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Abstract 

Ultra-high performance concrete (UHPC), a new cement-based material, has character of 

superior mechanical properties and excellent durability. Especially, it possesses 

compressive strength higher than 150 MPa, which is approximately 3 times as that of 

conventional concrete. UHPC is nearly impermeable to carbon dioxide, chlorides and 

sulphates. The superior durability leads to long service life with significantly reduced 

maintenance.  

 

This thesis focuses on the dimensional stability of UHPC, which is one of the most 

significant factors of the material. Unlike in normal concretes which are mixed at a regular 

water/cement ratio (w/c = 0.32-0.5), UHPC usually consists of extremely low w/c (0.14-

0.24). At the conditions of ultra-low w/c and high dose of superplasticizer, the hydration 

process of cement particles is different, resulting in the occurrence of high early age 

shrinkage. High autogenous shrinkage correlated with high binder content makes UHPC 

highly vulnerable to shrinkage cracking, which requires urgent resolution for its 

engineering application. On the other hand, at the conditions of ultra-low w/c, abundant 

amounts of un-hydrated cementitious materials in the matrix may affect the long-term 

performance of UHPC. The ongoing hydration of cement particles in UHPC has a retrieving 

effect on physicochemical properties of UHPC, also known as “autogenous/self-healing” 

products, which plays an important role in determining the microstructure of finally 

obtained UHPC. This project is proposed to conduct fundamental research on the 

dimensional stability (early age shrinkage and long-term stability) of cement with partial 

replacement of ultra-fine fly ash (UFA) under the UHPC condition, especially long-term 

stability of UHPC in different exposure conditions (the seawater, tap water or outdoors).  

 

Results show that the addition of 30% UFA significantly improved the early-age as well as 

later-age compressive strengths of ordinary and high-volume fly ash concretes. The 

effectiveness of UFA in the blended system lies in producing high packing density and in 

accelerating the pozzolanic activity to produce more C–S–H gel by consuming calcium 

hydroxide (CH) in HVFA concretes. In the case of UHPC specimens exposed to seawater, 

the CH was efficiently even after 1080 days. TGA/DTG results indicated that the CH was 

consumed, which was accompanied by the formation of CaCO3 (calcite), due to the 
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carbonation effect at outdoor conditions. Whereas for the water and seawater immersion 

conditions, the CH was transformed into other reaction products including Mg(OH)2 and 

ettringite. Fiber addition improved the performance of fly ash based UHPC, because of the 

formation of a denser microstructure, as evidenced by the dramatic decrease in the 

diffusion coefficient and porosity. XRD and SEM analyses imply that the UHPC sample 

exposed to outdoor and seawater condition underwent less deterioration compared to fly 

ash (FA) containing UHPCs, more calcite was formed than the calcite formed in water 

condition. The surface layer of the sample immersed in seawater had some brucite and 

calcite formation as well as Friedel’s salt and sulfoaluminates. However, under the 

outdoor condition, the surface pH dropped due to the penetration of CO2 into the binder 

neutralizing the pore solution. As time passed, either large or small sized pores were 

formed in the seawater because of the expanding effect induced by ettringite, whereas for 

outdoor environments, the formation of calcites tended to promote the development of 

medium-sized pores.   
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CHAPTER 1 INTRODUCTION 

1.1 Background 

Nowadays, cement and concrete are building materials most widely-used in a variety of 

applications, such as hydroelectric project, constructional engineering, high-speed rail, 

nuclear power project, freeway, marine engineering, and large-scale bridge.(Fowler, 1999). 

However, the safety of those structure is under influences of both the natural and the man-

made factors. In addition, natural disasters, including marine corrosion, typhoon, 

earthquake, and environmental effects, such as freezing and thawing, alkali-aggregate 

reaction, salt physical attack, can also cause serious damage to present concrete structure 

and construction. As concrete is the basic material for mega infrastructures, the 

diversification and complication of modern structures pose high requirements for 

concrete(Rip & Kemp, 1998), which cannot be fulfilled  with  traditional concrete 

technology. Therefore, to prolong the service life of concrete buildings, the concrete having 

high strength (small component size), superb toughness and durability is needed 

UHPC is a steel fiber reinforced concrete, consisting of an optimized gradation of fine 

powders and a very low water to cementitious materials ratio (R Yu, P Spiesz, & HJH 

Brouwers, 2014). It exhibits enhanced strength, durability and ductility properties when 

compared to normal concrete or high-performance concrete. UHPC can cope with the 

challenges from modern structures (C. Shi, Wu, Xiao et al., 2015a). UHPC is regarded as 

the most promising and manipulable material. As a new cement-based material, UHPC has 

advantages over traditional concrete because of its superior mechanical properties and 

excellent durability. UHPC usually possesses compressive strength higher than 150 MPa, 

which is approximately 3 times stronger than the conventional concrete. Due to 

incorporation of steel fibre, the ductility and energy absorption capacity of UHPC are 

typically 300 times greater than that of high-performance concrete. UHPC is nearly 

impermeable to carbon dioxide, chlorides and sulphates(Z. Wu, Shi, He, & Wu, 2016). The 

superior durability performance of UHPC leads to a long service life, which significantly 

reduces the maintenance frequency. In addition, UHPC could easily meet the 
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requirements for different structural applications, it has the potential of being the most 

suitable building materials for modern buildings.   

However, the UHPC also has drawbacks, especially the large shrinkage and cracking 

occurred in the early-age, owing to the autogenous shrinkage and drying shrinkage. 

Besides, large  amounts of un-hydrated cementitious materials in the matrix also affect 

the long-term performance of UHPC (D. Wang et al., 2016). The ongoing hydration of 

cement particles in UHPC has a retrieving effect on physicochemical properties of UHPC, 

also known as “autogenous/self-healing” products, which plays an important role in 

determining the microstructure of finally obtained UHPC. Until now, only little experience 

has been gathered concerning the application of UHPC in practice. Hence its long-term 

behaviour remains unclear.  

Unlike normal concrete (NC), UHPC behaves differently under long-term efforts, 

especially creep, shrinkage or long-term deflections. It is reported that– the UHPC 

reinforced with steel-fibres has properties, like compressive strength higher than 150 

MPa and tensile strength higher than 20 MPa (Su, Li, Wu, Wu, & Li, 2016). It is reported 

that (Bărbos, 2016) the creep of UHPC samples is significantly reduced if the concrete is 

subjected to heat treatment or contains steel-fibre reinforcement (V. Garas, Kurtis, & Kahn, 

2012; V. Y. Garas, Kahn, & Kurtis, 2009). It is important to know the structural elements 

made of this type of concrete work in service life under long-term loadings. The results 

obtained on UHPC samples, regarding creep straining from tension or compression efforts 

may not be researched when UHPC was used as structural elements (e.g. beams, slabs, 

columns) and subjected to bending(Smith et al., 2014; Van Damme, 2018). To solve this 

problem, Caijun Shi recommended to understand the influence of the heat treatment and 

steel-fiber addition on the rheological phenomena of UHPC bended beams(C. Shi, Wu, Lv, 

& Wu, 2015). 

After 50 years of research, the development of fibre reinforced concrete has matured to 

the stage, where UHPC has found increasing application in practice and acquired true 

technological significance. In the U.S. and many European countries, standards are 

developed for the structural applications of UHPC. In Australia, the rationale behind 

standards rules for development of structural application in UHPC has been discussed. 

UHPC is produced by mixing cement, slag, silica fume, and/or fly ash, with 

superplasticizer. At the conditions of ultra-low w/c and high dose of superplasticizer, the 
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hydration of cement particles differs from the cement hydration in normal concrete (C. 

Shi, Wu, Wang, & Wu, 2014; XIANG, SHI, WU, & CHONG, 2015). 

In addition, high strength of UHPC reduces the cross-sectional area of structural 

components and materials consumption (Fehling, Schmidt, Walraven, Leutbecher, & 

Fröhlich, 2014), UHPC displayed the extremely low permeability and excellent durability, 

which could apply to the severe environment, UHPC has no chloride penetration depth 

after 96 hours of non-steady state migration test, UHPC has no mass loss after 1000 cycles 

of freezing and thawing test. UHPC can meet most of the demands of modern structure, 

such as: high-rise building with a height above 1000m, super large-span thin structure, 

offshore oil production platform, wind power generation bar, wind turbine blade, etc. 

UHPC can show compressive strength over 150 MPa, approximately three times as that of 

conventional concrete, high ductility and excellent durability(I. H. Yang, Joh, & Kim, 2010). 

Use of ultrafine fly ash and superplasticizer can help to achieve this performance. The 

French firm Bouygues SA developed the reactive powder concrete originally(Oliver 

Bonneau, Poulin, Dugat, & Tcin, 1996), which is engineered to be a highly compacted 

concrete with a small, disconnected pore structure that helps to minimize many of the 

limitations of typical UHPCs. These advancements are achieved through a combination of 

finely ground powders and the elimination of coarse aggregates. The addition of small 

steel fibers to the mix is responsible for much of the tensile strength and toughness of the 

material. 

Numerous other countries already employed UHPC in different structural applications. 

Canada and South Korea have used UHPC for pedestrian bridges: the Sherbrooke Bridge 

in Quebec (Blais & Couture, 1999a) (Figure 1-1), Canada, was built in 1997, a pedestrian 

bridge of 190 ft. with a deck thickness of only 1.25 int.; and the footbridge of Peace in 

Seoul, Korea, was built in 2002. The span of this bridge is 400 ft. and its deck thickness are 

1.25 in. Portugal has employed it for seawall anchors, Australia has committed to its use 

in a vehicular bridge, and France has used it in building power plants. In all of these cases, 

the material was chosen for its ability to stand up to high stress, both environmental and 

load-related. The increasing deployment of UHPC worldwide and results of FHWA’s testing 

of the product bode well for its future use. 
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Figure 1-1. The Sherbrook Bridge in Quebec. 

Pioneering fundamental research in Australia has led to the success in the advanced 

manufacturing of UHPC. Several construction projects adopted UHPC, such as the opening 

of Shepherd's Gully Bridge 150 km north of Sydney in 2005, Australia was amongst the 

leaders in the world in the utilization of ultra-high performance UHPC for road bridge 

construction. These activities have put Australia in a leading position of UHPC 

manufacturing in the world, and boost the interests of using this green material in 

construction and building sectors. It is glad to see that the standardization and regulatory 

barriers are being removed step by step through the domestic and international 

collaboration efforts from both academic and industrial sectors in the past 20 years. 

However, a critical technical issue still barriers today’s large-scale production: how to 

control the durability of UHPC which is formed by using intrinsically variable industrial 

by-products as raw materials?  

