construction. Clustering techniques are used in traditional 

database systems to increase efficiency of data management and information 

retrieval, especially for a large amount of data. They are suitable for dealing 

with web-based data. Web page clustering usually depends on similarities 

among the concerned pages. Because of the limitations of content-based 

analyses and corresponding similarities for the web data, in this work, we 

will propose new page similarity measurements from hyperlink information, 

as well as corresponding hierarchical web page clustering algorithms, to 

improve web page clustering. 

5. To develop new hierarchical web page clustering algorithms that take 

advantage of intrinsic relationships among pages conveyed by hyperlink 

information. In this work, we will mainly focus on clustering algorithms in 

addition to page similarities. The new clustering algorithms are still based on 

hyperlink information, but they will be more effective in taking advantage of 

intrinsic relationships among web pages to obtain better cluster results, be 

easier in implementation and be more effective in avoiding human 

interference during the clustering procedure.  
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6. To develop visualization algorithms for information retrieval that is based on 

mathematical algorithms. Discovering or constructing a web community 

within a mathematical framework refers to many mathematical methods and 

operations. Although mathematical methods are effective in finding deeper 

relationships and retrieving information, they are not intuitive and are 

difficult for users to understand in most cases. For better applying this kind 

of mathematical algorithms to practical applications, such as web and 

conventional information retrieval, we will investigate mechanisms to 

visualize information retrieval that is based on mathematical algorithms, and 

propose corresponding visualization algorithms.  

7. To propose a new object-oriented representation model for XML documents. 

Hyperlink analysis is concerned about relationship between pages, rather 

than the semantic relationship between different information portions within 

web pages. Therefore, the semantic relationship revealed by hyperlink 

analysis has also some limitations. As a matter of fact, web page content 

contains most semantic information about the page, although it is a challenge 

to accurately extract such semantic information. Combining web page 

semantics with hyperlink analysis would greatly increase the effectiveness of 

hyperlink analysis, as well as the corresponding analysis results. However, 

current HTML documents (pages), which are the most popular format for 

web-based data, contain little semantic information in their document 

structures or schemas, because the tags in HTML documents are mainly for 

presentation, not for conveying semantics. On the contrary, XML 
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documents, which are now becoming a new standard for data representation 

and exchange on the Internet, allow the definition of semantically 

meaningful tags, which makes it possible to extract semantic information 

from web-based data. In this work, we will investigate mechanisms to extract 

semantic information from XML documents and propose a new object-

oriented data model to represent XML documents. This model establishes a 

base to support XML document management, as well as further research in 

XML web page communities that combines semantic information with 

hyperlink analysis techniques.  

 

1.3 Claims of the Dissertation 
 
This dissertation mainly focuses on discovering (constructing) web page 

communities from hyperlink information to support web-based data management 

and information retrieval. A mathematical framework is established for hyperlink 

analysis and a series of algorithms are proposed to construct web page communities. 

Visualization mechanisms, algorithms and XML document data models are 

accordingly established to support practical application of the proposed algorithms 

and further research work. The main contributions of this dissertation can be 

summarized as follows: 

 

A Mathematical Framework for Hyperlink Analysis This framework is based 

on the matrix theory in linear algebra. Different from other hyperlink models such as 

directed graph and probabilistic models, this framework represents hyperlinks in 
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matrices. From these hyperlink matrices, intrinsic relationships among web pages 

conveyed by hyperlinks are revealed by matrix operations, such as singular value 

decomposition, matrix approximation, vector operation, matrix permutation and 

partitioning. Other hyperlink-based information, such as hyperlink transitivity, page 

correlation degree and page similarity are also represented and revealed by matrices 

and corresponding matrix operations. This framework makes it possible to 

systematically analyse hyperlink information using mathematics theories in a 

uniform manner, and could be adopted by or integrated into web application 

systems. The framework provides a solid mathematical base for discovering various 

web page communities. 

  

Algorithms for Web Page Community Construction In this research, we 

concentrate on the following web page communities:  

• the community that consists of hub and authority pages; 

• the community that consists of relevant pages with respect to a given page;  

• the community with hierarchical clustering structures.  

Here, authority pages are those that contain the most definitive, central and useful 

information in the context of particular topics, while hub pages are those that points 

to (via hyperlinks) many of the authority pages. For different web page 

communities, different strategies and community construction algorithms are 

proposed.  

For the community that consists of hub and authority pages, the following 

algorithm is proposed: 
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- Noise Page Elimination Algorithm (NPEA). This algorithm concentrates 

on the page source from which the community is constructed. It 

eliminates noise pages in the original page source to obtain another good 

quality page source, which in turn improves the quality of web page 

communities by combining those existing community construction 

algorithms. In this algorithm, page linkage relationships are expressed in 

a hyperlink matrix, singular value decomposition of matrix in linear 

algebra is applied to this matrix to find deeper relationships among the 

pages, and then numerical thresholds are defined to eliminate noise 

pages. 

The following algorithms are proposed for the community that consists of 

relevant pages with respect to a given page: 

- Page Source Construction Algorithm for Relevant Page Finding. This 

algorithm constructs a page source from which the relevant pages are 

selected. The algorithm guarantees that the constructed page source is 

rich in semantic relevant pages (via hyperlinks) to the given page and can 

shield the page source from being affected by malicious hyperlinks.  

- Extended Co-Citation Algorithm. This algorithm is stemmed from the 

traditional co-citation analysis ideas, but extends some co-citation 

concepts and more effectively finds the relevant pages when it combines 

with the page source construction algorithm. 

- Latent Linkage Information (LLI) Algorithm. This algorithm adapts 

matrix analysis methods, especially the singular value decomposition of 
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matrix, to reveal the intrinsic relationships among the web pages and 

effectively find relevant pages that not only address the same topic as the 

given page, but also are semantically similar to the given page.  

To effectively cluster web pages for the community with hierarchical cluster 

structures, the following algorithms are established in this research work: 

- Page Source Construction Algorithm for Clustering. This algorithm 

constructs a page source that acts as a reference system to determine the 

page similarity in it for the pages to be clustered. It also guarantees the 

pages in the constructed page source are related to the concerned topics. 

- Page Weight Determination Algorithm. This algorithm determines the 

page importance within the concerned page source such that the impact 

of a page to other pages in the source can be determined numerically. 

- Page Correlation Degree Algorithm. The correlation relationships among 

the pages (via hyperlinks) in the concerned page source are numerically 

determined as correlation degrees by this algorithm. This correlation 

degree incorporates the weights of involved pages. 

- Page Similarity Algorithm. The similarity between pages within the 

concerned page source is determined by this algorithm. This page 

similarity is derived from hyperlink information. It incorporates the 

hyperlink transitivity, web page weight, and page correlation degree. 

- Hierarchical Web Page Clustering Algorithm. The idea of this algorithm 

is stemmed but different from the K-mean clustering ideas. The centroids 

of clusters are determined dynamically during the clustering procedure. 
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The page similarity used in this algorithm is provided by the above page 

similarity algorithm. 

- Matrix-Based Hierarchical Clustering Algorithm without Cluster 

Overlapping. This algorithm is based on operations on the page similarity 

matrix, which is derived from the page similarity algorithm. It takes 

advantage of intrinsic relationships among the pages to conduct 

clustering without predefined similarity thresholds. This algorithm does 

not take the cluster overlapping into account during the clustering 

procedure. 

- Matrix-Based Hierarchical Clustering Algorithm with Cluster 

Overlapping. This algorithm is also based on operations on the page 

similarity matrix, but it considers cluster overlapping during the 

clustering procedure, which provides better clustering results. 

- Other auxiliary algorithms, such as matrix permutation and partitioning 

algorithms, are also established in this work to form a complete 

clustering algorithm system.     

 

Visualization Mechanism and Algorithms for Information Retrieval    Hyperlink 

analysis and web page community construction in this research are within a 

mathematical framework equipped with various algorithms. Although this 

framework and algorithms are effective in hyperlink analysis and community 

construction, the mathematical algorithms are not intuitive and not easy to 

understand. For the practical applicability of the framework, we generalize the 
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community construction procedures as a special case of information retrieval, and 

establish a visualization mechanism, as well as a series of visualization algorithms, 

to support information retrieval that is based on mathematical algorithms. This work 

bridges the abstract mathematical algorithms and friendly application interfaces.   

 

Data Model for XML Documents     This object-oriented data model captures 

semantic information segments in XML documents and capsulizes data 

manipulation methods. Document type definition (DTD), XML documents with and 

without DTDs are considered in this model, and corresponding transformation rules 

and procedures from these XML data to this model are established. This model 

could support XML data management and XML based web applications, as well as 

further research in XML data analysis such as XML data community discovery.    

 

1.4 Outline of the Dissertation 
 
The remainder of the dissertation is organized as follows. Chapter 2 describes the 

basic concepts and models necessary for understanding hyperlink analysis. 

Mathematical (matrix) expression of hyperlinks is presented and related 

mathematical knowledge and background are provided for better understanding of 

our work. Commonly used hyperlink analysis techniques and web page community 

construction algorithms are reviewed and discussed, based on which this dissertation 

develops. This chapter provides a foundation for further hyperlink analysis and web 

page community construction in the ensuing chapters.    
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In Chapter 3, we investigate the web page community that consists of hub and 

authority pages, and focus on improving the quality of the community by 

eliminating noise pages from the concerned web page source. We firstly review the 

algorithm of web page community construction and indicate that the existence of 

noise pages in the page source would produce the topic drift problem in many cases 

when constructing community, i.e. the obtained hub and authority pages in the 

community are not related to the concerned topics. Different from other algorithms, 

such as [BH98], that reduce the influence of the noise pages in community 

construction procedures, we develop another approach that eliminates noise pages 

from the page source before the community being constructed to improve the 

community quality. 

In this work, the relationships among the pages in the concerned page source are 

indicated by hyperlinks, which are expressed in a hyperlink adjacency matrix. 

Deeper relationships among the pages are then revealed by mathematical operations, 

especially the singular value decomposition of matrix, on this matrix. From the 

revealed relationships, the thresholds for eliminating noise pages are numerically 

determined. Experiments are conducted to show the effectiveness of the algorithm in 

eliminating noise pages. 

Chapter 4 turns to the web page community that consists of relevant pages for a 

given web page (URL). After reviewing the previous methods of relevant page 

finding, we indicate that the relevant page finding refers to two issues. The first one 

is how to construct page source for relevant page finding. The constructed page 

source, from which the relevant pages are selected, should be of a reasonable size 



 

 

 

22

and be rich in relevant pages. The second issue is how to develop effective 

algorithms to find the relevant pages. The work in this chapter firstly provides 

algorithms for constructing page source, which meets the above requirements. In 

addition, the algorithms could also be able to shield the page source from being 

affected by malicious hyperlink information. Based on the constructed page source, 

we then propose two algorithms to find relevant pages. The first algorithm is the 

extension of the classic co-citation algorithm, in which some co-citation concepts 

are extended. This algorithm is intuitive and efficient in relevant page finding, but it 

is unable to precisely identify relevant pages in many cases because it only takes 

advantage of superficial hyperlink information. To solve this problem, we adapt 

linear algebra methods, which are also used in Chapter 3, and propose the Latent 

Linkage Information (LLI) algorithm to more effectively and precisely find relevant 

pages. The effectiveness of the algorithms is demonstrated by a series of 

experiments.  

In Chapter 5, we investigate the visualization mechanism and propose a series of 

visualization algorithms to support mathematic algorithm based information 

retrieval. In this work, web page community constructions that are based on 

mathematic algorithms, such as those in Chapter 3 and 4, are considered as a special 

case of information retrieval. Therefore, the visualization algorithms could be 

applied to traditional information retrieval, as well as web page communities. The 

prototype of this visualization system is also established in this work. 

In Chapter 6, we consider the web page community with hierarchical cluster 

structures. To cluster web pages, it is necessary to define a similarity between pages. 
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Unlike the page similarity that is derived from web page text content analysis, the 

page similarity in this chapter is derived from hyperlink information. This hyperlink-

based page similarity takes the hyperlink transitivity and web page importance 

(weight) within the concerned page source into consideration, which more 

objectively reflects the nature of the web data and its features. From this new web 

page similarity, hierarchical algorithms are proposed to improve web page 

clustering. The clustering algorithms are the extension of the traditional K-mean 

algorithm, which dynamically identify cluster centroids during the clustering 

procedure. 

In Chapter 7, we further discuss hierarchical web page clustering algorithms 

exploiting intrinsic relationships among the pages. The algorithms are also based on 

the page similarity in Chapter 6, but the clustering procedure is based on matrix 

operations. The similarities among the pages are expressed as a similarity matrix. 

Matrix operations, such as matrix permutation and partitioning, are then introduced 

to divide the similarity matrix elements into different groups. Accordingly, the web 

pages are clustered hierarchically. Two situations are considered in the algorithms. 

The first one is the clustering without cluster overlapping, the second one takes 

clustering overlapping into consideration. The algorithms are independent of 

predefined similarities for clustering and are effective in hierarchically clustering 

web pages within a uniform framework as demonstrated in the experiments. 

In Chapter 8, we propose an object-oriented data model to support semantic 

information extraction from XML documents, XML data management, XML 

document community construction and other web applications. Document type 
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definition (DTD), XML documents with and without DTD are considered in this 

work. A set of transformation rules and steps are established to transform DTDs, as 

well as XML documents, into this data model. In addition, DTD-tree is proposed to 

represent logical structures of DTDs and describe the DTD transformation 

procedures into the model. Further research, such as the research in XML data 

analysis and community construction, could be carried out from this object-oriented 

model. 

Finally, in Chapter 9, we present the conclusions and possible future work.   
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Chapter 2 
 
Fundamentals of Hyperlink Analysis and 
Web Page Community 
 

 
2.1 Introduction 
 
The concept of hyperlinks was introduced with the invention of hypertext. A 

hyperlink is a structure unit that connects two web pages. This connection is realized 

by inserting a hyperlink, which indicates the URL of the destination page, at the 

desired point in the source page. When a user browsing the source page clicks on the 

hyperlink, the web browser interprets this action as a request to fetch the page 

referenced by the hyperlink. The hyperlink was originally conceived as a mechanism 

to dynamically link a citation to its actual source page, and was used for purely web 

navigation purposes. 

Usually, when a hyperlink is inserted in a source page, the author of the source 

page has an idea in his mind that the destination page is related to the topics of the 

source page. In other words, the hyperlink conveys certain human judgement of 

semantic relationship between pages. Therefore, the hyperlink not only provides 

topological information of the web, but also provides semantic information between 

web pages. It can be use as an additional instrument in effectively mining the World 

Wide Web.  
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A user can navigates from a source page to the destination page through the 

hyperlink in the source page. If the destination page also has a hyperlink in it, the 

user can then navigate to another destination page, and so on. This feature of 

hyperlinks is called transitivity. In usual, there are many hyperlinks in a source page. 

It can be imaged that a user can navigate the web as far as he can from an original 

source page, as long as the hyperlinks are available. Accordingly, the semantic 

information conveyed by hyperlinks is also transitive. However, after several or 

many steps of web page navigation, whether the final destination page still keeps a 

tight semantic relationship with the original source page is uncertain. If the semantic 

relationship between the original source page and the final destination page is 

weakened because of the hyperlink transitivity, how to measure the semantic 

declination rate? These are also the challenge problems in using hyperlink to mine 

the web. 

Hyperlinks are similar to the citations in scientific literature that form link 

between research papers. However, there are still many significant differences 

between them. For example, the citations in a paper that has already published 

cannot be altered and the citations in a paper cannot point to papers that have been 

published later than the paper itself; while hyperlinks are dynamic and authors of 

web pages could add hyperlinks at any time, contents and structures of destination 

pages could be changed later than the source pages. On the other hand, because there 

are no rigid schemas for web data, hyperlinks are more likely to be inserted 

arbitrarily into pages. The information conveyed by hyperlinks, therefore, may 

contain many noise factors. For instance, the destination pages may not be 
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semantically related to the source page, destination pages have been removed later 

and the hyperlinks become dangling ones, etc. Because of these reasons, hyperlink 

analysis is a challenge research area in web mining. 

Hyperlink analysis is the name given to a collection of techniques that analyse 

the hyperlink structure and semantics that exist in the web. The analysis can be for a 

wide variety of purposes, ranging from ranking pages in a web search engine to 

understanding the social dynamics behind the usage of the web as a whole. This 

widespread use of hyperlinks has made hyperlink analysis an emerging and 

important area of research.  

 

2.2 Hyperlink Models 
 
Hyperlink analysis starts with a basic model upon which different analysis 

techniques and measures are applied, and the targeted application objective is 

achieved. Different kinds of hyperlink models have been proposed. These models 

either relate to the basic information unit or the process that focuses on the 

application. Among them, graph structure and statistic models are the 

representatives. 

In the graph structure model, the web as a whole is modelled as a directed graph 

containing a set of nodes and directed edges between them [BKM+00]. The nodes 

represent the web pages and the directed edges are the hyperlinks. Within this 

model, if there is a hyperlink from page P to page Q, then P is called a parent of Q 

and Q is called a child of P. If two pages have at least one common parent page, 
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these two pages are called siblings. Other terms are also defined to describe the web 

graph structure. Some commonly used terms are listed below. 

- In-degree of a page. The in-degree of a page p is the number of distinct 

links that point to p. 

- Out-degree of a page. The out-degree of a page p is the number of 

distinct links originating at p that point to other pages. 

- Directed path. A directed path is a sequence of links starting from page p 

that can be followed to reach page q. 

- Shortest path. The shorted path is the path that has the minimal number 

of links on it of all the paths between pages p and q.  

More terms about the hyperlinks will be presented in the following chapters. Within 

the graph structure model, from the hyperlink analysis point of view, the correlation 

between a web page p and other pages is realized in two ways. One is out-links from 

p to other pages, another one is in-links from other pages to p.  

Compared with the graph structure model, the statistic models for hyperlinks are 

dynamic. The statistic models regard hyperlinks as the paths on which the user surfs 

the web. The behaviours of the user in surfing the web are modelled as a stochastic 

process, and many statistical models are used, such as Markov model and 

probabilistic model. The underlying principle of an m-order Markov chain is that 

given the current state of a system, the evolution of the system in the future depends 

only on the present state and the past m-1 states of the system. First order Markov 

models have been used to model the browsing behaviour of a typical user on the 

web, such as the work in [BP98b] [NZJ01a] [LM00]. Greco et al [GGZ01] and 
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Getoor et al [GST+01] also proposed probabilistic models to model the behaviours 

of web surfers and mine information from the web to find hub pages and to classify 

web pages. The statistic models modelling a web surfer have been used significantly 

in hyperlink analysis. 

 

2.3 Matrix Expression of Hyperlinks 
 
In addition to the above commonly used hyperlink models, for the pages in a certain 

web page set, such as the set of pages returned by a search engine with respect to a 

user’s query, hyperlinks can also be expressed as a matrix. This hyperlink matrix is 

usually called adjacency matrix. 

Without loss of generality, we can suppose the adjacency matrix is an m×n 

matrix A = [aij]m×n. Usually, the element of A is defined as follow [Klein99]: if there 

is a hyperlink from page i to page j or i = j, then the value of  aij is 1, otherwise the 

value is 0. If this adjacency matrix is used to model the hyperlinks among the pages 

in the same page set, the values of parameters m and n are the same, which indicate 

the number of pages in the page set (set size). In this case, the ith row of the matrix, 

which is a vector, represents the out-link relationships from page i to other pages in 

the page set; the ith column of the matrix represents the in-link relationships from 

other pages in the page set to page i. 

However, if the adjacency matrix is used to model the hyperlinks between the 

pages that belong to two different page sets, the values of parameter m and n usually 

are not the same unless the numbers of pages in these two sets are the same. 

Suppose one page set is A with the size of m, another page set is B with the size of n. 
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In this case, the ith row of the adjacency matrix represents the out-link relationships 

from the page i in set A to all the pages in set B; the jth column of the matrix 

represents the in-link relationships from all the pages in set A to the page j in set B. 

Although the above adjacency matrix expression is intuitive and simple, the 

values of the matrix elements only indicate whether there exist hyperlinks between 

pages (i.e. value 1 of a matrix element indicates that there is a hyperlink between 

two pages that correspond to this element, and value 0 indicates that there is no 

hyperlink between two pages). In hyperlink analysis, this matrix expression can also 

be extended to represent semantics of hyperlinks. In this case, the values of the 

matrix elements are not required to be either 1 or 0. The actual element value 

depends on the particular situations where the matrix expression is applied. For 

example, the correlations between pages can be expressed in a matrix, where the 

value of a matrix element aij, which is between 0 and 1, indicates the correlation 

degrees from page i to page j, and the matrix is non-symmetric. The similarity 

between pages can also be expressed in a matrix in a similar way, except that the 

similarity matrix is usually a symmetric one. How to determine the page correlation 

degree and similarity will be discussed in the later chapters. 

Since the relationships among pages in the concerned page set can be represented 

as a set of vectors (rows and columns of the corresponding matrix), it is possible to 

find further deeper relationships among the pages through mathematical operations 

on the matrix, or to define new metrics for pages from vector operation, such as 

cosine similarity of pages from vector inner product. The hyperlink matrix can also 

be directly used for other purposes, such as web page clustering through matrix 
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permutation and partitioning. More details of matrix expressions and applications 

for hyperlinks will be seen in the ensuing chapters.          

 

2.4 HITS Algorithm 
 
HITS (Hyperlink-Induced Topic Search) algorithm is a representative in applying 

pure hyperlink analysis to find out logical relationships among the pages in the 

concerned page set. It is proposed by Kleinberg [Klein99].  The algorithm aims at 

constructing a web page community that consists of good hub and authority pages 

from hyperlink analysis. In fact, the authorities and hubs exhibit mutually reinforced 

relationships: a good hub points to many good authorities; a good authority is 

pointed to by many good hubs. The HITS algorithm takes this mutual influence (via 

hyperlinks) among pages into consideration, and finds good hubs and authorities by 

iterative operations, rather than simply counting the number of links (in-links and 

out-links) for each page. 

The HITS constructs a web page community from a set of pages that are returned 

by a web search engine with respect to a user’s query. The algorithm consists of 

three main procedures: 

1. Collecting r highest-ranked pages for the user-supplied query σ from a text-

based search engine (e.g. AltaVista, Google) to form the root set of pages R. 

Growing R to form the base set of pages, B, by adding to R more pages 

which are pointed by or pointing to the pages in R. B is considered to be a 

query specific directed graph whose nodes are pages and edges are 

hyperlinks.  
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2. Associating with each page p in B a hub weight h(p) and an authority weight 

a(p) with initial values of 1. Then iteratively updating the h(p) and a(p) 

(p∈B) according to the following iterative operations: 

∑
≠∈

→

=

pqBq
pq

qhpa

,

)()( , ∑
≠∈

→

=

pqBq
qp

qaph

,

)()(  

in which "p → q" denotes "page p has a hyperlink to page q". Normalize the 

vectors a and h after each iteration. 

3. After iteration reaches steady point (i.e. values of vectors a and h will not 

change any more), abstracting s pages (authorities) with s highest a( ) values 

together with the s pages (hubs) with the s highest h( ) values to be the core 

of a community.  

Kleinberg [Klein99] proved that vectors a and h converge. Thus the termination of 

the iteration is guaranteed. From our numerical experiment experience, with the 

absolute error precision 10-4, the number of iteration is around 20. 

Suppose the size of the base set B (i.e. the number of pages in B) is n. Let z 

denote the vector (1,1,1, … ,1) ∈ Rn, and A be an adjacency matrix such that if there 

exists at least one hyperlink from page i to page j, then Ai,j = 1, else Ai.j = 0. The 

above HITS algorithm can also be expressed as the following iterative matrix 

operations: 

x(k) = (ATA)k-1ATz, y(k) = (AAT)kz ,   k = 1, 2, 3, … 

where x(k) and y(k) are the authority and hub vectors respectively after k times 

iteration, AT is the transposition of adjacency matrix A. Kleinberg [Klein99] proved 

that the authority vector sequence {x(1), x(2), x(3), …}converges to the principal 
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eigenvector of  ATA, and the hub vector sequence {y(1), y(2), y(3), …}converges to the 

principal eigenvector of  AAT. 

When the above HITS algorithm is applied to the base set of pages, it usually 

encounters the following problems [BH98]: mutually reinforcing relationships 

between hosts, automatically generated links, and non-relevant pages. Mutually 

reinforcing relationships between hosts occur when a set of pages on the first host 

point to a single page on the second host, or one page on the first host points to 

multiple pages on the second host. This would greatly and unreasonably increase the 

impact of one host to the web community construction. Automatically generated 

links are produced by web page generating tools. These links usually do not 

represent a human's opinion. The non-relevant pages may cause the topic drift 

problem, i.e. the obtained hub and authority pages are not related to the query topics. 

To tackle the first problem, Bharat and Henzinger [BH98] improved the HITS 

algorithm by assigning authority or hub weights to the edges of graph B. If there are 

k edges from documents on the first host to a single document on the second host, 

each edge will be given an authority weight (auth_wt) of 1/k. If there are l edges 

from a single document on the first host to a set of documents on the second host, 

each edge will be given a hub weight (hub_wt) of 1/l. Then the iterative operation in 

the HITS algorithm is improved as 

),(_)()(

,

pqwtauthqhpa

pqBq
pq

×= ∑
≠∈

→

, ),(_)()(

,

qpwthubqaph

pqBq
qp
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→
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The vectors a and h are normalized after each iteration. Bharat and Henzinger 

[BH98] also proved that the vectors a and h converge, and the termination of the 

iteration can be guaranteed. 

There is also other work in improving the HITS algorithm to tackle other 

problems by combining the structural analysis (hyperlink analysis) with the page 

content analysis. For example, in [BH98], in order to eliminate the automatically 

generated links and non-relevant pages, a similarity measurement is introduced 

exploiting the content of the pages. In [CDG+98], page content analysis and 

corresponding similarity are used to weight the linkage between two pages. The 

ideas in HITS algorithm and its improved algorithms are heuristic to other hyperlink 

analyses. 

 

2.5 Singular Value Decomposition of Matrix 
 
As stated in section 2.3, hyperlinks among pages can be expressed as a matrix. This 

makes it possible to reveal deeper relationships (conveyed by hyperlinks) among 

pages through mathematical operations, especially matrix operations. Among the 

matrix operations, singular value decomposition (SVD) of matrix has its own 

advantages because of its capability in revealing internal relationships among matrix 

elements [DDF+90] [HZ03c] [HZ02a] [HZ02b] [HZC+02]. 

The SVD of a matrix is defined as follow: let A = nmija ×][  be a real nm × matrix. 

Without loss of generality, we suppose nm ≥  and the rank of A is rank(A) = r . 

Then there exist orthogonal matrices mmU ×  and nnV × such that  
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0,11 =−≤≤ jri σ  for 1+≥ rj , Σ  is a nm ×  matrix, TU and TV are the 

transpositions of matrices U and V respectively, mI  and nI  represent mm ×  and 

nn ×  identity matrices separately.  The rank of A indicates the maximal number of 

independent rows or columns of A. Equation (2.1) is called the singular value 

decomposition of matrix A.  The singular values of A are diagonal elements of Σ  

(i.e. nσσσ ,...,, 21 ). The columns of U are called left singular vectors and those of V 

are called right singular vectors [Dat95] [GVL93]. For example, let 
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and the singular values of A are 6.5468 and 0.3742. 

The SVD could be used effectively to extract certain important properties 

relating to the structure of a matrix, such as the number of independent columns or 

rows, eigenvalues, approximation matrix and so on [Dat95] [GVL93]. Since the 

singular values of A are in non-increasing order, it is possible to choose a proper 

parameter k such that the last r-k singular values are much smaller than the first k 
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singular values, and these k singular values dominate the decomposition. The next 

theorem reveals this fact. 

Theorem [Eckart and Young]. Let the SVD of A be given by equation (2.1) 

and U = [u1 , u2 , … , um], V = [v1 , v2 , … , vn] with ),min()(0 nmArankr ≤=< , 

where iu , mi ≤≤1 is an m-vector, jv , nj ≤≤1 is an n-vector and  

.0...... 121 ===>≥≥≥ + nrr σσσσσ  

Let rk ≤  and define 

                          T
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.                                             (2.2) 
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1. rank(Ak) = k ; 

2. 22
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i
ijF aA  and =2

2|||| A max(eigenvalues of AAT ) are measurements 

of matrix A. 

The proof can be found in [Dat95]. This theorem indicates that matrix Ak, which 

is constructed from partial singular values and vectors (see Figure 2.1), is the best 

approximation to A (i.e. conclusions 2 and 3 of the Theorem) with rank k 

(conclusion 1 of the Theorem). In other words, Ak captures the main structure 

information of A and minor factors in A are filtered. This important property could 

be used to reveal the deeper relationships among the matrix elements, and implies 

many potential applications provided the original relationships among the 
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considered objects (such as web pages) can be represented in a matrix. Since rk ≤  

and only partial matrix elements are involved in constructing Ak, the computation 

cost of an algorithm based on Ak could be reduced. 

 

 

 

 

 

 
 

 

 

 

SVD of matrix was successfully applied in textual information retrieval 

[BDO95] [DDF+90], and the corresponding method is called Latent Semantic 

Indexing (LSI). In the LSI, the relationships between documents and terms (words) 

are represented in a matrix, and SVD is used to reveal important associative 

relationships between term and documents that are not evident in individual 

documents. As a consequence, an intelligent indexing for textual information is 

implemented. Papadimitriou et al [PRT+97] studied the LSI method using 

probabilistic approaches and indicated that LSI in certain settings is able to uncover 

semantically “meaningful” associations among documents with similar patterns of 

term usage, even when they do not actually use the same terms. This merit of SVD, 

as indicated in its application to textual information retrieval, could also be applied 

to web data to find deeper semantic relationships provided the web data is correlated 

with each other through a certain correlation pattern, such as a hyperlink pattern. 
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Figure 2.1. Construction of approximation matrix Ak 
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The correlation pattern between the considered objects (e.g. web pages) is the base 

where the SVD is applied. 

 

2.6 Hyperlink Analysis Applications 
 
Hyperlink analysis has been widely used in various applications. These applications 

also include those that combining hyperlink analysis with other techniques, such as 

text-content analysis and web usage analysis. Although this field is relatively new, 

rapid interest has led to the development of a significant body of literature, 

prototypes and products. It is impossible to list all the applications that are related to 

hyperlinks. Here, we only provide details of some main applications. These 

applications include web page community construction, web page ranking, web page 

categorization, web crawling and web usage based applications. 

 Web page community construction Web page community is a mechanism 

that reveals logical and semantic relationships among the pages. The community that 

consists of hub and authority pages is one kind of representative communities. The 

construction of this kind of community is also known as topic distillation, which is 

to identify a set of pages or parts of page that are most relevant to a given topic. It 

has been defined in [Chak01] as  

“the process of finding authoritative Web pages and comprehensive ‘hubs’ which 

reciprocally endorse each other and are relevant to a given query.” 

Kleinberg’s HITS algorithm [Klein99] and its improvements [BH98] [CDG+98] are 

the early hyperlink based approaches that addressed the issue of identifying web 

pages related to a specific topic. A “fine-grained model”, which is based on the 
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Document Object Model (DOM) of a page and the hyperlink structure of hubs and 

authorities related to a topic, is described in [Chak01] [CJT01]. This approach 

reduces topic drift and helps in identifying parts of a web page relevant to a query. 

There are also other hyperlink based approaches that find other kinds of web page 

communities, such as the co-citation and HITS based algorithms in [Klein99] 

[DH99] of finding relevant web pages for the given page, and web page clustering 

algorithms in [PPR96] [PP97] [CDI98] [WVS+96] [Mar97]. More details of these 

algorithms will be given in the ensuing chapters. 

Web page ranking Search engines usually maintain a huge amount of 

information about web pages. In order to increase the search precision with respect 

to the user's query, search engines usually have a page ranking system to give a rank 

for every web page. Among the page ranking techniques, the metric named 

PageRank, which was developed by Brin et al [BP98a] [BP98b] for the popular 

search engine Google, is the representative one. The ranking system of Google 

combines textual information (title, anchor, URL, font, word capitalization 

information, …) and PageRank to give final ranks for pages. It is indicated in 

[BP98a] that the PageRank is an objective measure of a web page's citation 

importance that corresponds well with people's subjective idea of importance, and is 

an excellent way to prioritise the results of web keyword searches. 

The key idea of the PageRank is that a page has high rank if the sum of the ranks 

of its backlinks, i.e. links pointing to the page, is high. So the rank of a page depends 

upon the ranks of the pages pointing to it. The rank of a page is determined 

iteratively till the ranks of all the pages are determined. The details of PageRank are 
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as follow: Assume page A has pages P1, ..., Pn which point to it. The parameter d is a 

damping factor which can be set between 0 and 1. C(Pi) is defined as the number of 

links going out of page Pi. The PageRank of a page A is given as follows:  

PR(A) = (1-d) + d (PR(P1)/C(P1) + ... + PR(Pn)/C(Pn)). 

Usually the parameter d is set to 0.85. PageRank or PR(A) can be calculated using a 

simple iterative algorithm. The PageRank has its intuitive meaning. It simulates the 

behaviour of a random surfer on the web. Assume there is a "random surfer" who is 

given a web page at random and keeps clicking on links, never hitting "back" but 

eventually gets bored and starts on another random page. The probability that the 

random surfer visits a page is its PageRank. And, the d damping factor is the 

probability at each page the "random surfer" will get bored and request another 

random page. PageRank is also found to be very stable. The related discussion can 

be found in [NZJ01a] [NZJ01b].  

Web page categorization  Web page categorization determines the 

category or class a web page belongs to, from a pre-determined set of categories or 

classes. Attardi et al [AGS99] proposes an automatic method of web page 

classification based on the link and context. The idea is that if a page is pointed to by 

another page, the link would carry certain context weight since it induces someone 

to read the given page from the page that is referring to it. Getoor et al [GST+01] 

consider pages and links as entities in an Entity-Relationship model and use a 

probabilistic relational model to specify the probability distribution over the page-

link database, and classify the pages using belief propagation method [Pear88].  
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Web crawling Each web search engine maintains massive information 

collections of web pages captured with the help of web crawlers. The web crawler, 

which is a set of web programs, traverses the web by following hyperlinks and 

stores downloaded pages in a large database that is later indexed for efficient 

execution of user queries. With the rapid increase of the web size, it has become 

important to first search / crawl the web pages relevant to the interest areas. 

