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Abstract

Many materials (e.g., gels, colloids, concentrated cohesive sediments, etc.) ex-

hibit a stable solid form at rest, and liquify once subjected to an applied stress

exceeding a critical value – a yield-stress behaviour. This can be qualitatively

explained by the forming and destruction of the fluid microstructure [1], and

it may be modelled as a thixotropic and yield stress material. In this paper,

we propose a mesoscopic model which is able to mimic a thixotropic and yield

stress behaviour using a particle-based technique known as dissipative parti-

cle dynamics (DPD). The DPD technique satisfies conservation of mass and

momentum and it has been applied successfully for a number of problems in-

volving complex-structure fluids, such as polymer solutions, suspensions of rigid

particles, droplets, biological fluids, etc. In this work, an indirect linkage dissi-

pative particle model (ILDP) is proposed based on qualitative microstructural

physics, which results in a non-Newtonian fluid with observed yield stress and

thixotropic properties. The model comprises of two types, or species, of DPD

particles – with only repulsive conservative force between the same species, and

with repulsive force at short range and attractive force at long range between

different species. Numerical results show that the proposed DPD fluid can rep-

resent some observed complex behaviours, such as yield stress and thixotropic
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1. Introduction

Many engineering flow processes involve complex structure liquids, for ex-

amples, foodstuffs, polymers, cosmetic products, crude oil, cohesive sediment

mixtures, etc. Such complex liquids hardly flow if the applied load is lower than

a certain value, but they are liquefied and flow easily at loading higher than this5

value. This critical stress threshold associated with this loading is called the

“yield stress”, and there are experimental evidences that these fluids do flow in a

very viscous manner at a stress level lower than the yield stress, thus supporting

modelling of the true fluid-to-solid transition by a very viscous transition at low

strain rates. Moreover, the fluid at this low stress level is thixotropic as well;10

we refer the reader to an excellent recent review by Bonn [2] on this topic. The

current view of this research area, which we share, of the yield stress as a very

viscous transition remains an attractive and useful engineering idea, and that it

is a result of a network microstructure generated by inter-particle interactions,

which may rupture into smaller clusters by large enough applied stresses and15

then restores at a low stress level. The network needs time to build up and to

disintegrate, and the rheology of the mixture therefore has a time scale; this

results in a macroscopic thixotropic and yield stress behaviour, which has been

considered one of the most complex phenomena in rheology [1]. For example,

in cohesive sediment mixtures, which provide the motivation of this work, clay20

particles flocculate and then break up under flow conditions. At a low concen-

tration some clay particles may form clusters and once the concentration reaches

a threshold value, those clusters link up and form a network, leading to a yield

stress behaviour.

In continuum mechanics, such yield-stress materials are modelled by a rel-25
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evant constitutive equation (the simplest model would be the Bingham model

[3] or one of its variants). These models, representing a true solid-to-fluid tran-

sition behaviour without thixotropic complications, are transformed into sets of

algebraic equations by means of discretisation and their flows are then solved

numerically by traditional numerical methods, such as finite volume (FVM),30

finite element (FEM) or boundary element (BEM) methods. Because of the

solid-to-fluid transition at small applied stresses, a “numerical singularity”, as-

sociated with the indeterminate nature of the stress, occurs at low strain rates

when dealing with these types of constitutive equations. To mitigate this numer-

ical difficulty, Papanastasiou [4] proposed a modified version of Bingham model,35

which is in fact a generalised Newtonian model with high viscosity at low enough

strain rate; thus replacing the transition to solid-like behaviour by a very viscous

behaviour at low strain rates. Mathematically, Papanastasiou’s model may be

regarded as a regularisation of the Bingham model [5]. Papanastasiou’s model

has been widely used in many engineering applications [6]. However, it has been40

pointed out that, in practice, many substances, such as food products, crude

oils, cohesive sediment mixtures display flow characteristics that may not be de-

scribed by the Bingham models, or its viscous (regularised) approximations (we

refer to these models as Bingham-type models). This is primarily because their

apparent viscosities do not only depend on applied shear stresses, but also the45

duration for which the fluids have been subjected to the flow processes, as well

as their previous kinematic history. Those fluids may be classified as thixotropic

fluids. To describe the behaviour of thixotropic fluids, another approach which

based on structural kinematics theory has been proposed (for instance, [1]; [7];

[8]; [9]). In these models, the time dependent rheological behaviour is quanti-50

fied by a non-dimensional structural parameter λ. The scalar λ indicates the

integrity of a particulate network, i.e., λ = 0: no network and λ = λ0: a net-

work is fully formed (λ0 is the maximum value of λ, usually set to unity). The

viscosity and the stresses are thus functionals of λ(t); t is the time. Both the

Bingham-type (now depend on λ(t)) and a relevant thixotropic model (for λ(t))55

are simultaneously solved together with the Navier-Stokes equations to obtain
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a specific solution, subjected to a relevant set of boundary/initial conditions.

In the last two decades the DPD method [10] has been developed as an alter-

native and promising mesoscopic approach for modelling complex fluids. Differ-

ent from spatial macroscopic schemes, the DPD method is originally based on60

a coarse-grained representation of the fluid and everything in it. DPD method

often looks similar to Molecular Dynamics (MD), with built-in thermal equilib-

rium via a fluctuation-dissipation theorem [11]. However, DPD particles interact

through soft potentials and thus the simulation can be carried out on length and

time scales far beyond those associated with MD. It has been shown that mean65

quantities (e.g., density and linear momentum) formed from the microstate of a

DPD system (consisting of DPD particles positions and velocities) satisfy mass

and momentum conservations [12]. Therefore, the method may be regarded

as a particle-based method for solving complex fluid problems [13]. From this

point of view, a single DPD particle may be regarded as similar to a smoothed70

particle hydrodynamics (SPH) particle (in its implementation), in which a cer-

tain volume of fluid is represented as a Lagrangian particle in the SPH method.