This question is of critical importance in enabling the wider uptake of UHPC, and in 

particular its attractiveness to designers and specifiers, who require fundamentally-based 

information regarding the likely service life of a material or structural element before they 

can confidently recommend its use to a client. Embarrassingly, the long-term performance 

of UHPC has been subjected to detailed investigation only very recently. And there is a lack 

of understanding of the autogenous shrinkages of UHPC, thus very few approaches 

available that can convincingly guild the early age cracking and long-term stability 

towards a more desirable direction. There is an urgency to find solutions to this question 

to turn the economic and environmental potentials of using UHPC into realistic benefits 

in industry and our life.  
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1.2 Introduction 

The study of UHPC has become an interest of many researchers owing to its high strength, 

low permeability, and outstanding performance. Due to the use of superplasticizer, low 

water to cement ratio, highly fine sand and absence of coarse aggregate, the amount of 

cement used in UHPC is relatively high (commonly over 900 kg/m3) (C. Shi, Wang, Wu, & 

Wu, 2015b; Van Tuan, Ye, Van Breugel, & Copuroglu, 2011; R Yu, Przemek Spiesz, & HJH 

Brouwers, 2014). Currently, the global concrete producing makes up more than five 

percent of anthropogenic carbon dioxide emissions each year, namely from the 

production of cement (Van den Heede & De Belie, 2012). To minimize the CO2 emissions, 

researchers are making constant efforts to reduce the cement content in UHPC by adding 

various supplementary cementitious materials (SCMs) as a substitute. Therefore, how to 

produce UHPC with less cement and lower emission while providing the equivalent 

properties remains an open issue (Lothenbach, Scrivener, & Hooton, 2011). 

UHPC can provide great structure reliability even under overload conditions or 

earthquakes (Blais & Couture, 1999b; Dauriac, 1997; Dowd, 1999). UHPC is nearly 

impermeable to carbon dioxide, chlorides and sulphates. Its superior durability leads to 

long service life with reduced maintenance. The enhanced abrasion resistance provides 

extended life for bridge decks and industrial floors(Dauriac, 1997), while the enhanced 

corrosion resistance provides protection to areas with bad or harsh climate 

conditions(Tam, Tam, & Ng, 2012). A significant amount of unhydrated cement in the 

finished product provides a self-healing potential under cracking conditions (Dauriac, 

1997). UHPC structures weigh only one-third or one-half of the corresponding 

conventional concrete structures. This weight reduction has benefit in producing more 

slender structures, increasing usable floor space in high-rise buildings and reducing 

overall costs (Blais & Couture, 1999b; Dauriac, 1997; Ng, Tam, & Tam, 2010). Elimination 

of steel reinforcement bars reduces labor costs and provides greater architectural 

freedom, allowing nearly limitless structural member shapes and forms for architects and 

designers (Blais & Couture, 1999b; Dauriac, 1997; Dowd, 1999). Although UHPC 

possesses many outstanding properties, they also have some weaknesses. High binder 

content of about 800-1000 kg/m3 affects not only the production costs, but also high heat 

of hydration, causing shrinkage problems(Yazıcı, Yardımcı, Aydın, & Karabulut, 2009). 
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Moreover, UHPC is generally costly and cannot replace the conventional concrete in most 

applications where the conventional concrete can economically meet the performance 

criteria. the main reason limiting their broader use is the high cost coming from a number 

of expensive components used in UHPC mixes, particularly the cement and silica fume, 

and the steel fibers. A typical strain hardening UHPFRC, has 1100-1300 kg/m3 of cement, 

and 200-350 kg/m3 of silica fume which is 18-26% of the mass of the binder (Kazemi 

Kamyab, 2013; Park, Kim, Ryu, & Koh, 2012; Rossi, 2013). Due to the ultra-low water 

content in UHPC (W/B=0.14-0.20), the hydration degree of cement is only 30-40% (Korpa, 

Kowald, & Trettin, 2009), and the reaction degree of silica fume is also low, approximately 

30% (Kazemi Kamyab, 2013; Schachinger, Hilbig, Stengel, & Fehling, 2008), which means 

a significant quantity of unhydrated cement clinker and unreacted silica fume particles 

serve as expensive fillers.  

Therefore, it is of great interest to study the possibility of using other materials to partially 

replace the cement in UHPC mixes. Much attention has been devoted to reducing the 

cement content in UHPC. For instance, Ghafari et al. (Ghafari, Costa, Júlio, Portugal, & 

Durães, 2014)utilized about 950 kg/m3 cement and 250 kg/m3 silica fume to produce 

UHPC. El-Dieb (A. S. El-Dieb, 2009) produced ultra-high performance fiber reinforced 

concrete (UHPFRC) with about 775 kg/m3 cement and 135 kg/m3 silica fume. Hassan et 

al. (Hassan, Jones, & Mahmud, 2012) exhibited mechanical investigation with 657 kg/m3 

cement, 418 kg/m3 Ground Granulated Blast Furnace Slag (GGBS) and 119 kg/m3 silica 

fume. Aldahdooh et al. (Aldahdooh, Bunnori, & Johari, 2013) utilized 638 kg/m3 cement 

to produce UHPC with compressive strength of 120 MPa. Yu et al. (Jisong Zhang & Zhao, 

2016)presented an experimental study of compressive strengths that reach around 100 

MPa with 620 kg/m3 cement content. 

With the application of fly ash concrete for more than ten years history, the concrete mixed 

with fly ash, not only can partially replace cement, reduce the project cost, but also can 

improve and enhance the performance of concrete. So, fly ash is the ideal concrete 

admixture. The use of fly ash is accepted in recent years primarily because of resulting 

economy from saving cement, secondly because of consuming industrial wastes and 

thirdly because of making durable materials. Fly ash has larger output and critical 

contamination in China, the development of ultrafine fly ash used in HPC is the first 
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priority. The replacement of cement by ultrafine fly ash can not only improve the 

properties of concrete, but also increase the green degree of concrete. 

1.3 Aim and objectives of the research 

1.3.1 Research gap 

Over the last twenty years, remarkable advances have taken place in the research and 

application of UHPC which exhibits excellent rheological behaviours that include 

workability, self-placing and self-densifying properties, improved in mechanical and 

durability performance with very high compressive strength, and non-brittleness 

behaviour. These excellent properties of UHPC will lead to reduction in size and self-load 

of structural elements, increase in their resistance to earthquake and seawater attack. 

Thus, it is a concrete material that is very suitable for engineering construction in 

Australia. Unlike in normal concretes which are mixed at a regular water/cement ratio 

(w/c = 0.32-0.5), the mix of UHPC usually consists of extremely low w/c (0.14-0.24), high 

dose of superplasticizer and supplementary cementitious materials (SCMs), such as silica 

fume. At the conditions of ultra-low w/c and high dose of superplasticizer, the hydration 

of cement particles differs from the normal hydration (C. Shi, Wang et al., 2015b; XIANG 

et al., 2015). High autogenous shrinkage correlated with high binder content makes UHPC 

highly vulnerable to shrinkage cracking, which requires urgent addressment for its 

engineering application(L. Wu, Farzadnia, Shi, Zhang, & Wang, 2017b). A comprehensive 

understanding of the influence of affecting factors on autogenous shrinkage of UHPC is of 

great significance to evaluate early-age cracking potential. On the other hand, abundant 

amounts of un-hydrated cementitious materials in the matrix may affect the long-term 

performance of UHPC. Due to ongoing hydration, it has a retrieving effect on 

physicochemical properties of UHPC, also known as “autogenous/self-healing” products 

and microstructure are determined. However, the eager industry still faces a question: 

Are UHPC stable and durable? This is widely concerned because the construction industry 

needs to ensure a service life of decades, even longer. The difficulties to answer this 

question result from (1) early-age shrinkage and cracking, (2) long-term stability (3) the 

uncertainty of whether the existing durability tests for Portland cement concrete are still 

valid in assessing UHPC.  
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The ultimate aim of this project is proposed to conduct fundamental research on the early-

age shrinkage and long-term stability of UHPC, their micromechanics, formation kinetics 

and stability, to ensure highly durable products. Based on systematic experimental 

studies on setting and hardening process, microstructure development, deformation, 

increase of toughness, constitutive relationships and durability, it will clarify the 

mechanisms of setting and hardening, the features of microstructure development, and 

the relationships between microstructure and macro-properties of UHPC. The effects of 

fibers on toughness of UHPC will be explained. The constitutive relationships and failure 

criteria will be established. Based on the migration of chloride ion in UHPC, the 

requirements for cover design of rebar reinforced UHPC structure in marine 

environments will be proposed. The research will provide scientific base for production 

and application of UHPC in Australia.  

1.3.2 Objectives of the research 

Based on the above research gap identified in the literature, there are three objectives of 

the project, as following: 

 Proposed to conduct fundamental research on the hydration of cement with partial 

replacement of ultra-fine fly ash under the UHPC conditions. This part focused on 

the early age hydration process, fly ash with different chemical compositions and 

particle sizes are examined and hydration products and microstructure are 

determined. 

 At the conditions of ultra-low w/c, abundant amounts of un-hydrated cementitious 

materials in the matrix may affect the long-term performance of UHPC. Due to 

ongoing hydration, it has a retrieving effect on physicochemical properties of 

UHPC, also known as “autogenous/self-healing” products and microstructure are 

determined. This part is proposed to investigate the effects of slag, fly ash, and fiber 

contents on long-term strength development, dimensional stability, and mass 

change in three exposure conditions: water, seawater, and outdoor, for a duration 

of more than 1080 days. 

 Ending part is understanding the micromechanism of autogenous shrinkage and 

drying shrinkage from pore structure, mechanical, moisture lose and chemical 

stability; Implement the micromechanics, kinetic, micromechanics and phase 
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transformation knowledge on commercial raw materials to build a mathematical 

or physical model to predict autogenous shrinkage and drying shrinkage of UHPC. 

Study the long-term performance of UHPC under three different exposure 

conditions. 

1.4 Outline of the thesis 

CHAPTER 1: Introduction (about the background and objective of early age shrinkage, 

microstructure development and dimensional stability of ultra-high performance concrete). 

CHAPTER 2: Review. In chapter 2, the mechanism of early age shrinkage of UHPC and 

influential factors in its development are discussed. In general, autogenous shrinkage is 

more pronounced in UHPC/HPC, albeit, using low heat cement, fly ash, shrinkage reducing 

agents, lightweight aggregates, and fibers can effectively reduce it. The effects of SCMs on 

autogenous shrinkage, relationship between different types of shrinkage and autogenous 

shrinkage as well as the effect of internal curing on autogenous shrinkage need to be 

further studied. 

CHAPTER 3: Evaluation of fibre on autogenous shrinkage of ultra-high performance 

concrete by ring test. Due to high content of cementitious materials and low water-to-

binder ratio (w/b), UHPC has high autogenous shrinkage. In chapter 3, the effects of steel 

fiber on the autogenous shrinkage of UHPC were evaluated by using ring tests and 

corrugated tube method under plastic film sealed conditions. The results indicated that 

the development of autogenous shrinkage of UHPC was mainly during the first 24 hours. 

The autogenous shrinkage of UHPC is significant reduced by adding steel fiber. The 

optimal fiber content was found to be 3% where UHPC exhibited highest strength (107 

MPa at 3 day) and lowest autogenous shrinkage (750×10-6μm at 3 day, which was only 

30% of that of the specimens without steel fiber). 

CHAPTER 4: Effects of steel fiber on drying shrinkage of ultra high performance 

concrete. Chapter 4 reports the study of the influence of steel fibers on drying shrinkage 

of UHPC at fiber volume content of 0%, 1%, 2% and 3%, temperature of 20 ± 2°C and 

relative humidity of 50 ± 5%. The results showed that during the first 7 days, the drying 
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shrinkage rate of UHPC was very fast, while after 7 days it gradually decreased. The 

interfacial bonding of steel fiber and the physical properties of steel fiber can effectively 

reduce the drying shrinkage. However, when the steel fiber exceeds an optimal volume, 

the effect of steel fiber on drying shrinkage can decrease. Compared with the steel fiber 

content at 2%, the drying shrinkage of the UHPC with 3% steel fiber was decreased by 

only 1.5%. The reason is that the increase in the steel fiber leads to an increase in the 

interface layer, the interface transition zone is usually more porous than the matrix, which 

easily leads to shrinkage, and consequently reducing the beneficial effect of steel fiber on 

drying shrinkage control. It was also found that the inhibition of fly ash on the drying 

shrinkage of UHPC was higher than slag.  