Chakrabarti et al [CVD99b] [Chak01] proposed the “Focused Crawling” method for 

efficiently crawling pages that are associated with a topic. This method identifies 

good hub pages that serve as a source of outgoing links for authority pages while 

crawling, and the crawler finally determines dynamically the links to be traversed 

and collects the necessary information. Aggarwal et al [AAY01] proposed an 

“intelligent crawler” method. The method takes into account the web linkage 

structure and other features, such as the content of the page and the number of 

“siblings “ that have already been crawled. These features are used to determine the 

“priority value” according to which the pages will be crawled. Incorporating 

hyperlink analysis in crawling research has become an interesting field.    

Web usage based applications Web usage statistics can be combined with the 

hyperlink analysis to produce interesting results, such as the better link predication 

for adaptive web sites [PE99]. [PP99] discusses predicting user-browsing behaviour 

based on past surfing paths using Markov models. Sarukkai [Saru99] proposed an 

approach to use link prediction and path analysis for better user navigation. He used 

Markov chain model to predict the user access pattern based on the user access logs 
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previously collected. Mobasher et al [MCS00] have used usage statistics on the 

basic link structure for automatic personalization of the web. 

The various applications of hyperlink analysis indicate that hyperlinks, which are 

one of the most significant features of the web, play important roles in mining the 

web, and would be further explored for various web-related purposes.     
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Chapter 3 
 
Eliminating Noise Pages for Good Quality 
Communities 
 

 
3.1 Introduction 
 
The proliferation of the web and the rapid development of web technologies make it 

more and more difficult to manage web data and retrieve the required information on 

the web. On the one hand, web search engines have to capture and maintain large 

amount of information about the data on the web for web information retrieval. 

Without proper strategies and techniques, it is almost impossible to manage such a 

huge amount of information and meet various web-based application requirements. 

On the other hand, with more and more powerful search engines available, it is also 

becoming more and more difficult to manage web-searched information. 

Conventional web information retrieval, by web search engines, is mainly based on 

the keywords the users provide. The search result is usually a set of web pages that 

may or may not contain the required information. However, the web-searched result 

is also a large information source for the users in many cases, in which they cannot 

identify which pages are relevant or at a high relevant rank to their query topics. For 

example, if a user wants to search web pages about "Java Programming", Google 

returns 1,720,000 (more than 1.5 million) web pages and AltaVista returns 1,017,878 
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(more than 1 million) web pages. It can be imagined that no users are able to browse 

all the returned pages one by one to get the required information. Therefore, how to 

capture the features of the web data at a higher level to realise efficient information 

classification and retrieval on the web is becoming a challenge. 

Web page community is a good way to support web data management and 

information retrieval. For constructing a web page community, relationships among 

the concerned pages should be revealed. As indicated in Chapters 1 and 2, 

hyperlinks among web pages, if reasonable, conveys semantic information between 

pages that reflects human judgement. Once this kind of semantic information is 

revealed, it can be used to discover deeper relationships among pages, and in turn to 

discover web page communities. 

One commonly used web page community is the one that consists of hub and 

authority pages. This kind of web page community distils a web page set that is 

related to the query topics from the search results. The representative work in using 

hyperlink analysis to discover web page community is the HITS (Hyperlink-Induced 

Topic Search) algorithm proposed by Kleinberg [Klein99]. As described in Chapter 

2, the HITS algorithm takes into consideration the mutual relationships among the 

pages from their hyperlink information, and obtains web communities with good 

authorities and hubs by incorporating the mutual influence of the pages within the 

whole range of the concerned page space into the algorithm. Other related work (e.g. 

[CDG+98] [BH98]) improved the HITS algorithm by combining page content 

analysis techniques and graph edge weighting.  
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As these works observed, the page source, from which the community is 

constructed, contains many pages that are unrelated to the query topics (i.e. contain 

no query terms). If these pages are in high linkage density, they will dominate the 

iteration operations and the obtained authority or hub pages may be not related to the 

query topics, which is called topic drift problem. We call these topic unrelated pages 

noise pages. Although there are other algorithms of constructing web page 

communities, such as the probabilistic algorithm [GGZ01] and bipartite algorithm 

[RK01], the topic drift problem still remains in these algorithms.  

To tackle the topic drift problem, it is necessary to analyse the page source where 

the community construction algorithms are applied. Actually, the community 

construction algorithms depend on a certain web page space that has relationships 

with the query topics. For a given query topic, a web search engine could retrieve 

and return a set of web pages that are considered to be the most related to the query 

topic. This initial set of retrieved pages is the root set R. The root set of pages could 

then be extended to form a new set of pages by adding more pages to the root set. 

These added pages have linkage relationships with the pages in the root set. This 

extended set of root set is the base set B (details of root and base set construction are 

described in section 2.4). The web community construction algorithms are based on 

this base set of pages. Therefore, the quality of the base set of pages, i.e. the 

percentage of topic-related pages in the base set of pages, mainly determines the 

quality of the produced web page community. However, in the procedure of 

extending a root set to a base set of pages, many topic-unrelated (noise) pages would 

be added to the base set. This is the main source of the noise pages. Previous 
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improved algorithms (e.g. [CDG+98], [BH98], [DH99]) either partially reduce the 

influence of some noise pages to the community construction algorithms or 

eliminate noise pages by complex page content analysis which is fallible if the 

topics are not well represented. No specific objective algorithms are proposed for 

eliminating noise pages before a good quality base set is formed and the community 

construction algorithm is applied. 

In this chapter, an innovative algorithm is proposed to eliminate noise pages 

from the base set of pages B and obtain another good quality base set B', from which 

a better web community could be constructed (see Figure 3.1). This algorithm purely 

makes use of the hyperlink information among the pages in B. To be precise, the 

algorithm considers the linkage relationships between the pages in root set R and 

pages in B-R. Here, B-R is a page set and a page in it belongs to B but does not 

belong to R. These linkage relationships are expressed in a linkage (adjacency) 

matrix A. With the help of singular value decomposition of the matrix A [Dat95] 

[DDF+90] [HZ02], the relationships among pages at a deeper level are revealed, and 

a numerical threshold could be defined to eliminate noise pages (see Figure 3.1). 

This approach is based on a reasonable assumption that the pages in the root set are 

topic related and noise pages are mainly brought in by the procedure of expanding 

root set R to base set B. Indeed, the root set R may also contain noise pages, though 

the possibility is small. However, by eliminating noise pages from the page set B-R, 

the influence of the remained noise pages in root set R to the community 

construction algorithm will be greatly reduced, and better communities could be 
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obtained. Therefore, the root set is used as a reference system to test if a page is a 

noise page. 

 

 

Figure 3.1. Getting new base set with less noise pages by applying the proposed  
                      algorithms 

This chapter is organized as follows. In section 3.2, the algorithm for eliminating 

noise pages from the base set of pages is proposed. The algorithm is based on the 

singular value decomposition (SVD) of matrix described in section 2.5. Section 3.3 

gives some experiment results and their analysis to show the effectiveness and 

feasibility of the proposed algorithm. Some related work is discussed in section 3.4. 

Conclusions are presented in section 3.5. The algorithm depiction is listed in the 

appendix of this chapter. 

 

3.2 Noise Pages Elimination Algorithm (NPEA) 
 
As indicated above, the base set of pages is the base for constructing a web 

community, and its quality has a great influence to the community quality. However, 

the previous work is mainly concerned about how to reduce the influence of the 

noise pages. From another point of view, if most noise pages in the base set can be 

filtered or eliminated before the community construction algorithm is applied, the 

quality of communities would be greatly increased. This is the point from which our 

algorithm is developed. 

B' B
RR
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In this chapter, we also used the symbols introduced in section 2.4. It can be seen 

from HITS algorithm that the base set of pages is derived from the root set of pages 

by adding more pages in it. This procedure would bring many query topic related 

pages into the base set, as well as many topic unrelated pages. For example, for the 

query topic (term) "Harvard", apart from many pages about Harvard University in 

the base set of pages, there are also many other pages in it that do not contain this 

query term, such as the page for a beer company (http://www.johnsonbeer.com/) and 

the page for a comedy club (http://www.punchline.com/), due to their links to some 

pages in the root set. To eliminate these noise pages, we can reasonably assume that 

the root set of pages is topic-related as in [BH98]. From our numerical experiment 

experience and analysis (see section 3.3 of this chapter), if an authority page or a 

hub page is a topic-drift one, it is usually located in those pages that connect to a 

small part of root set (fewer connections) but link densely with each other. They 

dominated the algorithm operation and caused the topic drift problem. Such pages 

should be recognised as noise pages and eliminated. On the other hand, if a page has 

fewer connections with the root set, it is most likely to be a topic unrelated page 

(noise page) and could not be included in the base set in most cases. 

However, another question has arisen. What is the threshold for "fewer 

connections"? This problem cannot be solved only by directly counting the number 

of links for each page. It should be solved by considering the mutual influence 

between the pages in the base set and by defining an exact eliminating threshold. 

The algorithm proposed in this chapter reveals the deeper relationships among the 

pages within the concerned page space, and precisely defines the threshold for 
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eliminating noise pages by exploiting this revealed relationship. Actually, in this 

algorithm, the linkage information among the pages is directly expressed as a 

matrix. From this linkage matrix, deeper relationships among these pages are 

revealed with the help of some matrix operations, especially the singular value 

decomposition (SVD) of matrix in linear algebra that can reveal the internal 

relationship between matrix elements (see section 2.5, as well as [DDF+90] [HZ02] 

[HZC+02] [HZC+00]).  

When the base set of pages is constructed for the user's query, the linkage 

information among the pages is also obtained. There are two types of links to be 

distinguished, transverse links and intrinsic links. The transverse links are the links 

between pages with different domain names1, and the intrinsic links are the links 

between pages with the same domain names. Since intrinsic links very often exist 

purely to allow for infrastructure navigation of a site, they convey much less 

information than transverse links about the authority of the pages they point to 

[Klein99]. As in [Klein99], intrinsic links in our algorithm are deleted from the 

obtained links and only the transverse links are kept. We denote the root set of pages 

R as a directed graph G(R)=(R,ER): the nodes correspond to the pages, and a directed 

edge (p,q)∈ER indicates a link from p to q. Similarly, the base set of pages B is 

denoted as a directed graph G(B)=(B,EB). From the construction procedure of B, it 

can be easily inferred that R ⊂ B and ER ⊂ EB.  

Suppose the size of R (the number of pages in R) is n and the size of B is m. For 

the pages in R, a linkage (adjacency) matrix nnijsS ×= )( could be constructed as  
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⎩
⎨
⎧ =∈∈

= .0
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otherwise
jiorEijorEjiwhen
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ij  

It represents the link relationships between the pages in R. For the pages in B-R, 

another linkage matrix nnmijaA ×−= )()( for page i∈(B-R) and page j∈R could also be 

constructed as 

⎩
⎨
⎧ −∈−∈

=
.0

),(),(1
otherwise

EEijorEEjiwhen
a RBRB

ij  

This matrix directly represents the linkage information between the pages in the root 

set and those not in the root set. The ith row of the matrix A, which is an n-

dimensional vector, could be viewed as the coordinate vector of the page i in an n-

dimensional space SR spanned by the n pages in R.  

For any two vectors v1 and v2 in an n-dimensional space Sn, as known in linear 

algebra, their similarity (or closeness) can be measured by their inner product (dot 

product) in Sn. The elements in v1 and v2 are the coordinates of v1 and v2 in the Sn 

respectively. In the page set B-R, since each page is represented as an n-dimensional 

vector (a row of matrix A) in the space SR, all the similarities between any two pages 

in B-R can be expressed as AAT. On the other hand, as indicated in section 2.5, there 

exists a SVD for the matrix A: 

T
nnnnmnmnmnnm VUA ××−−×−×− Σ= )()()()( . 

Therefore, the matrix AAT can also be expressed as  

TT UUAA ))(( ΣΣ= . 

                                                                                                                                          
1 Domain name here means the first level of the URL string associated with a web page. 
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From this equation, it is obvious that matrix UΣ is equivalent to the matrix A, and 

the ith (i = 1,…, m-n) row of matrix UΣ  could be naturally and reasonably viewed 

as the coordinate vector of the page i (page i ∈ B-R) in another n-dimensional 

space RS ′ . Similarly, for the matrix S, there exists a SVD of S: 

T
nnnnnnnn XWS ×××× Ω= . 

The ith (i = 1,…, n) row of matrix WΩ  is viewed as the coordinate vector of the 

page i (page i ∈ R) in another n-dimensional space RS ′′ . 

For the SVD of matrix A, the matrix U could be expressed as 

[ ] )()(21)()( ,...,, nmnmnmnmnm uuuU −×−−−×− =  where ui (i = 1,…,m-n) is a m-n dimensional 

vector T
inmiii uuuu ),...,,( ,,2,1 −= , and matrix V as [ ] nnnnn vvvV ×× = ,...,, 21  where vi (i = 

1,…, n) is an n dimensional vector T
iniii vvvv ),...,,( ,,2,1= . Suppose rank(A) = r and the 

singular values of matrix A are  

.0...... 121 ===>≥≥≥ + nrr σσσσσ  

For a given threshold δ ( 10 ≤< δ ), we choose a parameter k such that 

δσσσ ≥− + kkk /)( 1 , 

and denote 

[ ] knmkk uuuU ×−= )(21 ,...,, , [ ] knkk vvvV ×= ,...,, 21 , ),...,,( 21 kk diag σσσ=Σ . 

Let  

T
kkkk VUA Σ= . 
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As the theorem in section 2.5 indicates, Ak is the best approximation to A with rank 

k. Accordingly, the ith row Ri of the matrix UkΣk is chosen as the coordinate vector 

of page i (page i ∈ B-R) in a k-dimensional subspace of RS ′ : 

),,...,,( 2211 kikiii uuuR σσσ=   i = 1, 2, …, m-n.                      (3.1) 

Since matrix A contains linkage information between the pages in B-R and R, 

from the properties of SVD and choice of parameter k, it can be inferred that 

coordinate vector (3.1) captures the main linkage information between the page i in 

B-R and the pages in R. The extent to which main linkage information is captured 

depends on the value of parameter δ. The greater the value of δ, the more minor 

linkage information is captured. From the procedure of SVD ([Dat95], [GVL93]), 

coordinate vector transformation (3.1) refers to linkage information of every page in 

B-R, and whether a linkage in matrix A is dense or sparse is determined by all pages 

in B-R, not just by a certain page. Therefore, equation (3.1) reflects mutual influence 

of all the pages in B-R and reveals their relationships at a deeper level. This situation 

is similar to those in [DDF+90] [HZC+02] and [HZC+00].  

In a similar way, suppose rank(S)=t and the singular values of matrix S are 

.0...... 121 ===>≥≥≥ + ntt ωωωωω  

The ith row iR′  of the matrix WtΩt is chosen as the coordinate vector of the page i 

(page i ∈ R) in a t-dimensional subspace of RS ′′ : 

),,...,,( 2211 titiii wwwR ωωω=′      i = 1, 2, …, n.                     (3.2) 

Without loss of generality, let k = min(k,t). The vector Ri can be expanded from a k-

dimensional subspace to a t-dimensional subspace as 
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),0,...,0,0,,...,,( 2211 321
kt

kikiii uuuR
−

= σσσ     i = 1, 2, …, m-n.         (3.3) 

In order to compare the closeness between a page in B-R and the root set R, we 

project each page i in B-R (i.e. vector Ri of (3.3)) into the n-dimensional space 

spanned by the pages in R (i.e. vectors iR′  of (3.2), i = 1,…, n). The projection of 

page i (page i ∈ B-R), PRi , is defined as 

),...,,( ,2,1, niiii PRPRPRPR = ,     i = 1, 2, …, m-n,               (3.4) 

where 

|, |||/)(, jjiji RRRPR ′′=  ∑∑
==

′′×=
t

k
jk

t

k
jkik RRR

1

2/12

1

)()( ,      j = 1, 2, …, n . 

Within the same space, which is spanned by the pages in R, it is possible to 

compare the closeness between a page in B-R and the root set R. In other words, a 

threshold for eliminating noise pages can be defined. In fact, for each PRi , if  

avg

n

j
jii cPRPR ≥= ∑

=

2/1

1

2
, )(|||| ,                   (3.5)  

where  

nRc
n

j
javg ∑

=

′=
1

|||| , 

then the page i in B-R could remain in the base set of pages B. Otherwise, it should 

be eliminated from B. The parameter cavg in the above equation represents the 

average link density of the root set R, and is the representative measurement of R. It 

is used as a threshold for eliminating noise pages. Intuitively, if a page in B-R is a 

most likely noise page, it usually has fewer links with the pages in R. Thus its 

measurement ||PRi|| in (3.5) would be small and it is most likely to be eliminated. It 
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is obvious that another representative measurement of root set R can also be defined 

as an elimination threshold. For example, the parameter cavg could be replaced by 

||)(||max
],1[max jnj

Rc ′=
∈

 or ||)(||min
],1[min jnj

Rc ′=
∈

. We call the algorithm with parameters 

minmax ,, cccavg as avgAlgo, maxAlgo and minAlgo respectively. Theoretically, the 

avgAlgo is ideal for elimination in most cases. The maxAlgo sometimes is too strict 

and many topic-related pages may be eliminated from the B-R. The minAlgo in some 

cases is too loose to eliminate many noise pages. In the next section, we will 

examine the experiment results in eliminating noise pages and see if the experiment 

results are coincident with this theoretical analysis.     

The above noise page elimination algorithm is depicted as the algorithm NPEA 

and listed in Appendix of this chapter. The complexity of the algorithm is dominated 

by the SVD computation of the linkage matrices A and S. Without loss of generality, 

we suppose M = max(m-n, n). Then the complexity of the algorithm is 

)( 32 nnMO + [GVL93]. If n << m, the complexity is approximately )( 2mO . 

 

3.3 Experimental Results 
 
In the experiment, we firstly apply the proposed algorithm NPEA to a situation 

where the original HITS algorithm fails to get satisfactory results. This situation is 

for a query term "Harvard". The root set of pages, which are considered to be 

relevant to this term, is returned by a text-based web search engine AltaVista. The 

construction of base set B is the same as that in [Klein99] or in section 2.4. The size 

of B (the number of pages in B) is 8064, and the size of root set R is 200. We will 
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firstly examine the numerical results of three algorithms (avgAlgo, maxAlgo, 

minAlgo) in noise page elimination with different values of parameter δ. From the 

analysis of these numerical results and our experimental experience, we will suggest 

which algorithm and parameter value are suitable in most cases. Meanwhile, we will 

show, via the numerical results, that the algorithm NPEA enables the topic-related 

pages to capture the main linkage information among the concerned pages. That is 

why the algorithm works well for eliminating noise pages. 

Secondly, we will apply the HITS algorithm to two situations and get two sets of 

authorities and hubs in order to see if the proposed algorithm really improves the 

quality of the base set and web communities. One situation to which the HITS 

algorithm is applied is that the noise pages in B are not eliminated; another situation 

is that the noise pages in B are eliminated by the algorithm NPEA. 

For better understanding the experiment results, we give the following 

definitions. 

• Suspected pages are those pages that are topic-related but have at most one link 

to the pages in root set R. 

• Noise Page Filtering Rate (NPFR) = number of filtered noise pages / total 

number of noise pages. 

• Noise Page Filtering Percentage (NPFP) = number of filtered noise pages / total 

number of filtered pages. 

• Suspected Page Filtering Percentage (SPFP) = number of filtered suspected 

pages / total number of filtered pages. 

• Efficient Filtering Percentage (EFP) = NPFP + SPFP. 
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One important concept to be clarified is what page is noise page. Here, the noise 

page is in the meaning of common sense, i.e. it contains no query terms. In our 

experiment, the number of noise pages is 2968. Suspected pages are defined to 

distinguish those pages that are most likely to be noise pages for the HITS 

algorithm, but are not noise pages as commonly understood, as we stated before that 

noise pages usually have fewer links to the root set R. For example, in the 

experiment, the page "http://www.hugo-sachs.de" contains query term "Harvard", 

but it only have one link to the pages in the root set and have many links with a set 

of pages that contain no query term "Harvard" and produce an topic-drift authority 

page (see Table 3.6)  "http://www.biochrom.co.uk/biochrom.htm". In this case, the 

page "http://www.hugo-sachs.de" is a suspected page. Therefore, the efficient 

filtering percentage (EFP) reflects the highest percentage of filtered noise pages (for 

HITS) in all filtered pages (i.e. if all the suspected pages are noise pages for HITS). 

Table 3.1. Numerical results for three algorithms maxAlgo, avgAlgo and minAlgo

maxAlgo avgAlgo minAlgo δ ≥ 0.4 Threshold=2.999 Threshold=1.434 Threshold=0.999 
No. of Filtered Pages 6496 4704 3808 
No. of Filtered Noise Pages 2968 2912 2408 
No. of Filtered Suspected Pages 1624 1512 1176 
NPFR 1.00 0.98 0.81 
NPFP 0.46 0.62 0.63 
SPFP 0.25 0.32 0.31 
EFP 0.71 0.94 0.94 

maxAlgo avgAlgo minAlgo δ ≤ 0.3 Threshold=2.999 Threshold=1.434 Threshold=0.999 
No. of Filtered Pages 6608 5096 4648 
No. of Filtered Noise Pages 2968 2912 2912 
No. of Filtered Suspected Pages 1624 1512 1344 
NPFR 1.00 0.98 0.98 
NPFP 0.45 0.57 0.63 
SPFP 0.25 0.30 0.29 
EFP 0.70 0.87 0.92 
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Table 3.1 shows the numerical results of three algorithms (avgAlgo, maxAlgo, 

minAlgo) in noise page elimination with different value ranges of parameter δ. In 

our experiment, within each value range (δ ≥ 0.4 or δ ≤ 0.3), the number of filtered 

pages changes slightly with the changes of the δ value in that range. For simplicity, 

these minor changes are ignored in this table. From this table, it can be seen that the 

greater the value of parameter δ is, the less pages are eliminated (filtered). This is 

because with greater δ value, more minor linkage information is included in the 

coordinate vector of each page (equation (3.1)), thus the measurement of each page 

(equation (3.5)) is increased and number of filtered pages is decreased. These 

numerical results are coincident with the theoretical analysis in section 3.2.  

Within the first value range of parameter δ (δ ≥ 0.4), although the noise page 

filtering rate (NPFR) of maxAlgo is 100%, its efficient filtering percentage (EFP) is 

only 71%. That means this algorithm eliminated too many topic related pages while 

eliminating all noise pages. This is not an ideal situation. For another two algorithms 

avgAlgo and minAlgo, although their efficient filtering percentages (EFPs) are the 

same (94%), the noise page filtering rate (NPFR) of avgAlgo (98%) is much better 

than that of minAlgo (81%). These numerical results show that within the range of δ 

≥ 0.4, avgAlgo is an ideal noise page elimination algorithm in the experiment. 

For the second value range of δ (δ ≤ 0.3), similar to the above analysis, maxAlgo 

is not an ideal algorithm either. Although the noise page filtering rates (NPFRs) of 

avgAlgo and minAlgo are the same (98%), the efficient filtering percentage (EFP) of 

minAlgo (92%) is better than that of avgAlgo (87%). So in this case, the minAlgo is 

an ideal algorithm for this experiment. 
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The above numerical results and analysis indicate that maxAlgo is not suitable 

for noise page elimination because it eliminates too many topic related pages at the 

same time. It seems that with small δ  value (δ ≤ 0.3), minAlgo should be adopted 

for noise pages elimination; with large δ  value (δ ≥ 0.4), avgAlgo should be 

adopted. But in this experiment, we found the page linkage distribution within the 

root set R is relatively even. So the minimum page measurement of R (i.e. 

||)(||min
],1[min jnj

Rc ′=
∈

in section 3.2) is not too small and minAlgo algorithm is suitable 

for small δ value. However, according to our experimental experience, if the linkage 

distribution within the root set is not even, the minimum page measurement of R 

may be too small and many noise pages cannot be eliminated. In that case, only 

avgAlgo algorithm is suitable. Therefore, we suggest and adopt avgAlgo algorithm 

as a suitable algorithm for eliminating noise pages in most cases, and in practical 

computation, the value of parameter δ  is chosen as 0.5. 

It has been mentioned in section 3.2 that the proposed algorithm enables the 

topic-related pages to capture main linkage information among the pages. That 

means topic-related (term-related) pages should keep main linkage information 

among pages, while the noise pages should keep less linkage information. In other 

words, when the value of parameter δ changes from large to small, the decrease of 

page measurements, which are defined in (3.5), of noise pages would be much 
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Table 3.2. Ten arbitrary noise pages 

Table 3.3. Ten arbitrary topic-related pages 

greater than that of topic-related pages. We arbitrarily chose ten noise pages and ten 

topic-related pages to see their page measurement changes with the changes of δ 

value. The ten noise pages and ten topic-related pages are listed in Table 3.2 and 

Table 3.3 respectively.   

Table 3.4 and Figure 3.2 (pages 1-10) show the page measurement changes of 

noise pages with the changes of δ value. Table 3.5 and Figure 3.2 (pages 11-20) 

show the page measurement changes of topic-related pages with the changes of δ 

value. It is very clear that when the value of δ changes from 0.5 to 0.3, the page 

measurements of noise pages decrease at least 99% and average decrease rate is 

99.6%. This indicates that noise pages do not capture main linkage information 

No. URL ( http:// ) Title 
1 www.corporate-ir.net CCBN: Corporate Communications Broadcast Network 
2 aero-news.net/news/ticker.htm AERO-NEWS Network: Aviation News Ticker 
3 www.biochrom.co.uk/biochrom.htm Biochrom Ltd manufacturer of Amino Acid Analysers …  
4 www.warnerinstruments.com Warner Instrument Corporation 

5 www.theweathernetwork.com/cities/can/Till
sonburg_ON.htm The Weather Network - Weather Forecast - Tillsonburg 

6 www.hugo-sachs.de Hugo Sachs Elektronik 
7 www.nrc.ca/inms/time/cesium.shtml NRC Time Services: Web Clock 
8 www.unionbio.com Welcome to Union Biometrica 
9 www.mitoscan.com MitoScan rapid mitochondria 

10 htmlgear.lycos.com/specs/guest.html Html Gear - Gear Specification - Guest Gear 

No. URL ( http:// ) Title 
11 search.harvard.edu:8765 Search Harvard University 
12 www.harvard.edu/listing Index to Harvard University web sites 
13 www.harvard.edu/about About Harvard University 
14 www.harvard.edu/academics Harvard University: Academic programs 
15 www.harvard.edu/admissions Harvard University: Admissions offices 
16 www.haa.harvard.edu An Online Community for Harvard University Alumni 
17 www.workingatharvard.org/em-main.html Harvard University Office of HumanResources,Employment
18 www.news.harvard.edu Harvard University News Office 
19 www.athletics.harvard.edu/admstaff.html Harvard University Athletics: Administrative/Coaching Staff
20 www.athletics.harvard.edu/vsports.html Harvard University Athletics: Varsity Sports 
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among pages. On the other hand, however, for the same situations, the page 

measurements of topic-related pages do not decrease too much (at most 56%, at least 

5% and average decrease rate is 24%). It suggests that topic related pages capture 

main linkage information. These numerical results are coincident with the above 

analysis, i.e. the algorithm enables the topic-related pages to capture main linkage 

information, while the noise pages not to. That is why the algorithm works well in 

eliminating noise pages. 

Page No. 1 2 3 4 5 6 7 8 9 10 
δ = 0.5 0.937 0.957 0.937 0.937 0.957 0.937 0.957 0.937 0.937 0.957 
δ = 0.3 0.000 0.006 0.000 0.000 0.006 0.000 0.006 0.000 0.000 0.006 

Decrease 
rate 100% 99% 100% 100% 99% 100% 99% 100% 100% 99% 

Average decrease rate: 99.6% 
 

Table 3.4. Page measurement changes of noise pages with different values of  
                       parameter δ 

 

 

Table 3.5. Page measurement changes of topic-related pages with different values of  
                  parameter δ 
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Figure 3.2. Page measurement change trends for 20 arbitrary selected pages with  

                     different values of parameter δ 
 

Page No. 11 12 13 14 15 16 17 18 19 20 
δ = 0.5 1.844 4.967 2.568 3.203 2.518 1.844 1.844 3.388 1.186 1.630 
δ = 0.3 1.590 3.534 1.796 2.127 1.112 1.590 1.590 3.212 1.014 1.153 

Decrease 
rate 14% 29% 30% 34% 56% 14% 14% 5% 15% 29% 

Average decrease rate: 24% 
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Next, we apply HITS algorithm to the base set of pages B in which noise pages 

are not eliminated by the algorithm NPEA. For comparison, we also use algorithm 

NPEA (avgAlgo algorithm with δ=0.5) to eliminate noise pages from B and get a 

new base set B'. We then apply HITS to this new base set B'. The top five authorities 

and hubs for each situation are listed in Table 3.6 and 3.7 respectively.  

Table 3.6. Top five authorities and hubs for "Harvard" before noise pages are  
                       eliminated 

Table 3.7. Top five authorities and hubs for "Harvard" after noise pages are  
                         eliminated 

Top Five Authorities 
Authority value URL ( http:// ) Title 

0.735 www.harvard.edu Welcome to Harvard University 
0.285 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.207 www.corporate-ir.net CCBN: Corporate Communications Broadcast …
0.190 www.biochrom.co.uk/biochrom.htm Biochrom Ltd manufacturer of Amino Acid … …
0.151 highwire.stanford.edu HighWire Press 

Top Five Hubs 
Hub value URL (http:// ) Title 

0.235 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University
0.226 post.economics.harvard.edu/info/links.html Harvard Economics Links Page 
0.218 www.physics.harvard.edu Harvard University Department of Physics 
0.206 www.harvard.edu/academics Harvard University: Academic programs 
0.192 www.harvard.edu/listing Index to Harvard University web sites 

Top Five Authorities 
Authority value URL (http:// ) Title 

0.788 www.harvard.edu Welcome to Harvard University 
0.283 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University 
0.213 www.economics.harvard.edu Harvard University Department of Economics 
0.191 www.gsas.harvard.edu Graduate School of Arts & Science, Harvard  Uni 
0.143 www.law.harvard.edu HLS: The Harvard Law School Home Page 

Top Five Hubs 
Hub value URL (http:// ) Title 

0.244 post.economics.harvard.edu/info/links.html Harvard Economics Links Page 
0.238 www.fas.harvard.edu Faculty of Arts and Sciences, Harvard University 
0.196 post.economics.harvard.edu/people Harvard Economics Directories of Faculty, Staff ..
0.195 www.fas.harvard.edu/about About Harvard University Faculty of Arts & Sci. 
0.195 www.physics.harvard.edu Harvard University Department of Physics 
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Table 3.8. Top five authorities and hubs for "Jaguar" before noise pages are  
                         eliminated 

Table 3.9. Top five authorities and hubs for "Jaguar" after noise pages are  
                          eliminated 

It is indicated from these two tables that before noise pages are eliminated from 

the base set, HITS produces three authorities (i.e. http://www.corporate-ir.net, 

http://www.biochrom.co.uk/biochrom.htm and http://highwire.stanford.edu) that 

have no relationships with the term "Harvard" (Table 3.6). After noise pages are 

eliminated by the algorithm NPEA, HITS algorithm produces satisfactory results 

(Table 3.7), i.e. every produced authority and hub is topic-related. These experiment 

results indicate that the proposed algorithm really improves the quality of base set 

and web communities. 

Top Five Authorities 
Authority value URL ( http:// ) Title 

0.567 www.jag-lovers.org Jag-lovers - the Jaguar Enthusiasts' premier resource 
0.481 www.jagweb.com A1 JagWeb - Jaguar restoration, trimming,…& spare
0.466 www.jaguar.com Jaguar Cars Global Home Page 
0.243 www.classicjaguar.com Classic Jaguar: Jaguar High Performance Parts&Res.
0.191 www.jec.org.uk Jaguar Enthusiasts' Club 

Top Five Hubs 
Hub value URL (http:// ) Title 

0.291 www.roadsters.com/jaguar Jaguar Sports Cars - Roadsters.com 
0.270 neptune.spacebears.com/cars/jaglink.html Jaguar Link-A-Rama 
0.261 www.jags.org/links.htm Jag Links 
0.241 www.motorcarsltd.com/links.htm British Car Links 
0.220 www.classicjaguar.com/links.html Links 

Top Five Authorities 
Authority value URL ( http:// ) Title 

0.584 www.jag-lovers.org Jag-lovers - the Jaguar Enthusiasts' premier resource 
0.495 www.jagweb.com A1 JagWeb - Jaguar restoration, trimming,…& spare
0.490 www.jaguar.com Jaguar Cars Global Home Page 
0.225 www.classicjaguar.com Classic Jaguar: Jaguar High Performance Parts&Res.
0.208 www.jec.org.uk Jaguar Enthusiasts' Club 

Top Five Hubs 
Hub value URL (http:// ) Title 

0.277 www.roadsters.com/jaguar Jaguar Sports Cars - Roadsters.com 
0.254 neptune.spacebears.com/cars/jaglink.html Jaguar Link-A-Rama 
0.245 www.jags.org/links.htm Jag Links 
0.237 www.classicjaguar.com/links.html Links 
0.223 www.motorcarsltd.com/links.htm British Car Links 
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In the experiment, we also apply the noise page elimination algorithm NPEA to 

the situation where HITS produces satisfactory results. The purpose is to see if the 

HITS can still produce satisfactory results after noise pages are eliminated by the 

algorithm. In other words, we try to see if the algorithm eliminates real noise pages, 

rather than topic-related pages. This situation is for the query term "Jaguar". The 

size of base set is 3,540 and the size of root set is 472. The top five authorities and 

hubs before and after the noise pages are eliminated are listed in Tables 3.8 and 3.9 

respectively. 

It is clear from Tables 3.8 and 3.9 that the results produced by HITS after noise 

pages are eliminated are still satisfactory. The only difference is that the order of the 

4th and 5th hubs before and after elimination is different. When the authority and hub 

pages were checked, they were closely related with the query term and meet the 

definitions of authority and hub. These experiment results show that the noise page 

elimination algorithm NPEA effectively eliminates noise pages and is feasible in 

practical applications.   

 

3.4 Related Work and Discussions 
 
Apart from HITS algorithm [Klein99] and its improvements [BH98] [CDG+98], 

there are also other algorithms for discovering web page communities. Greco et al 

[GGZ01] proposed a probabilistic approach for finding authoritative web pages. 

This approach is mainly based on the hyperlink analysis of the concerned web page 

set. Actually, it also begins with the base set of pages that is the same as that in 

HITS algorithm. The base set of pages is represented as V, and the number of pages 
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in V is denoted as |V|. Then the associated adjacency matrix A of the pages in V can 

be constructed, where if there exists a link from page i to j, then Ai,j = 1, otherwise 

Ai,j = 0. Let ci with i∈V be a weight associated to each page representing the textual 

information of the page. Then the co-citation matrix is defined as C = ATA, where 

Ci,i = ci, ∀i∈V. 