Especially, in one of DPD variants called the smoothed DPD method (sDPD)

[14], the interaction forces have a specific form which comprised from the SPH

discretisation of Navier-Stokes equations. Many applications of DPD method75

or its variants in the simulations of complex fluids have been reported, e.g.,

sphere colloidal suspensions ([15]; [16]; [17]; [18]; [19]; [20]), colloidal suspensions

of spheres, rods, and disks [21], viscoelastic fluid [22], ferromagnetic colloidal

suspension [23], magnetic colloidal dispersions [24], soft matter and polymeric

applications [25], [26], lipid bilayer [27], flows of DNA suspensions [28], poly-80

mer chains [29], red blood cell modelling [30], [31]; this list is not meant to be

exhaustive.

The continuum approaches including Bingham-type models and/or struc-

tural kinetics models may be classified as top-down approach, which starts with

the macro behaviour of the systems. In this paper, we report a DPD method,85

as a bottom-up approach, built on a microstructure interaction model, which

yields the desired observed macro properties. An indirect linkage model for
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dissipative particles through a micro interaction forces is proposed to mimic

the formation of particulate network in a natural way. The continual forming,

breaking and recovering of the microstructures results in yield stress together90

with the desired thixotropic behaviours.

The number density, fluid velocities and stresses in our DPD model are

calculated by ensemble averaging the instant data (e.g., particle configuration,

particle velocities, etc.), or by time-averaging over a number of time steps (with

the assumption of the ergodic theorem). The stress-strain rate relation of the95

fluid is studied for Couette and Poiseuille flows. It is found that the numer-

ical results can fit well to Papanastasiou’s model at steady state. The DPD

model also replicates thixotropic behaviour in a natural way, in unsteady flows,

through the continual forming and rupturing of DPD microstructure network

under applied stresses.100

The remainder of the paper is organised in the following manner. An

overview of the standard DPD fluid is provided in Section 2. Then, Section

3 gives a brief review of Bingham model, its variants and some prominent struc-

tural kinetics models. The proposed indirect linkage dissipative model is then

presented in Section 4. Subsequently, in Section 5 and 6, a material preparing105

process is described, akin to an experimental process, and numerical results are

discussed. Section 7 gives some concluding remarks.

2. Dissipative Particle Dynamics (DPD)

2.1. DPD fluid

DPD is a particle-based simulation method that satisfies mass and momen-

tum conservations. It is a promising method, originally devised for simulations

at mesoscopic length and time scale for material with a complex microstructure.

The DPDmethod produces field results that satisfy the Navier-Stokes equations,

in the same manner of other standard continuum methods (e.g., FEM, FVM,

BEM), and therefore it can be regarded as a particle-based discretisation of the

Navier-Stokes equations in mesoscale where thermal fluctuations are accounted
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for. In DPD method, the fluid and all its component phases (if any) are defined

by the assemblage of N particles, each of mass mi, i = {1, 2, . . . , N} located at

position ri, with velocity vi. With the assumption of identical mass, without

much loss of generality, mi = m, the DPD particles interact with each other

and undergo their Langevin motions [32]:

dri
dt

= vi, (1)

m
dvi

dt
= fi + fe, (2)

where fe is external forces on particle i (e.g., gravity force), fi = Σj 6=ifij (fii = 0)

the interaction force on particle i by all other particles j, pairwise additive. It is

noted that the sum runs over all other particles within a certain cut-off radius

rc. The interaction force fij consists of three parts, a conservative force, fCij , a

dissipative force, fDij , and a random force, fRij :

fij = fCij + fDij + fRij . (3)

Expressions of interaction forces are listed in Table 1 in which aij is conservative110

force strength; rij = ri − rj ; rij = |rij |; r̂ij = rij/|rij | ;w
C , wD, wR weight

functions of conservative, dissipative and random forces, respectively; vij =

vi − vj ; γ a coefficient related to the system viscosity; ξij a Gaussian variable

with zero mean and variance equal to δt−1, where δt is the time step, and σ is

the magnitude of the random force.

Table 1: List of interaction forces and their formulas. Note that the balance between dissi-
pative and random forces must obey the fluctuation-dissipation theorems σ =

√
2γkBT and

wD = (wR)2 [32].

fij Weight function Form
fCij wC(rij) = 1−

rij
rc

aijw
cr̂ij

fDij wD(rij) =
(
1−

rij
rc

)k

−γwD(r̂ij · vij)r̂ij

fRij wR(rij) =

√(
1−

rij
rc

)k

σwRζij r̂ij
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2.2. Conservation properties115

From the system state, one can define the local fluid density:

ρ (r, t) =

〈
∑

i

mδ (r− ri)

〉
= md (r, t) , (4)

where the symbol 〈〉 indicates an ensemble average (which can be equated to

a suitable time average over some iteration steps by the ergodic theorem), and

d (r, t) is the number density. The local linear momentum is calculated by

ρ (r, t)u (r, t) =

〈
∑

j

mvjδ (r− rj)

〉
. (5)

These quantities have been shown to satisfy conservation laws ([12]; [32]):

∂

∂t
ρ (r, t) +∇ · (ρ (r, t)u (r, t)) = 0, ∇ = ∂/∂r, (6)

and
∂

∂t
(ρu) +∇ · (ρuu) = ∇ · σ. (7)

Thus, DPD may be regarded as a particle-based method for solving continuum

flow problems Eqs.(6)-(7). The macroscopic properties including fluid density ρ,

stress σ and consequentially viscosity µ are calculated by appropriate averages

over all sampled data in each bin. The relevant stress tensor σ is calculated by

Irving-Kirkwood expression ([33]). In one dimensional shear flow, the fluid vis-120

cosity can be found from the shear stress and the shear rate, µ = Sxz/γ̇. In this

particle-based point of view, a DPD particle may be thought of as a volume of

fluid with a built-in behaviour (e.g., a non-Newtonian viscous compressible fluid

volume), rather than a cluster of fluid molecules. Yield stress and thixotropic

behaviours may also be captured by this particle-based method. The nonlinear125

relationship between stress and strain rate needs not to be specified a-priori,

but can be obtained after post-processing step.
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3. Brief review of yield stress fluid models

3.1. Bingham models

In continuum mechanics, Bingham plastic is a non-Newtonian fluid be-130

haviour characterised by the existence of a threshold stress called the apparent

yield stress (S0), which must be exceeded for the fluid to deform (shear) or flow.