CHAPTER 5: Early age of hydration mechanisms and microstructure development of 

ultra-high strength cement-based materials (UHSC). In chapter 5, the effects of UFA 

content on flowability, heat of hydration, mechanical properties and early age shrinkage 

properties were determined for ultra-high strength cement-based materials (UHSC) 

containing 0-75% UFA by the mass of binder. Thermal gravimetry (TG) and mercury 

intrusion porosimetry (MIP) were used to quantitatively determine the calcium hydroxide 

(CH) content and pore structure, respectively. The results indicated that the optimal UFA 

content could be in the range of 15%-30% in terms of flowability, mechanical properties, 

CH content, porosity, and interfacial bonding properties. The TG analysis revealed that the 

use of 15%-30% UFA efficiently consumed the CH, transforming it to C-S-H gel. The CH 

content in those samples at 28 d was reduced by 50% in comparison with that in the 

reference sample. From MIP results, the total porosity of UHSC with 15%-30% UFA was 

only 5%-8%, in which more gel micro-pores but less capillary pores could be observed. 

The enhancement of mechanical properties and fiber bonding strength of UHSC was 

mainly due to the increased C-S-H content, and reduced CH content and porosity due to 

the addition of UFA. 

CHAPTER 6: Carbonation and chloride ingression depths in ultra-high performance 

concrete after long term exposure to different conditions. In chapter 6, carbonation 

and chloride ingression in UHPC after the exposure to three different conditions: water, 

seawater, and outdoor for a duration of 1080 days, were studied to examine the effects of 

SCMs, including slag and fly ash on the long-term durability of UHPC. In addition, steel 

fibers were also added into some UHPC-based systems to improve the related properties. 
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The results indicated that the optimal steel fiber content was 2% when considering the 

flowability, mechanical properties, CH content and porous networks. Fiber addition 

improved the performance of fly ash based UHPC, while it had little impact on the slag-

based counterpart. Moreover, the UHPC specimens exposed to seawater for 1080 days also 

efficiently consumed CH. It was also found that the CH was consumed with the formation 

of CaCO3 (calcite) due to the carbonation effect in outdoor conditions whereas for the 

water and seawater immersion conditions, the CH was transformed into other reaction 

products including Mg(OH)2 and ettringite. Furthermore, because slag based UHPCs have 

a denser microstructure evidenced by diffusion coefficient and porous characteristics, 

seawater and water conditions led to a decrease in C-S-H content, which was particularly 

evident after 28 days. XRD and SEM analysis also implies that for the sample exposed to 

outdoor and seawater condition, slag-based UHPC underwent less deterioration than fly 

ash (FA) containing counterparts. Finally, it revealed that the chemical reactions and 

microstructure properties of the UHPCs varied significantly when comparing the seawater 

and outdoor exposure conditions.  

CHAPTER 7: Long-term performance of ultra-high performance concrete (UHPC) in 

different exposure conditions. Chapter 7 investigated the effects of slag, fly ash, and 

fiber contents on long-term strength development, dimensional stability, and mass change 

in three exposure conditions: water, seawater, and outdoor, for a duration of 720 days. 

Thermogravimetric analysis (TGA), X-ray diffractometry (XRD) and scanning electron 

stereoscopy (SEM) were applied to examine the hydration phases during this exposure 

period. The results showed that the specimens in water and outdoor conditions 

experienced a shrinking behavior, while in contrast, the specimens exposed to seawater 

expanded slightly with a higher rate of mass gain. The compressive strength of specimens 

under seawater and outdoor expose conditions were lower than those in water and the 

main hindering mechanism to strength development was the shortage of calcium 

hydroxide from the matrix, which led to lower reaction extent of SCMs.  

CHAPTER 8: Conclusions and future work. Chapter 8 draws the conclusions of the 

research undertaken in this thesis. Some problematic issues that have been noted in the 

UHPC application are mentioned. Detailed suggestions to the future work are presented 

for UHPC application. 
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1.5 The technology road map 

In autogenous shrinkage and drying shrinkage aspects, I used traditional method 

(corrugated tube measurement) and ring test to test the autogenous shrinkage, based on 

the results I developed a thermochemical model to quantify the shrinkage. This method is 

testified to be useful and can be applied in understanding more complex systems, however, 

what was happed at the beginning time of autogenous shrinkage still remains unknown. 

In the drying shrinkage aspect, I investigated the effects of steel fiber on it, the results 

showed that during the first 7 days, the drying shrinkage rate of UHPC was very fast, while 

after 7 days it gradually decreased(Linmei Wu, Caijun Shi et al., 2018). The interfacial 

bonding of steel fiber and the physical properties of steel fiber can effectively reduce the 

drying shrinkage. The reason is that the increase in the steel fiber leads to an increase in 

the interface layer, the interface transition zone is usually more porous than the matrix, 

which easily leads to shrinkage, and consequently reducing the beneficial effect of steel 

fiber on drying shrinkage control. It was also found that the inhibition of fly ash on the 

drying shrinkage of UHPC was higher than slag.  

In dry shrinkage part of UHPC, I will mainly concentrate in the shrinkage and cracks 

induced by early drying and hydration. Even though this subject has been widely studied, 

there are still some points which are staying unclear, e.g. the competition between 

hydration and early drying, and the combination of shrinkage and creep etc. Shrinkage 

occurred when water content reduces caused by hydration (autogenous shrinkage) and 

by drying results in a deformation in function of water content / HR. There are two 

hydraulic effects on the solid phase, increasing capillary pressure while decreasing of 

water content, another Gradient of hydraulic pressure (maintained before cavitation, 

Darcy’s law) induces a tension in liquid which is balanced by a compression in solid matrix. 

So is the shrinkage deformation reversible or irreversible? Is it in elastic range or 
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extending to plastic range? Now it is widely known that the hydra strain could be induced 

by three kinds of effects. In a high water content range, disjoining pressure and capillary 

pressure are the main driving force of hydric strain. The surface energy change would be 

responsible for a low water content range situation. If we consider the solid matrix as an 

elastic system, try to understand the mechanism of the drying induced shrinkage. In 

transcend structure, the project will focus on relationship between shrinkage and early 

drying, by offering experimental data in order to validate predictive models(L. Wu et al., 

2016; L. Wu, Liu, Zhang, Zhu, & Wang, 2018).   

In the long-term stability of UHPC aspect, I doubt the state-of-the-art rule ‘the 

crystallization only takes place in the hollows left by reacted ash, instead of in the binder 

itself’. In my proof-of-concept experiment, this study investigated the effects of slag, fly 

ash, and fiber contents on long-term strength development, dimensional stability, and 

mass change in three exposure conditions: water, seawater, and outdoor, for a duration of 

720 days. Thermogravimetric analysis (TGA), X-ray diffractometry (XRD) and scanning 

electron stereoscopy (SEM) were applied to examine the hydration phases during this 

exposure period. I found that the specimens in water and outdoor conditions experienced 

a shrinking behavior, while in contrast, the specimens exposed to seawater expanded 

slightly with a higher rate of mass gain. The compressive strength of specimens under 

seawater and outdoor expose conditions were lower than those in water and the main 

hindering mechanism to strength development was the shortage of calcium hydroxide 

from the matrix, which led to lower reaction extent of SCMs. More importantly, the 

formation of only 5-7% zeolite can cause compressive strength loss, which must be 

prevented to ensure the durability. It hypothesise that strength loss also results from pore 

structure evolution besides crystallization. To prove this, it must remove the difficulty of 
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characterizing the reaction products due to the complexity induced by the residual fly ash 

particles. Figure 1-2 shows the frame of the thesis. 

 

Figure 1-2. The frame of the thesis. 

 

3.1. Conceptual framework 

The two major work packages of the thesis have been developed to achieve the ultimate 

aim, the following figure shows the technology road map of the project, about the Process-

microstructure-property relationship: 
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 Figure 1-3. Process-microstructure-property relationship.  
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CHAPTER 2 LITERATURE REVIEW 

Note: this chapter is based on the manuscript entitled “Autogenous shrinkage of high 

performance concrete: A review”, by Linmei Wu, N Farzadnia, C Shi, Z Zhang and H Wang, 

published in journal of Construction and Building Materials, 2017. 

 

Abstract: Autogenous shrinkage is a major concern in early age cracking of high 

performance concrete (HPC). Low water-to-binder ratio and incorporation of 

supplementary cementitious materials (SCMs) can remarkably affect the pore structure, 

relative humidity, self-stress, degree of hydration, and interface structure, hence 

increasing the shrinkage in the matrix. In this chapter, the mechanism of autogenous 

shrinkage of HPC and influential factors in its development are discussed. In general, 

autogenous shrinkage is more pronounced in HPC, albeit, using low heat cement, fly ash, 

shrinkage reducing agents, lightweight aggregates, but can be effectively reduce by 

introducing fibers. The effects of SCMs on autogenous shrinkage, relationship between 

different types of shrinkage and autogenous shrinkage, as well as the effects of internal 

curing on autogenous shrinkage need to be further studied. 

2.1 Introduction 

Autogenous shrinkage refers to reduction of apparent volume or length of cement-based 

materials under sealed and isothermal conditions (Williams, Markandeya, Stetsko, Riding, 

& Zayed, 2016). It is found that autogenous shrinkage is caused by further hydration of 

cement after the formation of initial structure of the cement matrix and can be best 

explained by capillary tension theory (Lura, Jensen, & van Breugel, 2003). In concrete with 

water-to-cement ratio lower than 0.40, the internal moisture is insufficient to fully hydrate 

cement particles; thus, the occurrence probability of autogenous shrinkage may increase 

(LE, 2013). Therefore, autogenous shrinkage is a major concern in early age cracking of 

high performance concrete (HPC) (D. Wang et al., 2015). Generally, the early-stage 

autogenous shrinkage occurs within the first 24 hours after mixing with water. The matrix 
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is more prone to cracking during the first 12 hours (Van Breugel & Van Tuan, 2015). 

During this time period, tensile strength of concrete is too low to resist the crack 

propagation caused by shrinkage stresses. Addition of some supplementary cementitous 

materials (SCMs) such as silica fume to the mixture may further increase the autogenous 

shrinkage, as the hydration and pozzolanic reactions accelerates the water consumption 

at early ages (W. Li et al., 2015). Autogenous shrinkage leads to micro-cracks in the matrix 

and lowers the durability of the structure. Ineffective curing of concrete in dry 

environments may cause simultaneous occurrence of drying shrinkage and autogenous 

shrinkage (Henkensiefken, Bentz, Nantung, & Weiss, 2009).   

In general, shrinkage can be measured based on changes in volume and length. Regardless 

of test methods, the measured shrinkage is a combination of autogenous shrinkage, dry 

shrinkage, and chemical shrinkage (Recommendation & DE LA RILEM, 1995). The 

autogenous shrinkage of HPC is a complex phenomenon influenced by many factors 

including: fineness of cement, cement type, SCMs, aggregate, fiber, water-to-cement ratio, 

admixtures, and curing. No uniform mechanism has yet explicated the autogenous 

shrinkage, albeit, the capillary pressure was introduced as the main driving force (Bazant 

& Chern, 1985). A thorough understanding of the mechanism is indispensable in order to 

apply methods to reduce the autogenous shrinkage and to improve the early-age cracking 

resistance of cement-based materials.  