The transition probability matrix P is defined as a |V|×|V| matrix in which each entry 

is  

∑ =

= ||

1 ,

,
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k ki

ji
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P . 

In the probability matrix P, Pi,i denotes the probability of remaining in page i, 

whereas Pi,j, with i ≠ j, denotes the probability of going from page i to page j. The 

probability matrix P models the behaviour of the unitary length transitions. For 

random walk with more than one link, the probability of going from page i to page j 

in n steps is defined as  
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where P(1)
i,j = Pi,j.  

Furthermore, being in page i, the probability of going to page j with a random 

walk of random length  (composed with a maximum of n steps) becomes 
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where 1/f is a damping factor with f > 0. A higher value of ∑i∈V T(n)
i,j gives a 

measure of similarity of page j with respect to all the other pages, that is, an high 

value of the sum means that page j has many co-citations in common with all other 
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pages. Such a page is the authority page. In order to consider this random walk 

behaviour within the whole base set, it is only needed to calculate the terms T(n)
i,j for 

n→∞. Greco et al proved that  

T(n) → (f - 1) × P × ( f× I - P) -1,   when n→∞. 

So this probabilistic approach for finding authority pages is guaranteed.  

Reddy et al [RK01] proposed an algorithm for abstracting a web page 

community as a set of pages that form a dense bipartite graph (DBG). The algorithm 

is also based on the hyperlink analysis and only considers the number of links 

between pages in the hyperlink analysis. This algorithm begins with selecting a set 

of pages T such that the number of common children between this set and any page 

in this set is greater than a predefined threshold. At the same time, another page set 

I, which is the set of children of T, is constructed. Then the algorithm iteratively 

removes those pages in T when their out degrees are below a certain threshold, and 

those pages in I when their in-degrees are below another certain threshold. When 

this procedure is finished, the DBG, i.e. a web page community is formed. 

Furthermore, the algorithm can also be used to relate the extracted communities to 

build a hierarchy of communities for a given page set.   

However, the above algorithms did not consider the topic drift problem either. 

For example, if there are noise pages in the base set and they dominate the linkage 

density of the base set, the probabilistic algorithm in [GGZ01] would increase the 

possibility of these noise pages being randomly accessed and cause topic drift 

problem. The situation is the same for the bipartite algorithm [RK01]. On the other 
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hand, the bipartite algorithm is directly based on page's in-degree and out-degree, 

which does not produce best results in most cases [Klein99]. 

The ARC algorithm of Chakrabarti et al [CDG+98] tried to reduce the influence 

of the noise pages and increase the influence of the topic-related pages to the HITS 

algorithm by weighting the links between two pages. This improvement is based on 

the text content surrounding the hyperlink (anchor window) in the source document. 

The link from a page p to q is weighted as 

w(p, q) = 1 + n( t ), 

where n( t ) is the number of matches between the terms in the topic description and 

those in the anchor window. Then the HITS is improved by updating the entries of 

the link adjacency matrix with link weights.  

For eliminating noise pages, maybe the direct approach is to find the relevance 

of a page to the query topic. The noise page elimination algorithms of Bharat and 

Henzinger [BH98] were proposed from this idea. The algorithms define the 

similarity between a page and the query topic from the page content as the relevance 

weight of a page to determine if a page is a noise page. For this purpose, the 

algorithm use the pages in the root set to define a broader query, specifically, the 

first 1000 words from each page in the root set are concatenated to form this broader 

query Q in a term vector. 

Then the relevance of a page Dj to the query topic is defined as the similarity 

between this page and the query Q 
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where 

wiq = freqiq × IDFi,   

wij = freqij × IDFi,   

freqiq = the frequency of the term i in query Q, 

freqij = the frequency of the term i in page Dj, 

IDFi  = an estimate of the inverse document frequency of term i on the World Wide 

Web. 

With the page relevance weights, all pages whose weights are below a threshold 

are determined as noise pages and eliminated. The relevance weight can also be used 

to regulate the influence of a page. If W[n] is the relevance weight of a page n, A[n] 

and H[n] are the authority score and hub score respectively, then W[n]×A[n] is used 

to replace A[n] and W[n]×H[n] is used to replace H[n] in the HITS algorithm. This 

reduces the influence of less relevant pages on the scores of their neighbours. 

To reduce the computing cost, Bharat and Henzinger also improve the above 

noise page elimination algorithm by selecting only top 30 pages in the root set to 

form the broader query Q. These 30 selected pages correspond to the 30 top values 

of in_degree + 2 × num_query_matches + has_out_links, where 

num_query_matches is the number of unique sub-strings of the URL that exactly 

match a term in the user's query, and has_out_links is 1 if the page has at least one 

out-link and otherwise 0. Meanwhile the term weight wiq is computed as freqiq × 

IDFi × 3. With this new broader query Q, the top 100 pages measured by the value 

of 4× in_degree + out_degree are fetched, scored against Q and eliminated if their 
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score falls below the threshold. This elimination procedure can also be executed 

during the iterative operation of the HITS algorithm.  

These noise page elimination or noise page's influence reduction algorithms are 

all based on the page content analysis. However, there are still a lot of problems that 

affect the effectiveness and feasibility of these algorithms. Firstly, one of the 

characteristics of the web is that the web content is dynamic. Web page authors 

would frequently change the page content according to their requirements. This 

would lead to different content analysis results for the same web page at different 

time. Sometimes a page is recognized as a noise page, while it would be recognized 

as a topic related page at another time. This will increase the maintenance cost for a 

web-based data management system to keep the correctness of the web page 

communities adopted by the system. Secondly, as indicated in [BH98], the success 

of the algorithms greatly depends on whether the query topics are well represented. 

However, because of the synonymy (different words have similar or same meaning) 

and polysemy (one word has different meanings) of the words in web page content, 

whether the content analysis results really reveal the relationship between the page 

and the query topic is uncertain. For example, if the terms in anchor window and 

topic description are synonymous in ARC algorithm (e.g. "car" and "vehicle"), the 

algorithm will not consider they are the same and the link weight is unreasonably 

decreased. For the same reason, whether the broader query Q, which is formed by 

concatenating the first 1000 words of each page (or partial pages) in root set, 

represents the query topic is uncertain either.  Therefore, the relevance weights of 

pages, in some cases, cannot really reflect the real relationships between the page 
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and the query topic. Thirdly, since there is no standard data format or model for 

organizing web page contents and HTML tags have few semantics, it is a time-

consuming and complex procedure to extract required words from a large set of web 

pages and compute the features of the words, such as IDFi in the algorithm of Bharat 

and Henzinger. On the other hand, the dimension of the query topic vector, such as 

the broader query Q in term vector, usually is very high. This will greatly increase 

the computing overhead and decrease the efficiency of the algorithm. Fourthly, some 

parameters in the above algorithm have no clear semantic meanings. For example, in 

the algorithm of Bharat and Henzinger, the value of in_degree + 2 × 

num_query_matches + has_out_links is used to select top 30 pages in root set to 

construct the broader query. Why the coefficient of the second term is 2 rather than 

other values is not clear. Similarly, the semantic meanings of the coefficients in 

computing term weight wiq = freqiq × IDFi × 3 and 4× in_degree + out_degree are 

not clear either. This would lead to arbitrary decision-making. 

Compared with the content analysis, hyperlink analysis has many advantages. 

The hyperlink analysis results are relatively steady. This is because any change in 

the hypertext of the web page that does not affect its structure will not affect the 

relationship between this page and other pages. In practical applications, extracting 

hyperlinks is much easier than extracting required words from web pages because 

the hyperlinks are marked by the specific HTML tags. This would simplify the web 

page processing and decrease the computing cost. Furthermore, the semantic 

meanings the hyperlink conveys, when the hyperlink is reasonable or meaningful, 

are independent of the synonymy and polysemy of the words in the contents of the 
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web pages. Actually, when the reasonable or meaningful hyperlinks are established 

by the authors of the web pages, these hyperlinks reflect the human's judgement 

whether the linked pages are related to the source pages. This judgement is objective 

and independent of the synonymy and polysemy of the words, unless the linked 

pages have been totally changed later. That's why the hyperlink analysis is 

successful in many applications. At last, the hyperlink analysis is concise and 

intuitive. The algorithm, as well as the experiment results, demonstrates the 

effectiveness and feasibility of the hyperlink analysis.  

 

3.5 Conclusions 
 
This chapter presents a hyperlink-based noise page elimination algorithm (NPEA) to 

eliminate noise pages from the base set of web pages. The algorithm improves the 

quality of the base set, and in turn the quality of web page communities. From the 

basic hyperlink information among the pages, the algorithm reveals the relationships 

among the concerned pages at a deeper level and numerically defines the threshold 

for eliminating noise pages. The experiment results show the effectiveness and 

feasibility of the algorithm. This algorithm provides an effective approach of finding 

deeper and intrinsic relationships (mathematical relationships) among the pages 

from hyperlink information with the help of mathematical model, analysis and 

operations. Further more, this algorithm could also be used solely to filter 

unnecessary web pages and reduce the management cost and burden of web-based 

data management systems, especially for special-purpose search engines (Internet 

portals). 
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Appendix 
 

Noise Page Elimination Algorithm (NPEA) 

NPEA (G(R), G(B), δ ) 

   Input: 

G(R): G(R)=(R,ER) is a directed graph of root set pages with nodes being pages 

and edges being links between pages. 

G(B): G(B)=(B,EB) is a directed graph of base set pages with nodes being pages 

and edges being links between pages. 

δ : threshold for selecting matrix approximation parameter k. 

   Output:  

G'(B): a new directed graph of base set pages with noise pages being eliminated 

by this algorithm. 

   Begin 

      Get the number of pages in B, m = size(B);    Get the number of pages in R, n =  

      size(R); 

      Construct linkage matrix between pages in R, nnijsS ×= )( ;   

      Construct linkage matrix between B-R and R, nnmijaA ×−= )()( ; 

      Compute the SVD of S and its singular values 

          T
nnnnnnnn XWS ×××× Ω= ;  0...... 121 ===>≥≥≥ + ntt ωωωωω ; 

      Compute the SVD of A and its singular values 
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         T
nnnnmnmnmnnm VUA ××−−×−×− Σ= )()()()( ; 0...... 121 ===>≥≥≥ + nrr σσσσσ ; 

      Choose parameter k such that δσσσ ≥− + kkk /)( 1 ; 

Compute coordinate vectors Ri (i = 1, 2, …, m-n) for each page in B-R according 

to (3.1); 

Compute coordinate vectors R'i (i = 1, 2, …, n) for each page in R according to 

(3.2); 

Compute the projection vectors PRi (i = 1, 2, …, m-n) according to (3.4); 

     Compute the representative measurement of R, njRc
n

j
∑ ′=
=1

|||| ; 

      if cPRi <||| |  (i = 1, 2, …, m-n) then 

          Begin 

 Eliminate page i from B, B = B - page i ; 

Eliminate links related with page i from EB  

EB = EB - (page i→ p) - (p→ page i);    p ∈ B, p≠ i. 

          End 

      return G'(B)=(B,EB);  

End 
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Chapter 4 
 
Finding Relevant Web Pages for a Given 
Page 
 

 
4.1 Introduction 
 
Conventional web page search is based on user's query terms and web search 

engines, such as AltaVista [Alta] and Google [Google]. The user issues the query 

terms (keywords) to a search engine, and the search engine returns a set of pages 

that may (hopefully) be related to the query topics or terms. For an interesting page, 

if the user wants to search the relevant pages further, he/she would prefer those 

relevant pages to be at hand. Here, a relevant web page is the one that addresses the 

same topic as the original page, but is not necessarily semantically identical [DH99]. 

This kind of pages forms another kind of web page community, i.e. the community 

that consists of relevant pages with respect to the given page (URL). Providing 

relevant pages for a searched web page would prevent users from formulating new 

queries, for which the search engine may return many undesired pages. Furthermore, 

for a search engine as well as a web data management system, caching the relevant 

pages for a set of searched pages would greatly speed up the web search and 

increase the search (retrieval) efficiency.  That is why many search engines, such as 

Google and AltaVista, are concerned more about building in this functionality.  
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There are many ways to find relevant pages. For example, as indicated in 

[DH99], Netscape uses web page content analysis, usage pattern information, as 

well as linkage analysis to find relevant pages. Among the approaches of finding 

relevant pages, hyperlink analysis has its own advantages as indicated in Chapters 1 

and 2. When hyperlink analysis is applied to the relevant page finding, its success 

depends on how to solve the following two problems: (i) how to construct a page 

source that is related to the given page, and (ii) how to establish effective algorithms 

to find relevant pages from the page source. Ideally, the page source, a page set from 

which the relevant pages are selected, should have the following properties: 

1. The size of the page source (the number of pages in the page source) is 

relatively small. 

2. The page source is rich in relevant pages. 

The best relevant pages of the given page, based on the statement in [DH99], should 

be those that address the same topic as the original page and are semantically 

relevant to the original one. 

The representative work of applying hyperlink analysis to find relevant pages is 

presented in [Klein99] and [DH99]. The page source for relevant page finding in 

[Klein99] is derived directly from a set of parent pages of the given page. 

Kleinberg's HITS (Hyperlink-Induced Topic Search) algorithm is applied directly to 

this page source, and the top authority pages (e.g. 10 pages) with the highest 

authority weights are considered to be the relevant pages of the given page. This 

algorithm is improved by the work in [DH99] in two aspects: firstly, the page source 

is derived from both parent and child pages of the given page, and the way of 
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selecting pages for the page source is different from that of [Klein99]. Secondly, the 

improved HITS algorithm [BH98], instead of the Kleinberg's HITS algorithm, is 

applied to this new page source. This algorithm is named Companion Algorithm in 

[DH99]. The improved HITS algorithm reduces the influence of unrelated pages in 

the relevant page finding. These algorithms focus on finding authority pages (as 

relevant pages) from the page source, rather than on directly finding relevant pages 

from page similarities. Therefore, if the page source is not constructed properly, i.e. 

there are many topic unrelated pages in the page source, the topic drift problem 

[BH98][HZ02] would arise and the selected relevant pages might be not actually 

related to the given page.  

Dean and Henzinger [DH99] also proposed another simple algorithm to find 

relevant pages from page similarities. The page source of this algorithm, however, 

only consists of the sibling pages of the given page, and many important 

semantically relevant pages might be neglected. The algorithm is based on the page 

co-citation analysis (details will be given in the following section), and the similarity 

between a page and the given page is measured by the number of their common 

parent pages, named co-citation degree. The pages that have higher co-citation 

degrees with the given page are identified as relevant pages.  Although this 

algorithm is simple and efficient, the deeper relationships among the pages cannot 

be revealed. For example, if two or more pages have the same co-citation degree 

with the given page, this algorithm could not identify which page is more related to 

the given page. Detailed discussions about the above algorithms will be given latter 

in this chapter.  
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On the other hand, the experiments of the above work show that the identified 

relevant pages are related to the given page in a broad sense, but are not 

semantically relevant to the given page, in most cases. For example, given a page 

(URL): http://www.honda.com, which is the home page of Honda Motor Company, 

the relevant pages returned by these algorithms are those home pages of different 

motor companies (e.g. Ford, Toyota, Volvo and so on). Although these relevant 

pages all address the same topic "motor company", there are no relevant pages 

referring to Honda Motor Company, Honda Motor or anything else about Honda, 

and furthermore there exist no hyperlinks between the most of the relevant pages 

and the given page (URL). This kind of relevant pages could be considered relevant 

in a broad sense to the given page. In practical web search, however, users usually 

would prefer those relevant pages that address the same topic as the given page, as 

well as being semantically relevant to the given page (best relevant pages).  

In this chapter, we propose two algorithms that use page similarities to find 

relevant pages. The new page source based on which the algorithms are established 

is constructed with required properties. The page similarity analysis and definition 

are based on hyperlink information among the web pages. The first algorithm, 

Extended Co-Citation algorithm, is a co-citation algorithm that extends the 

traditional co-citation concepts. It is intuitive and concise. The second one, named 

Latent Linkage Information (LLI) algorithm, finds relevant pages more effectively 

and precisely by using linear algebra theories, especially the singular value 

decomposition (SVD) of matrix, to reveal deeper relationships among the pages. 

Experiments are conducted and it is shown that the proposed algorithms are feasible 
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and effective in finding relevant pages, as the relevant pages returned by these two 

algorithms contain those that address the same topic as the given page, as well as 

those that address the same topic and are semantically relevant to the given page. 

This is the ideal situation for which we look. Some techniques and results, such as 

the hyperlink based page similarity, could also be used further to other web-related 

areas such as web page clustering. 

In the following section 4.2, the Extended Co-Citation algorithm is presented 

with a new page source construction. Section 4.3 gives another effective relevant 

page finding algorithm - Latent Linkage Information (LLI) algorithm. Section 4.4 

presents some experimental results of the two proposed algorithms and other related 

algorithms. Numerical analysis for the experimental data and comparison of the 

algorithms are also conducted in this section. Some related work is presented and 

discussed in section 4.5. Finally, we give conclusions in section 4.6. The depiction 

of the LLI algorithm is listed in the appendix of this chapter. 

 

4.2 Extended Co-Citation Algorithm 
 
The citation and co-citation analysis were originally developed for scientific 

literature indexing and clustering, and then extended to the web page analysis. For 

better understanding of the algorithms to be proposed, we firstly present some 

background knowledge of the citation and co-citation analysis, and then give the 

Extended Co-Citation algorithm for relevant page finding.   

 

4.2.1 Citation and Co-Citation Analysis 
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The citation analysis was developed in information science as a tool to identify core 

sets of articles, authors, or journals of particular fields of study [Lars96]. The 

research has long been concerned with the use of citations to produce quantitative 

estimates of the importance and impact of individual scientific articles, journals or 

authors. The most well-known measure in this field is Garfield's impact factor 

[Garf72], which is the average number of citations received by papers (or journals) 

and was used as a numerical assessement of journals in Journal Citation Reports of 

the Institution for Scientific Information.   

The co-citation analysis has been used to measure the similarity of papers, 

journals or authors for clustering. For a pair of documents p and q, if they are both 

cited by a common document, documents p and q is said to be co-cited. The number 

of documents that cite both p and q is referred to as co-citation degree of documents 

p and q. The similarity between two documents is measured by their co-citation 

degree. This type of analysis has been shown to be effective in a broad range of 

disciplines, ranging from author co-citation analysis of scientific subfields to journal 

co-citation analysis. For example, Chen and Carr [CC99] used author co-citation 

analysis to cluster the authors, as well as the the research fields. In the context of the 

web, the hyperlinks are regarded as citations beween the pages. If a web page p has 

a hyperlink to another page q, page q is said to be cited by the page p. In this sense, 

citation and co-citation analyses are smoothly extended to the web page hyperlink 

analysis. For instance, Larson [Lars96], Pitkow and Pirolli [PP97] have used the co-

citation to meaure the web page similarities.  
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The above co-citation analyses, whether for scientific literatures or for web 

pages, are mainly for the purpose of clustering, and the page source to which the co-

citation analysis is applied is usually a pre-known page set or a web site. For 

example, the page source in [PP97] was the pages in a web site of Georgia Institute 

of Technology, and the page source in [Lars96] was a set of pages in Earth Science 

related web sites. When the co-citation analysis is applied for relevant page finding, 

however, the situation is different. Since there exists no pre-known page source for 

the given page and co-citation analysis, the success of co-citation analysis mainly 

depends on how to effectively construct a page source with respect to the given 

page. Meanwhile, the constructed page source should be rich in related pages with a 

reasonble size.    

Dean and Henzinger [DH99] proposed a co-citation algorithm to find the 

relevant pages. Hereafter, we denote it as the DH Algorithm. In their work, for a 

given page (URL) u, the page source S with respect to u is constructed in the 

following way: the algorithm firstly 

chooses up to B (e.g. 2000) arbitrary 

parents of u; for each of these parents p, 

it adds to S up to BF (e.g. 8) children of p 

that surround the link from p to u. The 

elements of S are siblings of u as indicated in Figure 4.1. Based on this page source 

S, the co-citation algorithm for finding relevant pages is as follow: for each page s in 

S, the co-citation degree of s and u is determined; the algorithm finally returns 10 

pages that have the highest co-citation degrees with u as the relevant pages.  

u 

P1 PB 

P1,1 P1,i P1,BF PB,1 PB,j PB,BF

… 

… … … … 

S 

Figure 4.1. Page source S for the given  
           u in the DH Algorithm 
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Although the DH Algorithm is simple and the page source is of a reasonable size 

(controlled by the parameters B and BF), the page source construction only refers to 

the parents of the given page u. It is actually based on an assumption that the 

possible related pages fall into the set of siblings of u. Since the child pages of u, 

accordingly the page set derived from these child pages, are not taken into account 

in the page source construction, many semantically related pages might be excluded 

in the page source and the final results may be unsatisfactory. This is because the 

semantic relationship conveyed by the hyperlinks between two pages is mutual. If a 

page p is said to be semantically relevant (via hyperlink) to another page q, page q 

could also be said to be semantically relevant to page p.  From this point of view, the 

children of the given page u should be taken into consideration in the page source 

construction.  

 

4.2.2 Extended Co-Citation Algorithm 
 
For a given page u, its semantic details are most likely to be given by its in-view and 

out-view [MH97]. The in-view is a set of parent pages of u, and out-view is a set of 

child pages of u. In other words, the relevant pages with respect to the given page 

are most likely to be brought into the page source by the in-view and out-view of the 

given page. The page source for finding relevant pages, therefore, should be derived 

from the in-view and out-view of the given page, so that the page source is rich in 

the related pages.  

Given a web page u, its parent and child pages could be easily obtained. Indeed, 

the child pages of u can be obtained directly by accessing the page u; for the parent 
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pages of u, one way to obtain them is to issue an AltaVista query of the form link: u, 

which returns a list of pages that point to u [BH98]. The parent and child pages of 

the given page could also be provided by some professional servers, such as the 

Connectivity Server [BBH+98]. After the parent and child pages of u are obtained, it 

is possible to construct a new page source for u that is rich in related pages. The new 

page source is constructed as a directed graph with edges indicating hyperlinks and 

nodes representing the following pages: 

1. page u, 

2. up to B parent pages of u, and up to BF child pages of each parent page that 

are different from u, 

3. up to F child pages of u, and up to FB parent pages of each child page that 

are different from u.  

The parameters B, F, BF and FB are used to keep the page source to a reasonable 

size. In practice, we choose B = FB = 

200, F = BF = 40. This new page 

source structure is presented 

intuitively in Figure 4.2. Before 

giving the Extended Co-Citation 

algorithm for finding relevant pages, 

we firstly define the following 

concepts. 

 

P1 PB 

S1,1 S1,i S1,BF SB,1 SB,j SB,BF 

…

… … … … 

BS

u
C1 CF … 

… … … … 
A1,m A1,FBA1,1 AF,1 AF,n AF,FB

FS

Figure 4.2. Page source structure for the  
               Extended Co-Citation algorithm 
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Definition 1: Two pages p1 and p2 are back co-cited if they have a common parent 

page.  The number of their common parents is their back co-citation degree denoted 

as b(p1, p2). Two pages p1 and p2 are forward co-cited if they have a common child 

page. The number of their common children is their forward co-citation degree 

denoted as f (p1, p2). 

 

Definition 2: The pages are intrinsic pages if they have same page domain name. 

 

Definition 3 [DH99]: Two pages are near-duplicate pages if (a) they each have 

more than 10 links and (b) they have at least 95% of their links in common. 

 

Based on the above concepts, the complete Extended Co-Citation algorithm to 

find relevant pages of the given web page u is as follow: 

Step 1:  Choose up to B arbitrary parents of u.  

Step 2:  For each of these parents p, choose up to BF children (different from u) of p 

that surround the link from p to u. Merge the intrinsic or near-duplicate 

parent pages, if they exit, as one whose links are the union of the links from 

the merged intrinsic or near-duplicate parent pages, i.e. let Pu be a set of 

parent pages of u, 

Pu = {pi | pi is a parent page of u without intrinsic and near-duplicate pages,  
           i∈[1, B]}, 

let  

Si = {si,k | si,k is a child page of page pi , si,k ≠ u , pi∈Pu , k∈[1, BF]}, i ∈ [1, B]. 

Then step 1 and 2 produce the following set 
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U
B

i
iSBS

1=

= . 

Step 3:  Choose first F children1 of u.  

Step 4:  For each of these children c, choose up to FB parents (different from u) of c 

with highest in-degree. Merge the intrinsic or near-duplicate child pages, if 

they exist, as one whose links are the union of the links to the merged 

intrinsic or near-duplicate child pages, i.e. let Cu be a set of child pages of u, 

Cu = {ci | ci is a child page of u without intrinsic and near-duplicate pages, 

i∈[1, F]}, 

let 

Ai = {ai.k | ai,k is a parent page of page ci , ai,k and u are neither intrinsic nor 

near-duplicate  

pages, ci∈Cu, k∈[1,FB]},  i ∈ [1, F]. 

Then step 3 and 4 produce the following set 

U
F

i
iAFS

1=

= . 

Step 5:  For a given selection threshold δ, select pages from BS and FS such that their 

back co-citation degrees or forward co-citation degrees with u are greater 

than or equal to δ. These selected pages are relevant pages of u, i.e., the 

relevant page set RP of u is constructed as: 

RP = { pi | pi ∈ BS with δ≥),( upb i  OR  pi ∈ FS with δ≥),( upf i }. 

                                                 
1 The order of children is coincident with the order they appear in the page u. 
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It can be seen from this algorithm that, in the parent page set Pu and child page 

set Cu of u, the intrinsic or near-duplicate pages are merged as one. This treatment is 

necessary for the success of the algorithm. Firstly, this treatment can prevent the 

searches from being affected by malicious hyperlinks. In fact, for the pages in a web 

site (or server) that are hyperlinked purposely to maliciously improve the page 

importance for web search, if they are imported into the page source as the parent 

pages of the given page u, their children (the siblings of u) most likely come from 

the same site (or server), and the back co-citation degrees of these children with u 

would be unreasonably increased. With the merger of the intrinsic parent pages, the 

influence of the pages from the same site (or server) is reduced to a reasonable level 

(i.e. the back co-citation degree of each child page with u is only 1) and the 

malicious hyperlinks are shielded off. For example, in Figure 4.3, suppose the parent 

pages P1, P2, P3 and their children S1,1, …, S3,2 be intrinsic pages. In situation (a), the 

back co-citation degree of page S2,2 with u is unreasonably increased to 3, which is 

the ideal situation the malicious hyperlink creators would like. The situation is the 

same for the pages S1,2 and S3,1. With the above algorithm, the situation (a) is treated 

as the situation (b) where P is a logic page representing the union of P1, P2, P3, and 

the contribution of each child page from the same site (or server) to the back co-

u 

P1 P2 P3 

S1,2 S1,1 S2,2S2,1 S3,2S3,1

u

P 

S1,2S1,1 S2,2 S2,1 S3,2 S3,1 

(a) (b) 

Figure 4.3. An example of intrinsic page treatment 
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citation degree with u is only 1, no matter how tightly these intrinsic pages are 

linked together.  

Secondly, for those pages that are really relevant to the target page u and located 

in the same domain name, such as those in web sites that are concerned about certain 

topics, the above intrinsic page treatment would probably decrease their relevance to 

the given page u. However, since we consider the page relevance to the given page 

within a local web community (page source), not just within a specific web site or 

server, this intrinsic page treatment is still reasonable in this sense. Under this 

circumstance, there exists a trade-off between avoiding malicious hyperlinks and 

keeping as much useful information as possible. Actually, if such pages are still 

considered as relevant pages within the local web community, they would be finally 

identified by the algorithm. The above reasons for intrinsic parent page treatment are 

the same for the intrinsic child page treatment, as well as the near-duplicate page 

treatment.  

It is also worth noticing that even if the given page u contains active links (i.e. 

links to hub pages that are also cited by other pages), the algorithm, especially the 

pages set Ai, can also shield off the influence of malicious hyperlinks from the same 

site or server or mirror site of u. On the other hand, however, this page set Ai would 

probably filter those possible relevant pages that come from the same domain name 

of u. The trade-off between avoiding malicious hyperlinks and keeping useful 

information still exists in this circumstance. If the algorithm is only used within a 

specific web site or domain name, it can be simplified without considering the 

intrinsic page treatment. In other words, in the Extended Co-Citation algorithm, the 
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influence of each web site (or server) to the page relevance measurement is reduced 

to a reasonable level, and a page's relevance to the given page is determined within a 

local web community (page source), rather than only within a specific web site or 

server.    

 

4.3 Latent Linkage Information (LLI) Algorithm 
 
Although the Extended Co-Citation algorithm is simple and easy to be implemented, 

it is unable to reveal the deeper relationships among the pages. For example, if two 

pages have the same back (or forward) co-citation degree with the given page u, the 

algorithm cannot tell which page is more relevant to u. This is because the co-

citation algorithm has its own limitations. We take the parent pages and the sibling 

page set BS of the given page u as an example. The co-citation algorithm only 

considers sibling pages when considering the page relevance to u (computing the 

back co-citation degrees with u), the parent pages are only used as a reference 

system in the back co-citation computation, their influence (importance) to the page 

relevance measurement, however, is omitted. The above situation is the same for the 

child pages and the page set FS of the given page u.  

However, from the point of view of parent pages, as well as child pages, of the 

given page u, the influence of each parent or child page of u to the page relevance 

degree computation is different. For example, if a parent page P of u has more links 

to the siblings of u than other parent pages, it would pull together more pages on a 

common topic related to u, such as the hubs in [Klein99]. We call this type of page 

P as a dense page (with respect to a certain threshold). For two pages in BS with the 
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same back co-citation degree with u, one page that is back co-cited with u by more 

dense parent pages should be more likely related to the given page u than another 

one. This situation is also applied to the child pages of u and pages in FS. The co-

citation algorithms, unfortunately, are unable to reveal this type of deeper 

relationship among the pages.  

To measure the importance of parent or child pages by directly using their out-

degrees or in-degrees is not a proper approach [Klein99]. The page importance 

should be determined within the concerned page space (page source) combining 

with the mutual influence of the pages. On the other hand, the topologic 

relationships among the pages in a page source can be easily expressed as a linkage 

matrix. This matrix makes it possible, by matrix operations, to reveal the deeper 

relationships among the pages and effectively find relevant pages. Fortunately, the 

singular value decomposition (SVD) of matrix in linear algebra (section 2.5) has 

such properties that reveal the internal relationship among the matrix elements 

[DDF+90] [HZC+02] [HZC+00]. In this work, we adapt it and propose the Latent 

Linkage Information (LLI) algorithm to effectively and precisely find relevant 

pages.  

In this section, we still adapt the symbol system introduced in section 4.2.2. We 

suppose the size of BS is m (e.g. the number of pages in BS is m) and size of Pu is n, 

the sizes of FS and Cu are p and q respectively. Without loss of generality, we also 

suppose m > n and p > q. The topological relationships between the pages in BS and 

Pu are expressed in a linkage matrix A, and the topological relationships between the 

pages in FS and Cu are expressed in another linkage matrix B. The linkage matrices 
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A and B are concretely constructed as follow: nmijaA ×= )(  where 

⎩
⎨
⎧= ∈∈

     .
,

otherwise0
,,ofchildaiswhen1 uPBS jpageipagejpageipage

ija  

qpijbB ×= )(  where  

⎩
⎨
⎧= ∈∈

        .
,

otherwise0
,,ofparentaiswhen1 uCFS jpageipagejpageipage

ijb  

These two matrices imply more beneath their simple definitions. In fact, the ith 

row of matrix A can be viewed as the coordinate vector of page i (page i ∈ BS) in an 

n-dimensional space spanned by the n pages in Pu, and the ith row of matrix B can 

be viewed as the coordinate vector of page i (page i ∈ FS) in a q-dimensional space 

spanned by the q pages in Cu. Similarly, the jth column of matrix A can be viewed as 

the coordinate vector of page j (page j ∈ Pu) in an m-dimensional space spanned by 

the m pages in BS. The meaning is similar for the columns in matrix B. In other 

words, the topological relationships between pages are transferred, via the matrices 

A and B, to the relationships between vectors in different multi-dimensional spaces.  

Since A and B are real matrices, there exist SVDs of A and B: T
nnnmmm VUA ××× Σ= , 

T
qqqppp XWB ××× Ω= . As indicated above, the rows of matrix A are coordinate vectors 

of pages of BS in an n-dimensional space. Therefore, all the possible inner products 

of pages in BS can be expressed as TAA , i.e. ( TAA )ij is the inner product of page i 

and page j in BS. Because of the orthogonal properties of matrices U and V, we have 

TT UUAA ))(( ΣΣ= . Matrix UΣ is also an nm ×  matrix. It is obvious from this 

expression that matrix UΣ is equivalent to matrix A, and the rows of matrix UΣ 
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could be viewed as coordinate vectors of pages in BS in another n-dimensional 

space. Since the SVD of a matrix is not a simple linear transformation of the matrix 

[Dat95] [GVL93], it reveals statistical regulation of matrix elements to some extent 

[PRT+97] [Dat95] [GVL93] [DDF+90] [HZC+02] [HZ02]. Accordingly, the 

coordinate vector transformation from one space to another space via SVD makes 

sense. For the same reason, the rows of matrix VΣ T, which is an mn ×  matrix, are 

coordinate vectors of pages in Pu in another m-dimensional space. Similarly, for 

matrix B, the rows of matrix WΩ are coordinate vectors of pages in FS in another q-

dimensional space, and the rows of matrix XΩT are coordinate vectors of pages in Cu 

in another p-dimensional space. 

Next, we discuss matrices A and B separately. For the SVD of matrix A, matrices 

U and V can be denoted respectively as [ ] mmmmm uuuU ×× = ,...,, 21  and 

[ ] nnnnn vvvV ×× = ,...,, 21 , where ui (i = 1, … , m) is a m-dimensional vector 

T
imiii uuuu ),...,,( ,,2,1=  and vi (i = 1, … , n) is a n-dimensional vector 

T
iniii vvvv ),...,,( ,,2,1= . Suppose rank(A) = r and singular values of matrix A are as 

follow: 

.0...... 121 ===>≥≥≥ + nrr σσσσσ  

For a given threshold ε ( 10 ≤< ε ), we choose a parameter k such 

that εσσσ ≥− + kkk /)( 1 . Then we denote [ ] kmkk uuuU ×= ,...,, 21 , 

[ ] knkk vvvV ×= ,...,, 21 , ),...,,( 21 kk diag σσσ=Σ , and T
kkkk VUA Σ= .  