Such behaviour can be modelled by a simple Bingham rheological constitutive

model ([3], [5]):

S = 2

{
µ+

S0

II
1/2
D

}
D, |S| > S0. (8)

In the above, S is the extra stress; II
1/2
D denoted the generalised strain rate; IID

the second invariant of strain rate tensor D,

D =
1

2

(
∇u+∇uT

)
, (9)

where ∇uT the velocity gradient tensor (by definition). |S| the magnitude of

the extra stress tensor and is defined as

|S| =

√
1

2
[S : S]. (10)

Below the stress threshold, the stress is inderterminate, and while this is an

engineering simplification, this discontinuity in behaviour is a major problem

in numerical implementation. Papanastasiou [4] proposed a modified version

of Bingham model to overcome this numerical difficulty by introducing an ex-

ponential regularisation for the stress and strain rate relation in Eq.(8); more

details of this regularisation can be found in [5]. Here the stress is written as

S = 2




µ+

S0

[
1− e

(

−nII
1/2
D

)
]

II
1/2
D





D, (11)
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where n is a stress growth parameter which determines how fast the devel-135

opment of stress. It is noted that n does not have physics meaning, although

it has the dimension of time, and it is set to a large enough value that does

not cause numerical instability. In one dimensional problems, II
1/2
D becomes the

shear rate γ̇. At high shear rate where the second term in the curly brackets

approaches zero, this model asymptotes to 2µD, a Newtonian fluid with viscos-140

ity µ. At low strain rate, the stress asymptotes to 2(µ+ nS0)D. Consequently,

for large n, this fluid model is close to Bingham model, in the sense that the

deformation at low strain rate is small because of the large viscosity, but the

true solid-to-fluid transition (as embodied in the Bingham model) is lost, and

is now replaced by a very viscous transition.145

3.2. Structural kinetics model

Qualitative concept of particulate networks

A well-dispersed system, such as a dense cohesive sediment suspension, dis-

plays rheological characteristics which cannot be simply described by mathe-

matical expression of the form of Eqs.(8) or (11). In fact their viscosity and150

yield stress are not only functions of the applied shear rate (γ̇), but also their

previous shear history.

Similar to Bingham-type fluids, this type of non-Newtonian fluids exhibit a

yield stress S0: it will flow in a whole like a solid body when externally applied

stresses are less than S0. Naturally, when the magnitude of the external stress155

exceeds S0, the fluid may exhibit shear-thinning effect. Such a fluid at rest

consists of small attractive particles which form a cluster to produce a structure

network of sufficient connectivity - this structure can resist any applied stress

less than S0 without deformation. In contrast, if the applied stress magnitude

is greater than S0, the structure network breaks down and thus results in a160

decreasing resistance to deformation and flow. The reversed may also happen,

i.e., the fluid may restore some of its network connectivity, and the yield stress

value of the recovered state may be equal or lower than that of the initial state.

Thixotropy model
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To quantify the structure dependent rheological behaviour, a non-dimensional

structural parameter λ has been used to characterise any fluid parameter, for

example viscosity or yield stress may be expressed as functionals of this parame-

ter, i.e., µ(λ(t)), or S0(λ(t)) [9]. This parameter is a measurement of the degree

of structure in the dispersed system, having a value in the range 0 (fully broken)

to λ0 (fully structured), commonly assumed to be unity. In a one-dimensional

problem, a simple model of λ’s evolution may be described by a first-order rate

equation:
dλ

dt
=

∂λ

∂t
+ ux

∂λ

∂x
= a(λ0 − λ)− bγ̇λ, (12)

where ux the x−component of the fluid velocity vector (the only relevant compo-

nent in this 1D problem); a and b two coefficients determined from experiments.

The first term on the right side of (12) represents the network coalescence with

the associated constant a; and in the second term, the constant b represents

the disintegration of the particulate network due to the flows. The equilibrium

value of the structural parameter λe can be obtained by equating the right side

of (12) to zero:

λe =
aλ0

a+ bγ̇
=

λ0

1 + βγ̇
, (13)

where β = b/a.165

A rheological equation for a thixotropic yield stress fluid has been proposed

by [9] (in 1D)

Sxz = (λ0 + λ− λe)S0 + (µ∞ + cλ)γ̇. (14)

At equilibrium, when the rate of disintegration equals the rate of recovery, the

equilibrium flow (EF) curve is characterised by evaluating Eq.(14) at equilibrium

point λ = λe and using the relation (13) :

Se
xz = λ0S0 + µ∞γ̇ +

cλ0γ̇

1 + βγ̇
. (15)

Thixotropic fluids may exhibit a family of stress/strain rate curves called

constant structure (CS) curves [34], each one corresponding to a (constant) value
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of its structure parameter. The EF curve and CS curves intersect at points on

which the structure is equilibrium (Figure 1). Consider a CS curve which cut

across the EF curve at equilibrium point E. At points above the EF curve (e.g.,

point A), if the shear rate is kept constant, the structure will break resulting in a

reduction in the shear stress SA to equilibrium value SA
e . In contrast, at points

below the EF curve, such as point B, the structure will continually build up and

the shear stress SB would raise until the system reaches the equilibrium state

(S = SB
e ). When the EF curve is known and can be described by Eq.(15), a

simple procedure allows the determination of the CS curves (either numerically

or experimentally). For example, consider an ith data point of the EF curve,

one has a CS curve which have a single value of structural parameter λi. The

value of λi is the same of λE at the crossover point of this CS and the EF curves.