In this chapter, the autogenous shrinkage mechanism is discussed and its different nature 

in comparison to other shrinkage types is elaborated. Furthermore, the influential factors 

in autogenous shrinkage of HPC are discussed. Meanwhile, problems involved in 

autogenous shrinkage of HPC and possible solution are also deliberated. 

2.2 Hydration of UHPC 

The hydration of cementitious materials in UHPC is similar to that in ordinary concrete 

(OC). First, Portland cement hydrates to form calcium silicate hydrate and calcium 

hydroxide, then mineral admixtures (such as silica fume) react with calcium hydroxide to 

form calcium silicate hydrate (C-S-H). Figure 2-1 shows the time dependent phase 
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development in OC and UHPC at room temperature (Korpa et al., 2009). It can be seen that 

the content of crystalline phases was considerably higher in normal concrete, whereas 

less amorphous phases in the UHPC are measured. The difference arises from the 

pozzolanic reactions associated with the relatively high amounts of silica fume and fly ash. 

The consumption of portlandite becomes remarkable after the second hydration day, and 

is much lower than that in the normal concrete after 28 days, indicating that the 

pozzolanic reactions are still incomplete. The fact that no calcite was detected in the XRD 

analysis in the UHPC specimen even after 28 days may be interpreted as indication of no 

considerable phase carbonation in this specimen. The variations of ettringite content 

development between the first and second hydration day indicate that  conversion of 

ettringite to monosulphate phase is possible, and that significant amount of aluminate 

may enter the X-ray amorphous C-S-H phases (Korpa et al., 2009). 

 

(a) OPC                           (b) UHPC 

Figure 2-1. Time dependent phase development in OC and UHPC(Korpa et al., 2009). 

The increase of curing temperature accelerates the hydration of cement and promotes 

secondary hydration between mineral admixtures and Ca(OH)2 (C. Yang, Lai, & Xu, 2012). 

Hydration products at 90 ℃  remain amorphous. Under the autoclave curing, the 

hydration of C3S and C2S leads to the formation of crystalline α-dicalcium silicate hydrate 

in the absence of an external SiO2 source. Tricalcium aluminate (C3A) and tetracalcium 

alumino-ferrite (C4AF) yield a hydrogarnet phase. The bonding characteristics of these 

two phases are rather unfavorable. In the presence of finely ground quartz and/or other 

SiO2 sources, a pozzolanic reaction takes place, yielding crystalline 1.1nm tobermorite 
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(C5S5H5) as the main production of reaction at temperatures between about 150 and 

200℃. Xenolith C-S-H (I), C-S-H (II) and α-C2SH may also be formed at even higher 

temperature(Yazıcı, Yiğiter, Karabulut, & Baradan, 2008). It was also found that at 150 ℃, 

Crystalline Ca(OH)2 and some unidentified hydration products appeared in 1-day 

Portland cement (PC) paste. Crystalline C2SH (A) could be detected in 5-day PC paste. Only 

Ca(OH)2 and C2SH(A) could be detected in the 15-day PC paste. The main hydration 

products for alkali-blast furnace slag cement (ABSC) paste were C-S-H (B) and xonotlite. 

The 3CaO·MgO·2SiO2 in the slag disappeared after 5 days. Only C-S-H (B) and tobermorite 

could be detected in APSC paste (C. Shi, Wu, & Tang, 1991). The formation of both 1.1 nm 

tobermorite and xonolite is favorable for strength development of autoclaved material 

(Odler, 1998). Xonotlite formed with a Q3 peak at 250℃, as shown in Figure.2-2 (Philippot 

et al., 1996; Zanni, Cheyrezy, Maret, Philippot, & Nieto, 1996). The H/C (H2O to CaO) ratio 

of C-S-H of OC is approximately one, while the H/C of xonotlite is 1/6, and the xonotlite is 

only formed in the inner part of concrete specimen (Cheyrezy, Maret, & Frouin, 1995). The 

formation of xonotlite in heat-cured UHPC was due to local, large water vapor pressures. 

However, lower (3Pa) dynamic equilibrium vapor pressures could totally suppress the 

formation of crystalline hydration products, even no xonotlite or other crystalline 

hydration products formed even at 250℃ (Feylessoufi et al., 1997).  

 

Figure 2-2. Q0 to Q4 percentages for samples with heat treatment at 90℃, 200℃,  

250℃for 8 hours (Zanni et al., 1996). 

2.2.1 The influence of ultra-fine fly ash on hydration 

At present，Fly Ash has been widely used as a kind of mineral admixture in the production 
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of cement and concrete．As a matter of fact，the excitation of its chemical activity is still 

worth studying．With the method of mechanical grinding，a large part of vitreous has 

been ground up．Thus the ultra-fine fly ash (UFA) has been got, of whose specific surface 

area is 651 m2/kg, and particle sized distribution is mainly under 71 µm (B. Liu, Xie, Zhou, 

& Yuan, 2000)．Although the chemical composition of UFA and the ordinary fly ash are 

the same，the particle size distribution and morphology of UFA have been greatly changed，

so as to the physical and chemical function of ultra-fine fly ash. The performance of ultra-

fly ash is different from the ordinary fly ash during the hydration process of the complex 

binders． 

 

The UFA helps to improve the mechanical properties of composite cement mortar .The 

physical filling effect of UFA helps to increase the flexural strength 3 days before；the 

activity of the ultra-fine fly ash began to emerge 3 days later．The flexural strength after 

14 days and compressive strength after 60 days improved significantly；compared with 

the compressive strength，the UFA helps to increase the flexural strength，the more 

dosage，the greater the flexural strength increased；compared with the ordinary fly Ash，

the activity of the UFA is greater, the pozzolanic reaction started earlier， the UFA 

contributes a lot to the strength of the middle and later time(Potgieter-Vermaak, Potgieter, 

Kruger, Spolnik, & Van Grieken, 2005)． 

 

The UFA promotes the hydration of the composite gel materials，in the early stage，the 

ultra-fine fly ash makes the second moment of exothermic peak appeared slightly ahead 

of time，the bigger the dosage is，the more obvious in advance；the activity of UFA 

appeared at 3 days，it also Can be proved through the result of XRD and the content of 

the CH，the first hydration dominants 28 days before，the reaction of fly ash increases．28 

days later，then the second hydration reaction dominants(Subramaniam, Gromotka, Shah, 

Obla, & Hill, 2005).  

 

The UFA improves the microstructure of the hardened pastes (E.-H. Yang, Yang, & Li, 

2007a)，the UFA helps to decreases the threshold aperture and most probable aperture 

of the hardened pastes，the most probable aperture of the hardened paste is about l00nm 
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because of the UFA，which is near that of the pure cements system．As the curing time 

going，the most probable aperture of each group decreases，the holes whose diameter 

is above 200nm decreases． 

 

Hydration shrinkage generated by cement hydration is the cause of autogenous shrinkage 

of high strength concrete. It may result in the volume change and even cracking of mortar 

and concrete. According to the data analysis in a series of previous studies, it is found that 

ultra-fine fly ash can reduce the hydration shrinkage of cement paste effectively, and the 

more the ultra-fine fly ash, the less the hydration shrinkage. Compared with cement paste 

without the ultra-fine fly ash, the shrinkage ratio of cement paste reduces from 23.4% to 

39.7% when the ultra-fine fly ash replaces cement from 20% to 50% .Moreover, the 

hydration shrinkage can be restrained to a certain degree because the ultra-fine fly ash 

does not participate in the hydration at the early stage and the secondary hydration 

products are different at the later stage. 

2.2.2 Benefits of UFFA in UHPC  

Extensive laboratory and field-testing research has been published during the last 50 

years on the properties of UFFA, and its beneficial performance in a wide range of 

cementitious mixtures is well documents(Aldred et al., 2006).   

For UHPC applications, two key characteristics of UFFA are highlighted: 

Small round particles (typically 0.1 to 0.3 µm) and a corresponding high specific surface 

area. These factors contribute to particle packing and to internal cohesion in the concrete 

mixture. Figure 1 shows the dramatic difference in size and shape of a typical UFFA 

particle, compared to a Portland cement particle.  When UFFA first became commercially 

available, in Scandinavia in the 1970s, it coincided with the development of the first 

commercial UHPC products.  For example, in Denmark, Hans Henrik Bache (Aalborg 

Portland Cement) developed the ‘Densified System of homogeneously arranged ultrafine 

Particles (DSP)’.  Based on the principle of optimum particle packing, Bache used UFFA 

as ultra-fine powder in mortars to achieve compressive strength in the order of 250 – 300 

MPa.  A summary of his early work was published in 1981(Aftcin, Bédard, Plumat, & 

Haddad, 1984). 
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High content of amorphous, and therefore reactive, silicon dioxide.  The high specific 

surface area and reactive SiO2 makes UFFA an extremely efficient pozzolan – it consumes 

calcium hydroxide and reacts with alkalis in the concrete. This leads to less alkali in the 

pore solution and less calcium hydroxide in the matrix. Consequently, more calcium 

silicate hydrate binder is present and less calcium hydroxide. 

High strength  

As already mentioned, UFFA helps to optimize the particle packing of aggregates and 

powders in the concrete mix design, helping to minimize the number of voids and 

increasing the density of the concrete. By improving packing, concrete properties 

including strength can be improved.  To help design a concrete mixture with optimal 

particle packing, computer programs are now commonly used.   For example the EMMA 

grading curve program, based on the Andreasen and Andersen mathematical model 

(Andreasen & Andersen, 1930). 

Well-dispersed UFFA particles which have packed around aggregate particles during 

concrete mixing and placing will modify the interfacial transition zone between the 

cementitious paste and the particles of aggregate.  In conventional concrete, the 

microstructure of the transition zone is significantly different from that of the bulk paste.  

Modification of this transition zone is a major benefit of the addition of UFFA, as it gives 

increased strength to the concrete(Güneyisi, Gesoğlu, & Özturan, 2004).   

High durability 

A wide range of research has confirmed the high durability of UHPC concrete mixtures 

against durability parameters such as chloride penetration, sulfate attack and freeze-thaw 

cycling.  For example Pierard et al (J. Piérard, Dooms, & Cauberg, 2012), who concluded 

that the highly dense hardened state of UHPC, due to low water/cement ratio and high 

powder content, is the primary reason for this enhanced durability.  

UFFA concrete can be significantly more resistant than conventional concretes towards 

degradation caused by the ingress of aggressive ions or by leaching from the concrete.  

This is a consequence of an improved, more homogeneous, pore system giving reduced 

permeability to water and aggressive ions and improved resistance to leaching.  In 
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addition, UFFA can also cause a significant reduction in the electrical conductivity of 

concrete.  This is beneficial because active corrosion (of steel within the concrete) is an 

electrochemical process, governed by the resistivity of the concrete.  The practical 

consequence of these factors is that UFFA significantly reduces the risk of chloride-

initiated corrosion, especially in concrete exposed to severe environments. 