From the theorem in section 2.5, the best approximation matrix Ak contains main 

linkage information among the pages and makes it possible to filter those irrelevant 
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pages, which usually have fewer links to the parents of given u, and effectively find 

relevant pages. In this algorithm, the relevance of a page to the given page u is 

measured by the similarity between them. For measuring the page similarity based 

on Ak, we choose the ith row Ri of the matrix UkΣk as the coordinate vector of page i 

(page i ∈ BS) in a k-dimensional subspace S: 

),,...,,( 2211 kikiii uuuR σσσ=      i = 1, 2, …, m.         (4.1) 

For the given page u, since it is linked by every parent page, it is represented as a 

coordinate vector with respect to the pages in Pu: ),...,,( 21 ngggu =  where 1=ig , 

],1[ ni∈ . The projection of coordinate vector u in the k-dimensional subspace S is 

represented as 

 ),...,,( 21 kkk ggguVu ′′′=Σ=′                  (4.2) 

where iti

n

t
ti vgg σ∑

=

=′
1

,   i = 1, 2, …,k . 

The equations (4.1) and (4.2) map the pages in BS and the given page u into the 

vectors in the same k-dimensional subspace S, in which it is possible to measure the 

similarity (relevance degree) between a page in BS and the given page u. We take 

the commonly used cosine similarity measurement for this purpose, i.e. for two 

vectors ),...,,( 21 kxxxx = and ),...,,( 21 kyyyy = in a k-dimensional space, the 

similarity between them is defined as 

,
||||||||
||),(

22 yx
yxyxsim ⋅

=  where i

k

i
i yxyx ∑

=

=⋅
1

, xxx ⋅=2|||| . 

In this way, the similarity between a page i in BS and the given page u is defined as 
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,
||||||||
||),(

22 uR
uRuRsimBSS

i

i
ii ′

′⋅
=′=   i =1, 2,...,m.         (4.3) 

For the given selection threshold δ, the relevant pages in BS with respect to the 

given page u is the set 

BSR = { pi | δ≥iBSS , pi ∈ BS, i =1, 2, ..., m}. 

In the same way, for the SVD of matrix T
qqqppp XWB ××× Ω= , we suppose rank(B) 

= t and singular values of matrix B are .0...... 121 ===>≥≥≥ + qtt ωωωωω  For a 

given threshold ε ( 10 ≤< ε )2, we choose a parameter l such that 

εωωω ≥− + lll /)( 1 . Then we denote T
llll XWB Ω= , where 

lpjil wW ×= ][ , , lqjil xX ×= ][ , , ),...,,( 21 ll diag ωωω=Ω . 

The ith row R'i of the matrix WlΩl is the coordinate vector of page i (page i ∈ FS) in 

a l-dimensional subspace L: 

),,...,,( 2211 liliii wwwR ωωω=′      i = 1, 2, …, p.         (4.4) 

The projection of coordinate vector u in the l-dimensional subspace L is represented 

as 

 ),...,,( 21 lll ggguXu ′′′′′′=Ω=′′            (4.5) 

where 

iji

q

j
ji xgg ω∑

=

=′′
1

,   i = 1, 2, …,l . 

Therefore, the similarity between a page i in FS and the given page u is 

                                                 
2 In practice, the threshold here may be different from that (ε ) for matrix A. For simplicity, we 
choose the same ε. 
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,
||||||||
||),(

22 uR
uRuRsimFSS

i

i
ii ′′′

′′⋅′
=′′′=   i =1, 2,...,p.         (4.6) 

For the given selection threshold δ, the relevant pages in FS with respect to the 

given page u is the set 

FSR = { pi | δ≥iFSS , pi ∈ FS, i =1, 2, ..., p}. 

Finally, the relevant pages of the given page (URL) u is a page 

set FSRBSRRP ∪= . 

The detailed depiction of the LLI algorithm is listed in the appendix of this 

chapter. The complexity or computational cost of the LLI is dominated by the SVD 

computation of the linkage matrices A and B. Without loss of generality, we suppose 

m = max(m, p) and n = max(n, q). Then the complexity of the LLI algorithm is 

)( 32 nnmO + [GVL93]. If n << m, the complexity is approximately )( 2mO . Since the 

number of pages in the page source can be controlled by the algorithm, and this 

number is relatively very small compared with the number of pages on the web, the 

LLI algorithm is feasible for application.  

 

4.4 Experimental Results 
 
In our experiment, we selected an arbitrary web page u = "http://www.jaguar.com/ ", 

which is the home page of Jaguar Motor Company, as the given page (URL). The 

page source for this given page was obtained by AltaVista web search engine [Alta]. 

For comparison, the Extended Co-Citation algorithm, LLI algorithm, DH Algorithm 

and Companion algorithm [DH99] were applied to this page source. Meanwhile, the 

relevant pages returned by the "Related Pages" service of AltaVista search engine 
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and the "Similar Pages" service of Google search engine were also provided. Based 

on the experiment results, algorithm comparison was conducted. Numerical 

experiment was also conducted on the co-citation algorithms (the DH Algorithm and 

Extended Co-Citation algorithm) and the LLI algorithm to show that LLI algorithm 

is able to reveal deeper relationships among the pages.  Since there is no numerical 

standard to define the relevance between a page and the given page u, in the 

experiment, we have adapted the relevant page definition in [DH99] to analyse the 

experiment results, i.e., the relevant pages are those that address the same topic as 

the given page u, but are not necessarily semantically identical; the best relevant 

pages are required to be semantically relevant to the given page at the same time. A 

small-scale user experiment was conducted among the colleagues in our research 

group to evaluate the performance of the algorithms. Exactly identifying relevant 

pages is a difficult task, since what is relevant for user A is not always relevant for 

user B. To enable the evaluation to be more objective, a large-scale user experiment 

is needed and it is in our plan for the future.   

Firstly, we compare the DH Algorithm and the Extended Co-Citation algorithm 

based on their experiment results. As in [DH99], we chose top 10 returned relevant 

pages of each algorithm for comparison. They are listed respectively in Table 4.1 

and Table 4.2.  

In Table 4.1, the relevant pages returned by the DH Algorithm fall into the same 

category as the given page (http://www.jaguar.com), i.e. they are all the motor 

company home pages. But by checking these home pages, it is found that apart from 

Ford Company home page, which has only one link to the given page, all other 9 top 
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relevant pages have no links to or semantic relationships with the given page. These 

pages could only be regarded as the relevant ones to the given URL in a broad sense, 

which is not the ideal situation the user wishes in many cases. In contrast to the 

results in Table 4.1, the results returned by the Extended Co-Citation algorithm in 

Table 4.2 have more semantically relevant pages (first 4 pages, 40% of the 10 top 

relevant pages) in term "Jaguar motor" and they address the same topic "motor". 

The results indicate that the Extended Co-Citation algorithm increases the 

effectiveness of relevant page finding. 

# URL (http://) Title Comment 
1 www.honda.com American Honda - Official Home Page Honda Company, no links to Jaguar 
2 www.ford.com Ford Motor Company Home Page Ford Company, one link to Jaguar 
3 www.porsche.com Dr. Ing. h.c. F. Porsche AG – Inter. Porsche car, no links to Jaguar 
4 www.volvocars.com Volvo Global Home Page Volvo Company, no links to Jaguar 
5 www.mercuryvehicles.com Mercury: Live Life in your own lane. Mercury Company, no links to Jaguar 
6 www.landrover.com Welcome to the Land Rover Inter. Land Rover Motor Company, no links to Jaguar
7 www.lexus.com Lexus.com Lexus car, no links to Jaguar  
8 www.mazda.com Welcome to Mazda.com Mazda Motor Company, no links to Jaguar 
9 www.bmw.com BMW BMW Group, no links to Jaguar 
10 www.lincolnvehicles.com Lincoln. American Luxury. Lincoln car, no links to Jaguar 

 

Table 4.1. Top 10 relevant pages returned by the DH Algorithm 
 

# URL (http://) Title Comment 
1 autopedia.com/html/MfgSitesLong.html Worlwide MFG Internet Sites All Jaguar companies in the world 
2 www.autoguide.ca/manufacturers/jaguar.shtml Jaguar @ AutoGuide.net Most Jaguar companies in the world
3 www.autopartsconnect.com/carman/Jaguar.htm Jaguar All Jaguar companies in the world 
4 www.jaguar-s-type.com/global/europe.html Jaguar S-TYPE Europe Home Jaguar Europe companies 
5 www.honda.com American Honda - Official H. Honda Company, no links to Jaguar
6 www.ford.com Ford Motor Company Home P Ford Company, one link to Jaguar 
7 www.porsche.com Dr. Ing. h.c. F. Porsche AG -  Porsche car, no links to Jaguar 
8 www.volvocars.com Volvo Global Home Page Volvo Company, no links to Jaguar
9 www.mercuryvehicles.com Mercury: Live Life in your … Mercury Company, no links Jaguar 
10 www.landrover.com Welcome to the Land Rover I Land Rover Motor , no links Jaguar

 

Table 4.2. Top 10 relevant pages returned by the Extended Co-Citation algorithm 
 

The Companion algorithm [DH99], which is different from co-citation 

algorithms, finds relevant pages by applying the improved HITS algorithm [BH98] 

to the page source. The relevant pages returned by this algorithm are listed in Table 

4.3. Tables 4.4, 4.5 and 4.6 give the relevant pages returned respectively by the LLI 
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algorithm. AltaVista's "Related Pages" service and Google's "Similar Pages" 

service.  

Results in Tables 4.3, 4.5 and 4.6 indicate that the relevant pages found by 

Companion algorithm, AltaVista and Google are similar. They are all relevant to the 

given URL in a broad sense, rather than in a semantic sense. On the contrary, the 

# URL (http://) Title Comment 
1 www.porsche.com Dr. Ing. h.c. F. Porsche AG - International Porsche car, no links to Jaguar 
2 www.honda.com American Honda - Official Home Page Honda Company, no links to Jaguar 
3 www.lexus.com Lexus.com Lexus car, no links to Jaguar  
4 www.bmw.com BMW BMW Group, no links to Jaguar 
5 www.ford.com Ford Motor Company Home Page Ford Company, one link to Jaguar 
6 www.fiat.com HOMEPAGE FIAT Fiat Motor Company, no links to Jaguar 
7 www.4adodge.com 2002 Dodge Homepage Dodge Motor Company, no links to Jaguar 
8 www.mazda.com Welcome to Mazda.com Mazda Motor Company, no links to Jaguar 
9 www.isuzu.com ISUZU.COM Isuzu Motor Company, no links to Jaguar 
10 www.landrover.com Welcome to the Land Rover International Site Land Rover Motor Company, no links to Jaguar 

 

Table 4.3. Top 10 relevant pages returned by the Companion algorithm 

 
# URL (http://) Title Comment 
1 autopedia.com/html/MfgSitesLong.html Worlwide MFG Internet Sites All Jaguar companies in the world 
2 www.autoguide.ca/manufacturers/jaguar.shtml Jaguar @ AutoGuide.net Most Jaguar companies in the 

world 
3 www.autopartsconnect.com/carman/Jaguar.htm Jaguar All Jaguar companies in the world 
4 www.jaguar-s-type.com/global/europe.html Jaguar S-TYPE Europe Home Jaguar Europe companies 
5 www.kamaz.ru/cars/jaguar/index.htm Auto World - Jaguar Jaguar World 
6 www.euregio.net/edu/zawe/kfz/auto3.htm Autohersteller im Internet Many Motor companies including 

Jaguar 
7 www.honda.com American Honda - Official H Honda Company, no link to Jaguar
8 www.porsche.com Dr. Ing. h.c. F. Porsche AG -  Porsche car, no links to Jaguar 
9 www.lexus.com Lexus.com Lexus car, no links to Jaguar  
10 www.bmw.com BMW BMW Group, no links to Jaguar 

 

Table 4.4. Top 10 relevant pages returned by the LLI algorithm 

 
# URL (http://) Title 
1 www.isuzu.com Isuzu   
2 www.honda.com American Honda - Official Home Page 
3 www.jeepunpaved.com 2001 Jeep 
4 www.lamborghini.com Automobili Lamborghini SpA   
5 www.hyundai-motor.com HYUNDAI 
6 www.landrover.com Welcome to the Land Rover International Site 
7 www.ferrari.it Ferrari 
8 www.kia.com Kia 
9 www.lotuscars.com Welcome to Lotus Cars USA   

10 www.mercedes-benz.com Mercedes-Benz   
 

Table 4.5. Top 10 relevant pages returned by the "Related Pages" service of 
AltaVista 
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# URL (http://) Title 
1 www.chevrolet.com 2002 Chevrolet.com 
2 www.volvo.com Welcome 
3 www.infiniti.com www.infiniti.com/ 
4 www.ferrari.it Ferrari 
5 www.porsche.com Dr. Ing. hc F. Porsche AG - International 
6 www.bmw.com BMW 
7 www.mercedes-benz.com Mercedes-Benz 
8 www.saab.com Saab Global, Saab Cars 
9 www.honda.com American Honda - Official Home Page 

10 www.toyota.com 2001 Toyota 
 

Table 4.6. Top 10 relevant pages returned by the "Similar Pages" service of Google 

LLI algorithm (Table 4.4) returns more semantically relevant pages: six of ten (60%) 

top pages are relevant to the given page in a semantic sense. They are all about the 

"Jaguar motor". Meanwhile, the returned pages also contain some relevant pages in 

a broad sense, i.e. home pages of some motor companies. It is also shown in this 

experiment that the LLI algorithm is better than the Extended Co-Citation algorithm 

in semantically relevant page finding.  

Next, we conducted a numerical experiment to see if the LLI algorithm is able to 

reveal deeper relationships among the pages and effectively identify the relevant 

pages, for example, effectively distinguish those pages that have the same (back or 

forward) co-citation degrees with u. Here, we only present the numerical experiment 

results, as well as concepts, for the pages in BS. For the pages in FS, the situation is 

the same. Before analysing the numerical results, we introduce some concepts. The 

symbols used here are in accordance with those in section 4.3.  

As in section 3.3, the linkage matrix between the pages in BS and the pages in Pu 

is nmijaA ×= )( . The first concept introduced here is the back co-citation percentage 

of a page Pi in BS, denoted as bcp(Pi). It is defined as the number of its parent pages 

in Pu divided by the size of Pu , i.e.  
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bcp(Pi) = na
n

j
ij /

1
∑
=

 ,  Pi ∈ BS , i ∈ [1, m]. 

This definition is actually another form of back co-citation degree of page Pi with 

the given page u. The second concept is the back density of a page Pui in Pu, denoted 

as bd(Pui). It is defined as the number of its child pages in BS divided by the size of 

BS, that is  

bd(Pui) = ma
m

k
ki /

1
∑
=

,  Pui ∈ Pu , i ∈ [1, n]. 

The last concept is the drift degree of a page Pi in BS, denoted as dd(Pi). It is defined 

as  

)(/)(1)(
 ofparent a  is 

∑∑
∈

−=
uujiui PP

uj
PP

uii PbdPbdPdd . 

It could be inferred from the above definitions that  

• The back density (bd) of a page in Pu reflects the density of this page. If a page 

in Pu has more child pages in BS, its back density would be higher. Accordingly, 

the pages in Pu with higher back densities are called dense parents and those with 

lower back densities are called sparse parents. In practice, the meaning of 

"higher" or "lower" is relative. 

• The drift degree (dd) of a page in BS reflects the relationship between this page 

and the dense parents in Pu. Indeed, under the circumstance where two pages in 

BS have the same bcp value, if one page has more connections with dense pages 

in Pu, its drift degree (dd) would be lower, otherwise, its drift degree would be 

higher. Lower drift degree means the page is more likely to be related to the 

given page u.  
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The back co-citation percentage (bcp) of a page in BS, and in turn the co-citation 

algorithm, could not reflect above latent relationships revealed by the back density 

and drift degree. On the other hand, however, drift degree (dd) still could not more 

precisely reflect the relationships among the pages. For example, if one page in BS 

has some connections with dense parent pages but has few connections to the sparse 

parent pages, another page has fewer connections to the dense parent pages but has 

many connections to the sparse parent pages, the dd values of these two pages might 

be the same, or nearly the same. In this case, these two pages could not be 

distinguished either only by their drift degrees. In order to see if the LLI algorithm is 

able to reveal more deeper relationships among the pages and more effectively find 

the relevant pages, we randomly selected 10 pages from BS, which are listed in 

Table 4.7, and calculated their bcp, dd values, as well as their similarities sim(Pi,u) 

to the given page u according to the LLI algorithm. The numerical results are 

presented in Table 4.8.  

It is indicated in Table 4.8 that although bcp(P5), bcp(P6) and bcp(P8) are the 

same, their drift degrees are different (dd(P5) = 0.54, dd(P6) = 0.60 and dd(P8) = 

0.62). In this case, the value of page drift degree (dd) is able to divide the page set 

(P4, P5, P6, P7, P8, P9), which has the same bcp value, into three groups (P4, P5), (P6, 

P7) and (P8, P9). Similarly, pages P2 and P3 can be distinguished by their drift 

degrees, but cannot be distinguished by their bcp values. However, the value of page 

drift degree is unable to further distinguish the pages that have the same dd values, 

such as P3, P4 and P5. On the contrary, the numerical results in the last row of this 

table indicate that the LLI algorithm is able to distinguish almost all of these pages,  



 

 

 

99 
 

Page No. URL (http://) 
P1 www.honda.com 
P2 www.porsche.com 
P3 www.ford.com 
P4 www.lexus.com 
P5 www.bmw.com 
P6 www.mercuryvehicles.com 
P7 www.landrover.com 
P8 www.volvocars.com 
P9 www.mazda.com 
P10 www.lincolnvehicles.com 

 

Table 4.7. Randomly selected 10 pages from the page source BS 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 
bcp(Pi) 0.40 0.35 0.35 0.30 0.30 0.30 0.30 0.30 0.30 0.25 
dd(Pi) 0.43 0.48 0.54 0.54 0.54 0.60 0.60 0.62 0.62 0.68 
sim(Pi,u) 0.85 0.79 0.68 0.76 0.75 0.68 0.71 0.69 0.68 0.63 

 

Table 4.8. Numerical results of bcp, dd values and similarities of 10 selected pages  
                   in BS 
 
and suggest that LLI reveals deeper relationships among the pages. This merit is 

intuitively shown in Figure 4.4.  
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Figure 4.4. Comparison of bcp, dd, and sim values for the selected 10 pages 

 
It can be seen from Figure 4.4 that the changes of page similarities sim(Pi,u) are 

coincident with the changes of page drift degrees dd(Pi) in common sense meaning, 

i.e., if a page has lower drift degree, it would have higher similarity to the given 

URL u. It is also clearly indicated in the figure that the sim value change trend of the 

LLI algorithm is the same as the bcp value change trend of the co-citation algorithm, 

but the LLI algorithm gives a more precise trend description. For example, pages P4 
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and P5 could not be distinguished by their bcp values (co-citation algorithm) and dd 

values, but could be distinguished by their sim values (LLI algorithm). These are the 

situations we seek. The above numerical results and analysis indicate that the LLI 

algorithm reveals deeper relationships among the pages and finds relevant pages 

more precisely and effectively.   

 

4.5 Related Work and Discussions 
 
The hyperlink, because it usually conveys semantics between the pages, has 

attracted much research interest. When hyperlink analysis is applied to the relevant 

page finding, the situation is different from most other situations where hyperlink 

analysis is applied. Firstly, finding relevant pages of a given page is different from 

Web search. In traditional Web search, the input to the search process is a set of 

query terms; while in relevant page finding, the input is a given Web page (URL) 

[DH99]. Secondly, the object to which hyperlink analysis is applied for finding 

relevant pages is uncertain; while in most other situations where the hyperlink 

analysis is applied, the objects are certain, for example the object might be a set of 

Web searched pages [Klein99], all the pages in a Web site [Chen97] [MH97], or all 

the pages on the Web [BP98a]. 

As indicated in section 4.1, the success of finding relevant pages of a given page 

depends on two essential aspects: (i) how to effectively construct a page source from 

which the real relevant pages can be found; (ii) how to establish effective algorithms 

to extract real relevant pages from the page source. Different relevant page finding 

algorithms have different page source construction strategies.  In Kleinberg's work 
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[Klein99], which applies the HITS algorithm to find relevant pages, the page source 

is derived from the parents of the given page, ie, the page source consists of parent 

pages and those pages that point to, or are pointed to by, the parent pages. However, 

since the pages pointing to the parents connect to the given page via two-level 

hyperlinks (ie, these pages hyperlink to the given page u via the parents of u) and a 

Web page usually refers to multiple topics, they might have weak semantic 

relationships (relevance) with the given page, and in turn the page source might not 

be rich in related pages. 

Dean and Henzinger [HD99] construct page source in a different way for their 

relevant page finding algorithm Companion. Their pages source consists of parent 

and child pages of the given page u, as well as those pages that are pointed to by the 

parent pages of u and those pages that point to the child pages of u. This page source 

construction is more reasonable, as all the pages in the page source are at the same 

link level with the given page u, and have close relationships with u. The hyperlinks 

between the pages on the same host are omitted in this page source construction, 

which might filter some semantically relevant pages on the same host about certain 

topics. This page source construction does not consider intrinsic page treatment in 

the parent and child page sets of u, which might result in the algorithm being easily 

affected by malicious hyperlinks. 

Mukherjea and Hara [MH97] observed that, for a given page u, its semantic 

details are most likely to be given by its in-view and out-view. The in-view is a set 

of parent pages of u, and out-view is a set of child pages of u. In other words, those 

pages that have relationships with the in-view and out-view of u are most likely to 
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be relevant pages. This is the base on which our page source is constructed. The 

page source in this work is different from that of [DH99]. In our page source 

construction, links between pages on the same host are permitted, but the 

mechanisms of intrinsic and near-duplicate page treatment are established at the 

same time. Therefore, the new page source avoids some semantically relevant pages 

being omitted and prevents the algorithm from being affected by malicious 

hyperlinks. 

Apart from page source construction, effective algorithms for finding out the 

relevant pages are another important aspect in relevant page finding. Kleinberg 

[Klein99] applies his HITS algorithm, and Dean and Henzinger [HD99] apply their 

improved HITS algorithm, to their own page source. Instead of finding relevant 

pages from page similarities, they find authority pages as relevant ones from mutual 

page relationships that are conveyed by hyperlinks. As stated in section 1, if the 

page source is not constructed properly, the selected relevant pages might be 

unsatisfactory because of the topic drift problem. 

For the algorithms that find relevant pages from page similarities, how to 

measure the page similarity is the key for the success of algorithms. Among them, 

the co-citation algorithm has its own advantages because of its intuitiveness and 

simplicity. Chen and Carr [CC99] use co-citation analysis to cluster the authors, as 

well as research fields, in the Hypertext area. Larson [Lars96], Pitkow and Pirolli 

[PP97] have used the co-citation to meaure the page similarity and cluster the Web 

pages. Dean and Henzinger [DH99] also apply co-citation analysis to find relevant 

pages, and declare that their co-citation algorithm is 51% better than the "What's 
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Related" service of Netscape for the 10 highest ranked pages, although Netscape 

uses both content and usage pattern information in addition to connectivity 

information to get the related pages. But the corresponding page source for this co-

citation algorithm is derived only from the parent pages of the given page, and many 

semantically related pages that have relationships with the child pages of the given 

page might be omitted. The experimental results in [DH99] therefore contain few 

semantically relevant pages. The Extended Co-Citation algorithm in this chapter is 

different from that in [DH99] mainly because of the difference in page source 

construction. The co-citation algorithms measure the similarity between the pages 

only based on the number of their common links, no deeper relationships among the 

pages are revealed and exploited.      

For effectively measuring page similarity, much work has been done. For 

example, Chen [Chen97] combines hyperlinks, content similarity and browsing 

patterns as a measure of similarity.  Weiss et al. [WVS+96] use hyperlinks and 

content similarity to measure the page similarity and to cluster Web pages. Similar 

work can also be seen in [MFH94] [MF95] [KKA98]. Theoretically, these page 

similarities could also be used for finding relevant pages. But the LLI algorithm in 

this chapter takes an alternative approach to measure page similarity. Firstly, the LLI 

algorithm only takes the hyperlinks into consideration, which allows for a great deal 

of flexibility since it allows for the addition of hypermedia functionality to pages, 

multimedia or otherwise, without changing the original page's format or embedding 

mark-up information within pages [EHD+01]. Secondly, page similarities in the LLI 

algorithm are measured by the deeper (mathematical) relationships among the pages 
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that are revealed within the whole of the concerned page source by mathematical 

operations, especially the SVD of a matrix, not measured by simply counting the 

number of links. The last difference is that the similarities of the pages in the subsets 

BS and FS of the page source are measured separately, ie these two page subsets are 

treated separately, rather than being considered as united in the Companion 

algorithm of [DH99]. This page source treatment avoids page similarities in one 

subset being influenced by the pages in another subset, and guarantees the 

semantically relevant pages being selected. The experimental results show the merit 

of this page source treatment.     

 

4.6 Conclusions  
 
In this chapter, we propose two algorithms to find relevant pages of a given page: 

the Extended Co-Citation algorithm and the LLI (Latent Linkage Information) 

algorithm. These two algorithms are based on hyperlink analysis among the pages 

and take a new approach to construct the page source. The new page source reduces 

the influence of the pages in the same web site (or mirror site) to a reasonable level 

in page similarity measurement, avoids some useful information being omitted, and 

prevents the results from being distorted by malicious hyperlinks. These two 

algorithms could identify the pages that are relevant to the given page in a broad 

sense, as well as those pages that are semantically relevant to the given page. 

Furthermore, the LLI algorithm reveals deeper (mathematical) relationships among 

the pages and finds out relevant pages more precisely and effectively. Experimental 

results show the advantages of these two algorithms. 
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Appendix 
 

Depiction of LLI (Latent Linkage Information) Algorithm  

LLI (Pu, Cu, BS, FS, ε, δ ) 

     Input: 

Pu: the set of parent pages of given URL u, its size does not exceed the 

restriction B, 

Cu: the set of child pages of u, its size does not exceed the restriction F, 

BS: one part of page source derived from Pu, its size does not exceed the 

restriction B×BF, 

FS: another part of page source derived from Cu, its size does not exceed the 

restriction F×FB, 

ε : threshold for selecting matrix approximation parameters k and l, 

δ : threshold for selecting related pages. 

     Output: 

RP: the set of relevant pages with respect to the given URL u. 

     Begin 

 Get the number of pages in BS, m = size(BS); Get the number of pages in Pu,   

            n = size(Pu); 

Get the number of pages in FS, p = size(FS); Get the number of pages in Cu,   

q = size(Cu); 

 Construct linkage matrices nmA ×  and qpB × ; 

 Compute the SVD of T
nnnmmm VUA ××× Σ= ; Compute the SVD of  
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           T
qqqppp XWB ××× Ω= ; 

 Select parameter k such that εσσσ ≥− + kkk /)( 1 ;  

Select parameter l such that εωωω ≥− + lll /)( 1 ; 

 For i = 1 to m do  

  Computing the vector ),...,,( 2211 kikiii uuuR σσσ=  according to (4.1); 

 For i = 1 to p do  

  Computing the vector ),...,,( 2211 liliii wwwR ωωω=′  according to (4.4); 

 Compute the vector  ),...,,...,,(
11 1

22
1

11 ∑∑ ∑∑
== ==

=′
n

t
ktk

n

t

n

t
itit

n

t
t vvvvu σσσσ   

            according to (4.2); 

 Compute the vector 

              ),...,,...,,(
11 1

22
1

11 ∑∑ ∑∑
== ==

=′′
q

j
ljl

q

j

q

j
ijij

q

j
j xxxxu ωωωω according to (4.5); 

 For i = 1 to m do  

  Computing
22 ||||||||

||][
uR
uRiBSS

i

i

′
′⋅

= according to (4.3); 

 For i = 1 to p do  

  Computing
22 ||||||||

||][
uR
uRiFSS

i

i

′′′
′′⋅′

=  according to (4.6); 

Construct the set BSR = { pi | δ≥][iBSS , pi ∈ BS, i =1, 2, ..., m}; 

Construct the set FSR = { pi | δ≥][iFSS , pi ∈ FS, i =1, 2, ..., p}; 

Return set FSRBSRRP ∪= ; 

     End 
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Chapter 5 
 
Visualization Support for Information 
Retrieval 
 

 
5.1 Introduction 
 
The work in the previous two chapters indicates that the singular value 

decomposition (SVD) of matrix, because of its merit in revealing main correlation 

relationships among the elements, can be successfully applied to a wide range of 

information retrieval and management on the web. It is also indicated that when 

SVD of matrix is used to find more deep relationships among the data, the following 

two requirements need to be met.  

1. A data (information) space where the SVD is applied should be defined. For 

example, the data space for eliminating noise pages and constructing web 

page community is the base set of pages with respect to the query topics. 

2. The correlation pattern between the data should be established within a 

matrix framework. This requirement implies two aspects. The first aspect is 

that what kind of information is used to represent the concerned data. The 

second aspect is how to model the correlation between the data that is 

represented by the selected information. In the context of the web, hyperlink 
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information among pages can be used to represent relationships among pages 

and to model their correlations, like the work in the previous two chapters. 

As long as the above two requirements are met, the SVD of matrix can also be 

successfully applied to conventional textual information retrieval. Actually, the SVD 

based algorithms for web page community construction could be regarded as special 

cases of SVD based information retrieval algorithms. Among the SVD based textual 

information retrieval algorithms, the LSI (Latent Semantic Indexing) method in 

[BDO95] [DDF+90] is a representative. In the LSI, the information used to represent 

data (documents) is terms (keywords). A document is represented as a vector of 

keywords. The document-term relationships within the whole data space (database) 

are expressed as a matrix, i.e. if one document contains a term, the corresponding 

element value in the matrix is 1 (or a weight), otherwise is 0. The correlation 

relationships between documents are analysed through SVD within the document-

term matrix. 

Although mathematical algorithms, such as SVD based algorithms, are effective 

in information retrieval, the correlation relationships (e.g. similarities) revealed by 

mathematical operations are not intuitive to understand. For better applying this kind 

of algorithms in practice, it is necessary to establish an intuitive and feasible 

mechanism such that the results returned by this kind of mathematical algorithms are 

easy to understand. This mechanism is also necessary for traditional information 

retrieval. In traditional information retrieval, a user's query is usually compared with 

documents in a database through database management systems. The information 

that matches the user's query is retrieved and returned to the user. However, in many 
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cases, users may not be able to formulate an exact query, and often give an 

approximation at the beginning and then refine the query according to the initial 

results. Thus the amount of retrieved information might be very large, and may not 

be relevant to the final results. Therefore, new effective information retrieval 

mechanisms are also needed.  

On the other hand, visualization has become increasingly important to data 

management and information retrieval. Using visualization techniques, the retrieved 

information (data) can be mapped onto visualization objects in a simpler format 

(sometimes points), which refer to the corresponding information in the database or 

other data sources. The visualization objects enable users to understand retrieved 

data intuitively. Moreover, these visualization objects capture major information 

about the relationship between the query and the retrieved data, for instance, the 

relativity between the retrieved data and the query can be expressed as a relative 

distance between them. Because of this, visualization objects will lead users to 

choose more appropriate query conditions, search information and narrow the search 

space gradually according to the visualised search information.  

With the guide of visualization objects, users can find what they really require 

and understand the retrieved results intuitively. Finally, users can obtain details of 

the retrieved data using the visualization interface. Since only partial information 

about the retrieved data is needed for retrieval visualization during the retrieval 

procedure, the retrieval efficiency will be increased. Due to its intuitive, interactive 

and efficient advantages, visualization is becoming a very practical method for 
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traditional information retrieval, as well as for web information management and 

retrieval, which attracts more and more research interests recently.  

Over the past few years, a number of models for integrating visualization into 

information retrieval and management systems have been developed, such as the 

work in [HM90], [ISO91], [JS98], [Kauf91], [Keim96], [Rob98] and [Ups89]. 

However, these investigations are mainly based on computer graphic 

implementation. For data visualization processing, the idea originally proposed by 

Haber and McNabb [HM90] has been accepted widely. It is said that there are three 

main transformations to be carried out on the data in order to convert the original 

data into an image object that can be displayed: 

(1) Data Enrichment/Enhancement. This transformation takes the raw data and 

alters it into a format that can act as input for the required visualization 

operations. This might involve interpolation of results to obtain additional 

results, or the filtering of noise from the system. The input of this 

transformation is the raw data, and the output is the derived data. 

(2) Visualization Mapping. Once the data has been translated into a usable format, 

it can be used to construct an imaginary object called an abstract visualization 

object (AVO). The AVO is used to represent the data that has been modelled. 

The input of this transformation is the derived data, and the output is AVO. 

(3) Displaying/Rendering. The final stage in visualization involves displaying, or 

rendering, the object on the screen. This stage will frequently make use of 

standard computer graphics techniques to transform the AVO into a displayable 

image. The input of this transformation is the AVO, and the output is an image. 
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In this chapter, we focus on the visualization mechanism for mathematic 

operation based, especially the SVD-based, textual information retrieval algorithm. 

Since the mechanism is based on SVD and other mathematical operations, the 

corresponding visualization algorithms could also be smoothly applied to SVD 

based web information management and retrieval, such as the work in the previous 

two chapters, to support various web-based applications.  

When applying the above idea to information retrieval visualization at the Data 

Enrichment step, suitable algorithms must be used to retrieve required data or 

information from the database or data sources according to the user's query. This 

retrieved data is called derived data. For textual database retrieval, more and more 

mathematical algorithms and models are being developed currently to reveal the 

semantic relationship among the key words and increase the efficiency and precision 

of information retrieval [BDO95] [DDF+90] [Rob98] [KT99]. Singular value 

decomposition (SVD) based retrieval algorithm is the one among them. Using the 

SVD method in linear algebra, implicit higher-order structure in the association of 

terms and documents can be revealed and intelligent retrieval can be implemented 

[BDO95] [DDF+90] [KT99]. There are also other linear algebra based retrieval 

algorithms, such as those based on eigenvalue and eigenvector of matrix [KT99] 

[KCK00] [BP98a] [Klein99]. However, it does not mean that this derived data can 

be used directly for visualization. This is because this derived data usually only 

reveals the inter-mathematical relationship between the retrieved data and the query. 

There is also a need to convert the derived data, i.e. inter-mathematical relationship, 
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into AVO. After an AVO has been obtained, strategies are needed for displaying it. 

As we can see, the algorithm for data enrichment is the base for visualization.   