Substitution of this value into Eq.14 gives the CS curve of the ith point,

S = (λE + λeβγ̇)S0 + (µ∞ + cλE)γ̇. (16)

4. Proposed indirect linkage dissipative particle (ILDP) model

Inspired from this qualitative concept of a particulate network, we propose

the following DPD model consisting of two types DPD particles, represented by

the ensemble of N = N (a) + N (b) particles, each of the set of N (s) particles

represents number of particles in each species s = a or b of the fluid. Among170

DPD(a) and DPD(b) particles, there are three types of interactions: DPD(a) to

DPD(a) or (a,a), DPD(b) to DPD(b) or (b,b), and DPD(a) to DPD(b) or (a,b).

Here f
(a,b)
ij is the pairwise additive interparticle force by particle j(b) ∈ N (b)

on particle i(a) ∈ N (a) (the notation i(a) reads particle i in species a). To

avoid a phase separation between (a) and (b), we propose an indirect linkage175

by introducing cohesive forces between DPD(a) and DPD(b) particles. The

indirect linkage dissipative particle model (ILDP) thus comprises from (a, a) or

(b, b) interactions with repulsive force (the “standard” model for DPD fluid), and

long-range attractive plus short-range repulsive ((a, b) or (b, a)) - the network of
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Figure 1: Equilibrium flow curve (solid line) and constant structure curves (dash lines). The
arrow indicates that the structural levels increase (not to scale).
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DPD(b) can be encouraged to form by adding a long-range attractive component180

to the conservative forces, which is taken from [35]. It is important to note that

DPD(b) particles attract DPD(a) directly, and DPD(b) indirectly. DPD(b)

particles form an indirect network though layers of DPD(a) particles (Figure

2). In this model, we view DPD(a) and DPD(b) as a solvent and suspended

phase, respectively.185

Figure 2: Indirect linkage DPD network: Microstructure of the proposed model-two species of
DPD (DPD(a) (blue colour)) and DPD(b) (red colour)). A DPD(b) attracts some DPD(a)

within its long range (circles of larger radius) and repulses other DPD(b) and DPD(a) in
short range (circles of smaller radius).

Assuming that each DPD particle of a species s has a mass of m
(s)
i located

at position r
(s)
i , with velocity v

(s)
i . The DPD particles interact with each other

in their Newton’s second law motions:
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DPD(a):

dr
(a)
i

dt
= v

(a)
i , m

(a)
i

dv
(a)
i

dt
=

∑

j 6=i

f
(a,b)
ij +

∑

j 6=i

f
(a,a)
ij . (17)

DPD(b):
dr

(b)
i

dt
= v

(b)
i , m

(b)
i

dv
(b)
i

dt
=

∑

j 6=i

f
(b,a)
ij +

∑

j 6=i

f
(b,b)
ij . (18)

Similar to the conventional DPD, fij consists of three parts, a conservative

force fCij , a dissipative force fDij , and a random force fRij . In Eqs.(17)-(18), the190

sum runs over all other particles except i (note, by definition f
(s,s)
ii = 0). These

forces are built-in with a certain cut-off radius rc; outside this cut-off radius,

the interactions are zero. Here one may allow the cut-off radius to be different

for different type of forces. The dissipative and random forces are taken the

same forms listed in Table 1. Conservative force fCij of DPD(a) and DPD(b)
195

interaction is calculated according to the model proposed by [35]

fCij = −aij(Aw
Cr(r, rr)−BwCa(r, ra))r̂ij , (19)

where A and B are coefficient of wCr(r, rr) and wCa(r, ra), respectively. rr

is cut-off radius of repulsive component and ra is that of attractive component

and

wCr =





18
(

A
r3r

− B
r3a

)
r2 − 12

(
A
r2r

− B
r2a

)
r, r < rr

2 (a)

−6
(

A
r3r

+ B
r3a

)
r2 + 12

(
A
r2r

+ B
r2a

)
r − 6 A

rr
, rr

2 ≤ r < ra
2 (b)

−6
(

A
r3r

− B
r3a

)
r2 + 12

(
A
r2r

− B
r2a

)
r − 6

(
A
rr

− B
ra

)
, ra

2 ≤ r < r0 (c)

0, r > r0 (d)

(20)

wCa =





0, r < r0 (a)

−6
(

A
r3r

− B
r3a

)
r2 + 12

(
A
r2r

− B
r2a

)
r − 6

(
A
rr

− B
ra

)
, r0 ≤ r < rr (b)

6 B
r3a
r2 − 12 B

r2a
r + 6 B

ra
, rr ≤ r < ra (c)

(21)

14



where value of r0 is the solution of quadratic equation (20(c)).

The conservative, dissipative and random forces are taken as follows

f
C(a,a)
ij = f

C(b,b)
ij = fCr

ij , (22)

f
C(a,b)
ij = f

C(b,a)
ij = fCr

ij + fCa
ij , (23)

f
D(a,a)
ij = f

D(b,b)
ij = f

D(a,b)
ij = fDij , (24)

f
R(a,a)
ij = f

R(b,b)
ij = f

R(a,b)
ij = fRij . (25)

With the same mass, i.e., m
(a)
i = m

(b)
i = m, Eqs.(17)-(18) can be rewritten as

m
dvi

dt
=





∑
j 6=i

(
fCr
ij + fDij + fRij

)
, i, j ∈ N (a) or i, j ∈ N (b) (a)

∑
j 6=i

(
fCr
ij + fCa

ij + fDij + fRij
)
, i ∈ N (a), j ∈ N (b) or i ∈ N (b), j ∈ N (a) (b)

(26)

where fCa
ij = aijBwCar̂ij and fCr

ij = −aijAw
Cr r̂ij .
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C ij
/
a
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Figure 3: Conservative forces with short range repulsion and long range attraction (−◦, ra =
1.0) and (−✷, ra = 1.2 ).