Sustainability 

Fly ash arises as an industrial co-product and generally it has a far lower embodied carbon 

emissions value than Portland cement.  In this regard it is comparable to UFFA and 

ground granulated blast furnace slag.  For example, a UK Concrete Society report 

(Ramezanianpour, 2014)suggested typical values of 930 kg/ton carbon dioxide for 

Portland cement and 28 kg/ton carbon dioxide for UFFA powder, delivered to site in the 

UK. In theory, the partial replacement of Portland cement by fly ash in an optimized UHPC 

mix design could reduce the environmental impact of the mixture.  However in practice, 

the whole life cycle of the UHPC building or structure is the key measure of its 

sustainability. 

2.3 Microstructure of UHPC 

UHPC has a very dense and uniform microstructure due to following fundamental effects: 

(1) close packing of raw materials; (2) hydration and pozzolanic reactions in cementitious 

materials; (3) improvement of the interfacial transition zone between aggregates and bulk 

matrix. The internal microstructure of hardened UHPC is mainly comprised of unhydrated 

cement clinker particles, quartz sand and hydration products such as C-S-H(Jinchang & 

Ronggui, 2016). Low w/b in UHPC results in low porosity that restricts the space available 

for the growth of Ca (OH)2 (CH) crystals. Use of elevated temperature curing accelerates 

the hydration of cement and promotes the pozzolanic effects of mineral admixtures. There 

were almost no pores observed in the Nano porous range with pore sizes up to 100 nm, 

and no significant CH was detected by XRD (Sayari, Yang, Kruk, & Jaroniec, 1999). The C-

S-H in UHPC has high density characterized by higher intrinsic stiffness and hardness than 

those of low density C-S-H that dominates in conventional concrete.  
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The interfacial transition zone (ITZ) between aggregates and paste matrix has high 

porosity and CH content, and is the weakest part in conventional concrete. ITZ in 

conventional cement mortars and UHPC from SEM observations are shown in Figure.5 

(Jinchang & Ronggui, 2016; Sayari et al., 1999). It can be seen that ITZ in conventional 

Portland cement mortar is very porous. However, owing to the low w/b and pozzolanic 

reactions between CH and reactive mineral admixture, which consumes most of the CH 

crystals and converts them to C-S-H (Jinchang & Ronggui, 2016; Yazıcı et al., 2009), the ITZ 

in UHPC seems as dense as the matrix. The homogenous structure is important for the 

excellence performance of UHPC. 

 

UHPC is designed by close packing density and use of pozzolanic mineral admixtures. 

Therefore, it has a very low porosity, especially continuous porosity. For UHPC at 

W/C=0.20, its capillary pores become discontinuous when only 26% of cement has 

hydrated, instead of 54% for HPC (W/C=0.33) (Olivier Bonneau, Vernet, Moranville, & 

Aı̈tcin, 2000). The pore size of UHPC basically concentrates between 2 to 3 nm, the most 

probable pore diameter is 2.0 nm, and its total porosity is 2.23% (Long, 2003). It is nil in 

the range of 3.75 nm to 100 μm for UHPC when it is cured between 150~200℃ (Cheyrezy 

et al., 1995).  

 

UHPC is composed of aggregate and compact matrix phase, which is composed of 

hydration products and unhydrated cement clinker particles and powder particles. A 

reactive interface is formed between incompletely hydrated core and hydration products. 

The core plays a role in skeleton to matrix, and enhances the properties of matrix phase 

greatly (D. F. Zhao, Liu, & Zhang, 2014). Scanning electron microscope (SEM) observation, 

as shown in Figure.2-3a, indicated that the structure of hardened paste was very dense 

due to the very low W/B and the hydration of cement and the pozzolanic effect of SF and 

GGBS. The main hydration product was homogeneous C–S–H gel, no Ca(OH)2 and 

ettringite could be found (Alaee, 2002) (C. Wang, Yang, Liu, Wan, & Pu, 2012). The picture 

in Figure 2-3b indicated that UHPC had a very compact interfacial transitional zone with 

no obvious pores (C. Wang et al., 2012).  
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a) SEM image of hardened paste in 
UHPC (C. Wang et al., 2012). 

 
b) SEM image of ITZ structure in UHPC 

(C. Wang et al., 2012). 

Figure 2-3. SEM image in UHPC (C. Wang et al., 2012). 

The use of rice husk ash (RHA) increased the degree of cement hydration at later ages, 

even higher than that in the sample containing silica fume (SF) at 91 days. The total 

porosity of the RHA modified sample was higher than that of the SF modified sample but 

lower than that of the control sample because both filler effect and pozzolanic reaction of 

RHA were less significant than those of SF. Both RHA and SF strongly reduced the calcium 

hydroxide content where the effect of SF was greater than that of RHA at later ages(Van 

Tuan et al., 2011).  

2.4 Shrinkage of concrete  

Shrinkage of concrete can occur in two different stages: early and later ages. The first stage 

(within the first 24 hours) is defined as a duration in which concrete is setting and starting 

to harden. Second stage, on the other hand, refers to the age beyond 24 hours. Shrinkage 

at both stages mainly include autogenous shrinkage, drying shrinkage and thermal 

shrinkage which have overlapping results but with different mechanisms. In long term, 

the carbonation shrinkage is also added which has an accumulated effect. It was observed 

that autogenous shrinkage accounts for the most significant volume change in HPC at 

early ages compared to other types of shrinkage(Lura, 2003). A quick glance at differences 

can help to better elaborate the mechanism and influential factors in the autogenous 
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shrinkage of HPC.  

2.4.1 Autogenous shrinkage 

In general, the part of shrinkage which does not include any volume change due to loss or 

ingress of substances, temperature variation, and application of an external force and 

restraint can be considered as autogenous shrinkage. Therefore, it is also referred to as 

self-desiccation shrinkage. A technical committee on autogenous shrinkage at the Japan 

Concrete Institute (JCI) defined autogenous shrinkage as the macroscopic volume 

reduction of cementitious materials when cement hydrates after initial setting (E. Tazawa, 

1996). However, Mehta and Monteiro referred to it as the measured deformation of 

cement paste in a closed system(P. K. Mehta, 1986). Some studies consider the critical 

influence of autogenous shrinkage only limited to high and ultra-high performance 

concrete in which high amount of cementitious materials and low water-to-binder ratio 

are applied and the self-desiccation is highly triggered in the paste (Holt, 2005; C. Jiang, 

Yang, Wang, Zhou, & Ma, 2014; Maruyama & Teramoto, 2013). 

2.4.2 Chemical shrinkage  

Chemical shrinkage refers to the volume change during the early ages of hydration 

resulted by formation of hydration products with lower volume in comparison with the 

volume of the initial reactants (water and cement) during the hardening process (Bullard 

et al., 2011). Chemical shrinkage, as a measurement of the absolute internal volume 

reduction, is considered as the driving force of autogenous shrinkage which represents 

the external, bulk volume change of concrete(Mounanga, Khelidj, Loukili, & Baroghel-

Bouny, 2004). Figure.2-4 depicts a general relationship between the definition of chemical 

and autogenous shrinkage in concrete. After the formation of initial structure of slurry 

(roughly referred to as the early coagulation), further hydration causes voids within the 

matrix. At this stage, the autogenous shrinkage value is less than the chemical shrinkage 

as the former measures the apparent volume of reduction; the accumulated volume of 

voids is considered in measurement of chemical shrinkage value.  
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Figure 2-4. The relationship between chemical shrinkage and autogenous shrinkage  

(L. Wu et al., 2017b). 

In the plastic stage, the terms “autogenous shrinkage” and “chemical shrinkage” may be 

used interchangeably. In a study by Holt (Holt, 2005), however, it was shown that the early 

age autogenous shrinkage and chemical shrinkage were not equivalent in concrete 

specimens when water-to-binder ratio as low as 0.3 was used. Besides, the addition of 

superplasticizer with presence of low water-to-binder ratio increased the chemical and 

autogenous shrinkage values at different rates. It should be noted that with presence of 

water at the w/b of 0.45 no autogenous shrinkage was observed while chemical shrinkage 

was noticeable. 

2.3 Drying shrinkage  

Drying shrinkage is caused by internal water evaporation from the matrix due to the low 

external environment humidity of the cement-based materials (Toledo Filho, Ghavami, 

Sanjuán, & England, 2005). The development of drying shrinkage of concrete is lengthy 

relative to the autogenous shrinkage. Accurate measurement of drying shrinkage is a 

challenge as the autogenous shrinkage deformation of the sealed specimens should be 

deducted from the total measured deformation of the concrete due to their distinct 

physical definition. The drying shrinkage value measured by traditional method contains 

part of autogenous shrinkage, however, it is not a simple superposition, since the drying 

condition has a serious effect on the hydration of cement. Addition of supplementary 

cementitious materials as in HPC can have different effects on drying shrinkage and 

autogenous shrinkage based on their reactivity and influence on the hydration. Itim et al. 
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(Itim, Ezziane, & Kadri, 2011) studied the effect of different contents on SCMs on 

autogenous shrinkage and drying shrinkage. Figure 2-5 illustrates the effect of content 

and type of limestone powder and slag on shrinkage values. As can be seen, there is a 

reverse relationship between drying shrinkage and autogenous shrinkage as the slag 

content increased. On the contrary, the limestone powder with almost inert properties 

influenced the autogenous shrinkage merely at early ages and had almost minor effect on 

the drying shrinkage. This can be related to higher reactivity of slag which can accelerate 

the hydration and increase self-desiccation of the matrix. However, a direct relationship 

between drying shrinkage and autogenous shrinkage were recorded when silica fume was 

used. It is reported that the increase in silica fume content increased autogenous and 

drying shrinkage of concrete especially at early ages (G. Rao, 1998; G. A. Rao, 2001; M. 

Zhang, Tam, & Leow, 2003). 

 

(a) Limestone powder 
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(b) Slag 

Figure 2-5. Autogenous and drying shrinkage of mortars with (a) limestone powder  

(b) slag (Itim et al., 2011). 

2.4.3 Thermal shrinkage  

Field experience with HPC mixtures showed that concrete with high early age strength is 

prone to cracking at early-age from high autogenous shrinkage and high thermal 

shrinkage (P. K. Mehta, 1986). Thermal shrinkage indicates reduction of volume triggered 

by excessive temperature gradient between the inner and outer layers or temperature 

descending in the early stage of concrete hardening(Schrefler, Majorana, Khoury, & Gawin, 

2002). The temperature difference predominantly owes to the temperature rise above 

environment temperature induced by heat evolution in the cement hydration process. 

Heat of hydration can affect the autogenous shrinkage as it increases the self-desiccation 

of the system. In a study by Maruyama and Teramoto (Maruyama & Teramoto, 2013) , the 

temperature change induced by hydration was simulated and its effect on autogenous 

shrinkage was studied. The results showed an inflection point by which the shrinking 

trend was divided in two stages. The autogenous shrinkage of the specimens before the 

inflection point, showed a larger increase when subjected to lower temperatures while 

after the inflection point, the shrinkage increased when subjected to higher temperatures. 

In the initial stage, the autogenous shrinkage strain developed without relative humidity 

change, while it developed with a decrease in relative humidity after the inflection point. 

In some cases, the release of heat is accompanied by thermal expansion which is 

concurrent with the onset of autogenous shrinkage. It is observed that concrete with a 
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very low water to binder ratio swells as long as the thermal expansion is larger than 

autogenous shrinkage. But, generally, the autogenous shrinkage overtakes the expansion 

rapidly and concrete shrinks after the initial swelling phase(Kaufmann, Winnefeld, & 

Hesselbarth, 2004). If the concrete temperature decreases quickly, the thermal 

contraction can be accumulated to that of autogenous shrinkage (P. Aitcin, 1999). 