In the following section 5.2, we introduce our system prototype through 

visualization examples, interfaces and layouts. In section 5.3, we present SVD-based 

textual information retrieval algorithm and investigate visual support mechanisms 

for this kind of algorithms. Section 5.4 gives technical details of the visualization 

algorithm and implementation. Conclusions are presented in section 5.5.  

 

5.2 Visualization Examples & System Prototype 
 
We have developed a visualization system for supporting the user’s query and 

information retrieval from a database.  The system includes two parts. The first part 

provides a conceptual level interface for formulating query type based on conceptual 

schema, E-R diagram in this example. The second part provides an interface for 

users to refine the query and do further selections at the instance level.  

Figure 5.1 shows an on-line web diagram interface for database information 

visualization. We choose a small database which stores papers and other information 

related to them, such as, journals and authors. The system presents the objects and 

their relations in this small database into an Entity-Relationship model, and then 

visualizes this model using an E-R diagram (see Figure 5.1). 
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Figure 5.1.  Visual selection for constructing a query type 
 

The user is allowed to interact with this E-R diagram by selecting objects to 

construct a query type. Suppose that the user select the entity ‘Paper’ and its 

attributes ‘Keyword’, the system would know that the user would like to do the 

query of using keyword to search papers.  Another interface (see Figure 5.2) is then 

shown to the user. This interface allows the user to choose keywords and some 

interactive operations for refining the query. 

Figure 5.2 shows the frame of the data visualization and the document points 

whose coordinates are calculated directly according to the mathematical equation in 

section 5.3. It can be seen that some displayed document points are overlapped. This 

is because no visualization algorithms are used at this stage. The top text area is used 

to display the user's query or details of the retrieved information. The central area is 

the visualization display area. At the bottom, there are function buttons and choice 

boxes for users to formulate queries. 
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Figure 5.2.  Visual interface of information retrieval system 
 

Figure 5.3 shows the visualized user's query of "application OR introduction" 

and retrieved documents that are visualized as points according to our algorithms. 

Here the user's query is mapped into the original point of the coordinate system, 

which is marked as "Query". The actual match ratio of each retrieved document to 

the query is shown in a pair of parentheses at the upper left corner of the display 

area. The number beside the point is the paper number in database.  

 

 
 

Figure 5.3.  Visualization of the query and retrieved documents 
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When the mouse moves into the display area and close to the retrieved document 

(point), brief information about the title of this paper will appear beside this 

document. At the same time, the colour of this document number and its match ratio 

at the upper left corner of the display area will change accordingly. This mechanism 

gives the user a clue about the retrieved document. Figure 5.4 shows this situation, 

in which the mouse moved to the document 3. 

 
 

Figure 5.4.  Information of the mouse pointed document 
 

In Figure 5.5, the details of document 3, which is one of the closest documents 

related to the user's query, are obtained from the database through JDBC and 

displayed on the top text area of the interface. Details of other query-related 

documents can also be obtained from the database and displayed by clicking the 

corresponding document points with mouse. 
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Figure 5.5.  Details of retrieved document from the database  

Once a document is selected, the keywords of this document and corresponding 

semantic related keywords from the database are fetched by the system, from which 

new queries can be formed automatically and the user can continue his search.  

In the following sections, we introduce more details about our method and 

visualization algorithms used in this system. 

 

5.3 SVD-based Information Retrieval  
 
The first phase of SVD-based information retrieval is to construct a matrix of terms 

(keywords) by documents [BDO95] [DDF+90]. The elements of the term-document 

matrix A are the occurrences of each term (keyword) in a particular document, that is 

nmijaA ×= ][  

where ija denotes the frequency in which term i occurs in document j, m is the 

number of terms and n is the number of documents. Considering the local and global 
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weights to increase or decrease the importance of terms within or among documents, 

ija  can usually be written as [BDO95] 

)(),( iGjiLaij ×= , 

where ),( jiL  is the local weight for term i in document j, )(iG is the global weight 

for term i . 

 
Since the term-document matrix A is a real matrix, there exists a SVD of A 

TVUA Σ=  

where ],...,,[ 21 muuuU =  is an mm ×  orthogonal matrix, ],...,,[ 21 nvvvV =  is an 

nn × orthogonal matrix, and Σ  is defined as in section 2.5. From the SVD of A, a 

proper parameter k (relatively small) can be chosen to construct the matrix Ak as the 

best approximation of the original term-document matrix A in k-space. For example, 

we chose k = 2 for two-dimensional space, and k = 3 for three-dimensional space. 

The choice of k is a non-trivial issue - there is a trade-off between the amount of 

dimension-reduction and the accuracy of the resulting document representation 

[KT99]. This is out of our discussion in this work. More details about this topic can 

be found in [Dum91]. As we know, Ak is the closest matrix to A with rank k. Denote 

knkkkmkk vvvVuuuU ×× == ],...,,[,],...,,[ 2121 , 

).(),,...,,( 21 Arankkdiag kk <=Σ σσσ  

Then  

                            T
kkkk VUA Σ=                                                         (5.1) 

is a nm × matrix. 
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The coordinates of terms and documents in k-space can be obtained from 

equation (5.1).  In fact, the dot product between two row vectors of Ak reflects the 

extent to which two terms have a similar pattern of occurrence across the set of 

documents. The matrix T
kk AA , which is a square symmetric matrix, contains all 

these term-to-term dot products. Since kΣ  is diagonal and kU , kV  are orthogonal, 

the matrix T
kk AA  can be expressed as  

T
kkkk

T
kkk

T
kk UUUUAA )(2 ΣΣ=Σ= , 

which means that the i, j element of  T
kk AA  can be obtained by taking the dot 

product between the i and j rows of kkU Σ . That is to say, if we consider the rows of 

kkU Σ  as coordinates for terms, dot products between these points give the 

comparison between terms. Similarly, we also consider rows of kkV Σ  as coordinates 

for documents. In this way, terms and documents can be represented as points in k-

dimensional space. For example, suppose k = 2, the x-coordinates of m terms can be 

obtained by using the first column of U2 multiplied by the first singular value 1σ , 

the y-coordinates of m terms can be obtained by using the second column of U2 

multiplied by the second singular value 2σ . Similarly, the first column of V2 

multiplied by 1σ  is the x-coordinates of documents, and the second column of V2 

multiplied by 2σ  is the y-coordinates of documents. Thus, the terms and documents 

can be represented in a two-dimensional Cartesian plane.  
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For a user's query q, which is presented as an m-vector of terms (keywords), 

k
T Aq  contains the dot products of query-to-document. In the similar way, the 

coordinates of query q in k-dimensional space are defined as [BDO95] [DDF+90]: 

                             1' −Σ= kk
TUqq .                                                   (5.2) 

Since kΣ  is a diagonal matrix, the effect of 1−Σk on the coordinates of q is just 

deciding if the vector q in k-dimensional space has been stretched or shrunk in 

proportion to the corresponding diagonal elements of 1−Σk .  

Thus, from the equation (5.1), we can compute term-term similarities, document-

document similarities and term-document similarities on certain similarity 

measurement, for example, the cosine measurement.  

In k-dimensional space, 'q  is a k-vector whose elements are the coordinates of a 

query in k-dimensional space. Especially, with k = 2, the user's query can be 

represented as a point in a two-dimensional Cartesian plane. The query vector can 

then be compared to all document vectors using some similarity measurements. The 

commonly used similarity measurement is the cosine between the query vector and 

the document vector [BDO95] [DDF+90]. The documents exceeding the cosine 

threshold are returned to the user. For example, suppose the coordinates of a user's 

query in two-dimensional space are (x, y), the coordinates of one document are 

( dd yx , ), the user's query vector from the original point of the two-dimensional 

Cartesian system to (x, y) is vectorQ and the document vector from the same original 

point to ( dd yx , ) is vectorD. The angle difference between these two vectors is ϑ  as 

shown in Figure 5.6. We select 0.90 as the cosine threshold, that is to say if 
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90.0|)cos(| ≥ϑ , then this document will be returned to the user, otherwise this 

document is not the one the user needs. 

 
 

 
 
 
 
 
 

Figure 5.6.  Example of cosine threshold 
 
In general, for 2>k , let ),...,,( 21 kxxxx = and ),...,,( 21 kyyyy = be two document 

vectors, the cosine similarity between them, ),( yxsim , is defined as  

,
||||||||
||),(

22 yx
yxyxsim ⋅

=  

where i

k

i
i yxyx ∑

=

=⋅
1

, xxx ⋅=2|||| . 

It can be seen from the above discussion that similarity reveals the relationship 

of relative position between two vectors in k dimensional space, and this relationship 

(distance) can be mapped into a two-dimensional space and visualized. So the 

visualization mechanisms for 2=k  and 2>k  are the same. This principle applies 

to term-document similarities, as well as term-term and document-document 

similarities, and, to some extent, intelligent retrieval can be realized. 

In fact, in information retrieval, a query and documents are in the vector form of 

terms in k dimensional space. For a given query, new queries can be constructed 

automatically according to the term-term similarity. Similarly, for a retrieved 

document, more documents can also be retrieved automatically according to the 

o

vectorD

),( dd yx vectorQ
),( yx

x 
ϑ

y
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document-document similarity. On the other hand, the retrieved document is 

expressed in a term vector as well, thus new queries can be constructed from the 

terms in this vector and term-term similarities in the databases. As a consequence, 

from a user's query or initial retrieved documents, consecutive new queries are 

constructed automatically, which are semantic related to the original query, and 

intelligent information retrieval is carried out continuously. During this procedure, 

caching techniques can be used for increasing the retrieval efficiency, which is 

beyond our discussion.     

Apart from traditional information retrieval, this algorithm is also used for 

searching web information resources, such as [KCK00], which is based on term-

term similarity. Experiments show that by use of this SVD based retrieval algorithm, 

information is retrieved based on meaning rather than literal term usage [BDO95] 

[DDF+90]. 

 

5.4 Visualization Algorithms for Information  
        Retrieval 
 
The SVD based algorithm in section 5.3 solves the problem of data enrichment in 

the visualization process. Although all documents and users queries can be 

represented in k-space as vectors by using the SVD based algorithm in section 3, the 

cosine threshold of similarity measurement makes it hard for the user to understand 

the retrieved results and decide which documents are the required ones, especially 

when 3>k . In other words, the direct use of the SVD based algorithm is not 

intuitive. Furthermore, in practice, a user's query usually consists of several sub-
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queries and can be expressed as a set of sub-queries. This set of sub-queries cannot 

be mapped directly into an AVO in the k dimensional space by using above SVD 

algorithm. For these reasons, how to visualise the user's query as just one AVO and 

how to visualise the related retrieved results intuitively are the motivations for 

constructing visualization algorithms. That is to say, the visualization algorithms 

will realise visualization mapping from derived data to AVO. 

Since two-dimensional space is the most commonly used space in visualization, 

for intuitiveness, the approach for constructing visualization algorithms are proposed 

for two-dimensional space or a Cartesian coordinate system (k=2). For simplicity, a 

point in two-dimensional space is chosen to be the abstract visualization object 

(AVO). The cosine similarity of the document to the query is converted to the 

distance of this document to the query in two-dimensional space, not by using the 

cosine threshold directly. As stated in section 5.3, for 2>k , the visualization 

support mechanism is the same and ideas in these algorithms can also be used in the 

same way. 

Accordingly, the visualization algorithms should solve the following problems: 

(i) how to map the user's query into a point in a two-dimensional display area; 

(ii) how to retrieve the documents that meet the retrieval conditions; and 

(iii) how to determine the distance between the retrieved documents and the query. 

For simplicity, the global and local weights of the term are not considered in the 

following algorithms.  
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5.4.1  Visualization Algorithm for SVD-based                     
          Retrieval 
 
Suppose the number of terms is m, the number of documents is n, a user's query 

consists of s sub-queries and can be expressed as the following set 

}1|{ )( siqQ i ≤≤= , 

where )(iq , corresponding to a sub-query, is such an m-vector that each of its 

element is either 1 or 0. 

 
(1) Define function f such that  

1
22

)()()()(
2

)(
1 )(ˆ)ˆ,ˆ( −Σ=== Uqqfqqq

Tiiiii , 

where )(
1ˆ

iq  and )(
2ˆ iq  are x-coordinate and y-coordinate of the sub-query 

)(iq respectively. Denote the set 

}),()ˆ,ˆ(|)ˆ,ˆ{( )()()(
2

)(
1

)(
2

)(
1 QqqfqqqqQP iiiiii ∈== . 

Then for a user's query, we can map the user's query as a point Query(x,y) where 
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which means the user's query Query(x,y) can be displayed properly only if the 

related sub-queries )(iq , si ≤≤1  can be displayed properly. 

 
(2) We denote ,,...,2,1),,( niyx ii = to be the coordinates of all documents obtained 

from equation (5.1) in section 5.3 with k = 2. The cosine threshold for similarity 

measurement is 10 ≤< ε . Define 

)arctan( jjj xy=α , )ˆˆarctan( )(
1

)(
2

)( iii qq=α  where  QPqq ii ∈)ˆ,ˆ( )(
2

)(
1 , 

|| )()( i
j

i
j ααϑ −=  , 

then the retrieved document set corresponding to the sub-query )(iq is  

}cos,,...,2,1|),{( )( εϑ ≥== i
jjji njyxR , si ≤≤1 , 

and the retrieved document set for the user's query is as follows 

U
si

iRR
≤≤

=
1

 . 

Denote set 

}),(,,...,2,1|{ RyxnjjJ jj ∈== . 

 
(3) For Ryx jj ∈),( , the distance of ),( jj yx  to QPqq ii ∈)ˆ,ˆ( )(

2
)(

1  is defined as  

constcd i
jji ×−= )cos( )(ϑ  , Jjsi ∈≤≤ ,1 , 

and the parameters c and const are constants that depend on the actual size of the 

display area to ensure the distances are suitable for display. For instance, we can 

chose c = 1.2, const = 500 and pixel to be the unit of distance as an option. 

Accordingly, the distance from ),( jj yx  to Query(x,y) is defined as  
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jisij dd
≤≤

=
1
min , Jj∈ , 

and the set of distances from the retrieved documents Ryx jj ∈),(  to point 

Query(x,y) is as follows 

}|{ JjdD j ∈= . 

For some more complex queries, the visualization algorithms can also be 

constructed by combining the above algorithms. 

 

5.4.2  Algorithm for Match Ratio 
 
The match ratio of a document to user's query is another aspect to express similarity 

in information retrieval, which shows the similarity numerically. As we defined 

above, the distance from a retrieved document to the user's query is in the form of 

δϑ ×−= )cos(cd , where 1>c  and 0>δ  are parameters decided according to the 

actual display area. Then it is natural that the match ratio is defined as  

δ/dcr −= . 

Since 1cos0 ≤≤< ϑε , 1>c  and 0>δ , thus 

δδ cdc <≤− )1( ,  cdc <≤− δ/)1( , 

1/0 ≤−=< δdcr . 

Then the percentage form of match ratio is defined as  

%100×= rp . 

 

5.4.3  Algorithm for Displaying 
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The last phase of visualization is displaying the AVOs (points). The user's query is 

mapped into the point Query(x,y) and the set of distances from retrieved documents 

to Query(x,y) is obtained from the algorithms above. With the point Query(x,y) and 

distance set D in mind, we can visualise the user's query and retrieved documents. 

The first step of displaying is to display the user's query Query(x,y) at a proper 

position on the display area. As we know, the original point of the coordinate system 

(X) for display area is usually located at the upper left corner of the display area. But 

users are used to the coordinate system ( X ′ ) in which the original point is located at 

the centre of the display area. Suppose the width of the display area is w, the height 

is h, then the coordinates of the original point of X ′  is  

2/wOx = , 2/hOy =  

and the coordinates ( ), yx ′′ of Query(x,y) in X ′  is as follow 

xx xOx δ*+=′ , yy yOy δ*−=′ , 

where yx δδ ,  are parameters that depend on the size of display area. Thus the point 

Query(x,y) in X is mapped into the point Query( yx ′′, ) in X ′ . Especially, if we 

chose 0== yx δδ , then Query(x,y) is mapped into the original point of X ′ . 

The second step is to display the retrieved documents. Since the relationship 

between the ith retrieved document and the Query(x,y) is only expressed as the 

distance Ddi ∈ , there will most likely exist cases where some displayed document 

points have the same distances or are too close to be distinguished on the display 

area. We can use the following strategy to solve this problem. Suppose the size of 
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set D (the number of elements in D) is D.size, P is a set of points that will be 

displayed, the strategy is described in pseudo-programming language as: 

For (int i = 1; sizeDi .≤ ; i++) 
{ 
  boolean condition = false; 
  while (! condition) 
  { 
    double angle= π∗∗2()random ; 

    double )cos(angledxx itmp ∗+′= ; 

    double )sin(angledyy itmp ∗−′= ; 

    define a temporal point ),( tmptmptmp yxP ; 

    if(distance from tmpP  to any δ>∈ Pp ) 

    { 

 add tmpP  to P ; 

 condition =  true ; 
    } 
   } 
} 
display points in P ; 

 
where parameter δ  is the pre-defined criterion. The properly displayed document 

points are connected with actual documents in the database. The detail information 

of documents can be obtained and displayed from the database through certain 

mechanisms, such as JDBC (Java Database Connectivity) in Java. As indicated in 

section 5.3, new queries will be constructed automatically by the system from the 

user's query or retrieved documents, and intelligent information search will be 

carried out continuously until the required information is obtained.    

 

5.5 Conclusions 
 
In this chapter, we examine the data retrieval algorithm based on linear algebra and 

investigate the mechanism for visualization support. The SVD-based data retrieval 

algorithm reveals the higher-order structure of the data in the database and 
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implements intelligent retrieval. Based on this kind of retrieval algorithm and 

visualization mechanism, we propose visualization algorithms and strategies to 

implement the visualization support for information retrieval. The mathematical data 

retrieval algorithm usually reveals the mathematical relationship between the query 

and retrieved results, not visualization relationship between them. The visualization 

algorithms bridge over this gap and can measure the similarity of a retrieved 

document to the user's query numerically. The feasibility of the proposed 

visualization algorithms is demonstrated in the prototype implemented in Java. The 

algorithms could be smoothly applied to web-based applications. 
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Chapter 6 
 
Web Page Similarity Measurement and 
Clustering Improvement 
 

 
6.1 Introduction 
 
Web data is very huge, even if the searched results returned by web search engines 

with respect to the users’ queries. Apart from the web page communities presented 

in Chapters 3 and 4 that can be used to support web data management and 

information retrieval, another effective web page community is the one with cluster 

structures. Clustering techniques have been proven effective in managing data, 

especially a large amount of data, in conventional database systems. The application 

of clustering techniques to web data, such as the work in  [WVS+96] [WLW+01] 

[ZE98] and [PP97], would make it possible to use conventional database 

management techniques to establish index on the web pages, and implement 

efficient information classification, navigation, storage, retrieval and integration. For 

these reasons, the research in web page clustering attracts much research attention.  

The key for implementing effective web page clustering is to find the intrinsic 

relationships, especially the similarities, among the pages. For this purpose, web 

page content, hyperlinks and usage data (server log files) could be utilized. Among 

them, hyperlink analysis has its own advantages as indicated in chapter 2. One 
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example of directly using hyperlink to cluster web pages can be found in [PP97]. Its 

one-level clustering algorithm was based on web page co-citation analysis via 

hyperlinks. No page similarity was defined for this algorithm. Other examples of 

using hyperlink analysis, or combining hyperlink and content analyses, to 

hierarchically cluster web pages can be found in [WVS+96] [WK01] [PP97] 

[Mar97] and [PPR96]. Most of the work only utilized hyperlinks at the first level, 

i.e. the hyperlink analysis only focused on direct links between the pages. 

However, the hyperlinks between web pages usually are transitive. In other 

words, even though there is no direct link between two pages, they may also have 

certain indirect semantic relevance via other pages. Page similarity measurement for 

clustering should take this important property into consideration. The page similarity 

measurement in [WVS+96] incorporated hyperlink transitivity, but it defined the 

similarity directly from hyperlinks with an over-simplified assumption that if there 

is a direct link between two pages, their similarity will be 0.5 (50%). [Mar97] used 

hyperlink transitivity to measure page content similarity between a page and the 

query, in which, however, only out-hyperlinks of pages were considered and no 

page similarity was directly defined from hyperlink analysis. 

On the other hand, the role each page plays in the page similarity measurement is 

different. If a page within a certain web page space is dense (i.e. it has higher in-

degree or out-degree), its opinion has more impact to other pages and it will play 

more important role in page similarity measurement within this page space. The 

authority and hub pages in a web page community [Klein99] are the examples. Up 
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to now, however, there is no such web page similarity measurement that 

incorporates page importance. 

In this chapter, we propose a hyperlink-based approach to measure web page 

similarity. It incorporates hyperlink transitivity and page importance. The page 

similarity is derived from page relevance, rather than direct hyperlinks. This 

similarity more precisely reflects mutual relationships among the web pages and the 

nature of the web. With this new similarity measurement, an effective hierarchical 

web page clustering algorithm is proposed to improve web page clustering.    

The following section 6.2 gives the new web page similarity measurement which 

incorporates hyperlink transitivity and page importance. The hierarchical clustering 

algorithm based on this new similarity is proposed in section 6.3.  Some primary 

evaluations of the proposed algorithm are given in section 6.4. In section 6.5, some 

related work and discussions are presented. Finally, section 6.6 gives the 

conclusions of this work.  

 

6.2 Web Page Similarity Measurement 
 
A web page similarity usually refers to a certain page space. Since we are concerned 

about clustering web-searched results in this work, we focus on a page space that is 

related to the user's query topics. The ideas and analysis techniques in the following 

sections, however, could also be used to other concerned web spaces, such as those 

in [WVS+96] and [PP97]. In this section, we firstly establish a page source (space) 

that is related to the query topics. Within this page source, we incorporate hyperlink 

transitivity and page importance to propose a new page similarity measurement. 
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6.2.1  Page Source Construction 
 
The page source construction is based on the web-searched results. For users, they 

are usually concerned about a part of searched results, say the first r highest-ranked 

pages returned by the search engine. From the hyperlink analysis point of view, the 

pages that link to or are linked to these r highest-ranked pages are also related to the 

query topics to some extent. Therefore, the page source S with respect to user's 

query topics is constructed as follow: 

Step 1: Select r highest-ranked pages from the searched results to form a root 

page set R.  

Step 2: For each page p in R, select up to B pages, which point to p and whose 

domain names are different from that of p, and add them to the back vicinity set 

BV of R. 

Step 3: For each page p in R, select up to F pages, which are pointed to by p and 

whose domain names are different from that of p, and add them to the forward 

vicinity set FV of R. 

Step 4: Page source S is constructed by uniting sets R, BV, FV and adding 

original links between pages in S. 

Figure 6.1 shows the structure of the page source S. 

In the above page source construction algorithm, parameters B and F are used to 

guarantee that the page source S is of a reasonable size. For example, we choose 

value 200 for B and F from our experiment experience. When constructing sets BV 
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and FV, it is required that for 

each page p in R, the domain 

names of its parent pages and 

child pages are different from 

the domain name of the page p. 

This requirement filters those 

parent and child pages coming from the same website where the page p is located. 

The reason, as indicated in [WK01][BH98], is that the links within the same website 

are more likely to reveal the inner structure than to imply a certain semantic 

relationship.  

During the page source construction procedure, it is possible to bring some mirror 

pages into the page source. There are several reasons for not being required to 

remove these mirror pages. Firstly, there is no standard currently to identify whether 

two pages are mirror pages or not just from their linkage analysis, and identifying 

mirror pages will add extra computing cost. Secondly, if two pages are mirror pages, 

they have the same hyperlink structure and are most likely to be clustered into one 

cluster, in which the user or an algorithm can identify them easily. Therefore, 

keeping a proper mirror page redundancy in the page source S is reasonable.   

It is worth indicating that the web pages and their linkage information required 

for page source construction could be obtained in many ways. For example, the 

child pages of a certain page and their links can be directly obtained from that page, 

while the parent pages of that page and their links can be found by the functions 

provided by some web browsers, such as the search function link:URL provided by 

P1 Pr 

A1,1 A1,i A1,B Ar,1 Ar,j Ar,B 

…

… … … … 
BV

… … … … 
D1,m D1,FD1,1 Dr,1 Dr,n Dr,F 

FV

S

Figure 6.1. Structure of the page source S 
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AltaVista and Google. Bharat et al [BBH+98] proposed a specific system to obtain 

linkage information from the Web. Usually, web search engines use crawlers 

(spiders) to obtain the web pages with hyperlink information, and the obtained 

information is stored in a specific database for further use [BP98a].  

 

6.2.2  Page Weight Definition 
 
The role each page plays in similarity measurement is different in a concerned page 

source S. For instance, two kinds of pages need to be noticed. The first one is the 

page whose out-link contribution to S (i.e. the number of pages in S that are pointed 

to by this page) is greater than the average out-link contribution of all the pages in 

the page source S. Another kind is the page whose in-link contribution to S (i.e. the 

number of pages in S that point to this page) is greater than the average in-link 

contribution of all the pages in the page source S. The pages of the first kind are 

called index pages in [BS91] (hub pages in [Klein99]), and those of the second kind 

are called reference pages in [BS91] (authority pages in [Klein99]). These pages are 

most likely to reflect certain topics related to the query within the concerned page 

source. If two pages are linked by or linking to some pages of these kinds, these two 

pages are more likely to be located in the same topic group and have higher 

similarity.  

It also needs to be noticed that index web pages in common sense, such as 

personal bookmark pages and index pages on some special-purpose web sites, might 

not be the index pages in the concerned page source S if their out-link contribution 

to S is below the average out-link contribution in S. For the same reason, some pages 
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with high in-degrees on the web, such as home pages of commonly used search 

engines, might not be the reference pages in the concerned page source S. For 

simplicity, we filter the home pages of commonly used search engines (e.g. Yahoo!, 

AltaVista, Google and Excite) from the concerned page source S, since these pages 

are not related to any specific topics. To measure the importance of each page within 

the concerned page source, we define a weight for each page. 

For each page Pi in the page source S, similar to the HITS algorithm in [Klein99], 

we associate a non-negative in-weight Pi,in and a non-negative out-weight Pi,out with 

it. Due to the hyperlink transitivity in the page source, the in-weight and out-weight 

for the page Pi in S are iteratively calculated as follow [Klein99]: 

∑
→∈

=
ijj PPSP
outjini PP

,
,, ,  

∑
→∈

=
jij PPSP
injouti PP

,
,, . 

In order to guarantee the convergence of the above iterative operations, it is required 

that the in-weight vector and out-weight vector are normalized after each iteration, 

i.e. 

12
, =∑

∈SP
ini

i

P , 12
, =∑

∈SP
outi

i

P . 

We denote the average in-weight of S as µ, and the average out-degree of S as λ. 

That is  

)(/, SsizeP
SP

ini
i

∑
∈

=µ , )(/, SsizeP
SP

outi
i

∑
∈

=λ , 

where size(S) is the number of pages in S. Then the page weight for Pi is defined as  

))/()(),/()max((1 ,, outoutoutiinininii mMPmMPw −−−−+= λµ          (6.1) 
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where Min ,  min , Mout and  mout  are defined as follow: 
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The page weight definition in (6.1) indicates that if a page's in-weight and out-

weight in S are below their corresponding average values µ and λ, its weight will be 

less than 1, which means its influence to the similarity measurement is relatively 

less. For the same reason, if a page's in-weight or out-weight in S is above the 

average value (e.g. an index page or a reference page), its weight will be greater than 

1 and its influence to the similarity measurement is relatively greater. In other 

words, the page weight defined in (6.1) reflects the importance of each page's role in 

the concerned page source. This page importance will be incorporated in the page 

similarity measurement. 

 

6.2.3  Page Correlation Matrix 
 
For each web page, its correlation with other pages, via linkages, is expressed in two 

ways: one is out-links from it, another is in-links to it. In this work, the similarity 

between two pages is measured by their own correlations with other pages in the 

page source S, rather than being derived directly from the links between them. For 

measuring the page correlation, we firstly give the following definitions. 

Definition 1. If page A has a direct link to page B, then the length of path from 

page A to page B is 1, denoted as l(A,B) = 1. If page A has a link to page B via n 

other pages, then l(A,B) = n+1. The distance from page A to page B, denoted as 
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sl(A,B), is the shortest path length from A to B, i.e. sl(A,B) = min(l(A,B)). The length 

of path from a page to itself is zero, i.e. l(A,A) = 0. If there are no links from page A 

to page B (direct or indirect), then l(A,B) = ∞. 

It can be inferred from this definition that l(A,B) = ∞ does not imply l(B,A) = ∞, 

because there might still exist links from page B to page A in this case.  

Definition 2. The correlation weight between two pages i and j (i ≠ j), denoted as 

wi,j, is the maximal weight of their weights, i.e. wi,j = max(wi,wj) where wi and wj are 

the page weights for pages i and j respectively. If i = j, wi,j is defined as 1. 

The following definition defines how much two pages correlate with each other if 

there exists a direct link between them. 

Definition 3. Correlation factor, denoted as F, 0<F<1, is a constant that 

measures the correlation rate between two page with direct link, i.e. if page A has a 

direct link to page B, then the correlation rate from page A to page B is F. 

How to determine the value of this correlation factor F to more precisely reflect 

the correlation relationship between pages is beyond the scope of this work. Further 

research could be done in this area. In this work, similar to the work in [WVS+96], 

the value of F is chosen as 1/2. That means, if page A has a direct link to page B, the 

correlation from page A to page B is 50%. It is argued that not each pair of pages 

that are hyperlinked has 50% semantic relationship with each other. However, in the 

context of the web, the research focuses on finding certain statistical regularities 

from a large number of pages. Therefore, certain imprecise relationship descriptions 

are permitted as in [WVS+96]. For general purpose, we still use F in the following 

algorithm to represent this correlation factor. It can be seen that hyperlinks between 
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pages are used to measure the correlations between pages, rather than to directly 

measure the similarities. 

With the above definitions, a correlation degree between any two pages can be 

defined. This correlation degree depends on the value of correlation factor F, the 

distance between the two pages (the farther the distance, the less the correlation 

degree), and the correlation weights of involved pages along the shortest path. The 

following definition gives this function. 

Definition 4. The correlation degree from page i to page j, denoted as cij, is 

defined as  

),(
,2,11,

jisl
jknkkkiij Fwwwc L= ,              (6.2) 

where F are correlation factor, sl(i,j) is the distance from page i to page j, and wi,k1, 

wk1,k2, …, wkn,j are correlation weights of the pages i, k1, k2 , …, kn, j that form the 

distance sl(i,j), i.e. i → k1→ k2 → …→ kn → j. If i = j, then cij is defined as 1. 

For the concerned page source S, we suppose the size of the root set R is m, the 

size of the vicinity set V = BV ∪ FV is n. Then the correlation degrees of all the 

pages in S can be expressed in a (m+n)×(m+n) matrix C = (cij)(m+n)×(m+n), called 

correlation matrix. This correlation matrix C is a numerical format that converts the 

hyperlinks (direct or indirect) between pages in S into the correlation degrees, 

incorporating the hyperlink transitivity and page importance. 

The key for computing the correlation degree cij in (6.2) is the distance sl(i,j) 

between any two pages i and j in S. This distance can be computed via some 

operations on the matrix elements of a special matrix called primary correlation 

matrix. The primary correlation matrix A = (aij)(m+n)×(m+n) is constructed as follow 
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Based on this primary correlation matrix, the algorithm for computing the distance 

sl(i,j) between any two pages i and j is described as follows:  

Step 1: For each page i ∈ S, choose factor = F and go to step 2; 

Step 2: For each element aij , if aij = factor, then set k = 1 and go to step 3. If 

there is no element aij ( j = 1, …, m+n) such that aij = factor, then go back to step 

1; 

Step 3: If ajk ≠ 0 and ajk ≠ 1, calculate factor*ajk ; 

Step 4: If factor*ajk > aik, then replace aik with factor*ajk, change k = k+1 and go 

back to step 3. Otherwise, change k = k+1 and go back to step 3; 

Step 5: Change factor = factor*F and go to step 2 until there are no changes to 

all element values aij ; 

Step 6: Go back to step 1 until all the pages in S have been considered. 

After element values of matrix A are updated by the above algorithm, the distance 

from page i to page j is 

]log[log),( / Fajisl ij= . 

The example in figure 6.2 gives an intuitive execution demonstration of the above 

algorithm. In this example, five pages (numbered 1 to 5) and their linkages are 

represented as a directed graph. Their primary correlation matrix A is also shown in 

the figure. The dashed arrows in matrix A show the first level operation sequence 

(factor = F) of the above algorithm for page 1. The procedure of other level 
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operations for other pages is similar except for changing the values of variable factor 

according to the above algorithm. The final updated primary correlation matrix and 

the corresponding distance matrix D are presented in the figure. It is clear from these 

results that although there are several paths from page 1 to page 4, the distance from 

page 1 to page 4 is 2, which is consistent with the real situation. The situation is the 

same for page 3 and page 5 in this example. 

This distance computation algorithm could be adapted for computing the 

correlation degrees (6.2). The above algorithm also provides a numerical method to 

find the shortest path between any two nodes in a directed graph. If page correlation 

weights are not considered in computing the correlation degrees cij, the above 

algorithm could be directly used to produce correlation matrix C. 

 

 

 
 
 
 
 
 
 

 
 

 

6.2.4  Page Similarity  
 
In this work, we focus on clustering web-searched pages in the root set R with a new 

page similarity measurement. The new page similarity is measured by the page 
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Figure 6.2. Example of computing distance between pages 
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correlation degrees within the concerned page source. For simplicity and better 

understanding of this new similarity, we divide the correlation matrix C into four 

blocks (sub-matrices) as follow:  

 

 

 

The elements in sub-matrix 1 represent the correlation relationships between the 

pages in R. Similarly, the elements in sub-matrices 2 and 3 represent the correlation 

relationships between the pages in R and V, and sub-matrix 4 gives the correlation 

relationships between the pages in V. It can be seen that the correlation degrees 

related with the pages in R are located in three sub-matrices 1, 2 and 3. Therefore, 

the similarity measurement for the pages in R only refers to the elements in these 

three sub-matrices.  

Note: If the similarity between any two pages in the whole source space S is to be 

measured, the whole correlation matrix C will be used and the similarity definition is 

the same as follows.  

In the correlation matrix C, the row vector that corresponds to each page i in R is 

in the form of 

micccrow nmiiii ,...,2,1     ),,...,,( ,2,1, == + . 