It can be seen from Figure 3 that the conservative force between two different
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species particles is repulsive when their separation distance is less than a radius200

value of r0, e.g., 0.5952, for A = 2, B = 1, rr = 1.0, ra = 1.2; and when their

separation distance is between 0.5952 and 1, this force describes a long range

attraction (negative). If purely repulsive conservative forces (for example, when

setting B = 0 in Eq.(19), for DPD(b)), are applied for both type particles, the

resulting DPD fluid is thus simply Newtonian. When the attractive component205

in conservative forces of DPD(b) are turned on, a structure network is formed

resulting in high DPD fluid’s resistance to applied stresses. The advantages of

indirectly linking between DPD(b) include (i) simple and straight forward to

implement, (ii) uniform distribution for DPD(a) and DPD(b) (without phase

separation), and (iii) creating a DPD structure network which results in yield210

stress and thixotropic behaviour. In next sections, numerical experiments are

carried out for this proposed model.

5. Material preparation

5.1. Pre-processing

A pre-processing program is used to generate a system which consists of215

N particles with masses m characterised by the positions xi, i = 1, N . There

are three types of particles in this list: wall, DPD(a) and DPD(b) particles.

Initially (Figure 4a), the box is filled with DPD(b) particles in the bottom and

with DPD(a) on the top. This initial distribution of these particles does not

satisfy the thermodynamic equilibrium state, and a mixing procedure is thus220

applied. At the beginning of this procedure, the particles are allowed to move

freely until a thermodynamic equilibrium state is reached and then a body force

g = (0.2, 0, 0) is applied for a hundred thousand time steps to mix DPD(a)

and DPD(b). Figure 4b shows that after mixing, the conservative interactions

produced a uniform DPD(a) andDPD(b) dispersion. The particle configuration225

is written in a data file which is then read by the DPD solver program.
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(a) (b)

Figure 4: A thick slide along the center line (−0.5 ≤ y ≤ 0.5): (a) Initial configuration of
DPD(a) (•) and DPD(b) (✷) - (b) Uniform distribution of two species of DPD, which are
obtained over the period of 100000 time steps.

5.2. ILDP micro-networks

5.2.1. No flow

Before testing, all mixtures are set to a test kinetic energy kBT = 1 and then

let it run in no-flow condition for 40000 time steps, each of 0.01, to guarantee230

that the microstructure network is fully built up. To track the formation of

the network, one may choose an ith particle of b−species and plot its position

|r| =
√
x2(i) + y2(i) + z2(i). In this test, the dispersed system is allowed to

reach equilibrium and the coefficient of attractive forces fCa are set to zero

for the first 10000 time steps. It is then turned on to activate any particulate235

network. The value of |r| and the trajectory of ith particle are plotted in Figure

5a and 5b, respectively. It is observed that the fluctuation of ith particles is

reduced dramatically when the particulate network starts to form and the ith

particle is trapped in a cage formed by its neighbouring particles, as expected.

5.2.2. Shear flow testing240

In this section, the dependence of structure to the applied shear rate is

investigated. The applied shear rate is a step function, for a time interval of

8000 time steps, each of 0.01. Initially, the DPD system is allowed to reach
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Figure 5: Structure forming: (a) The position |r| and (b) the trajectory of an ith DPD(b)

species particle, before and after the microstructure network built up.

equilibrium, the structure network is formed as displayed in Figure 6(a). Then,

a shear rate γ̇ = 1.0 is applied; Figure 6(b) shows that the structure is totally245

destroyed. In a general flow, the level of integrity of the structure network

depends on the local shear rate. After around 8000 time steps, the shear rate

is returned to zeros, and it is observed that the structure network is restored

(Figure 6(c)). Here, in order to have clearer configuration of the microstructure

for visualisation purpose a relative large cut-off radius for attractive forces is250

employed (ra = 1.33).

6. Numerical experiments and discussion

The ILDP fluid are tested in Couette and Poiseuille flows. The simulations

are carried out on two domains, of 10×10×10 and 20×10×20 for Couette flow,

and 10× 10× 10 for Poiseuille flow; the DPD parameters are listed in Table 2.255

For the conservative interaction of DPD(a) and DPD(b), we fix the repulsive

and attractive coefficients at A = 2 and B = 1, respectively (Figure 3). For
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(a) (b) (c)

Figure 6: A snapshot of structure forming at initial state (a), and its breaking under an
applied shear rate γ̇ = 1 (b), and then its reforming when the shear rate is reset to zero again
(c). It is note that only DPD(b) particles are plotted.

the dissipative force listed in Table 1 fDij , in a modified version of DPD [28],

two parameters are set as 1.0 ≤ rr ≤ 1.5 and k = 1/2, to enhance the dynamic

response. We use the same setting k = 1/2, and fix the cut-off radius value rr

at 1.0 for both DPD(a) and DPD(b). The concentration ratio, φ, represents

the amount of DPD(b) to the total mixture,

φ =
N (b)

N (a) +N (b)
. (27)

The simulation is run with 140,000 time steps in which 40,000 time steps

is used to ensure the system reaches a fully built-up structure, and after some

experiments, a time step 10−2 is chosen for all simulations. Periodic boundary

conditions are applied in x− and y−direction, i.e., particles that pass one peri-

odic face reappear in the domain at the opposite face, and therefore effectively260

an infinitely large, but periodic DPD system is being considered. In z−direction,

solid walls are represented by three layers of frozen particles. It is known that

conventional solid boundary models for DPD lead to slip at the boundary even

at moderate applied shear rate. To reduce this, a wall wetting model [36] is

employed in the Couette and Poiseuille flows to mimic a hydrophilic behaviour.265

Figure 7 shows that the non-slip boundary condition is improved with the latter
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wall model. In all the following simulations, the Verlet integration algorithm is

employed to solve Eq.(26).

Table 2: A typical DPD parameters.

aij σij γij kBT m d A B
18.75 3.0 4.5 1.0 1.0 9.8 2 1

In a manner similar to a physical experiment, here one can measure the yield

stress S0 by plotting the shear stress/shear rate curve, and then extrapolate the270

shear stress (on the Newtonian portion) onto the stress axis. This value on the

stress axis gives us an approximation to the yield stress (Figure 8).