2.4.4 Carbonation shrinkage  

Carbonation shrinkage is caused by carbonation of concrete when exposed to CO2. 

Carbonation may occur by permeation of available CO2 in the atmosphere and its reaction 

with calcium hydroxide as well as destabilization of calcium silicate 

hydrates(Ramachandran, 1996). The decline in concentration of Ca(OH)2, the low 

integrity of C-S-H along with moisture loss may trigger the carbonation shrinkage. At later 

ages of concrete (after 24 hr.), the carbonation shrinkage and autogenous shrinkage may 

occur concurrently, however, the occurrence of carbonation shrinkage is low in HPC 

(Aı̈tcin, 2003; Wong et al., 2007). In a study by Persson (Persson, 2002), a good 

comparison was made between carbonation and autogenous shrinkage in HPC. It was 

stated that carbonation shrinkage was concomitant with an increase in weight of 

specimens, while no loss of weight was observed with the occurrence of autogenous 

shrinkage. Furthermore, there was a correlation among inner relative humidity and 

water-to-binder ratio of specimens and the autogenous shrinkage. No carbonation 

shrinkage took place when water-to-binder ratio reduced to less than 0.3 and 10% silica 

fume was applied. This was in agreement with his previous study where water-to-binder 

ratio was less than 0.25(Persson, 1998). In the same study, he reported that the 

carbonation shrinkage caused no decline in the internal relative humidity of the 

specimens which is different from autogenous shrinkage mechanism. 

2.5 Mechanism of autogenous shrinkage 

Different approaches and driving forces are used to explain autogenous shrinkage 

mechanism such as surface tension, disjoining pressure, and capillary tension. The 

capillary tension approach is advantageous, as it is based on sound mechanical and 

thermodynamically studies(Lura, Jensen, & van Breugel, 2003). The capillary tension 
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theory in general explicates the autogenous shrinkage using pore structure, relative 

humidity, self-stress, degree of hydration, and interface structure (Ye & Radlińska, 2016). 

Over time, free water in the matrix gradually decreases due to progressive hydration of 

cement, and the internal relative humidity reduces. Consequently, a large number of pores 

are formed in the hardened cement paste and the saturation of water in the pores declines. 

With the change in the saturation state of capillary pore from saturated to unsaturated, 

the inner concave surface of pore is subjected to an internal pressure. In order to make 

the concave surface in a state of equilibrium, the capillary tension increases by which 

autogenous shrinkage takes place(Fisher & Israelachvili, 1981). The schematic 

mechanism of autogenous shrinkage is shown in Figure 2-6. 

 
 

Figure 2-6. Schematic diagram of capillary water tension. 

 
Capillary pressure can be calculated by the Laplace equation (eq.2-1) and Kelvin equation 
(eq. 2-2): 
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Where,  

σ -surface tension of gas- liquid interface, mN/m; 

θ - liquid-solid contact angle, rad; 

PC - water pressure, Pa; 

PV - water vapor pressure, Pa; 

P0- actual vapor pressure, Pa; 

Pr- the saturated vapor pressure, Pa; 

r - Hydraulic radius of capillary, Pa; 

P

Capillary pressure

Concrete 
surface

σσ

Surface tension of water 
in capillary
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M - Molecular weight of water, nm3; 

 - Density of water; 

R - ideal gas constant; 

T - Absolute temperature, K. 

 
 
Li and Li (Y. Li & Li, 2014) established a prediction method of early autogenous shrinkage 

of self- consolidating concrete based on the capillary tension theory and pore structure of 

concrete. In their study, negative pressure of capillary and autogenous shrinkage was 

determined by means of capillary tension theory. The computational model of the 

autogenous shrinkage determined by the capillary pores was expressed as 𝜖 =
1−2𝜇

𝐸𝑠
.
2𝛾

𝑟
, 

where r is the critical capillary diameter, µ is the Poisson’s ratio and ES is the modulus of 

elasticity of concrete with capillary tension. They showed that as time increased, the 

median pore diameter decreased and micro-pore porosity content increased which 

ultimately increased the autogenous shrinkage. 

 

The capillary tension theory can well elaborate the accentuated influence of low water-to-

cement ratio and SCMs in autogenous shrinkage of HPC as they remarkably affect the pore 

structure, relative humidity, and self- stress, degree of hydration, and interface structure. 

Although some studies have addressed the effects of pore structure and relative humidity 

in particular on autogenous shrinkage, the roles of self-stress, degree of hydration and 

interface structure are mostly discussed through influence of cement, SCMs, aggregates, 

and etc.  

2.5.1 Pore Structure  

Pore structure, which includes porosity, pore size distribution (pore gradation) and the 

morphology of pores, plays an important role in the autogenous shrinkage of cement 

based materials. The shrinkage stresses induced by consumption of water in pores of 

different sizes are dissimilar. The connectivity of pores also directly affects the migration 

of moisture from saturated to unsaturated pores, thus influences the development of 

shrinkage(Meddah & Tagnit-Hamou, 2009). Research on pore size has a crucial role in 

revealing the intrinsic laws of shrinkage and deformation.  
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In HPC, the decreasing rate of the critical hydraulic radius of capillary is accelerated due 

to the refinement of pore structure of bulk cement paste(Meddah & Tagnit-Hamou, 2009). 

The improved chemical reactions and the corresponded chemical shrinkage also increase 

the water consumption and triggers an additional surface tension. The increase in surface 

tension enlarges the capillary tension, and further promotes shrinkage stresses in HPC 

(Kong, Zhang, & Lu, 2015). The growth of volume ratio of bulk paste in HPC also increases 

the autogenous shrinkage (Huy, 2013). The increase of creep further accelerates the 

shrinkage of bulk paste in the presence of macro shrinkage stress. In a study by Li et al (Y. 

Li, Bao, & Guo, 2010), the effect of silica fume, slag and fly ash on pore structure were 

studied and the correlation with the autogenous shrinkage was elaborated. In their study, 

water-to-binder ratio was kept constant at a rate of 0.3. The results showed different 

influences on the autogenous shrinkage. Fly ash reduced the autogenous shrinkage while 

silica fume and slag markedly increased it. However, the effect of slag was reported to be 

reliant on the content. As for pore structure, both silica fume and slag refined the micro-

pore structure, reduced the porosity and the pore mean diameter. They increased specific 

surface and the volumetric percentage of pores with diameter between 5 and 50 nm. It 

was concluded that the volumetric percentage was the main factor influencing the 

autogenous shrinkage. The refinement of pore structure led to an increase in the capillary 

tension and hence the autogenous shrinkage increased.  

2.5.2 Relative humidity 

Relative humidity is another influential factor in autogenous shrinkage which is more 

underscored in HPC. Hydration of cement induces the reduction of internal relative 

humidity of concrete and ultimately increases the internal pore pressure. Accordingly, the 

initial free water in the matrix (water-to-cement ratio) plays an important role (A. El-Dieb, 

2007; J.-K. Kim & Lee, 1999). The relationship between the relative humidity and pore 

structure was discussed by Grasley and Lange(Grasley & Lange, 2007; Grasley, Lange, & 

D'Ambrosia, 2006). They measured the relative humidity at various locations inside 

concrete and also the thermal expansion and internal relative humidity changes of 

hardened cement paste. The results were indicative that the number of saturated pores 

governed the relative humidity changes inside concrete. Jiajun (Jiajun, Shuguang, Fazhou, 

Yufei, & Zhichao, 2006) investigated the effect of pre-wetting degree of aggregate on 

internal relative humidity of lightweight aggregate concrete. A measuring instrument was 
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utilized to monitor the relative humidity of the central part of concrete specimens. The 

results showed that the internal relative humidity of concrete reduced with the curing 

period. The humidity gradient from 1 to 7 days was particularly evident; however, 

incorporation of saturated lightweight aggregate delayed the reduction of internal relative 

humidity of concrete. The internal relative humidity and water introduced to the system 

by lightweight aggregate presented good linear relationship with autogenous shrinkage. 

Jiang at al. (Z. Jiang, Sun, & Wang, 2006; Z. Wu Z. Sun et al., 2003) further determined the 

relationship between internal relative humidity changes and autogenous shrinkage by 

measuring the effect of water-to-cement ratio and mineral admixtures on internal relative 

humidity of concrete in dry adiabatic conditions. From the point of thermodynamics, the 

reduced content of evaporative water in capillary pores by progressive hydration of 

cement compounds was reported to be responsible for reduction of relative humidity in 

concrete. Quanbing (Q. Yang, 1999) investigated the internal relative humidity and 

maturity of high performance concrete. The results showed that with the decrease of 

water-to-cement ratio and increase of silica fume quantity, the internal relative humidity 

of high performance concrete decreased; the relative humidity and the maturity value of 

outer layers of concrete were higher than that of the inner ones. This can increase the 

autogenous shrinkage in HPC where low water-to-cement ratio and SCMs are applied.  

2.5.3 Self-stress 

Based on the Hook law ( strain and elastic modulus are physical variables determining 

the shrinkage stress in high performance concrete. As mentioned earlier, Li and Li (Y. Li & 

Li, 2014) established a relationship between the elastic modulus of the micro-matrix 

around the capillary and the autogenous shrinkage. They reported that both compressive 

strength and elastic modulus increased rapidly at the early age and then the development 

rate slowed down which affected the autogenous shrinkage. As a result, any factors 

affecting the slurry structure of the matrix at the early age can induce autogenous 

shrinkage stresses. These factors can be divides into external and internal factors. Internal 

factors are the type of aggregate and cement, mix ratio, water-to-cement ratio, admixture, 

component size, etc.; external factors are temperature, humidity, sealing condition, the 

degree of restraint and etc. 
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2.5.4 Degree of hydration  

The degree of hydration is largely influenced by cement type and content, SCMs, water-to- 

binder ratio and temperature. Many works have applied different techniques such as 

microstructural analysis or thermodynamics to measure or model the hydration degree. 

Detailed information can be found in works of Lothenbach et al. (Lothenbach et al., 2011) 

and Damidot et al. (Damidot, Lothenbach, Herfort, & Glasser, 2011) on degree of hydration 

and formation of C-S-H. However, previous studies mostly on autogenous shrinkage 

addressed the relationship between degree of hydration and autogenous shrinkage in HPC 

through effects of concrete major constituents or curing methods on autogenous 

shrinkage, which will be discussed in section 4. In a study by Pietro et al. (Lura, Jensen, & 

van Breugel, 2003) degree of hydration in the first week of hydration was specifically 

addressed and used to model the autogenous shrinkage using capillary tension method. 

The calorimetric data and Powers' volumetric model were used to calculate the 

development of the degree of hydration and saturation fraction, respectively. The 

simulated shrinkage curves were in good agreement with the experiments in the higher 

relative humidity range.  

2.6 Interface structure 

Concrete is a multiphase composite material and the type, quantity, size, shape and 

distribution of each phase constitute the structure of concrete. The cross section of 

concrete displays an evident two-phase structure; different sizes and shapes of aggregates, 

and cementitious hydrated cement paste. But, the microstructure of hardened cement 

paste next to coarse aggregate has noticeable inconsistency with hardened cement paste 

or mortar in the matrix, and major properties of concrete can only be illustrated when the 

cement paste-aggregate interface is regarded as the third phase of microstructure. 