From the construction of matrix C, it is known that rowi represents out-link 

relationship of page i in R with all the pages in S, and element values in this row 

vector indicate the correlation degrees of this page to the linked pages.  Similarly, 

the column vector that is in the form of  

R V
1

3

2

4

R
 
V   (m+n)×(m+n) 

C = (cij)(m+n) × (m+n) =
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miccccol inmiii ,...,2,1    ),,...,,( ,,2,1 == + , 

represents in-link relationship of page i in R with all the pages in S, and its element 

values indicate the correlation degrees from the pages in S to page i.  

Each page i in R, therefore, is represented as two correlation vectors: rowi and 

coli. For any two pages i and j in R, their out-link similarity is defined as 

||||||||
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Similarly, their in-link similarity is defined as 

||||||||

),(
,

ji

jiin
ji colcol

colcol
sim

⋅
= . 

Then the similarity between any two pages i and j in R is defined as 

in
jiij

out
jiij simsimjisim .,),( ⋅+⋅= βα ,                    (6.3) 

where αij and βij are the weights for out-link and in-link similarities respectively.  

The similarity weights αij and βij are determined dynamically as: 

ij

ji
ij MOD

rowrow ||  ||  || ||  +
=α , 

ij

ji
ij MOD

colcol ||  ||  || ||  +
=β , 

where MODij = || rowi || + || rowj || + || coli || + || colj || . As a special case, for any pair 

of pages i and j in R, if their out-link modes ||row|| and in-link modes ||col|| are 

approximately the same, the weights αij and βij could be simply chosen as (αij , βij ) 

= (1/2, 1/2). 
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It is argued that hyperlink transitivity would bring noise factors into the page 

similarity measurement. One source of the noise factors is the noise pages that are 

not query topic related but are densely linked with each other in the page source. 

The noise pages will have unreasonable high page weights and mislead the page 

correlation degrees. These noise pages, however, can be eliminated from the page 

source by many existing algorithms, such as [BH98] [HZ02a] [HZC02] and the 

work in Chapter 3. Therefore, in this work, we can reasonably assume that the pages 

in the page source are query topic related. Another noise factor source is taking 

every path between two pages into consideration in the page correlation degree 

measurement. Under this situation, minor page correlations between two pages 

could be accumulated such that the final correlation degrees are unreasonably 

increased in some cases. In this work, however, the page correlation degree only 

takes the shortest path between two pages into account, so the noise factors are 

omitted. On the other hand, the page correlation degree decreases quickly with the 

increase of the shortest path length (distance). So, the contribution of hyperlink 

transitivity to the page correlation degree is minor if there exists a long distance 

between two pages. This would also eliminate many noise factors in the page 

similarity measurement. 

The above page similarity measurement is derived from the page correlation 

degrees, rather than the direct hyperlinks between the pages. It seems that this idea 

comes from the co-citation analysis. The intension of this new similarity, however, 

is different from that of co-citation analysis based similarities (e.g. [PP97][WK01]). 

In the co-citation analysis, the influence of each page to the similarity measurement 
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is the same, and the similarity between any two pages only depends on the number 

of direct common pages (common parent and child pages). In this new similarity 

measurement (6.3), the influence of each page to the similarity is different, which is 

reflected by the page weight. Furthermore, this new similarity not only depends on 

the number of direct common pages, but also depends on the number of indirect 

common pages and the correlation degrees of the involved pages. Figure 6.3 gives 

an example that shows these intrinsic differences. 

In this example, the values for the weights αij and βij are simply chosen as (αij , 

βij ) = (1/2, 1/2).  The number in a pair of parentheses beside a page number is the 

weight of that page, the number beside a link arrow indicates the correlation degree 

between the two pages if the correlation factor F = 1/2. For the situation (a) in this 

example, if the co-citation analysis is applied, the similarity of pages 1 and 2 is the 

same as that of pages 2 and 3. But, if the similarity measurement (6.3) is applied to 

this situation, we get sim(1,2) = 0.09 and sim(2,3) = 0.17. The similarity sim(2,3) is 

greater than sim(1,2) because the common page 5 of pages 2 and 3 are more 

important than common page 4 of pages 1 and 2. The simple co-citation analysis, 

however, is unable to reflect this difference. 

For the situation (b), the similarity between pages 4 and 5 is zero if the co-citation 

analysis is applied, because they have no direct common (parent) pages. Actually, 

there still exists a relative weak relationship between them via page 1, and their 

similarity should not be zero. By applying (6.3) to this situation, we get sim(4,5) = 

0.02, which reflects the influence of the indirect common pages to the page 



 

 

 

145 
 

similarity measurement. If pages 2 and 3 have higher page weights, sim(4,5) would 

be higher. 

 
 
 
 
 

 
 
 
6.3 Hierarchical Web Page Clustering 
 
With the page similarity measurement (6.3) and the correlation matrix C, a 

hierarchical web page clustering algorithm could be established. This hierarchical 

clustering algorithm consists of two phases. The first one is single layer clustering, 

in which the pages in R are clustered at the same level without hierarchy. The 

second phrase is hierarchical clustering, in which the pages in the clusters produced 

by the first phase are clustered further to form a cluster hierarchical structure. Figure 

6.4 gives this hierarchical clustering diagram. 

 

 

 

 

The details of the hierarchical clustering algorithm are described as follow. 

Phase 1: Single Layer Clustering 

[Input]: A set of web pages R = {p1, p2, …, pm}, clustering threshold T. 

[Output]: A set of clusters CL = {CLi}. 

[Algorithm]: BaseCluster(R, T) 
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Figure 6.3. Example of the similarity 
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Figure 6.4. Hierarchical clustering diagram 
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Step 1. Select the first page p1 as the initial cluster CL1 and the centroid of this 

cluster, i.e. CL1 = {p1} and CE1 = p1. 

Step 2: For each page pi ∈ R, calculate the similarity between pi and the centroid 

of each existing cluster sim(pi, CEj).  

Step 3: If sim(pi, CEk) = )),((max jij
CEpsim > T, then add pi to the cluster CLk and 

recalculate the centroid CEk of this cluster that consists of two vectors 

∑
∈

=
kCLj

j
k

row
k row

CL
CE

||

1 , ∑
∈

=
kCLj

j
k

col
k col

CL
CE

||

1 , 

where |CLk| is the number of pages in CLk.  

Otherwise, pi itself initiates a new cluster and is the centroid of this new cluster. 

Step 4: If there are still pages to be clustered (i.e. pages that have not been 

clustered or a page that itself is a cluster), go back to step 2 until all cluster 

centroids no longer change. 

Step 5: Return clusters CL = {CLi}. 

The above phase 1 of the clustering algorithm produces a set of single layer 

clusters called base clusters. Recursively applying the above algorithm, with 

increasing clustering threshold T, to each base cluster would produce downward 

hierarchical clusters. This procedure is stopped when the number of pages in each 

leaf cluster is below a certain predefined threshold NP. Then the whole hierarchical 

cluster structure is produced. The procedure is described as the phase 2 of the 

clustering algorithm. 

Phase 2: Hierarchical Clustering 
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[Input]: A set of base clusters CL = {CLi}, parameter NP and clustering threshold T 

in phase 1. 

[Output]: Hierarchical clusters HCL = {HCLi}. 

[Algorithm]: HierarchyCluster(CL, NP, T) 

Step 1: Set HCL = CL, and let CL to be the set of clusters at layer 1 (base layer), 

i.e. CL1 = {CLi
1} = {CLi}. Assign l = 1 and T ′= T. 

Step 2: Recursively increase T ′ , l and call algorithm BaseCluster(CLi
l, T ′ ) for 

those clusters CLi
l in CLl that contain more than NP pages. Add the clusters at 

each layer to HCL. 

Step 3: Return the produced set of hierarchical clusters HCL. 

The clustering threshold T in the algorithm is determined by practical 

requirement. It should guarantee that the pages are clustered into a reasonable 

number of clusters. For example, T could be chosen as the average page similarity of 

all the pages in R. The increase rate for the hierarchical clustering threshold T ′  

could be chosen as a certain percentage of the threshold T. 

The parameter NP (e.g. 10) is used to control the number of downward levels of 

the hierarchical cluster structure. If the number of pages in a cluster ≤ NP, this 

cluster should not be divided into some smaller clusters (at a lower level) any more. 

If the hierarchical cluster structure is for web page navigation, the value of NP is 

usually determined by the number of pages in a cluster that users can tolerate for 

navigation. Proper NP value would also be able to reduce the execution cost of the 

algorithm. 
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It can be inferred from the phase 1 of the algorithm that a page in R only belongs 

to a cluster. In practice, a page might belong to multiple clusters. This requirement 

can be easily met by only changing the clustering condition in the step 3 of the phase 

1, i.e. changing the condition " If sim(pi, CEk) = )),((max jij
CEpsim > T " to " If sim(pi, 

CEk) > T ". For computation simplicity, we still assume that a page only belongs to a 

cluster. 

As stated in [WLW+01], for this kind of hierarchical clustering algorithm, it has 

been proved [Wang97] that the algorithm is independent of the order in which the 

pages are presented to the algorithm if the pages are properly normalized. Since the 

page normalization is guaranteed in the similarity measurement (6.3), the above 

hierarchical clustering algorithm is independent of the page order. It is not difficult 

to prove that the complexity of this algorithm is O (M*N*logN), where M is the 

number of generated clusters and N is the number of pages to be clustered. 

 

6.4 Evaluations 
 
Primary clustering experiments were conducted on a real web page source. The page 

source was for the search topic "Jaguar". The search engine we used was Google. 

The number of pages in the root page set was 472, the total number of pages in the 

page source was 3,540, and the number of hyperlinks in the page source was 17,793. 

We named the hierarchical clustering algorithm with static similarity weights, i.e. 

(αij , βij ) = (1/2, 1/2) in (6.3),  as HCA(S), and that with dynamic similarity weights 

as HCA(D). We also implemented the clustering algorithm in [WK01] which was 

purely based on the hyperlink analysis but did not consider the hyperlink transitivity 
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and page importance. It was declared in [WK01] that this algorithm was better than 

the Suffix Tree Clustering (STC) algorithm in [ZE98], which was based on the 

snippets attached with web pages. Since the clustering algorithm in [WK01] was 

non-hierarchical, for comparison, we extended this algorithm as a hierarchical 

algorithm by recursively applying it to each non-hierarchical cluster. Accordingly, 

we called this extended hierarchical algorithm WK01A. All the above algorithms 

were implemented in Java. 

It is a difficult task to measure the effectiveness of a hierarchical clustering 

algorithm. In this work, we adapt the precision concept in information retrieval 

[BR99] and modify it as a notation of clustering accuracy to measure the clustering 

algorithm effectiveness. Given a page source, we denote its real clusters as the set 

{RCi} and its experimental clusters as the set {ECj}. For an experimental cluster 

ECj, its accuracy is defined as 

||

) || (max
)(

j

iji
j EC

RCEC
ECAccuracy

∩
= , 

where | ECj | is the number of pages in cluster ECj. For a single-page cluster, its 

accuracy is defined as 0. 

In our primary evaluation, we manually checked each web page to be clustered 

and gave the (real) clusters according to our judgement. This method might lead to 

bias in the evaluation though we tried our best to objectively classify the web pages, 

but it was reasonable to use it as a relative standard for algorithm comparison at this 

stage. The further user experiment will be conducted in our plan for the future.  
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In the hierarchical cluster structures produced separately by the above HCA(D), 

HCA(S) and WK01A algorithms, three kinds of accuracy comparison were 

conducted. The first one was average base cluster accuracy comparison, the second 

was average leaf cluster accuracy comparison, and the third one was overall average 

cluster accuracy comparison.  The results of these three kinds of comparison with 

different clustering threshold (T) values are shown in figures 6.5, 6.6 and 6.7 

separately. 

Note: Theoretically, with the increase of clustering similarity threshold, the 

clustering accuracy should increase accordingly. In this experiment, when the 

clustering similarity threshold increases, the number of single-page clusters also 

increases. Since the clustering accuracy definition in this work defines the accuracy 

of a single-page cluster as 0, the experimental results here do not follow this 

accuracy change trend.   

It is shown from these results that the algorithm with dynamic similarity weights 

αij , βij , i.e. HCA(D), usually performs better than that with static similarity weights 

HCA(S). In general, the algorithms HCA(D) and HCA(S), which adopt the new page 

similarity, have higher cluster accuracy than the algorithm WK01A, which does not 

consider the hyperlink transitivity and page importance, for all three kinds of 

comparison. The above evaluation results indicate the effectiveness of the new page 

similarity and the corresponding hierarchical clustering algorithm in web page 

clustering improvement.  
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Figure 6.5. The average base cluster accuracy with different clustering thresholds  
                  (T) 
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Figure 6.6. The average leaf cluster accuracy with different clustering thresholds (T) 
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Figure 6.7. The overall average cluster accuracy with different clustering thresholds   
                   (T) 

 
Finally, we give examples of some major clusters produced by the algorithm 

HCA(D) in tables 6.1 and 6.2. The table 6.2 gives examples with a hierarchical 

structure. The clustering results are satisfactory as the pages in the same cluster 

share the same topic. 
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Table 6.1. Examples of some major clusters 
 
 

Topic: Jaguar Car and Club 
www.jaguar.com                 // Jaguar Cars Home Page 
www.classicjaguar.com      // Classic Jaguar 
www.jaguarvehicles.com    // Jaguar Cars Home Page 
www.jagweb.com                // A1 JagWeb - Jaguar… 
www.jag-lovers.org            // Jag-lovers: … 
www.jec.org.uk                // Jaguar Enthusiasts' Club 
www.seattlejagclub.org // Jaguar car club in Seattle 
www.jags.org  // Jaguar Associates Group 

Topic: Jaguar Car Topic: Jaguar Car Club 
www.jaguar.com www.jec.org.uk 
www.classicjaguar.com www.seattlejagclub.org 
www.jaguarvehicles.com www.jags.org 
www.jagweb.com  
www.jag-lovers.org  

 
 

Table 6.2. Examples of one major cluster with hierarchical structure 
 

6.5 Related Work and Discussions 
 
There are many ways to cluster web pages, such as using linkage analysis [CDI98] 

[PP97] [WK01], content analysis [ZE98] [WLW+01] and link-content analysis 

[Mar97] [PPR96] [WVS+96]. We present and discuss some representative work 

here that is based on hyperlink analysis.  

Topic: Jaguar Game 
atarijaguardirectory.com      // Atari Jaguar Directory 
www.atarihq.com/interactive      // Jaguar Interactive II  
www.atari.org        // The Definitive Atari Resource  

Topic: Jaguar Big Cat 
dspace.dial.pipex.com/agarman/jaguar.htm    //Jaguar 
www.animalsoftherainforest.com/jaguar.htm   //Jaguar 
www.bluelion.org/jaguar.htm                  // Jaguar 

Topic: Jaguar Reef Touring 
www.jaguarreef.com            // Jaguar Reef Lodge 
www.divejaguarreef.com   // Dive Jaguar Reef Lodge 
www.belizenet.com/jagreef.html         // Jaguar Reef  



 

 

 

153 
 

The early representative work of hyperlink analysis can be found in [Klein99] 

[BH98] [CDG+98] [DH99] [BP98a] [BP98b]. These works reveal that hyperlinks 

convey semantics among the web pages and can be used in many areas. 

For clustering web pages, Pitkow et al [PP97] proposed two methods that directly 

used hyperlink analysis. The methods were all based on co-citation (via hyperlink) 

analysis, which builds upon the notion that when a page A contains links to pages B 

and C, then B and C are related in a manner (Figure 6.8 (a)). Pages B and C are said 

to be co-cited. When co-citation analysis was applied to the web page clustering in 

[PP97], firstly, pages whose cited frequencies fell above a specific threshold were 

selected. Then co-citation pairs of pages with their frequencies of co-occurrence 

were formed. These co-citation page pairs were considered as the original clusters. 

One way to further cluster these original clusters was iteratively adding pairs of co-

cited pages to the cluster that had at least one page in common with the added pairs. 

The produced clusters were non-hierarchical. Although this method was simple, the 

sizes of clusters were large, useful structures could not be revealed and the co-

occurrence frequencies of co-cited pairs were not sufficiently exploited.  

To solve these problems, Pitkow and Pirolli [PP97] also proposed another 

hierarchical clustering method. The co-occurrence frequencies of co-cited pairs were 

expressed in a co-citation matrix, an Euclidean distance matrix was calculated to 

measure the similarities between pages and then used to hierarchically cluster the 

pages. While this work provided two approaches from co-citation analysis to cluster 

web pages, the co-citation analysis was based on mono-direction linkage. In other 

words, it only considered the relationship between two pages, e.g. pages B and C in 
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figure 6.8(a), that were cited simultaneously by the citing page(s), e.g. page A in 

figure 6.8(a). From the hyperlink analysis point of view, however, if there exist links 

between two pages, there would be a certain semantic relationship between these 

two pages in most cases. Therefore, if pages A and B have links to some common 

pages, such as page C in figure 6.8(b), it could also be inferred that A and B are 

related to some extent even if there are no direct links between A and B. Co-citation 

analysis, as well as the clustering algorithms based on it, should consider the bi-

direction linkage relationships between pages, not just mono-direction ones. 

Meanwhile, the work in [PP97] did not take the hyperlink transitivity into 

consideration. 

 
 
 
 
 
 
 
 The work in [WK01] proposed a clustering algorithm for web-searched pages, 

making use of the bi-direction linkage relationships between pages. Each page to be 

clustered was expressed as two vectors. One represented out-links of the page to 

other pages. Another one represented in-links of the page from other pages. The 

page similarity was measured by the cosine similarity of the vectors, rather than the 

Euclidean distance measurement. The clusters were also non-hierarchical. However, 

this algorithm only considered the linkage relationships between the web-searched 

pages and those pages that have links (linking or being linked) to the searched 

pages. The linkage relationships among the searched pages were omitted. So, if two 

searched pages have no common child and parent pages but have links between 

A

B C

A B

C

( a ) ( b )

Figure 6.8. Co-citation relationship between pages 
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them, there will be no similarity between them. The reason is that the page linkage 

relationships were not considered within the whole page space. This work did not 

consider the hyperlink transitivity either.  

Marchiori [Mar97] was aware of the hyperlink transitivity and made use of this 

property to improve the content-based web search. In his work, the information a 

page A contained with respect to a query consists of two parts: TEXTINFO(A) and 

HYPERINFO(A). The TEXTINFO(A) was the textual information measurement of 

page A with respect to a certain query, while HYPERINFO(A) was a textual 

information measurement  of other pages that were directly or indirectly pointed to 

by the page A. The HYPERINFO(A) is a function of the hyperlink distances from A 

to other pages. The hyperlink in this work was actually used to define weights for 

incorporating other pages' information into the page A. The similarity discussed in 

that work was the content similarity between the page A and the query. No page 

similarity was directly defined from hyperlinks. Although the transitive hyperlink 

analysis was incorporated in the web page content analysis, the hyperlink analysis 

was mono-directed (i.e. only hyperlinks from the page A to other pages were 

considered). The work was not for clustering web pages; the page importance was 

not identified and incorporated in the page content measurement. 

The work in [WVS+96] proposed a clustering algorithm that combined page 

content similarity and hyperlink similarity.  The hyperlink similarity between two 

pages was a linear combination of three components. The first component was 

measured by the hyperlinks between the two pages, the second one was measured by 

the common ancestor hyperlinks of the two pages, and the third component was 
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measured by the common descendant hyperlinks of the two pages. Precisely, the 

first hyperlink similarity component of two pages di and dj with the shortest paths 

between them was defined directly from the hyperlink as  

)()( 2

1

2

1
jiij splspl

spl
ijS += , 

where splij was the shortest path from  di to dj , and splji was the shortest path from dj 

to di . From this definition, it can be inferred that if there exits only one direct link 

from page di to dj, their similarity is 0.5 (50%). Furthermore, for the situation in 

figure 6.9, the similarity between pages di and dj is 1 (100%) according to the above 

similarity definition, which means these two pages can be considered as the same. 

This similarity measurement between pages is over-simplified.  

 
 
 
 

 
The algorithm in [WVS+96] took the hyperlink transitivity into consideration. 

However, it regarded the influence of each page to the similarity measurement as the 

same. The page importance was not considered. 

Different from the previous work, the work in this chapter effectively 

incorporates hyperlink transitivity, page importance and bi-direction hyperlink 

analysis to form a new web page similarity measurement. The effectiveness of the 

corresponding hierarchical clustering algorithm shows the reasonableness and 

effectiveness of this new similarity measurement. 

 

6.6   Conclusions 
 

  di   dj

Figure 6.9. A special situation for similarity measurement 
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This chapter proposes a new web page similarity measurement and a corresponding 

hierarchical clustering algorithm. This new similarity measurement is purely based 

on hyperlinks among the pages in the concerned page source, and effectively 

incorporates hyperlink transitivity, page importance and bi-direction hyperlink 

analysis.  The similarity is measured by the page correlation degrees in the 

concerned page source. The clustering improvement shown in the primary 

evaluations demonstrates the effectiveness and reasonableness of this web page 

similarity, and the effectiveness of the proposed clustering algorithm as well. 
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Chapter 7 
 
Matrix-Based Hierarchical Web Page 
Clustering 
 

 
7.1 Introduction 
 
For web page clustering algorithms, the main previous work, such as [PP97] 

[WVS+96] [ZE98] [WK01] and [WLW+01], either adapted K-mean and 

agglomerative hierarchical clustering algorithms in information retrieval, or used 

page merging methods, or improved the K-mean algorithm. The clustering quality 

and structure of the K-mean algorithm depend on the choice of k values and k initial 

centroids of clusters, while other algorithms depend on (or are sensitive to) the 

predefined similarity or merging thresholds for clustering. If the initial values or 

predefined thresholds are not chosen properly, the final clustering results might be 

unsatisfactory.  

In Chapter 6, a new web page similarity measurement and corresponding 

hierarchical clustering algorithm are proposed. Although this new web page 

similarity measurement incorporates hyperlink transitivity, web page importance 

and more naturally reflects the relationships among web pages, the clustering 

algorithm still falls into above categories. 
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This chapter proposes a matrix-based hierarchical web page clustering approach 

with two algorithms, as the hierarchical clustering produces better clusters [DJ88] 

though the time complexity is a little higher. This approach is still based on the web 

page similarity measurement proposed in Chapter 6, which effectively incorporates 

hyperlink transitivity and page importance. However, the matrix-based hierarchical 

clustering algorithms in this chapter do not require predefined similarity thresholds 

for clustering, and are independent of the order in which the web pages are presented 

to the algorithms. They exploit intrinsic relationships among the web pages to 

cluster pages, and therefore, avoid much influence of human interference in the 

clustering procedure and the clustering results are stable. These algorithms are easy 

to be implemented within a uniform matrix framework for web applications. 

In this chapter, the matrix-based hierarchical clustering algorithms are given in 

section 7.2. Some primary evaluations of the proposed algorithms are presented in 

section 7.3. Finally, some conclusions are given in section 7.4. 

 

7.2 Matrix-Based Clustering Algorithms 
 
In this work, we still focus on the page source constructed in section 6.2.1, and 

adopt the concepts and symbols in Chapter 6. For the concerned page source S, we 

suppose the size of the root set R is m, the size of the vicinity set V = BV ∪ FV is n. 

With the new page similarity measurement (6.3), a new m×m symmetric matrix SM, 

called similarity matrix for R, can be constructed as SM = (smi,j)m×m for all the pages 

in the root set R, where 
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The matrix-based web page clustering is implemented by partitioning the page 

similarity matrix. With the partition of the similarity matrix, the pages are 

accordingly clustered into clusters. To guarantee the effectiveness of matrix-based 

algorithms in page clustering, it is needed to conduct similarity matrix permutation 

before partition. 

 

7.2.1  Similarity Matrix Permutation 
 
The similarity matrix permutation is to put those closely related pages together in 

the similarity matrix SM, such that the page position in the matrix more reasonably 

reflects the relevance between pages within the whole range of concerned pages. For 

measuring how close two pages are related, we define the affinity of two pages i and 

j∈ R as: 

kj
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k
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. 

The corresponding affinity matrix is denoted as AF. Two pages with higher affinity 

would be more related with each other and should have more chance to be put in the 

same cluster. However, since the pages in the matrix have mutual effects, the final 

page positions of the similarity matrix should be determined within the whole range 

of concerned pages in the matrix. For globally optimising the page position, we 

define the global affinity of matrix SM as 

∑ ∑
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m
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where AF(i,0) = AF(i, m+1) = 0. GA(SM) contains all the affinities of pages in R 

with their neighbouring pages. The higher the GA(SM), the more likely the closely 

related pages are put together as neighbouring pages. The purpose of the similarity 

matrix permutation is to get the highest GA(SM), under which the close related 

pages are located closely to each other in the matrix. 

The highest GA(SM) can be obtained by swapping the positions of every pair of 

columns (accordingly rows) in matrix AF. In fact, we denote the permuted affinity 

matrix as PA. Similar to the work in [OV91], the algorithm for generating PA with 

the highest GA(SM) consists of three steps: 

1. Initiation. Place and fix one of the columns of AF arbitrarily into PA. 

2. Iteration. Pick each of the remaining m-i columns (where i is the number of 

columns already placed in PA) and try to place them in the remaining i+1 

positions in the PA. Choose the placement that makes the greatest 

contribution to the global affinity. Continue this step until no more columns 

remain to be placed. 

3. Row ordering. Once the column ordering is determined, the placement of the 

rows should also be changed so that their relative positions match the relative 

positions of the columns. 

The detailed depiction of this algorithm is listed in the appendix of this chapter.  

When the highest GA(SM) is achieved, the page positions in SM are permuted 

according to the actual page positions in the permuted affinity matrix PA. As a 

result, the closely related pages are located closely to each other in the new 
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permuted similarity matrix. For simplicity, hereafter, we still denote this permuted 

similarity matrix as SM.  

Figure 7.1 gives an example of the similarity matrix permutation. There are 9 

pages (marked P1, P2, … , P9) in this example. The original and permuted similarity 

matrices are shown in figure 7.1(a) and (b) separately. It can be seen that the closely 

related pages are located closely to each other in the permuted similarity matrix (b) 

with the highest global affinity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
7.2.2  Clustering Algorithm from Matrix Partition 
 
The matrix-based page clustering is implemented by decomposing the permuted 

matrix SM into four sub-matrices along its main diagonal, i.e.  
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Figure 7.1. (a) A similarity matrix.  (b) The permuted matrix of (a) 
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Since the rows (or columns) of the permuted similarity matrix SM correspond to the 

pages to be clustered, the pages corresponding to the sub-matrices SM1,1 and SM2,2 

form two clusters, while the elements of sub-matrix SM1,2  (or SM2,1 , since SMT
2,1 = 

SM1,2 ) represent similarities between the pages that separately belong to these two 

clusters.  

It is clear that the partition of matrix SM is equivalent to finding a dividing point 

D along the main diagonal of SM. To find this dividing point D, we define a 

measurement for the sub-matrix SMp,q (1≤ p, q ≤ 2) as 

∑ ∑−−+

+−=

−−+

+−=
=

)1(*)(

1*)1(

)1(*)(

1*)1( ,. )(
pdmd

dpi

qdmd

dqj jiqp smSMM ,  1≤ p, q ≤ 2, 

where d stands for the row (and column) number of D. The dividing point D is 

selected such that the following function is maximized  

FD = M(SM1,1)* M(SM2,2) - M(SM1,2)* M(SM2,1).              (7.2) 

So, the determination of the dividing point D makes the pages with high affinity to 

be located in the same cluster (sub-matrix), and the similarity between the clusters to 

be low. Once the dividing point D is determined, two clusters SM1,1 and SM2,2 are 

settled down. For instance, the pages in the example of figure 7.1 are clustered into 

two clusters: SM1,1 = {P1, P5, P7, P2}, SM2,2 = {P4, P9, P3, P8, P6}, while the row (an 

column) number of D is 4.  

This matrix partition could be recursively applied to the matrices SM1,1 and SM2,2 

until the number of pages in every new produced cluster is less than or equal to a 

preferred number pn (e.g. 20). All clusters produced during this procedure 

  m×m 
SM = (smi,j)m×m =

SM1,1 SM1,2 

SM2,1 SM2,2 
D
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hierarchically cluster the web pages. Figure 7.2 shows this clustering diagram. The 

clustering procedure is depicted as the following Algorithm1, Clustering1, where | 

SM | stands for the number of rows (columns) of the square matrix SM.  

[Algorithm1] Clustering1 (SM, pn)  

[Input] SM: similarity matrix;  pn:  preferred page number in each cluster; 

[Output] CL = {CLi}: a set of hierarchical clusters; 

Begin 

        Set CL = ∅; Permute SM such that (7.1) is maximized; 

        Decompose SM such that (7.2) is maximized; 

        If | SM1,1 | ≤ pn, then do 

         converting SM1,1  into the next CLi;     CL = CL ∪ {CLi }; 

        else do 

converting SM1,1  into the next CLi;     CL = CL ∪ { CLi }; 

   Clustering1 (SM1,1 , pn); 

        If | SM2,2 | ≤ pn, then do 

         converting SM2,2  into the next CLi;     CL = CL ∪ {CLi }; 

        else do 

         converting SM2,2  into the next CLi;     CL = CL ∪ { CLi }; 

   Clustering1 (SM2,2 , pn); 

    Return CL; 

End 
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7.2.3  Cluster-Overlapping Algorithm 
 
For the above algorithm Clustering1, there exists no overlapping among the clusters 

that are produced at the same level. Each page belongs to only one of the clusters at 

the same level. In practice, however, it is reasonable that a page might belong to 

several same level clusters. On the other hand, the non-zero element values in SM1,2 

or SM2,1 represent the similarity between two pages, named cross-related pages, that 

belong to two different clusters. If a cross-related page in one cluster has a higher 

similarity with another cluster, it is possible for this page to be added to another 

cluster (sub-matrix) to form a new cluster in case it will be missed out. For these 

reasons, the hierarchical clustering algorithm Clustering 1 could be improved such 

that the cluster overlapping among the same level clusters is permitted.  

To determine whether a cross-related page in one cluster could be added to 

another cluster, we define a centroid of the cluster SMp,p (1≤ p ≤ 2) as CE(SMp,p) = 

Similarity Matrix 

m×m
Page Source 

Figure 7.2. Matrix-based hierarchical clustering diagram 

SM 

CL1   CL2

CL3   CL4

  CL7 CL8  CL9  CL10

 CL5  CL6

  CL11    CL12 

  CL1 

  CL2 

Matrix partition

Hierarchical Clusters
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{CE row(SMp,p), CE col(SMp,p)}, which consists of two vectors (row and column 

vectors) that are constructed from the correlation matrix C as 

∑
∈

=
ppSMj

j
pp

pp
row row

SM
SMCE

,
||

1
)(

,
, , ∑

∈

=
ppSMj

j
pp
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col col

SM
SMCE

,
||

1
)(

,
, .    (7.3) 

The centroid of a cluster is a logical page representing this cluster. For a pair of 

cross-related pages p∈ SM1,1 and q∈ SM2,2, if sim(p, CE(SM2,2 )) ≥ t , then page p 

could be added to SM2,2 to form a new cluster (sub-matrix) SM'2,2 with the 

dimension being increased by 1, where t is a threshold defined as the average non-

zero similarities in SM1,2 . The page q could be treated in the similar way. The 

following Algorithm2 Extending depicts this cross-related page treatment.   

[Algorithm2] Extending (SM) 

[Input] SM: similarity matrix with sub-matrices SM1,1 , SM2,2  , SM1,2 and SM2,1 ; 

[Output] SM'1,1 , SM'2,2 : new sub-matrices (clusters) with some added cross-

related pages; 

Begin 

 Compute the centroids CE(SM1,1) and CE(SM2,2 ) according to (7.3);   

 Compute the threshold t, which is the average non-zero similarities in SM1,2;  

 Set N1 = [ | SM1,1 | * 0.15 ];     N2 = [ | SM2,2 | * 0.15 ];    N = min(N1, N2); 

 Construct page set P = {p | at least one smp, j ≠ 0, 1≤ p ≤ d, d+1≤ j ≤ m}; 

 Construct page set Q = {q | at least one smi,q ≠ 0, 1≤ i ≤ d, d+1≤ q ≤ m};  

 Compute P_SM22 = {sim(p, CE(SM2,2 ) | p ∈ P, sim(p, CE(SM2,2 ) ≥ t}; 

 Compute Q_SM11 = {sim(q, CE(SM1,1 ) | q ∈ Q, sim(q, CE(SM1,1 ) ≥ t}; 

  Add up to N pages in SM2,2 that correspond to the N highest values in  
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Q_SM11 into SM1,1 to form a new sub-matrix SM'1,1 ; 

 Add up to N pages in SM1,1 that correspond to the N highest values in  

P_SM22 into SM2,2 to form a new sub-matrix SM'2,2 ; 

 Return SM'1,1 and SM'2,2 ; 

End 

The parameter d is the row (or column) number of the dividing point D in SM. 

The parameter N in this algorithm is used to restrict the number of pages to be added 

to SM1,1 and SM2,2 , which guarantees the recursive execution of the matrix partition. 

This parameter, on the other hand, also guarantees that the added cross-related pages 

could not change (or dominate) the main property of the original clusters, i.e. the 

most number of cross-related pages added to a cluster is less than or equal to 15% of 

the original page number in this cluster.  This percentage could be adjusted 

according to the practical requirements. 

When n pages that belong to cluster SM2,2 are added into cluster SM1,1, the 

corresponding new sub-matrix SM'1,1 is formed by adding n columns of SM1,2 and n 

rows of SM2,1 into the original SM1,1 with the dimension being increased by n. These 

added columns and rows correspond to these n added pages. The main diagonal 

elements of the newly produced n×n lower-right sub-matrix of SM'1,1 are set to 1, 

and other elements in this sub-matrix are set to 0. The construction of SM'1,1 is 

intuitively shown in figure 7.3. For the construction of SM'2,2 , the procedure is the 

same. 
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Based on the above cluster overlapping treatment algorithm Extending, the 

matrix-based hierarchical clustering algorithm with cluster overlapping is depicted 

as the following Algorithm3 Clustering2.  