It is noted that the effective shear rate is calculated by ignoring the first and

the last bin next to the top and bottom wall/boundaries particles. The shear

rate used for plotting the shear stress/shear rate curve is thus the actual applied275

shear rate instead of the input shear rate. From the stress values calculated by

post-processing, an average shear stress Sxz is computed and plotted against

the actual shear rate, producing the flow curve at equilibrium for a specific set

of parameters. It is useful here to use a continuum model, e.g., the Papanas-

tasiou model for correlation. The curve fitting process using the optimisation280

Generalised Reduced Gradient algorithm (GRG) is carried out to fit DPD data

into the continuum model.

6.1. Equilibrium flow curves

The range of input shear rates is γ̇ = {0.01, 0.02, 0.03, 0.05, 0.07, 0.09, 0.10,

0.15, 0.20, 0.30, 0.40, 0.60, 0.80, 1.0}, with a smaller interval at low shear rate285

for a better observation of the fluid behaviour at low shear rate. Here we let the

system reaches equilibrium and then apply a constants shear rate (Figure 9). In

this test it is noted that the steady state property of the fluid is of importance

here.

An ILDP fluid with DPD parameters listed in Table 2, φ = 0.2, and a cut-off290

radius ra = 1.3 is selected for this measurement. The viscosity as a function of
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Figure 7: Velocity profile of Couette flow of an ILDP fluid (domain size 10× 10× 10, γ̇ = 1)
with two wall models: conventional solid boundary models (−◦) and wall wetting model (−✷).
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Figure 9: Couette flows: A typical applied shear rate. It is noted that the DPD system is
allowed to reach equilibrium and the structures are fully built up after 40000 time steps.
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shear rate is plotted in Figure 10. It is known that the flow breaks down the

structure network into smaller clusters which results in reducing the apparent

viscosity and thus shear-thinning behaviour appears. Numerical data show that

viscosity decreases dramatically from 600 at applied shear rate 0.03 to 18.8 at295

applied shear rate 2.0. The Couette velocity profile, temperature and density

fluctuation are presented in Figure 11. It can be seen that linear profile of

velocity is obtained, and uniform distribution of density and temperature at the

chosen time step dt = 0.01.
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Figure 10: Couette flows (domain size 20×10×20): apparent viscosity ηa plotted as a function
of shear rate.

We give an example of using the flow curve of an ILDP fluid to model a300

foodstuff product, in this case a salad dressing. The steady shear data for
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Figure 11: Couette flow (domain size 20 × 10 × 20, γ̇ = 0.5): Profiles of velocity ux (−×),
temperature kBT (−✷) and number density d (−◦).
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this salad dressing has been obtained at temperature 295K using a concentric

cylinder viscometer (R1 = 20.04 mm; R2 = 73 mm; h = 60 mm) [37]. Table 3

shows salad dressing data with shear stresses and the shear rates normalised to

S0 = 10.1Pa, γ̇0 = 11.396s−1, respectively. The DPD data has been collected305

by the same procedure with the example above with the set of DPD parameters

listed in Table 2, φ = 0.2. The degree of fit between experiment and numerical

data is good, as shown in Figure 12.

Table 3: Couette flow: salad dressing data (dimensionless data).

γ̇/γ̇0 Sxz/S0

0.07 0.40
0.24 0.66
0.49 0.83
1.00 1.07
1.99 1.34
3.00 1.61
4.00 1.79
5.02 1.96
6.03 2.08
7.03 2.20
8.03 2.32

Numerical tests are performed on an ILDP fluid of varying kinetic energy

kBT = {0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0}. Smaller value of kBT reduces310

the fluctuations in the systems. Non-linear shear stress/shear rate curves are

plotted in Figure 13, at different kBT . Clearly, the whole family of curves shifts

up (i.e., increasing the parameter n in Papanastasiou’s model) with decreasing

the kinetic energy kBT . It is observed that below the value kBT of 0.7, numerical

results show that the fluid is not flowing.315

We also match the DPD behaviour with the Papanastasiou’s model (11).

Figure 14 shows the comparison. It can be seen that the data obtained by the

DPD model can be fitted well to Papanastasiou’s model - the GRG agorithm

provides a viscosity of 12.21, stress growth parameter n = 20, and a yield stress

of S0 = 9.98.320
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Figure 12: Couette flow: Shear stress/shear rate data for salad dressing data; −✷ experiment,
−◦ DPD results.
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Figure 13: Couette flow: Non-linear shear stress - shear rate behaviour at different values of
kBT = {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 2.0}, from top to bottom.
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Figure 14: Couette flows: DPD data (Table 2, φ = 0.2, ra = 1.3)-solid line-can be fitted well to
Papanastasiou’s model-dash line-(Eq.11), with a low-shear viscosity of η+nS0 = 211.81 (slope
of the rheogram when shear rate smaller than 0.1) and a high-shear viscosity of η = 12.21
(slope of the rheogram when shear rate larger than 0.1)(all dimensionless).

6.1.1. Effect of range of attractive force

In this part, ra, the parameter controlling the cut-off radius of attractive

forces between two species is investigated to observe its influence on the macro-

scopic behaviour. The flow curves for ra from 1.1 to 1.32 are shown in Figure 15.

For the case that ra = 1.1, 1.2, a small value of attractive cut-off radius, corre-325

sponds to insufficient bonds needed to form the microstructure network. Hence

the fluid behaves such a Newtonian-like fluid. It can be seen from the Figure 15,

the fluid behaves more viscous at small shear rate for a larger attractive cut-off

radius. This is understandable as a larger cut-off radius for attractive force

means a larger effective zone, the DPD(b) particles can attract more neighbor-330

ing DPD(a) particles, therefore increasing numbers of bonds, making the fluid

harder to flow. This would make yield stress a higher value, as a larger stress

is needed to break these bonds in order to make the fluid start flowing. The

plastic viscosity is also increased due to the fact that the particulate network

keeps growing which results in more resistant to the flow. However, it should335
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be noted that if ra is increased too large (e.g. ra/rr ≥ 1.3 for φ = 0.2 and DPD

parameters listed in Table 2), some bulky clusters may be formed which make

the system non-homogeneous.
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Figure 15: Couette flow: Non-linear shear stress - shear rate behaviour at different values of
ra = {1.32, 1.3, 1.28, 1.26, 1.2, 1.1}, from top to bottom.