Therefore, the concrete can be divided into aggregate, transition zone bonding to 

aggregate and the hardened cement paste. The structure of concrete depends on the 

combination of the three components after molding, the development of age, and 

hydration degree of cement in certain circumstances which can affect the autogenous 

shrinkage. Previous studies referred to the effect of pozzolanic reaction of silica fume that 
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consumed the calcium hydroxide (CH) crystals and removed the internal restraints in the 

paste and further induced shrinkage(mejlhede Jensen & Freiesleben Hansen, 1996). The 

effectiveness of calcium hydroxide in passive restraining the shrinkage can be supported 

by results from Carde and Francois (Carde & François, 1997) indicating loss in mechanical 

properties of cement paste due to leach out of calcium hydroxide. The carbonation 

shrinkage can also well explain the restraining effect of calcium hydroxide as its 

degradation leads to a volume change (J. J. Brooks, 2015).  

2.7 Influential factors on autogenous shrinkage 

2.7.1 Cement 

2.7.1.1 Composition of cement 

Cement is the core component in cement-based materials with major constituent 

compounds namely, tricalcium silicate (C3S), calcium silicate (C2S), tricalcium aluminate 

(C3A) and tetra calcium aluminate ferrite (C4AF). A study by Tazawa (E.-i. Tazawa & S. 

Miyazawa, 1995) showed that the autogenous shrinkage of cement based materials can 

be predicted by the composition of cement. Hydration rate of C3S and C3A is rapid, and the 

heat release of hydration is enormous and concentrated, so the concrete structure is prone 

to generate cracks caused by temperature gradient in the early stage. Later, the 

consumption of interlayer water as well as volume reduction of hydration products during 

the transformation process promote larger shrinkage (E.-i. Tazawa, 1999; E.-i. Tazawa & 

S. Miyazawa, 1995; E. Tazawa & Miyazawa, 1997). In hydration of C3A , results showed that 

the heat release was even further with a rapid heat evolution, and a fast condensation 

speed, which would not only make large temperature deformation, but also would cause 

increase in autogenous and drying shrinkage of concrete (R. W. Burrows, 1998; P. K. Mehta 

& Burrows, 2001). Overall, the impact of C3A is the most dominant followed by C3S, C4AF 

and C2S (Van Breugel & Van Tuan, 2015).  

The effect of different types of cement on the autogenous shrinkage is essentially due to 

its different composition. For instance, higher contents of C3A and C3S in high-early-

strength cements cause more autogenous shrinkage than that of low to moderate heat 
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generating cements in which higher contents of C2S are used. The autogenous shrinkage 

rate can also be affected when composite cement is used. A study by Neto et al. showed 

that the autogenous shrinkage of slag cement was more frequent than that of ordinary 

Portland cement (Neto, Cincotto, & Repette, 2008). 

2.7.1.2 Cement fineness 

Along with demand for high strength concrete in the engineering construction, the 

fineness of modern cement has unceasingly increased. However, a study by Bullard et al. 

[9] showed that the increased fineness and larger specific surface area of cement 

decreased the relative humidity at a higher pace, and the corresponding autogenous 

shrinkage deformation was greater. It can be attributed to the accelerated cement 

hydration, and consequent water consumption in the matrix. This can lead to a decline in 

relative humidity, so as to intensify the capillary pressure and autogenous shrinkage 

deformation. In works by Bentz et al. (Dale P Bentz, Garboczi, Haecker, & Jensen, 1999; D. 

P. Bentz, M. R. Geiker, & K. K. Hansen, 2001), it was showed that higher fineness of Portland 

cement contributed to a faster reaction rate, caused more contraction phase of C-S-H gel. 

It displayed stronger ability for refinement of pores in the matrix and shrank the pore 

structure in the first 3 days of curing age. Following the extension of hydration period after 

14 days, the hydration rate gradually slowed down and the autogenous shrinkage of the 

cement stopped. Figure 2-7 shows the effect of cement fineness on relative humidity and 

autogenous shrinkage. 

 

  (a) Relative humidity            (b) Autogenous shrinkage 

Figure 2-7. Effect of the fineness of cement on (a) relative humidity (b) autogenous 

shrinkage (Dale P Bentz et al., 1999). 
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Therefore, the fineness of cement should be set appropriately in order to decrease the 

autogenous shrinkage. It was suggested by Bentz and Haecker (Dale P. Bentz & Haecker, 

1999) that using coarse cement in high performance concrete may imbibe water for a 

longer period of time, and results in an increase in the long-term degree of hydration and 

a reduction in autogenous shrinkage. 

 

Furthermore, sufficient attention should be paid to morphology of cement particles. 

Spherical cement particles have smaller contact area and larger pore radius, which is very 

conducive to reduce the autogenous shrinkage of concrete (Turcry, Loukili, Barcelo, & 

Casabonne, 2002). Thus, to reasonably control the cement particles composition, 

advanced technology and equipment should be applied. 

 

2.7.2 Supplementary cementitious materials 

2.7.2.1 Silica fume 

Jensen et al. (mejlhede Jensen & Freiesleben Hansen, 1996) showed that the rate of 

autogenous shrinkage of high performance concrete at early stage of hydration correlated 

positively with the content of silica fume. They reported that the autogenous shrinkage of 

cement paste (w/b of 0.23) increased with the cumulative content of silica fume within 

content range of 0%-20%. With presence of 10% silica fume, the autogenous shrinkage of 

specimens was about 3 times of the plain paste at 28 days. A similar trend was observed 

in a study by Zhang et al.(M. Zhang et al., 2003). Figure 2-8 illustrates the effect of 5% and 

10% silica fume at two different water to cement ratios. As can be seen, the autogenous 

shrinkage increased with the increase of silica fume content which was further affected 

when lower water-to-cement ratio was used. The increasing effect of silica fume on 

autogenous shrinkage were also reported in (Ghafari et al., 2016; Holt, 2005; Maruyama 

& Teramoto, 2013; Yang Yang, Sato, & Kawai, 2005). 
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(a)  

 
(b) 

Figure 2-8. Effect of silica fume content on autogenous shrinkage of concrete with low 

water-to- cement ratio from (M. Zhang et al., 2003). 

Three mechanisms can be used to explain the results: (1) the richer contents of silica fume 

refined the pore structure to a certain extent, and the number of small pores increased, 

resulting in serious autogenous shrinkage of the specimens. (2) During the hydration of 

clinker, the formed CH was partly distributed into interlayer pores of C-S-H gel and 

restrained the chain. The addition of silica fume consumed the CH and the porous 

structure of C-S-H was formed. The empty pores caused by consumption of CH weakened 

their restraining effect on the C-S-H structure and increased the shrinkage of hardened 

cement paste (Mazloom, Ramezanianpour, & Brooks, 2004). In a study by Igarashi et al. 

(Igarashi, Bentur, & Kovler, 2000), the specimens with silica fume showed a greater creep 

tendency than that of a plain concrete in restrained shrinkage conditions. (3) In the third 

view, silica fume acted as a superfine active admixture, which accelerated the hydration 

reaction of cement. Large surface area of silica fume caused fast combination of silica fume 

and mixing water, accelerated the water shortage in the pore space of cement paste, 

reduced the relative humidity inside the cement matrix, and intensified the self-

desiccation process (Paillere, Buil, & Serrano, 1989; G. A. Rao, 2001).    

2.7.2.3 Slag 

In a study by Tazawa et al. (E. Tazawa & Miyazawa, 1997), it was showed that the 

autogenous shrinkage of concrete was proportional to the amount of slag with specific 

surface area over 400m2/kg. With presence of excessive amounts higher than 75%, the 

autogenous shrinkage of concrete began to decrease. The inflection point decreased to 60% 

when fineness increased to 836 m2/kg. The effect of slag fineness on autogenous 

shrinkage comes from the significant effect of fineness on its reactivity. The autogenous 
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shrinkage had negative correlation when slag with fineness of 338m2/kg. In another study 

by Lee et al.(K. M. Lee, Lee, Lee, & Kim, 2006), it was also reported that the inclusion of 

slag especially at higher contents increased the autogenous shrinkage when compared 

with plain concrete specimens. Figure 2-9 shows the increasing effect of 30% and 50% 

cement replacement with slag on the autogenous shrinkage with water to binder ratio of 

0.27 and 0.32. The results were indicative of higher increase in the autogenous shrinkage 

as the water-to-binder ratio decreased. The higher autogenous shrinkage was related to 

higher chemical shrinkage as a driving force in slag concrete than that of plain specimens. 

However, reportedly, the increasing effect of slag on autogenous shrinkage is less than that 

of silica fume due to less volume of fine pores and higher volume of coarser pores in slag 

concrete which contribute to lower capillary pressure in the paste and hence reduction of 

the autogenous shrinkage (Ghafari et al., 2016). 

 
(a)  

 
(b) 

Figure 2-9. Effect of slag content on autogenous shrinkage of concrete with low water to 

binder ratio adopted from (K. M. Lee et al., 2006). 

Nevertheless, other researchers debated the increasing effect of slag on the autogenous 

shrinkage of concrete (Y. Li et al., 2010). For instance, in a study by Huang et al. (K. Huang, 

Deng, Mo, & Wang, 2013), volume expansion was observed when ground blast furnace 

slag cement was used. The analysis of literature shows that there is yet a great controversy 

on the effect of slag on autogenous shrinkage. The existing research results are based on 

the conclusions drawn from limited materials, thus the role of slag in autogenous 

shrinkage is still unknown.  
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2.7.2.4 Fly ash 

Previous work by Malhotra (Malhotra, 2002) showed that fly ash had an inhabiting effect 

on autogenous shrinkage due to deceleration of the reduction of internal humidity in the 

matrix. It was reported that the internal relative humidity of concrete specimens declined 

when fly ash was used which slowed down as the mixing amount of fly ash increased from 

15% to 60% in a sealed condition with water-to-binder ration of 0.3. When the mixing 

amount of fly ash exceeded 40%, the reduction of internal relative humidity within 120 

days exhibited less than 13%. This amount was more than 20% when plain cement was 

used. The addition of more than 60% fly ash maintained the internal relative humidity of 

concrete up to 7 days. Termkhajornkit et al. (Termkhajornkit, Nawa, Nakai, & Saito, 2005) 

also showed that the replacement of more than 50% fly ash remarkably reduced the 

autogenous shrinkage of concrete specimens with water-to-binder ratio of 0.3. They 

related the autogenous shrinkage partly to the hydration reactions of Portland cement and 

reactions of Al2O3 to form ettringite, and partly to hydration of fly ash; the latter brought 

about the slowdown of shrinking process. Huang and Hui (Guoxing Huang, 1990) 

measured the autogenous shrinkage of mass concrete with fly ash. It was reported that 

the incorporation of up to 20% fly ash reduced the autogenous shrinkage by half; while 

inclusion of 40% lowered the autogenous shrinkage as low as one tenth of plain 

specimens. The increased fineness and content of fly ash further decreased the 

autogenous shrinkage and prolonged the initial cracking time (P. K. Mehta, 1986). The 

reason lies in the slow hydration of fly ash in comparison to cement, which adds to the 

effective water-to-binder ratio by dilution effect, thereby reduces the early autogenous 

shrinkage. Nevertheless, the low content of fly ash does not inevitably reduce the 

autogenous shrinkage. Zhengwu et al. (Termkhajornkit et al., 2005)found that when the 

amount of fly ash was 10%, a portion of fly ash contributed to reduction of the autogenous 

shrinkage, while the rest had an adverse effect. Moreover, the early crack formation could 

not be avoidable by adding fly ash alone (Subramaniam et al., 2005) (Gdoutos, Shah, & 

Dattatraya, 2003). Fly ash showed to be the most effective in reduction of autogenous 

shrinkage comparing to that of silica fume and slag (Ghafari et al., 2016). 