[Algorithm3] Clustering2 (SM, pn)  

[Input] SM: similarity matrix;    pn:  preferred page number in each cluster; 

[Output] CL = {CLi}: a set of hierarchical clusters; 

Begin 

        Set CL = ∅; Permute SM such that (7.1) is maximized; 

        Decompose SM such that (7.2) is maximized; 

 {SM'1,1 , SM'2,2 } = Extending (SM); 

        If | SM'1,1 | ≤ pn, then do 

         converting SM'1,1  into the next CLi;      CL = CL ∪ {CLi }; 

        else do 

  converting SM'1,1  into the next CLi;      CL = CL ∪ { CLi }; 

   Clustering2 (SM'1,1 , pn); 

          *  *  *  *  …  * …

          *  *  *  *  …  * …

          …   …   …   …  …

          *  *  *  *  …  * …

*  * ……… * 
*  * ……… * 
*  * ……… * 
*  * ……… * … … … …… 

*  * ……… * … … … …… 

q1 q2 qn

  q1 

  q2 

  qn 

SM1,1 

SM2,2 

          *  *  …  *  
          *  *  …  *  
          …………. 
          *  *  …  *  

*  * ……… *  1 
*  * ……… *       1 … … … …… 

* * ……… * 1

q1 q2 qn

  q1 
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  qn 

SM1,1 

0 
0

SM SM'1,1 

Figure 7.3. Construction of new sub-matrix SM'1,1 
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        If | SM'2,2 | ≤ pn, then do 

         converting SM'2,2  into the next CLi;      CL = CL ∪ {CLi }; 

        else do 

         converting SM'2,2  into the next CLi;      CL = CL ∪ { CLi }; 

   Clustering2 (SM'2,2 , pn); 

        Return CL; 

End 

This clustering algorithm enables some pages in R to be clustered into several 

same level clusters, which is reasonable in practice and enables users to find some 

pages from different paths in the hierarchical cluster structure. It is not difficult to 

prove that the complexity of the above clustering algorithms is O(m2), where m is 

the number of pages to be clustered.    

 

7.3 Evaluations 
 
We chose "Jaguar" as the search topic for the primary evaluations. The search 

engine used for getting web pages was Google. The number of source pages was 

3,540 and the number of hyperlinks was 17,793. The number of pages to be 

clustered was 472. In order to compare our algorithms with other ones, we also 

implemented the K-mean style clustering algorithm in [WK01] which was purely 

based on the hyperlink analysis but did not consider the hyperlink transitivity and 

page importance. It was declared in [WK01] that this algorithm was better than the 

Suffix Tree Clustering (STC) algorithm in [ZE98], which was based on the snippets 

attached with web pages. Since the clustering algorithm in [WK01] was non-
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hierarchical, for comparison, we extended this algorithm to be a hierarchical 

algorithm by recursively applying it to each non-hierarchical cluster as we did in our 

algorithms. Accordingly, we called this extended hierarchical algorithm WK01A. All 

the clustering algorithms used in the evaluations are listed in Table 7.1. They were 

implemented in Java. 

 

Algorithm Meaning 
CA2(D) The algorithm Clustering2 with dynamic similarity weights (αij , βij ) in (6.3). 

CA2(S) The algorithm Clustering2 with static similarity weights (αij , βij ) = (1/2, 1/2) in 
(6.3). 

CA1(D) The algorithm Clustering1 with dynamic similarity weights (αij , βij ) in (6.3). 

CA1(S) The algorithm Clustering1 with static similarity weights (αij , βij ) = (1/2, 1/2) in 
(6.3). 

PCA2(D) The algorithm Clustering2 with dynamic similarity weights (αij , βij ) in (6.3), 
without considering hyperlink transitivity and page importance. 

PCA2(S) The algorithm Clustering2 with static similarity weights (αij , βij ) = (1/2, 1/2) in 
(6.3), without considering hyperlink transitivity and page importance. 

PCA1(D) The algorithm Clustering1 with dynamic similarity weights (αij , βij ) in (6.3), 
without considering hyperlink transitivity and page importance. 

PCA1(S) The algorithm Clustering1 with static similarity weights (αij , βij ) = (1/2, 1/2) in 
(6.3), without considering hyperlink transitivity and page importance. 

WK01A The extended hierarchical clustering algorithm of [WK01]. 
 

Table 7.1. The algorithms used for evaluations 
 

The clustering accuracy definition that measures effectiveness of hierarchical 

clustering algorithms is the same as that in 6.4. We firstly evaluated the algorithms 

proposed in this work. The average accuracies of the leaf clusters in the hierarchical 

structures produced by these algorithms are shown in figure 7.4. It is indicated that 

the algorithms incorporating hyperlink transitivity and page importance (CA2(D), 

CA2(S), CA1(D) and CA1(S)) have higher clustering accuracy than those algorithms 

not incorporating hyperlink transitivity and page importance (PCA2(D), PCA2(S), 

PCA1(D) and PCA1(S)). It is also shown that the algorithms considering cluster-

overlapping perform better than those without considering cluster-overlapping, such 
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as CA2(D) and CA1(D), PCA2(D) and PCA1(D). For the same kind of algorithms, 

the algorithm with dynamic similarity weights produces better results, such as the 

algorithms CA1(D) and CA1(S).   
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Figure 7.4. The average leaf cluster accuracies of the eight clustering algorithms 

 
The comparison results of algorithms CA2(D), CA1(D) and WK01A on the 

average leaf cluster accuracy are shown in figure 7.5.  For the WK01A, we chose the 

predefined clustering similarity thresholds from 0.05 to 0.30 with the step of 0.05, 

and the corresponding algorithms were marked as W0.05, …, W0.30. The merging 

threshold was 0.75. The average leaf cluster accuracy for all these thresholds was 

marked WK01A in the figure. These results show that the algorithms (e.g. CA2(D), 

CA1(D)) considering hyperlink transitivity and page importance (whether 

considering cluster-overlapping or not) produce better clusters than the algorithm 

(e.g. WK01A ) without considering hyperlink transitivity and page importance.  

This property is also demonstrated in figure 7.6, where the comparison results 

among the average leaf cluster accuracies of the CA2(D) and CA1(D) and the 

average base cluster accuracies of the WK01A with different clustering thresholds 

are presented. The base clusters of the WK01A are the first level clusters produced 

by the WK01A. Although some base cluster accuracies of WK01A are satisfactory, 
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for example those for W0.05 and W0.10, the average base cluster accuracy for all 

the thresholds, marked WK01A, is only 0.56, which is lower than the average leaf 

cluster accuracies of CA2(D) and CA1(D).   
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Figure 7.5. The comparison of CA2(D), CA1(D) and WK01A on the average leaf  

                      cluster accuracy 
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Figure 7.6. The comparison among the leaf cluster accuracies of CA2(D), CA1(D)  

                     and the base cluster accuracies of WK01A 
 

For the matrix-based clustering algorithms PCA2(D) and PCA1(D) that do not 

incorporate hyperlink transitivity and page importance, their leaf cluster accuracy 

comparisons with the leaf cluster accuracy and base cluster accuracy of the 

algorithm WK01A are presented in figure 7.7 and 7.8 separately. Although in figure 

7.8, the accuracies of W0.05 and W0.10 are higher than those of the PCA2(D) and 

PCA1(D), the average base cluster accuracy of the WK01A is still lower than the 

average leaf cluster accuracies of the PCA2(D) and PCA1(D). These comparison 

results indicate that even if the hyperlink transitivity and page importance are not 
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incorporated, the matrix-based clustering algorithms produce better clusters than the 

K-mean style clustering algorithm WK01A. 
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Figure 7.7. The comparison of PCA2(D), PCA1(D) and WK01A on the average leaf  

                    cluster accuracy 
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Figure 7.8. The comparison among the leaf cluster accuracies of PCA2(D), PCA1(D)  
                   and the base cluster accuracies of WK01A 

 
The above evaluations demonstrate that the matrix-based clustering algorithms, 

incorporating hyperlink transitivity and page importance in their similarity 

measurements, effectively improve the clustering results. Especially, when the 

cluster overlapping is taken into account in the algorithms, better clustering results 

are produced. Different from the K-mean style algorithm, such as WK01A, that is 

sensitive to the choice of predefined clustering similarity threshold, the matrix-based 

algorithms are independent of any predefined similarity thresholds.   
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Finally, we give concrete examples of some major clusters produced by the 

CA2(D) in Table 7.2. The results are satisfactory as the main web pages sharing the 

same topic are really clustered into one cluster.  

Topic: Jaguar Car Topic: Jaguar Car Club 
www.jaguar.com   www.jec.org.uk 
www.classicjaguar.com  www.seattlejagclub.org 
www.jagweb.com  www.jag-lovers.org 

Topic: Jaguar Big Cat Topic: Jaguar Reef Touring 
dspace.dial.pipex.com/agarman/jaguar.htm www.jaguarreef.com 
www.animalsoftherainforest.com/jaguar.htm www.divejaguarreef.com 
www.bluelion.org/jaguar.htm  www.belizenet.com/jagreef.html 

 

Table 7.2. Examples of some major clusters 
 

7.4 Conclusions 
 
In this chapter, a matrix-based hierarchical web page clustering approach with two 

algorithms are proposed based on the hyperlink-related page similarity 

measurement. Two situations, cluster-overlapping and non-cluster-overlapping, in 

the clustering procedure are considered in these two algorithms respectively. The 

proposed algorithms do not require predefined similarity thresholds for clustering, 

are independent of the order in which the pages are presented, and produce stable 

clustering results. The algorithms exploit intrinsic relationships among web pages 

within a uniform matrix framework, avoid much influence of human interference in 

the clustering procedure, and are easy to be implemented for applications. The 

primary evaluations on the real page source (set) demonstrate the effectiveness of 

the matrix-based hierarchical clustering algorithms in web page clustering 

improvement, as well as the effectiveness of the new page similarity measurement in 

Chapter 6. When the cluster overlapping is considered and the dynamic similarity 

weights are used in the algorithms, the clustering results could be better improved. 
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Appendix 
 
The algorithm for generating permuted affinity matrix with the highest global 

affinity 

Input: AF: affinity matrix (m×m matrix) 

Output: PA: permuted affinity matrix 

Begin 

 PA(•, 1) ← AF(•, 1);  PA(•, 2) ← AF(•, 2); 

 index ← 3; 

 While index ≤ m do 

 Begin  

  For i from 1 to index-1 by 1 do 

   calculate cont(Ai-1, Aindex, Ai); 

  End-for 

  calculate cont(Aindex-1, Aindex, Aindex+1) 

  loc ← placement given by maximum cont value 

  For j from index to loc by –1 do 

   PA(•, j) ← PA(•, j-1);  

  End-for 

  PA(•, loc) ← AF(•, index); 

  index ← index+1; 

 End-while 
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 order the rows according to the relative ordering of columns; 

End 

Here,  

cont(Ai, Ak, Aj) = 2bond(Ai, Ak) + 2bond(Ak, Aj) – 2bond(Ai, Aj), 

bond(Ax, Ay) = ∑
=

m

z

yzAFxzAF
1

),(),( . 

 



 

 177

 
 
Chapter 8 
 
Object Representation Model for XML 
Data 
 

 
8.1 Introduction 
 
XML (eXtensible Markup Language) [XML98] has been recommended by W3C 

(World Wide Web Consortium) as a new standard document markup language for 

representing and exchanging data on the Internet. Compared with the main 

traditional markup language HTML, which defines a fixed set of tags and deals 

primarily with the presentation aspects of documents on the Internet, XML allows 

the definition of semantically meaningful tags for information exchange. Therefore, 

XML assigns semantic and structural meanings to the data on the Internet. This 

makes it possible for web applications and web data management systems to extract 

semantic information from XML data, and implement effective and efficient web 

data manipulation, management and retrieval on the Internet. Furthermore, XML can 

also be used to define data transfer format, data manipulation algorithm or represent 

semi-structured data. For example, in [Bier00], a set of meaningful XML tags are 

defined in a DTD (Document Type Definition) file, then objects are represented as 

XML documents that are used as interchange formats. Due to its inherent flexibility, 

XML has attracted much research attention recently. 
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In general, XML data is an instance of semi-structured data, which has no rigid 

schema. The structure, as well as the contents, of the XML data evolves frequently 

and un-predictively. Therefore, suitable data models for XML data are necessary as 

the bases for effectively extracting semantics and efficiently processing XML data, 

such as constructing communities for XML data. From the point of view of 

information management, there is much work trying to model XML data into 

conventional data models, such as relational and object-relational models, for 

example the work in [BBB00], [LRS+00], [SGN00], [SRL00] and [YR00]. 

However, from the point of view of data usage and web application development for 

XML data, object-oriented data model is more suitable. The use of object model is 

driven by a number of factors [Man98], including: 

• The desire to build software from reusable components; 

• The desire for software to more directly and completely reflect enterprise 

concepts, rather than information technology concepts; 

• The need to support enterprise processes that involve legacy information 

systems; 

• The tendency for major software vendors to incorporate object concepts and 

facilities in key software products. 

On the other hand, for information management, there exist mature object-oriented 

technologies. 

Many contributions have been made to the object-oriented model for XML data. 

For example, the representative work can be seen in [GMW99] and [DOM98]. In 

[GMW99], the OEM (Object Exchange Model) [PGW95] for semi-structured data is 
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extended to XML data. XML data in this model is described intuitively as a labelled, 

directed graph. The nodes in the graph represent the data elements and the edges 

represent the element-subelement relationship. However, this data model is a 

lightweight object model and it does not require the definition of classes or types, it 

does not support encapsulation and object behavior [Man98]. W3C's Document 

Object Model (DOM) [DOM98] provides a mechanism for scripts or programs to 

access and manipulate parsed XML content as a collection of objects. DOM 

represents a document as a hierarchy of objects, called nodes, which are derived 

from an XML document source. Based on these objects, DOM defines an object-

oriented API for processing the document. But there are still limitations for this 

model. It defines its API at a general object level, not at application object level. For 

example, for an XML document containing <AUTHOR> and <EDITOR> elements, 

DOM provides objects of types node, element and so on, rather than objects of 

types author and editor. Furthermore, there is no application-specific object 

behaviour defined in this model and it is suitable for applications that operate on the 

document as a whole [Man98]. Particularly, DOM is best suited for the following 

situations [MTU99]: 

• When structurally modifying an XML document; 

• When sharing the document in memory with other applications. 

However, for web applications and information management, the requirements are 

more, such as the need of treating, storing and exchanging the elements in the 

documents as relative independent objects. Therefore, these models have limitations 

when they are applied to web applications. There are also other attempts to model 
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XML document in application-specific object model, such as the work in [LRK00] 

[CAC+94]. But these models do not define object behaviour either and application 

of these models requires users have the knowledge of the object structure. The 

manipulation of the object relies on the external application programs and the 

dynamical updating of the object status is complex and difficult. 

In this chapter, we propose an object representation model (ORM) for XML data 

and establish a set of transformation rules and steps for transforming XML data into 

ORM. XML data referred to in this chapter means DTD files and XML documents 

(with or without DTD). Our model is pure object-oriented. It captures features of 

XML data and defines object behaviours. Therefore, application algorithms can be 

easily implemented on this model, and semantic meanings of the tags (elements) in 

XML data can be used for many applications, such as community construction for 

XML data. We choose Java object for our model, because Java objects are suitable 

for web applications and are supported by the new object-oriented database 

management standard [Cat+00] as stated in [Bier00]. This Java-styled object model 

can be easily converted into other style object models for other object-oriented 

application systems. Meanwhile, we define DTD-Tree to represent DTD and 

describe the procedure to use DTD transformation rules. The DTD-Tree can also be 

used as a logical interface for DTD processing. For XML documents, we use DOM 

as an interface to process them and describe the transformation procedure. 

In this chapter, section 8.2 provides some XML background and presents our 

object representation model for XML data. In section 8.3, transformation rules for 

transforming DTD into ORM are established. DTD-Tree is defined in section 8.4. It 
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is used to represent the structure of DTD and describe the procedure of using 

transformation rules for DTD. In section 8.5, a set of transformation rules are 

proposed for building objects from XML documents with accompanying DTD. For 

XML documents without DTD, transformation rules and procedures for building 

objects of ORM from XML documents are proposed in section 8.6 and 8.7 

separately.  In section 8.8, we discuss some related work. Finally, we give 

conclusions for this work in section 8.9. 

 

8.2 XML & Object Representation Model (ORM) 
 
XML Background XML is a semantic describing language that allows users to 

define meaningful tags to produce meaningfully annotation text. Because the text is 

marked up semantically, it is much easier for humans to read and computers to 

process. An XML document is a file starting with a root element and containing 

nested elements. An XML document is known as a well-formed if its elements nest 

properly within each other and create a tree-like structure (e.g. tags must be balanced 

and matched, empty element tags must either end with a /> or be explicitly closed). 

XML element can have attributes attached to it and the attribute values must be in 

quotes. The following example shows a simple well-formed XML document: 

 <?xml version="1.0" standalone="yes"> 

 <!-- This is an example of well-formed XML document --> 

 <person id="123"> 

   <surname> McDonald </surname> 

   <givenname> Phillip </givenname> 

   <address>  
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     <street>26 William Street </street> 

     <city> Townsmore </city> 

     <state> Queensland </state> 

     <country> Australia </country>  

  </address> 

   <phone> 9231 7436 (o), 9267 4538 (h) </phone> 

 </person> 

The first line of this example is called prolog. Every XML document starts with 

a prolog. In this example, the prolog indicates that the XML document follows 

XML version 1.0, is stand-alone (no accompanying DTD). The second line is 

comment. The element tagged person has an attribute id with the value of 123. The 

element tagged address has four sub-elements tagged street, city, state and country 

separately. The character string between a pair of matched elements is the value of 

that element, for example, McDonald is the value of element tagged surname. Every 

XML document must have a root element specified in the header area. In this 

example, element tagged person is the root element. If element B is within element 

A, then A is called the parent element of B and B is called the child element or sub-

element of A. For instance, in the above example, <address> is the parent element 

of <street> and <street> is the sub-element of <address>. 

 
XML documents may have DTDs (Document Type Definition) to define their 

structure and constraints on them. DTD allows users specify the set of tags, the order 

of tags, and attributes associated with each tag. A well-formed XML document that 

conforms to its DTD is called valid. DTDs are not mandatory for XML documents. 

Therefore an XML document may conform to a DTD or not. If an XML document 
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conforms to a DTD, the DTD should be declared in the prolog using the !DOCTYPE 

tag. The following is a DTD example for bibliography documents. The name of this 

DTD is bib.dtd. 

 <!ELEMENT bib(book+)> 

 <!ELEMENT book(author+, title, publisher?, year?, section*, 

   abstract?)> 

 <!ATTLIST book isbn CDATA #IMPLIED> 

 <!ELEMENT author(#PCDATA)> 

 <!ATTLIST author id ID #REQUIRED> 

 <!ELEMENT title(#PCDATA)> 

 <!ELEMENT publisher(#PCDATA)> 

 <!ELEMENT year(#PCDATA)> 

 <!ELEMENT section((title,(para+))|(title,(para*), 

(subsection+)))> 

<!ELEMENT para (#PCDATA)> 

<!ELEMENT subsection(title|(title,(para+)))> 

<!ELEMENT abstract ANY> 

!ELEMENT statement is called element definition. It defines tags that can be used in 

XML documents. Elements can have zero or more attributes, which are declared 

using the tag !ATTLIST. For example, element book has one attribute isbn, which 

has optional character data type (CDATA). Attributes can be optional (#IMPLIED), 

required (#REQUIRED) or fixed (#FIXED). The optional character following a 

name governs whether the element may occur one or more (+), zero or more (*), or 

zero or one time (?). The absence of such an operator means that the element or 

content particle must appear exactly once. 
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Elements in DTD may have sub-elements, for instance, elements book and 

section in the above example have sub-elements. There are three kinds of sub-

elements in DTD: sequence, choice and mixed sub-elements. Sequence sub-elements 

are those elements that appear in an order. Choice sub-elements are those elements 

in an alternative list. A choice is indicated by the logical operator " | ". Sequence and 

choice sub-elements can contain each other and are called mixed sub-elements. For 

example, element book in the above example has sequence sub-elements, element 

section has mixed sub-elements. 

Elements in DTDs or XML documents can be either nonterminal or terminal. 

Nonterminal elements contain sub-elements. Terminal elements can be declared as 

parsed character data (#PCDATA) or as EMPTY. For simplicity of describing our 

ORM for XML data, we define the terminal element with attribute(s) as pseudo-

terminal element. For example, the element tagged book in the above example is a 

nonterminal element with sequence sub-elements. The element tagged title is a 

terminal element and the element author is a pseudo-terminal element. An element 

declared as ANY can contain sub-elements of any declared type, as well as character 

data. For instance, the element tagged abstract in the above is declared as ANY. 

DTD with ANY element does not fully describe the structure of XML document, 

which is called the problem of DTD incompleteness.  

The following example shows an XML document that conforms to the above 

DTD. 

 <?xml version="1.0"> 

 <!DOCTYPE bib SYSTEM "bib.dtd"> 

 <bib> 
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    <book isbn="0-13-968793-6"> 

       <author id="Wilson-001"> Wilson, G. </author> 

       <author id="Bond-007"> Bond, J. H. </author> 

       <title> XML Introduction </title> 

       <publisher> Addison-Wesley </publisher> 

       <year> 1999 </year> 

       <section> 

          <title> XML Summary </title> 

          <para> This section gives a summary of XML syntax  

    and …  

   </para> 

       </section> 

       <section> 

          <title> XML in Application </title> 

         <para> This section presents some representative  

    applications of XML … 

         </para> 

       </section> 

    </book> 

    <book> 

       <author id="Simons-002"> Simons,R. </author> 

       <title> Programming Language </title> 

       <publisher> Prentice Hall </publisher> 

       <section> 

          <title> Java Programming Language </title> 

          <subsection> 

             <title> Java Classes </title> 

   <para> This subsection introduces Java classes  
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 commonly used in programming. 

</para> 

          </subsection> 

       </section> 

  <abstract> This book introduces many popular programming  

     languages and concentrates on object-oriented  

     programming languages, such as Java, C++. It   

     is a book suitable for … 

  </abstract> 

    </book> 

 </bib> 

From above examples, it can be seen that DTD is a bit similar to class definition 

in object-oriented data model, and instances (objects) of classes can be produced 

from XML documents that conform the DTD. For XML documents without DTD, 

objects should be produced directly from XML documents with looser constraints 

because there is no pre-defined schema represented by the DTD. Therefore, the 

object representation model (ORM) for XML data should extract the elements and 

features of DTD and XML documents, and objects for concrete XML documents 

can be produced from this ORM. 

 
Data Model Design Criteria The data model should satisfy the following criteria 

[HZK01]: 

• Simplicity: simplicity means that the model is easy to understand and use by the 

general public without requiring any special knowledge. 

• Completeness: completeness means that the model covers all elements of XML 

data. 
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• Extensibility: extensibility means that the model should give room for extending 

the functions to meet the further requirements from applications, systems and 

users. 

 
Object Representation Model (ORM) To ensure the completeness of the 

model, it is necessary to observe what kinds of information are contained in XML 

data. Actually, XML data contain three kinds of information through a proper 

structure: element attributes, element values (text contents) and element containment 

relationship (element-subelement relationship). Therefore, an element is a basic 

information unit and is suitable to be modelled as a class or object in the ORM. As 

mentioned above, one feature of XML data is that the tags (elements) have semantic 

meanings, so the corresponding object model should allow the users to identify the 

objects by the tag names. Apart from static information in elements, elements or 

objects should be assigned behaviours to maintain and manipulate their status or 

communicate with other objects (in this work. we will not consider the 

communication between objects). On the other hand, as a data model for XML data 

on the Internet, the proposed object model should satisfy the above data model 

design criteria. Based on the above considerations, the ORM for XML data should 

have the following features: 

• Object identification 

An element in XML data is modelled as an object or class. Since an element 

may appear several times with the same element name in an XML document, it 

is needed to have a class variable to identify the objects of the same class. This 

object identification can also be used to mark the order of the objects. 
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• Object name 

The object name should be the same as that of the corresponding element in an 

XML document. Therefore the semantics meanings of the elements (tags) can be 

reflected in the object model and used in applications. The combination of 

object name with the above object identification can uniquely identify an object 

in a set of objects with the same object name. 

• Collections of attributes, values and sub-elements 

Sub-elements, as well as attributes and values, of an element are modelled as 

different type objects and put into their corresponding collections. The 

containment relationship between an element and its sub-elements is reflected in 

the sub-element collection. This will make it easy for applications or object 

methods to process different kind of information. 

• Class methods 

Since the structure of the class or object is certain, it is easy to define the 

required class methods to manipulate the information contained in the object, 

such as add, delete, update, fetch and search object information. Therefore, the 

usage of the objects does not require users to have the inner structure knowledge 

of the objects. More functions can be added to this model to meet the more 

requirements from applications. This will make it flexible and extensible for the 

model to reflect frequent changes of the XML documents and requirements from 

applications.  

These model features reflect the features and usage of elements in XML data. 

Therefore in our ORM, one super class for XML elements can be established with 
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the above features. Different classes or objects can be derived from XML data under 

this super class. This supper class in our ORM is named as XMLDoc. On the other 

hand, terminal elements, element attributes and values have their common features 

and characteristics. They have no sub-elements and only contain character data. The 

object methods assigned to them are relatively simple compared with those assigned 

to the nonterminal elements. To reflect these features of terminal elements, element 

attributes, values and similar elements, another super class should be established. In 

our ORM for XML data, this super class is called Terminal. The structures of these 

two super classes are described in figure 8.1.  

Our ORM integrates the above two super classes. From this ORM, classes and 

objects can be produced separately from DDT files and XML documents. The 

element-subelement containment relationship is expressed in this model by the 

collection of sub-objects of the class or object. Intuitively, the ORM is defined as a 

tree-like structure of classes (objects) in figure 8.2.  

 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1.  Structures of two super classes: XMLDoc and Terminal 

XMLDoc class 
 
class variables: 
   oid: object identification 
   oname: object name 
   collection of attribute objects 
   collection of value objects 
   collection of subelements (sub-objects)
 
class methods: 
   constructor 
   methods for adding data into class 
   methods for deleting data from class 
   methods for updating data in class 
   methods for fetching data from class 
   methods for searching sub-objects 
   other required methods  

Terminal class 
 
class variables: 
   oid: object identification 
   oname: object name 
   charData: character data 
 
 
 
class methods: 
   constructor 
   methods for deleting data from class 
   methods for updating data in class 
   methods for fetching data from class 
   other required methods 

( a ) ( b ) 
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In figure 8.2, an oval box represents a super class and a rectangular box 

represents a class or objects. An arrow indicates the containment relationship. The 

super class Object is the unique super class in Java. One super class Terminal is not 

shown in this figure for the simplicity reason. It is implicitly referred in the structure 

of the class or object, as we will state next. Class methods are not indicated in the 

structure of the class or object in this figure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.2.  Object representation model (ORM) for XML data 
 
It can be seen from this model that attributes and values of an element, which are 

modeled as attribute objects and value objects of super class Terminal respectively, 

are stored in the collection of attribute objects (CA) and collection of value objects 

(CV) separately. The sub-elements of an element, which are modelled as sub-objects 

of super class XMLDoc, are stored in the collection of sub-objects (CS). This ORM 

is in a uniform structure, which is easy to understand, covers all three kinds of 

information in XML data and is extensible. That means the ORM meets the model 

design criteria stated previously. 
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The ORM defines a framework for XML object organization. In order to 

represent DTDs and XML documents in this ORM, we still need some 

transformation rules. The following figure 8.3 logically describes this work. 

 
 
 
 
 
 
 
 
 

Figure 8.3.  Work description 
 

From above analysis and model, it is known that there are three kinds of 

transformation rules: one for DTD, one for XML documents with DTD and another 

one for XML documents without DTD. Transformation rules for DTD mainly deal 

with transforming DTD into classes in the ORM, while transformation rules for 

XML documents deal with transforming XML documents into objects in ORM. 

 

8.3 Transformation Rules from DTD to ORM 
 
As indicated above, DTD describes a schema for a set of XML documents. From a 

DTD, a collection of XML documents that conform to it can be produced. The 

function of DTD here is just similar to that of class definition in an object-oriented 

model (i.e. from a class definition a collection of objects can be produced). 

Therefore, the transformation rules for DTD are for transforming a DTD into a set of 

classes in the ORM. Based on these classes, objects can be produced from concrete 

XML documents, which will be discussed in the later section. 
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Since two super classes, XMLDoc and Terminal, are the bases classes in the 

ORM, they should be established firstly. That is the following rule. 

 
Rule 8.3.1. Two super classes, named XMLDoc and Terminal, are created. The 

structures of them are the same as those defined in figure 8.1. XMLDoc is for 

nonterminal elements and other similar elements. Terminal is for terminal elements, 

element attributes, element values and other similar elements.  

 
For different object definition format, the implementation of the Rule 8.3.1 is 

different. For example, the collections of attribute objects, value objects and sub-

objects in XMLDoc class can be implemented in Java using the following format: 

 class XMLDoc{ 

    … 

    Vector attributes = new Vector(); 

    Vector values = new Vector(); 

   Vector subObjects = new Vector(); 

    … 

 } 

 
Rule 8.3.2. A new class is created for every element, including attribute, in DTD. 

The class name is the same as the element or attribute name.  

 
This rule defines a principle that every information unit in DTD or XML 

documents is treated as a class or an object, not as an attribute of an object.  For 

terminal, pseudo-terminal and nonterminal elements, because of their characteristics, 
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they will be modelled as different classes. The following two rules indicate these 

different cases. 

 
Rule 8.3.3. A class is created as a sub-class of Terminal for every terminal element 

or attribute in DTD. The class name is the same as the terminal element name or 

attribute name.  

 
For example, for a DTD statement 

 <!ELEMENT publisher (#PCDATA)>, 

the following class named publisher is created: 

 class publisher extends Terminal{ 

   public publisher(String ObjectID, String ObjectName,  

  String Cdata){  

  super(ObjectID, ObjectName, Cdata); 

    } 

 } 

 
Rule 8.3.4. A class is created as a sub-class of XMLDoc for every nonterminal or 

pseudo-terminal element in DTD. The class name is the same as the element name. 

This rule is also applied to the element declared as ANY or EMPTY. 

 
The following rules define the containment relationships among the classes 

(element-subelement relationship). 

 
Rule 8.3.5. The containment relationship between an element E and its sub-elements 

is implemented by the constructor method(s) of the class defined by that element E. 
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This rule guarantees the containment relationship defined in DTD can be 

expressed in the ORM. In fact, a mechanism can be built in the class constructor(s), 

according to the containment definition in DTD, to check the sub-element type, 

order etc. When an object of this class is to be produced, the sub-objects of this 

object will be checked strictly by the class constructor(s). If the check is passed, this 

object will be produced. Otherwise, this object is rejected, which means the related 

XML document does not conform to this DTD. For some extreme cases where the 

containment relationship is uncertain, for example the element declared as ANY, 

containment relationship can be implemented by programming and using the class 

methods. 

 
Rule 8.3.6. For a nonterminal element E, its every (or a set of) possible sub-

element(s) is mapped as an object collection of the class defined by that sub-

element. This object collection is one parameter of the constructor of class E. 1) If 

the sub-element is a terminal element, the components of its object collection are put 

into the CV of the parent class E. 2) If the sub-element is a nonterminal element, the 

components of its object collection are put into the CS of the parent class E. 

 
Rule 8.3.7. For an element E (pseudo-terminal or nonterminal element) that has 

attribute(s), its each attribute is mapped as an object of the class defined by the 

attribute name. This object is one parameter of the constructor of class E, and is put 

into the CA of the class E. 

 
For example, for the following simple definition in a DTD: 

 … 
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 <!ELEMENT employee (name, address)> 

 <!ATTLIST employee id ID #REQUIRED> 

 <!ELEMENT name (#PCDATA)> 

 <!ELEMENT address (#PCDATA)> 

 … 

a class for element employee is created like this: 

 class employee extends XMLDoc { 

    public employee (String objectID, String objectName, 

      id employeeID, Vector nameVector, Vector  

    addressVector){ 

  … 

// employeeID is an object of class id 

// It is put into CA.  

 

// nameVector is a Vector for passing name objects. 

// Its components are put into CV. 

 

// addressVector is a Vector for passing address 

objects. 

// Its components are put into CV.    

    } 

    … 

 } 

 
Rule 8.3.8. For a pseudo-terminal or nonterminal element E that contains 

#PCDATA type, this type is mapped as an object collection of class Terminal. This 
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object collection is one parameter of the constructor of class E. The component of 

this object collection is put into the CV of the class E.  

 
For example, for the following element definitions: 

 … 

  <!ELEMENT LeaseContracts (#PCDATA, (Lessee, Lessor)*, Year?)+> 

 <!ELEMENT Lessee (LesseeName, Address, Phone)> 

 <!ELEMENT Lessor (LessorName, Address, Phone)> 

 <!ELEMENT Year (#PCDATA)> 

 …  

a class for nonterminal element LeaseContracts is created according to the rules of 

8.3.5, 8.3.6 and 8.3.8: 

 class LeaseContracts extends XMLDoc{ 

    public LeaseContracts(String objectID, String objectName, 

      Vector terminalData, Vector LesseeVector, Vector  

    LessorVector, Vector YearVector){ 

  … 

  // termninalData is a Vector for passing Terminal  

// objects (#PCDATA). Its components are put into CV.  

 

// LesseeVector is a Vector for passing Lessee objects. 

// Its components are put into CS. 

 

// LessorVector is a Vector for passing Lessor objects. 

// Its components are put into CS. 

 

// YearVector is a Vector for passing Year objects. 
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// Its components are put into CV.  

    }  

    …  

 } 

Rule 8.3.9. If a nonterminal element E has choice sub-elements (indicated by the 

logical operator " | "), for each choice, one constructor method is created for this 

class E. If the nonterminal element only has sequence sub-elements, only one 

constructor method is created for this class E. 

 
For example, for the following definition: 

<!ELEMENT subsection(title|(title,(para+)))> 

a class for nonterminal element subsection is defined like this: 

 class subsection extends XMLDoc{ 

    public subsection(String objectID, String objectName, 

       Vector titleVector){ 

  … 

    } 

    public subsection(String objectID, String objectName, 

       Vector titleVector, Vector paraVector){ 

  … 

    } 

    … 

 } 

 
Remark: For sub-elements indicated by " * " or " ? ", different constructor methods 

can also be defined to respond to the possible appearances of the sub-elements. This 
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work is easy but redundant. For simplicity, we will not discuss this situation in 

detail.  

 

8.4 DTD-Tree and Transformation Procedure 
 
We define a DTD-Tree to describe the logical and structural relationship among the 

elements in a DTD (in this case, we temporarily do not consider object reference or 

linking which will be for the further discussion). A DTD-Tree can be produced from 

application programs by parsing a DTD file. Just like document object mode (DOM) 

for XML document [DOM98], DTD-Tree can be an application program interface 

(API) for processing DTD, for example producing classes from a DTD by the above 

DTD transformation rules. This DTD-Tree can also be used to express the procedure 

to use transformation rules for a DTD file. 