6.1.2. Effect of concentration ratio, φ

The concentration φ is increased from 0.05 to 0.2 and the result is presented340

on Figure 16. As expected, at low concentration of DPD(b) particles, the fluid

behaves like a Newtonian fluid as the connections between two species are not

sufficient to create a particulate network. Again, at larger concentrations of

DPD(b) particles, the fluid behaves more like a very high viscous material at

small shear rate, thus is leaning towards a Bingham plastic material. Due to345

the increasing amounts of interaction among particles, more bonds are formed,

thus hinder the flow. This structure also results in larger stress needed to cause
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the material to shear, i.e., larger stress for flow to start, thus a higher yield

stress trend is observed. It is observed that if φ is roughly larger than 0.2 with

ra = 1.3 the material become too viscous to have a proper flow.350

However, one may expected that a smaller ra allows a larger range of φ avail-

able for the model. In an attempt to verify this, some numerical experiments

are carried out for φ = 0.28 and three values of ra including {1.23, 1.24, 1.25}

(smaller than 1.3). From Figure 17, at ra = 1.25, the fluid shows a clear non-

linear behaviour from the shape of the flow curve, and resembles a pseudo-yield355

stress material. Thus with a concentration φ = 0.28, a decreasing of ra roughly

from 1.3 to 1.25 is needed to obtain a proper flow. It can be seen that with

material of DPD parameters φ = 0.28, ra = 1.25, the shear stress versus shear

rate curve exhibits clearer yield stress behaviour than that of φ = 0.2, ra = 1.3

(lower concentration but higher attractive cut-off radius).360
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Figure 16: Couette flow: Non-linear shear stress - shear rate behaviour at different values of
φ = {0.200, 0.175, 0.150, 0.125, 0.100, 0.050}, from top to bottom.
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Figure 17: Couette flow: Non-linear shear stress - shear rate behaviour of φ = {0.28} and
ra = {1.23, 1.24, 1.25}.

6.2. Constants structure curves

In this section we investigate the transient response of the ILDP fluid, shown

in Figure 18, where an overshoot in the shear stress can be observed. It is noted

that there is no overshoot when the attractive force component is set to zero

(i.e., when B = 0). The ILDP yield stress fluid is also thixotropic and can be365

represented by a family of constant structure (CS) curves, in the same manner

as described by [9] and [34].

To measure the CS curves, we carry out a step-change in a shear rate exper-

iment (Figure 19), as suggested by [34]. It is known that each reference shear

rate has one structure level corresponding to a CS curve; therefore, the test is370

carried out by choosing one reference shear rate and then increase or decrease

around this reference value. For example, the ILDP fluid is placed between two
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Figure 18: Thyxotropic behaviour: Time response of ILDP fluid (−◦) and that of a DPD
Newtonian fluid (−×) in a simple shear flow with a constant shear rate γ̇ = 0.3.
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Figure 19: Thyxotropic behaviour: Shear rate experiments with step-change to obtain the
family of constant structure curves.
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parallel plates and subjected to a reference shear rate γ̇ = γ̇r until the equilib-

rium state is reached. A higher shear rate γ̇ = γ̇1 is then applied and the peak

value of shear stress S1 is noted before γ̇ is set back to γ̇r. The same procedures375

are carried out with γ̇ = {γ̇2, γ̇3, . . . , γ̇n} and S = {S2, S3, . . . , Sn} are noted.

The CS curve for the shear rate γ̇r is the plot of S versus γ̇. In this report,

we repeat this procedure for three reference shear rates γ̇r = {0.05, 0.36, 1.91}

and then plotted the set of CS curves. To quantify the time dependent rheo-

logical behaviour, the non-dimensional structure parameter λ as introduced in380

[9] is adopted. Here the maximum value of the degree of structure λ0 is set

to one (i.e., fully structured); the value of λe of each reference shear rate is

determined from Eq.13. To construct the CS curves in Toorman’s model (16),

there are four parameters S0, µ∞, c and β are needed. By fitting, one can find

these four parameters S0 = 5.13, µ∞ = 12.16, c = 73.57 and β = 60.57 from the385

Bingham flow curve with a high shear viscosity of 11.66 and a yield stress of

6.72 (which corresponds to a DPD fluid having parameters listed in Table 2 and

ra = 1.24, φ = 0.4). The fixed value of λi on a CS curve is to be identified as

λE at the crossover point between this CS and the EF curves. A substitution

of those values (S0, µ∞, c, β) and λi of each CS curve in Eq.16 give a family of390

CS curves.

In Figure 20, a comparison of the DPD data and CS curves obtained from

Toorman’s model is shown. It can be seen that the ILDP fluid responds in a

similar manner to Toorman’s model for a structure dependent thixotropic fluid.

6.3. Poiseuille flow395

In this part, we explore ILDP fluid in Poiseuille flow. As shown in Figure

21, an ILDP fluid is placed between two parallel plates under a body force field

g = (gx, 0, 0) to simulate Poiseuille flow (in the x−direction). Periodic boundary

conditions are applied to fluid boundaries in the x− and y−directions. Velocity

component in x−direction, ux, is plotted versus z−coordinate to construct the400

velocity profile. z0 is the transition line at which the material yields.

We consider the same ILDP fluid with parameters tabulated in (Table 2).
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Figure 20: Shear stress plotted as a function of shear rate: constant structure curves (CSC).
Dash line: constant structure curves obtained from DPD data for reference shear rates γ̇r =
0.05(−◦), 0.36(−✷), 1.91(−∗) (from top to bottom); solid line: Toorman’s model.
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Figure 21: Poiseuille flow between two parallel plates: unyield and yield regions for velocity
profile ux along z−direction.

Figure 22 provides the plot of ux with respect to the applied body force gx = 0.3.

As expected, the velocity profile of ILDP fluid (Figure 22b) is no longer parabolic

as that of DPD-Newtonian fluid (fCa = 0, Figure 22a). The plugged flow405

region near the centre is clearly visible - in this region the shear rate is low,

consequentially the applied stress is smaller than the yield tress S0 leading to a

plugged flow.

Comparison velocity profile to the analytic solution of Bingham

model: with a body force of gx = {0.1, 0.2, 0.3, 0.4, 0.5}, the phase transition

point z0 changes from solid to liquid regime. With larger body force, the velocity

profile becomes more parabolic, with a smaller plugged (no-yield) zone. At large

enough pressure gradient, the plugged zone reduces to zero indicating that the

applied stresses are large enough to break all particulate structures. We note

that the analytical solution of non-dimensional Bingham model can be written
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Figure 22: Poiseuille flow: Average velocity ux : (a) DPD-Newtonian fluid−◦ (fCa = 0) - (b)
ILDP fluid−✷ (Table 2, φ = 0.2).

as [38], [5]

ux =
1

2
gx(H

2 − z2)−Bn(H − z) z0 < z < H (28)

ux =
1

2
gx(H − z0)

2 0 < z < z0, (29)

The phase transition point is determined by z0 = Bn/gx (Bn the Bingham

number; gx the non-dimensional pressure gradient). It can be seen that the line

z = z0 is the threshold between the pre- and post-yield zones and it can be

determined simply by tracking the point when the applied shear stresses larger

than yield stress value S0. For example in Figure 23, the ratio |Sxz/S0| is larger

than one at position z = 0.13, one can consider the line zc = 0.13 the phase

transition line. Based on the analytical solution at the plateau zone, one can

determine the value z0 from the plug zone:

ux

gx
=

1

2
(H − z0)

2. (30)
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Figure 23: Poiseuille flow: Average velocity ux (−✷) and variation of |Sxz/S0| (−∗)across
the channel the x−component of applied body force 0.8.
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This equation can be rewritten as

z0 = H −

√
2
ux

gx
. (31)

The maximum value of velocity ux, the x−component of body force gx

and the yield line z0, calculated from Eq.31, are listed in Table 4. The non-410

dimensional velocity profiles of ILDP fluid and the analytical solution for Bing-

ham number Bn = 0.2, 0.22, 0.25, 0.29, 0.34 are shown in Figure 24. It can be

seen that the ILDP results are comparable to those of analytical solutions. How-

ever, it should be noted that at the transition zones, the ILDP fluid exhibits a

“softer” transition than that of a Bingham fluid (i.e., representing a transition415

here between high and low viscous flow regimes rather than the solid to liquid

regimes transition in a truly yield stress fluid).

Table 4: DPD Poiseuille flow: maximum velocities with respect to gx = {0.2, 0.3, 0.4, 0.5, 0.6}
and transition line z0.

gx ux z0
0.2 1.2 0.34
0.3 2.22 0.29
0.4 3.13 0.25
0.5 3.80 0.22
0.6 4.30 0.20

7. Concluding Remarks

In the present study, the DPD method has been used as a bottom-up

approach to obtain the desired macroscopic properties for a yield-stress and420

thixotropic material. We propose a simple way to construct a particulate struc-

ture network to mimic the natural processes in concentrated cohesive mixtures.

The DPDmodel comprises of two DPD species with different conservative forces,

one with only repulsive forces (between the same species) and the other with

short range repulsive and long-range attractive forces (between different species)425

- we call this DPD fluid the Indirect Linkage Dissipative Particle (ILDP) fluid.
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Figure 24: Poiseuille flow: Non-dimensional velocity profiles (∗, +, ×, ✷, ◦) with respect to
Bn = 0.2, 0.22, 0.25, 0.29, 0.34 from top to bottom and the analytical steady state solutions of
Bingham fluids (−).
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The constitutive framework is fully specified with the microstructure that goes

into the description of the DPD model. In particular, the numerical results

demonstrate that

• The indirect linkage between DPD(b) particles insures that the uniform430

distribution of two DPD species over the computational domains;

• An ILDP microstructure network is formed and ruptured under a certain

applied stress and then recovers when the applied stress level sufficiently

reduces;

• Yield stress and shear thinning effects are the consequences of the floccu-435

lation and break up of the microstructures;

• The shear stress/shear rate curves are shifted up (i.e., increasing Papanas-

tasiou’s parameter n) with decreasing the kinetic energy of ILDP fluid.

The present model is able to produce nonlinear and thixotropy between

shear stress and shear rate in viscometric flow that have been observed, or440

predicted by continuum methods. The ILDP velocity profile in Poiseuille flow

is similar to analytical solution obtained with the Bingham’s model. The model

also produces the expected CS curves from high shear to low shear and vice

versa flows, in qualitative agreement with Toorman’s model. More detailed

studies on the transient flows of thixotropic fluid with the ILDP model should445

be a welcome contribution, in particular in the area of highly concentrated and

cohesive suspension mixtures.

The advantage of the DPD approach is that the multiphase properties of

the system are reconstructed, without any reference to a particular constitutive

equation. However, DPD model has many parameters to control such as conser-450

vative force coefficients including repulsive and attractive forces, random force

and dissipative force coefficients, the Boltzmann temperature of the system, the

ratio of DPD(a) and DPD(b) particles. A set of “standard” parameters have

been well investigated, however. Another important parameter in addition to
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the DPD parameter is concentration of one phase. Different from top-down ap-455

proaches where macroscopic properties (e.g., viscosity, yield stress) are inputs

which are obtained from physical experiments, the DPD fluid properties are the

results of microstructure interactions, and the need of numerical experiments to

determine a proper set of parameters.

The reported study was restricted to viscometric flows. For non-viscometric460

problems (e.g., contraction-expansion flows), compressibility effects may be present,

which may effectively controlled by reducing DPD mass [19]).
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