DTD-Tree is a directed and labelled tree. In the DTD-Tree, nodes represent 

elements in DTD, leaf nodes represent the data type (e.g. #PCDATA), directed 

edges represent the containment relationship between an element and its sub-

elements, a label on the edge indicates the optional relation (*, +, ?, |). Attributes 

defined for an element are indicated beside that node. The node with no name 

indicates a collection of sub-elements. A directed edge without label indicates the 

sub-element appears one time in its super-element. For example, the bib.dtd can be 

represented as a DTD-Tree in figure 8.4.  
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Figure 8.4.  DTD-Tree of bib.dtd. 
 

This DTD-Tree expresses the element-subelement relationship and optional 

relation in DTD. Although there are many tree schemas for describing XML data 

currently, such as those in [GMW99] [DOM98]  [QZL+00] and [KB00], our DTD-

Tree definition is different from them. For example, tree schemas in [GMW99] 

(OEM) and [DOM98] are for XML document not for DTD file, therefore the 

optional relations in DTD cannot be expressed. The tree schemas in [QZL+00] and 

[KB00] are for DTD, but the schemas just express the simple element-subelement 

relationship, the optional relations as well as optional collection of sub-elements in 

DTD can not be expressed.  

When the DTD transformation rules are applied to the DTD (i.e. DTD-Tree), the 

procedure begins from the leaf nodes, producing a set of classes by rules 8.3.2, 

8.3.3, 8.3.4, 8.3.5, 8.3.7 and 8.3.8. Then from the bottom to the top (root) of the tree, 

the rules are applied level by level and finally all classes for the DTD are produced. 

Let LN = {all leaf nodes of original DTD-Tree}, the transformation procedure is 

described by the following algorithm.  
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Step 1. Create super classes XMLDoc and Terminal by the rule 8.3.1; 

Step 2. Read DTD file and produce DTD-Tree; 

Step 3. For ( n∈LN ) 

 { 

   If (n's parent node name is different from names of created classes) 

    { 

       If (n's name is #PCDATA) 

       { 

          If (n's parent node has only one child node and has no attributes) 

          { 

  a new class (sub-class of Terminal) is created for n's parent node by  

rules 8.3.2 and 8.3.3; 

n's parent node is marked as class; 

delete n from the DTD-Tree; 

          } 

          If (n's parent node has only one child node and has attributes) 

          { 

  a new class (sub-class of XMLDoc) is created for n's parent node by  

rules 8.3.2, 8.3.4, 8.3.5, 8.3.7, 8.3.8; 

n's parent node is marked as class; 

delete n from the DTD-Tree; 

          } 

       } 
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       If (n's name is ANY or EMPTY) 

       { 

          a new class (sub-class of XMLDoc) is created by rules 8.3.2, 8.3.4 for  

                     n's parent node without overriding the super class constructor; 

         n's parent node is marked as class; 

         delete n from the DTD-Tree; 

       } 

    } 

    Else 

    { 

      n's parent node is marked as class; 

      delete n from the DTD-Tree; 

    } 

 } 

Step 4. For (every node n in the DTD-Tree) 

 { 

   If (n's name is different from names of created classes) 

    { 

       If (n's all child nodes are marked as class OR the names of n's all  

                       unmarked child nodes are #PCDATA or null) 

       { 

          a new class (sub-class of XMLDoc) is created for n by rules 8.3.2,  

                     8.3.4, 8.3.5, 8.3.6, 8.3.7, 8.3.9; 
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          n is marked as class;  

         delete n's all child nodes from the DTD-Tree; 

       } 

    } 

    Else 

    { 

       n is marked as class;  

      delete n's all child nodes from the DTD-Tree; 

    } 

 } 

Figure 8.5(a) - (e) shows this procedure for the DTD-Tree in figure 8.4, where 

oval boxes represent elements or data types in the DTD, and rectangle boxes 

represent the produced classes. The applied rules are also indicated in the figures. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8.5(a). The first result of the rule application 
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Figure 8.5(b).  The second result of the rule application 
 

 
 
 
 
 
 
 
 
 

Figure 8.5(c).  The third result of the rule application 
 
 
 
 
 
 
 
 
 

Figure 8.5(d).  The fourth result of the rule application 
 
 
 
 

 
 

 
 

Figure 8.5(e).  The fifth result of the rule application 
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Rules 8.3.2, 4, 5, 6, 7, 9 

bib 

book 
+ bib 

Rules 8.3.2, 4, 5, 6, 9
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The rules for XML document with DTD describe how to produce instances (objects) 

of classes in ORM from XML documents.  These classes have been produced by 

processing DTDs with the DTD transformation rules. We consider XML documents 

conforming to the same DTD as the same data source. In this work, we just discuss 

the situation where every XML document in the data source has a DTD which it 

strictly conforms to. For the situation where there is no DTDs, we will discuss it in 

the later section.  

 
Rule 8.5.1. For each matched pair of tags in XML document, an object is produced. 

The object type (class) is the same as the name of the tag. The name of the object is 

the same as the object type. 

 
For example, for the following simple statement in an XML document: 

 <publisher> Addison-Wesley </publisher> 

an object is produced like this: 

 String idNo="pub_01"; 

 String name="Addison-Wesley"; 

 publisher object_pub01= new publisher(idNo,"publisher",name); 

 
Another example is as follow. For the following XML document segment: 

 … 
<subsection> 

    <title> Java Classes </title> 

    <para> This subsection introduces Java classes  

    commonly used in programming. 

   </para> 

</subsection> 
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… 

objects (object_tit, object_para and object_subsec) are produced like this: 

 … 

 Vector titleVec=new Vector(); 

 Vector paraVec=new Vector(); 

 String idNo="title-04"; 

 String cData="Java Classes"; 

 title object_tit=new title(idNo,"title",cData); 

 titleVec.addElement(object_tit); 

 idNo="para-03"; 

 cData="This subsection introduces Java …"; 

 para object_para=new para(idNo,"para",cData); 

 paraVec.addElement(object_para); 

 idNo="subsec-01"; 

 subsection object_subsec=new subsection(idNo,"subsection", 

      titleVec, paraVec); 

 … 

 
Rule 8.5.2. For a character string between a matched pair of tags, if this tag is 

declared as a nonterminal or pesudo-terminal element in DTD, an object of type 

(class) Terminal is produced for this string and put into a same object collection. 

 
For example, for the following XML document segment: 

 … 

 <LeaseContracts> 

    It is an agreement that <Lessee> Star Development Company  

   </Lessee> agrees to lease the property at 26 Shanton St.  
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   from <Lessor> Blue-Moon Real Estate </Lessor> for 10  

   months.  

   <Year> 2000 </Year> 

 </LeaseContracts> 

 … 

suppose objects of type Lessee, Lessor and Year have been produced and stored 

separately in three Vectors lesseeVec, lessorVec and yearVec as above, then an 

object of type LessContracts is produced as follow: 

 … 

 Vector charVec=new Vector(); 

 String idNo="CS-01"; 

 String name="CharString"; 

 String Cstring="It is an agreement that"; 

 Terminal CS_1=new Terminal(idNo,name,Cstring); 

 charVec.addElement(CS_1); 

 idNo="CS-02"; 

 Cstring="agrees to … from"; 

 Terminal CS_2=new Terminal(idNo,name,Cstring); 

 charVec.addElement(CS_2); 

 idNo="CS-03"; 

 Cstring=" for 10 months."; 

 Terminal CS_3=new Terminal(idNo,name,Cstring); 

 charVec.addElement(CS_3); 

 idNo="LC-01"; 

 name="LeaseContracts"; 

 LeaseContracts object_LC= new  LeaseContracts 

      (idNo,name,charVec,lesseeVec,lessorVec,yearVector); 
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 … 

 
Rule 8.5.3. If a pair of tags is declared as ANY in DTD, just an object of that class is 

produced. Other elements between this pair of tags are processed by using the above 

rules and the class methods defined in super class XMLDoc.  

 
For example, element abstract is declared as ANY in bib.dtd. For the following 

XML document segment: 

 … 

 <abstract> This book introduces many popular programming  

     languages and concentrates on object-oriented  

     programming languages, such as Java, C++. It   

     is a book suitable for … 

 </abstract> 

 … 

an object object_abs is produced as following: 

 … 

 abstract object_abs=new abstract(); 

 String idNo="CS-08"; 

 String name="CharString"; 

 String Cstring="This book … suitable for …"; 

 Terminal object_char=new Ternimal(idNo,name,Cstring); 

 object_abs.addValue(object_char); 

 … 

In practice, to process an XML document by accessing internal structure, we 

need to use application program interfaces (APIs). Document Object Model (DOM) 
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[DOM98] is such an API. In DOM, an XML document is represented as a tree 

whose nodes are elements, text, and so on [MTU99]. DOM provides a set of APIs to 

access and manipulate these nodes in the DOM tree. DOM for an XML document 

can be generated by many XML processors, such as XML for Java [MTU99]. Based 

on the DOM of an XML document, an application can be developed to produce 

objects from the XML document by the above transformation rules for XML 

document. Just as the situations in processing DTD, the application of the 

transformation rules for XML document also starts with the leaf nodes in DOM, 

produces objects level by level from the bottom to the top of the DOM. Since we 

will use DOM to describe the transformation procedure (algorithm) for XML 

documents without DTD in the later section, the DOM-based algorithm details for 

this procedure, which are similar to those in the later section, are omitted here.  

 

8.6 Transformation Rules from XML Document  
        without DTD to ORM 
 
Although rules have been established in the previous sections for transferring DTD 

and XML document with DTD to the ORM, the situation for XML documents 

without DTD is different. This is mainly because a DTD defines a schema for a set 

of XML documents, the elements, structure and constraints are certain. The rules for 

transferring DTD to the ORM deal with how to produce classes from the schema 

defined by the DTD, and in turn produce objects from XML documents with DTD. 

The constraints are included in the class definition. However, for XML documents 

without DTD, since there is no pre-defined schema for them, it is impossible to 
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know in advance what elements will be contained in the XML documents, what the 

structures will be for XML documents and what the constraints are. Therefore, 

classes cannot be produced in advance and objects are produced without predefined 

constraints. The rules for transferring XML documents without DTD should be 

different from and looser than those for DTD and XML documents with DTD, in 

order to be suitable for different possible situations. 

Although it is impossible to produce classes from the DTD in advance, the two 

super classes XMLDoc and Terminal, which are defined before, are available for 

producing concrete objects from XML documents. Therefore, the first rule for XML 

documents without DTD is similar to that for DTDs. 

 
Rule 8.6.1. Two super classes, named XMLDoc and Terminal, should be established. 

The structures of these two super classes are the same as those defined in figure 8.1. 

XMLDoc is for nonterminal elements in XML documents, Terminal is for terminal 

elements, element attributes, element values and other similar elements in XML 

documents. 

 
Rule 8.6.2. An object of XMLDoc class is produced for a nonterminal element in 

XML documents. The object name variable oname is the same as that of the 

element. 

 
Rule 8.6.3. An object of Terminal class is produced for a terminal element or an 

element attribute, or one unit of element value in XML documents. The object name 

variable oname is the same as that of the terminal element or attribute name. For the 
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element value unit, the object name variable oname is the same as that of element 

containing this element value unit.       

 
Rule 8.6.2 and Rule 8.6.3 insure that an XML document is totally modelled as a 

set of objects, and the element names in the XML document are reserved in the 

objects. This treatment captures the feature of XML documents and makes it easy 

for applications to identify objects and retrieve information by the element names.  

The following example shows how to apply Rule 8.6.2 and Rule 8.6.3 to produce 

objects from an XML document. Suppose the class constructors for XMLDoc and 

Terminal classes are as follow separately:  

 public XMLDoc(String ObjectID, String ObjectName){ 

    oid = ObjectID; 

    oname = ObjectName; 

 } 

 
 public Terminal(String ObjectID, String ObjectName, String 

CharacterData){ 

    oid = ObjectID; 

    oname = ObjectName; 

    charData = CharacterData; 

 }    

For the following XML segment: 

<person id="123"> 

  This is a manager: 

   <surname> McDonald </surname> 

     … 

 </person> 
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The objects produced from this XML segment by the Rules 8.6.2 and 8.6.3 will be: 

 XMLDoc object_person = new XMLDoc("person-01", "person"); 

 Terminal object_id = new Terminal("id-01", "id", "123"); 

 String dataValue = "This is a manager"; 

 Terminal object_value= new Terminal("personValue-01",  

                             "person", dataValue); 

 Terminal object_surname= new Terminal("surname-01", "surname",  

                              "McDonald"); 

 … 

The above rules define how to transfer elements in XML documents into objects 

in the ORM. The next rules will define the containment relationship among these 

objects. 

 
Rule 8.6.4. If an element B has parent element A, then the object B is added into the 

object A. Otherwise, object B is the root object in the ORM. 

 
This rule indicates that each object for an element in XML documents belongs to 

a certain parent object, unless this object is the root object. From the characteristics 

of XML documents, the ORM for each XML document has only one root object. 

The following rules further define how the objects for different elements in XML 

documents are added into their parent objects. 

 
Rule 8.6.5. For attributes of an element E in the XML document, the objects for 

these attributes are added into the CA of the object E. 
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Rule 8.6.6. For values and child terminal elements of an element E in the XML 

document, the objects for these values and terminal elements are added into the CV 

of the object E. 

 
Rule 8.6.7. For child nonterminal or pseudo-terminal elements of an element E in 

the XML document, the objects for these nonterminal or pseudo-terminal elements 

are added into the CS of the object E. 

 
The definitions of Rule 8.6.5 and 8.6.7 are obvious. In Rule 8.6.6, we add the 

objects for child terminal elements into the CV, not the CS, of their parent object. 

This is because, although these objects are the child (sub) objects of their parent 

object, they belong to the class Terminal. This treatment makes the CS of an object 

only contain objects of class XMLDoc, CA and CV only contain objects of class 

Terminal. This uniform structure of the ORM will make it easy for algorithm design 

and application development. 

For instance, applying the Rule 8.6.4, 8.6.5 and 8.6.6 to the above example, we 

have the following results: 

 object_person.attributes.addElement(object_id); 

 object_person.values.addElement(object_value); 

 object_person.values.addElement(object_surname); 

 … 

Based on these transformation rules, transformation procedures can be provided 

subsequently for reading and processing XML documents. 
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8.7 Transformation Procedures for XML  
        Documents without DTD 
 
As indicated in section 8.5, in order to process XML documents, we need to access 

the internal structures of them. DOM (Document Object Model) [DOM98] provides 

this function. DOM defines an object-oriented API for XML documents and 

represents a document as a hierarchy of objects of classes such as Element, 

Attribute, Text etc., which closely models the actual structure of the document. For 

example, the DOM structure of the first XML document in section 8.2 is described 

as the following figure 8.6. 

From the DOM of an XML document, we can access the internal structure and 

elements of the XML document using the various methods provided by the DOM. 

There have been many DOM implementations already, such as XML for Java from 

IBM [MTU99]. From these implementations, we can extract ORM objects from 

XML documents.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.6.  Structure of an XML document in DOM 
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Although DOM provides methods for accessing and manipulating the nodes in it, 

a DOM-based XML processor creates the entire structure of an XML document in 

memory. So DOM is suitable for applications that operate on the document as a 

whole, particularly it is best suited for structurally modifying an XML document and 

sharing the document in memory with other applications [MTU99]. Our ORM, 

however, provides objects for XML documents. These objects can be stored (in 

memory or not in memory) and manipulated as a whole or individually. For 

example, the ORM objects can be managed by OO database management systems, 

but DOM object cannot be. Furthermore, our ORM for XML documents does not 

model the actual structure of the documents, but model the logical relationships 

among the elements in the documents. This makes the algorithm design (such as 

search algorithm) easier, since there is no need to traverse all objects in most cases, 

while in DOM it would have to know "what to look for" and traverse various 

element objects to find that information [Man98]. 

Based on the DOM and transformation rules in above section, the transformation 

procedures and algorithms can be described as follows: 

Step 1: Create super classes XMLDoc and Terminal by Rule 8.6.1; 

Step 2: Read and parse the XML document, produce a DOM structure for the 

document; 

Step 3: Create a root object for the root element ( R ) of DOM by Rule 8.6.2 and 

8.6.4; 

Step 4: For ( every subelement E of element ( R ) in DOM ) 

           { 



 

 215

   if ( E is an attribute of element R ) 

   { 

      create an object of class Terminal for E and add it into the CA of R by  

                 Rules 8.6.3, 4 and 5; 

   } 

   else if ( E is a terminal element or value of element R ) 

   { 

      create an object of class Terminal for E and add it into the CV of R by  

                 Rules 8.6.3, 4 and 6; 

   } 

   else if ( E is a nonterminal element of element R ) 

   { 

      create an object of class XMLDoc for E and add it into the CS of R by  

                 Rules 8.6.2, 4 and 7; 

      repeat Step 4 for the element ( E );  // recursively 

   } 

           } 

As an example, applying the above transformation procedures and algorithms to 

the first XML document in section 8.2, whose DOM structure is showed in figure 

8.6, we can obtain the following results: 

 // Step 1 and Step 2 

… 

// Step 3 

 XMLDoc object_person = new XMLDoc("person-01", "person"); 
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 // Step 4 for object_person 

Terminal object_id = new Terminal("id-01", "id", "123"); 

  object_person.attributes.addElement(object_id); 

 Terminal object_surname = new Terminal("surname- 

                                01","surname","McDonald"); 

  object_person.values.addElement(object_surname); 

 Terminal object_givenname = new Terminal("givenname-01",  

                                  "givenname", "Phillip"); 

  object_person.values.addElement(object_givenname); 

 XMLDoc object_address = new XMLDoc("address-01", "address"); 

  object_person.subObjects.addElement(object_address); 

 // Recursion of Step 4 for object_address  

 

Terminal object_street = new Terminal("street-01", "street",  

                         "26 William Street"); 

  object_address.values.addElement(object_street); 

 Terminal object_city = new Terminal("city-01", "city",  

                             "Townsmore"); 

  object_address.values.addElement(object_city); 

 Terminal object_state = new Terminal("state-01", "state",  

                              "Queensland"); 

  object_address.values.addElement(object_state); 

 Terminal object_country = new Terminal("country- 

                                01","country","Australia"); 

  object_address.values.addElement(object_country); 

 // Step 4 for object_person 

 Terminal object_phone = new Terminal("phone-01", "phone",  

                              "9231 7436 (o), 9267 4530 (h)"); 

  object_person.values.addElement(object_phone); 
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 … 

Then, we get a set of ORM objects from the XML document: 

{object_person, object_id, object_surname, object_givenname, object_address, 

object_street, object_city, object_state, object_country, object_phone}. 

These objects can be stored or manipulated individually or as a whole by 

applications and management systems.  

 

8.8 Related Work and Discussions 
 
Currently, the representative related work can be seen in [BBB00], [GMW99] and 

[LRK00]. [BBB00] gives an object view of an XML document, but this view is not 

for DTD. Because this work mainly considers the transformation between XML 

documents and relational databases, concrete and complete object model is not 

proposed for XML documents and DTD. The data model in [GMW99] is the 

extension of that for semi-structured data, OEM. This data model describes logical 

relationship of the elements in XML documents. There is no concrete object 

representation model for the objects in this model. To apply this data model, a 

proper object representation model should be established to meet the requirements 

of application or systems.  

In  [LRK00], a set of translation rules is proposed for translating XML data, with 

or without DTDs, into classes or objects for a mediator. Terminal elements, as well 

as attributes of elements, in XML data are modelled as attributes (not sub-objects) of 

the object. However, the application of this model requires users have the 

knowledge of the object structure and the object variables are manipulated directly. 



 

 218

Furthermore, for the use of this model, special methods must be used to distinguish 

which object attribute is for the terminal element and which is for the attribute of an 

element in the original XML document. For the changes of terminal elements or 

element attributes, these special methods must be changed accordingly. The 

extensibility of this model is limited. 

For the element declared as ANY in DTD, it causes the problem called 

incompleteness of DTD because it can contain any declared types. It is relatively 

difficult to deal with this kind of element in a model for XML data. In [LRK00], to 

deal with ANY element, it has to define new types dynamically when read XML 

documents or update object variables frequently from object attributes to sub-

objects. It is complex and difficult in application development.  

Sometimes the order of the elements in XML documents is important for 

applications. But similar models for XML data in [LRK00] and [BBB00] did not 

consider this situation. With our ORM, the above problems can be solved or 

techniques for processing XML data can be improved. 

 

8.9 Conclusions 
 
In this chapter, we propose an object representation model (ORM) for XML data 

(DTD and XML documents). A set of transformation rules and algorithms for 

transforming DTD and XML documents into this ORM is established. Compared 

with other similar models for XML documents, this ORM does not model actual 

structure of the documents, but model logical relationships among the elements in 

documents, and is pure object-oriented. It capsulizes elements of XML data and data 
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manipulation methods in a uniform structure. This model meets the XML data 

model design criteria of simplicity, completeness and extensibility, and has abilities 

to reflect the dynamical changes of the XML data. The logical organisation of the 

objects in the ORM also makes it easy to design application-specific algorithms, 

such as those for object recognition, searching and element order treatment. 

Furthermore, the ORM objects extracted from the XML documents can be stored, 

shared and manipulated by applications and management systems, not just at 

memory level. Therefore, this ORM is suitable for web applications and information 

retrieval.  

This ORM for XML data can be used to the situation where the element order in 

an XML document needs to be considered, because the class variable oid in the 

model can be used to record the order. Retrieval by element name and value can also 

be easily implemented in this ORM, because the element name (without change) and 

value are capsulized in an object. Different objects with the same element (object) 

name can be identified by the object identification oid. 

Due to the pure object-oriented characteristics, this ORM is suitable for dealing 

with the problem of incompleteness of DTD. Instead of dynamically defining new 

types (classes) or updating object variables when read XML document, our model is 

in an uniform manner of producing an object for ANY element and using the class 

methods to deal with any elements contained within that ANY element pair.  

DTD-Tree defined in this work can be used to describe logical structure of a 

DTD. It also can be used as an API for processing DTD, which is similar to DOM 



 

 220

for XML document processing. In this work, it is used to express the procedure of 

using transformation rules. 



 

 

 

221 
 

 
 
Chapter 9 
 
Conclusions 
 

 
9.1 Summary 
 
9.1.1 Mathematical Framework for Hyperlink Analysis and 

Information Retrieval 
 
Web data is huge and lack of uniform data models or schemas. For the purpose of 

finding intrinsic relationships among the web data to implement effective and 

efficient web data management and information retrieval, it is necessary to establish 

a framework within which the data relationships could be modelled, and further 

(deeper) intrinsic relationships could be discovered with a series of algorithms of 

this framework. In this work, we focus on the web data relationships that are 

expressed by hyperlinks among the pages, and establish a mathematical framework, 

especially the matrix-based framework, to model hyperlinks. With matrix models, 

the hyperlink relationship (in-link and out-link) between a page and other pages can 

be expressed as vectors, and deeper relationships among the pages could be 

discovered through mathematical algorithms (operations). Because of the tight 

relationship between the web data management and information retrieval (web-

based and conventional), the proposed mathematical framework could also be 
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applied to general situations of information retrieval. The framework and its 

algorithms are based on a solid mathematic theory background, and the produced 

results are reliable. 

Originally, a matrix A = (aij) is used to model the existence of hyperlinks among 

the web pages. In this case, if there is a hyperlink from page i to page j, the 

corresponding matrix element aij will have a value of 1; otherwise the value is 0. For 

example, the algorithms for eliminating noise pages in Chapter 3 and algorithms for 

finding relevant pages in Chapter 4 are based on such hyperlink matrix model. This 

matrix model can also be extended to model the containment relationship between a 

text document and a set of keywords in conventional data management systems. 

Similarly, if a text document i contains the jth keyword, the corresponding matrix 

element aij will possess a value of 1; otherwise the value is 0. The mathematical 

information retrieval algorithms in Chapter 5 are the concrete examples that are 

based on such extended matrix model. It can be inferred that this kind of matrix 

model could be extended to other similar situations provided the relationships 

among the concerned objects can be modelled as two statuses, such as existence and 

non-existence. 

   Apart from the above original matrix models, a matrix can also be used to 

model the tightness rates of the relationships (via hyperlinks) among the web pages. 

In this case, the element values 0 and 1 are usually used to represent two extreme 

situations: 0 represents that there is no relationship between the two pages through 

the hyperlink; 1 represents that the two pages are the same. The matrix element 

values usually fall into a range between 0 and 1, and the value represents the 
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tightness rate of the relationship between two pages. Matrix models in Chapters 6 

and 7 are the examples of this type of matrix model. In Chapter 6, the primary 

correlation relationships and correlation relationships among the concerned pages 

are expressed as primary correlation matrix and correlation matrix respectively, in 

which the element values represents the correlation degrees (0≤ correlation degree ≤ 

1) between the pages. In Chapter 7, the similarity between pages is also expressed in 

a similarity matrix. Similarly, this kind of matrix model can also be extended to 

information retrieval and other areas. For example, in Chapter 5, the element values 

of the term-document matrix A, which models the containment relationships 

between documents and a set of keywords, are defined as )(),( iGjiLaij ×= , where 

),( jiL  is the local weight for term (keyword) i in document j, )(iG is the global 

weight for term i. 

The mathematical framework (matrix model) paves the way of using mathematic 

theory to analyse relationships among the concerned objects, such as web pages, and 

taking advantage of various mathematic operations to discover their deeper 

relationships and get reliable results.  

 

9.1.2 Strategies on Discovering Web Page Communities 
Using Hyperlink Analysis 

 
Strategies for discovering web page communities are based on the proposed 

mathematic (matrix) models and corresponding mathematic operations, such as the 

singular value decomposition of matrix. These strategies or algorithms form the core 
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of the framework for hyperlink analysis and web page community construction. In 

this work, we mainly concentrate on three kinds of web page communities:  

• the community that consists of hub and authority pages;  

• the community composed of relevant web pages with respect to a given page 

(URL); 

• the community with hierarchical cluster structures.  

For different web page communities, different strategies (algorithms) are proposed 

from hyperlink analysis within the mathematical framework. 

For the web page community that consists of hub and authority pages, since 

there exist many methods of how to construct this kind of community, in this work, 

we focus on how to eliminate noise pages from the web page source to obtain 

another good quality web page source, and in turn to construct a good quality web 

page community. The proposed noise page elimination algorithms could also be 

used solely to filter unnecessary web pages and reduce the management cost and 

burden of web-based data management systems, especially for special-purpose 

search engines (Internet portals). 

In order to eliminate noise pages from the page source (base page set), the web 

pages that are returned directly by the search engine (root page set) with respect to 

the users’ queries are used as a reference system to test whether other pages are 

noise pages or not. For this purpose, a matrix model (adjacency matrix) is 

established to model the hyperlink relationships between the pages in the root page 

set and other pages in the base page set. A singular value decomposition based 
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algorithm is proposed to capture main hyperlink information from the original 

adjacency matrix, and numerically define thresholds for eliminating noise pages. 

For the community that is composed of relevant pages with respect to the given 

page (URL), the situation is different. Discovering such a community refers to two 

issues: one is how to construct a page source with respect to the given URL for 

relevant page finding, such that the page source is rich in relevant pages and is of 

reasonable size; another one is how to effectively find the relevant pages. In this 

work, we propose a page source construction algorithm. The produced page source 

meets the requirements and the algorithm can also prevent the page source from 

being affected by malicious hyperlinks on the web. For effectively finding relevant 

pages, we propose two algorithms. The first one is the extension of traditional co-

citation algorithms. It is intuitive, concise and easy to implement. The second one is 

based on a hyperlink matrix model, singular value decomposition of matrix, and 

other mathematical operations such as vector and projection operations. It reveals 

deeper relationships among the pages and more effectively finds relevant pages, i.e. 

the relevant pages returned by this algorithm not only include those that address the 

same topic as the given page, but also include those that address the same topic and 

are semantically relevant to the give page. 

In order to cluster web pages to discover a community with its own hierarchical 

cluster structures, we propose a new hyperlink-based web page similarity 

measurement. This new similarity metric incorporates web page importance 

(weight), hyperlink transitivity and is derived from page correlation degrees within 

the concerned page source, rather that the direct hyperlinks. It more objectively 
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reflects the nature of the web. With this new page similarity, we propose two types 

of hierarchical clustering algorithms to improve web page clustering. The first one is 

the improvement of the conventional K-mean algorithms. It is effective in improving 

page clustering, but is sensitive to the predefined similarity thresholds for clustering.  

Another type is the matrix-based hierarchical algorithm. Two algorithms of this type 

are proposed in this work. One takes cluster-overlapping into consideration, another 

one does not. The matrix-based algorithms do not require predefined similarity 

thresholds for clustering, are independent of the order in which the pages are 

presented, and produce stable clustering results. The algorithms exploit intrinsic 

relationships among web pages within a uniform matrix framework, avoid much 

influence of human interference in the clustering procedure, and are easy to be 

implemented for applications. 

A series of experiments have been conducted to demonstrate the effectiveness 

and efficiency of the proposed algorithms in discovering various web page 

communities. 

 

9.1.3 Visualization Support for Information Retrieval 
 
The mathematical framework, as well as its various mathematic algorithms, is 

effective in many application areas. However, these mathematical models, 

algorithms and results are not easy to understand. For better applying this kind of 

algorithms in practice, we investigate the visualization mechanism and propose a set 

of visualization algorithms to provide a visualization support for various 

applications that are based on mathematical algorithms. 
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In this work, we generalize the web page community construction as a special 

case in information retrieval, and extend the mathematic algorithms, especially the 

SVD based algorithms, to the conventional text information retrieval. As in the web 

community construction, the SVD-based text information retrieval algorithm reveals 

the higher-order structure of the data in the database and implements intelligent 

retrieval. A set of algorithms is proposed to provide visualization support for this 

kind of application. The visualization algorithms could also be smoothly applied to 

web applications. The feasibility of the proposed visualization algorithms is 

demonstrated in the prototype implemented in Java.  

 

9.1.4 Object-Oriented Data Model for XML Documents 
 
In order to enable our research to cover another important type of web data - XML 

document, which is now becoming a new standard for data representation and 

exchange on the Internet, we propose an object-oriented data model for XML data, 

the object representation model (ORM), to support semantic information extraction 

and XML data management. A set of rules and algorithms is established for 

transforming XML data (DTD, XML document with or without DTD) into this 

object-oriented data model. The DTD-tree for DTD is also proposed to describe 

logical structure of a DTD. It also can be used as an API for processing DTD, such 

as transforming a DTD document into the ORM.  

The ORM models logical relationships among the elements in XML documents, 

and capsulizes elements of XML data and data manipulation methods in a uniform 

structure. The logical organization of the objects in the ORM makes it easy to design 
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application-specific algorithms for various XML based applications. With this data 

model, semantic meanings of the tags (elements) in XML data can be extracted for 

further research in XML data management and information retrieval, such as 

community construction for XML data.  

 

9.2 Possible Future Work 
 
Some possible means of extending the research presented in this dissertation are 

given below: 

 

• For eliminating noise pages in Chapter 3, the root set of pages is considered as 

topic-related, which is reasonable in most cases especially with more and more 

precise search engines emerging. In practice, however, the root set could also 

contain noise pages though the possibility is small. The hyperlink-based noise 

pages elimination techniques could also be used to prune these (at least most) 

noise pages and select a subset (with smaller size) of the root set, which is more 

related to the query topics, as a better reference system to identify noise pages in 

the base set. This treatment would reduce the computing cost of the current noise 

page elimination algorithms. On the other hand, although the eliminated pages 

are considered as topic unrelated, they are usually in dense connection (linkage) 

and maybe imply other useful web communities. The further treatment of the 

eliminated noise pages would lead to finding more useful information about the 

query topics or roughly clustering the searched pages. Following this direction, 

other researches could be carried out, such as proposing more precise clustering 

algorithms for these roughly clustered pages. 
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• The algorithms for finding relevant pages in this work, as well as the previous 

work in this area, find relevant pages statically, as they only deal with the "static" 

links among the pages. If they are implemented on the top of a hyperlink server 

such as the Connectivity Server [BBH+98], they are at most semi-dynamic since 

the hyperlink information they use depends on the information update in the 

hyperlink database of the server. Extending the current algorithms to deal with 

dynamic links, such as those produced by a CGI script, is a valuable and 

challenge problem. For the LLI algorithm in Chapter 4, the impact of choosing 

approximation matrix (i.e. the approximation parameter k) to the final results is 

also worthy of study in the future, although we choose ε = 0.5 to determine k in 

this work. The page similarity in the LLI algorithm could also be adapted for 

page clustering if the number of pages to be clustered is not huge. Assigning 

more semantics to hyperlinks, especially for XML documents, is another 

promising approach to increase the effectiveness in finding relevant pages 

(documents), clustering pages (documents) and so on. 

 

• For the visualization support of information retrieval, further research on visual 

reasoning could be carried out to make the system more ‘intelligent’ to guess the 

user’s intention by using the similar mathematic algorithms in information 

retrieval. Moreover, applying caching techniques to increase the search 

efficiency of the visualization is also a promising research direction, especially 

for web information search. 
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• Although hyperlink analysis and hyperlink-based algorithms is successful in 

many cases, such as web page clustering, the hyperlink only partially conveys 

semantics among the web pages. A proper combination of effective page 

hyperlink analysis with effective page content analysis might be another 

approach to greatly increase the effectiveness and efficiency of web data 

relationship discovery, such as web page clustering. Meanwhile, some problems 

in hyperlink analysis still remain to be solved, such as how to reasonably and 

precisely determine the page correlation factor F in Chapter 6. More large-scale 

user experiments need to be conducted to further demonstrate the feasibility of 

the proposed algorithms. The page similarity in Chapter 6 could also be applied 

to other web-related areas, such as web search improvement, relevant web page 

finding and XML document clustering. 

 

• The object representation model for XML data should be able to deal with the 

extending capability of XML, such as addressing and linking, internal and 

external entities [Berg00] [McG98]. The ORM could be improved in the further 

work to deal with such cases. Other directions of the further work with this data 

model are: how to design effective algorithms for managing and accessing ORM 

objects, how to define the issues about the application requirements based on the 

ORM, how to modify the ORM to meet the application requirements, and how to 

combine the strategies for HTML data with this model to construct XML 

communities. It is another promising research direction to combine the ORM 

with XML document clustering algorithms to implement efficient XML data 

storage and management.  
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• The ideas, research results, as well as other future research results related to the 

work in this dissertation, could be integrated into web data management systems 

to improve the effectiveness and efficiency of the systems, and to provide 

various supports for web-based applications, such as e-commerce.  
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