 

Overview of the above, it is understood that the effect of SCMs on autogenous shrinkage 

of HPC with low water-to-binder ratio is still controversial. On one hand, a comprehensive 
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understanding is restricted by lack of efficient testing instruments and methods, however, 

systematic research on the influence of these materials on shrinkage under low water-

binder-ratio condition is indispensable. More importantly, it is not possible to 

fundamentally elucidate the influence without an in-depth study on the mechanism. The 

above problems seriously hinder the application of SCMs in the high-performance 

concrete in engineering practices.  

2.7.2.5 Water-to-binder ratio 

Water-to-binder ratio has a remarkable influence on high performance concrete. HPC with 

low water-to-binder ratio below 0.4 is more prone to the autogenous shrinkage (M. Zhang 

et al., 2003). Figure 2-10 depicts the influence of water-to-binder ratio in HPC. They 

showed that a reduction of w/b from 0.35 to 0.30 resulted in a significant increase in the 

autogenous shrinkage, whereas a further reduction of w/c lowered the increasing effect. 

The effect of water-to-binder ratio was less pronounced when silica fume was also used. 

The role of water-to-binder ratio in autogenous shrinkage with presence of slag and silica 

fume was also studied by Jiang et al. (Z. Jiang, Sun, & Wang, 2005) which was in agreement 

with (M. Zhang et al., 2003). It was reported that addition of slag to the binary mix of 

cement and silica fume decreased the autogenous shrinkage especially at early ages. Wang 

et al. (Chong Wang, et al., 2008) utilized a segmental screw micrometer to investigate 

autogenous shrinkage characteristics of cement based materials with ultra-low water-to-

binder ratio. The results indicated that water-to-binder of 0.25 was a critical ratio. When 

water-to-binder ratio was higher than 0.25, the autogenous shrinkage dropped with the 

increasing of water-to-binder ratio; on the contrary, the water-to-binder ratio lower than 

0.25 declined the autogenous shrinkage as it increased. The pore structure and low degree 

of hydration of cement based materials with ultra-low water-to-binder ratio were 

regarded as main reasons, albeit, further study is still needed.  
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(a)                       (b) 

Figure 2-10. Effect of water-to-binder ratio on autogenous shrinkage of high 

performance concrete from (M. Zhang et al., 2003). 

 

In a study by Tian (Qian Tian, 2006), it was showed that the reduction of water-to-binder 

ratio decreased internal relative humidity of cement slurry, particularly at the early age; 

and significant increase of self-desiccation effect was observed. However, further 

reduction of internal humidity depended on the hydration progress, and did not decrease 

with the reduction of water-to-binder ratio. It was explained that as water-to-binder ratio 

decreased, the total pore volume of high performance concrete reduced as well, and pore 

structure was refined. This induced water redistribution toward the inside of finer micro 

pores, accelerated the reduction of critical radius and enlarged the capillary negative 

pressure and autogenous shrinkage. Critical radius is defined as the minimum size that 

must be formed by atoms or molecules clustering together (in a gas, liquid or solid matrix) 

before a new-phase inclusion (a bubble, a droplet, or a solid particle) is stable and begins 

to grow.   

2.7.2.6 Aggregate 

Autogenous shrinkage of concrete is also controlled by aggregates. The aggregates provide 

constraints during shrinkage of bulk paste and hence a bearing pressure is formed on the 

paste and aggregate surface interface in the normal and tangent directions (Figure 2-11). 

The stress field is gradually transferred from the aggregate surface to the bulk paste, and 

the interface surface goes under the maximum stress. If shrinkage stress is large enough, 

cracks along the aggregate surface in the normal direction are first appeared on the 
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interface (Ling Qi, 1996).  

 
Figure 2-11. Schematic diagram of shrinkage crack in the interface area from (Ling Qi, 

1996). 

 

Figure 2-12. Autogenous shrinkage resulting with addition of aggregate from mortar 

(paste volume = 57%) to concrete (paste volume = 34%) at w/c ratio = 0.30 from (Holt, 

2005) . 

In the HPC, owing to the limited effect of aggregate on the deformation of cement, the 

autogenous shrinkage of concrete is inferior to that of bulk paste. Holt (Holt, 2005) 

studied the effect of mix design including aggregate on concrete with low water-to-binder 

ratio of 0.3. The effect of aggregate on autogenous shrinkage is shown in Figure 2-12 in 

which mortar and concrete specimens are compared. The restraining effect of aggregate 

on autogenous shrinkage is well elaborated as explained earlier. The results of Tazawa’s 

research (E.-i. Tazawa & S. Miyazawa, 1995) showed that for high performance concrete 

with high workability and durability, reduction in amount of cementitious materials and 
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increase in volume of aggregate with larger elastic modulus can decrease the autogenous 

shrinkage of concrete.  

 

Besides, incorporation of lightweight aggregates can further reduce the autogenous 

shrinkage in the HPC. Compared with ordinary dense aggregates, the lightweight 

aggregates are porous, with high water absorption (Bentur, Igarashi, & Kovler, 2001; 

Kohno, Okamoto, Isikawa, Sibata, & Mori, 1999). The water absorbed by lightweight 

aggregate offers a decent internal curing environment during hardening process of 

concrete. Under the action of capillary tension, the water in lightweight aggregate 

migrates to the cement paste and provides internal water for unhydrated cement particles, 

and maintains the gradually decreasing internal relative humidity of concrete. Higher 

water content of lightweight aggregate and more water available for migration make 

stronger compensation for the autogenous shrinkage. This characteristic was employed 

to reduce the shrinkage and cracking tendency of concrete with low water-to-cement ratio 

in early stages (Ji, Zhang, Zhuang, & Wu, 2015). Accordingly, lightweight aggregate and 

ordinary dense aggregate compounded into a composite aggregate matrix to reduce the 

autogenous shrinkage (Figure 2-13) in order to meet the requirements of high 

performance of concrete. The same trend was observed when low quality recycled 

aggregates were used (Gonzalez-Corominas & Etxeberria, 2016). Additionally, lightweight 

aggregates are composed of silicate and aluminosilicate glass phase with a surface 

sheltered with a layer of hard glass shell, which has potential chemical reactivity, and can 

react with cement hydration products mainly CH. So, the interaction between lightweight 

aggregates and cement is not only a physical function, but also a certain degree of chemical 

action. Moreover, owing to open pores on the lightweight aggregate surface, the structure 

of lightweight aggregate is relatively rough, and it has a strong mechanical action with the 

cement paste. Besides, the internal soluble ions of lightweight aggregate have a certain 

degree of influence on the formation process of the interface structure, so as to effectively 

improve the interface between lightweight aggregate and cement paste. 
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Figure 2-13. Comparison of autogenous shrinkage of lightweight aggregate concrete 

and normal concrete (LWC: lightweight concrete; NWC: normal weight concrete; SSD: 

saturated surface dry; AD: air dry. 

 

2.7.3 Fibers 

2.7.3.1 Steel fibers  

Previous works showed that addition of steel fibers markedly suppressed the shrinkage 

of concrete (K. Huang, Deng et al., 2013; Miao, Chern, & Yang, 2003). In general, the 

positive effect of steel fibers on the reduction of autogenous shrinkage in HPC can be 

explained with the following mechanism. In the mixing process of steel fiber and concrete, 

a few micron water film is formed on steel fiber surface, so calcium hydroxide crystals 

grow with no constraints and arrange on the surface of steel fiber directionally, which 

forms loose reticular structure in the interface of steel fiber and matrix (Wei Sun, 1987). 

Besides, high elastic modulus of steel fiber can support the skeleton in the process of free 

shrinkage of concrete (Amin Noushini, Vessalas, Arabian, & Samali, 2014). Due to the 

tensile stress of fiber, a range of bond stress distribution is created around the fiber close 

to the cracks, and the development of crack tip will be inhibited due to constraints and 

barriers of fiber. Hence, the steel fibers can reduce the shrinkage and deformation of the 

high-performance concrete. Figure 2-14 illustrates the effect of steel fibers on autogenous 

shrinkage in high performance concrete with water-to-binder ratio of 0.2. The steel fibers 

were 12 mm long and 0.4 mm in diameter at a volume of 6%. 
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Figure 2-14. Autogenous shrinkage of plain and steel fiber-reinforced concrete 

specimens (CRC : compact reinforced composite) from (Loukili, Khelidj, & Richard, 

1999). 

Both the autogenous shrinkage and the total shrinkage of HP-SFRC are less than the values 

corresponding to the comparable HPC. By gradually adding longer steel fibres (l=30 mm) 

up to 1 % of the composite volume, the shrinkage of the HP-SFRC can be significantly 

reduced, whereas if the fibre content is further increased, only a relatively small reduction 

in the composite shrinkage can be achieved. When using shorter steel fibres (l=16 mm), 

the shrinkage of the composite can, with an increase in the fiber content, be noticeably 

reduced only up to a fiber content of 0.75 % by volume of the composite. When the volume 

content of the steel fibers is higher than 1 %, the workability of the composite becomes 

significantly poorer, especially when longer fibers are used (Bandelj, Branko, et al, 2011, 

Paillere, A_M, M. Buil, and J. J. Serrano 1989). 

Reportedly, as the steel fiber content exceeded a certain amount, the cohesiveness 

increased and the mobility of high performance concrete was reduced in return. This 

decreased the compactness of high performance concrete and resulted in the growth of 

pores and autogenous shrinkage in the concrete (Habel, Viviani, Denarié, & Brühwiler, 

2006; H. Lee, Lee, & Kim, 2003; A. Turatsinze, H. Farhat, & J.-L. Granju, 2003). Lin (Hongbin 

Lin, 2011) reported that steel fiber contents below 0.6% reduced the autogenous 

shrinkage of high performance concrete. The positive effect of steel fibers increased with 

the increase of steel fiber content by up to 0.65%. They stated that the reduction of 

autogenous shrinkage was due to the smaller interspace between the micro steel fiber and 

concrete matrix, denser filling, stronger bonds between fiber and concrete matrix, and 
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more excellent interface structure with the presence of low content of micro steel fibers. 

The incorporation of higher contents of steel fiber to 0.9% had an adverse effect on the 

autogenous shrinkage. Yu and Zhao (Junchao Yu & Xinqing Zho, 2013) also reported a 

reduced beneficial effect of steel fibers on shrinkage as excessive contents were used. The 

results showed that with the increasing content of micro steel fiber volume, the 

workability of concrete decreased, accompanied by fibers agglomeration, which greatly 

influenced the performance of concrete. Thus, in engineering practice, a reasonable 

amount of micro fiber needs to be considered. They also reported that the influence of 

steel fiber content on shrinkage was lower after the hardening of concrete. With the 

growth of the age, the elastic modulus of the matrix increased, and the influence of the 

steel fiber content on shrinkage declined accordingly. 

2.7.3.2 Synthetic fibers 

Among fibers other than steel, Polypropylene fibers (PP) are more widely used in HPC 

(Pakravan, Latifi, & Jamshidi, 2017). However, the available studies mostly targeted the 

plastic shrinkage and a distinct effect of fibers on autogenous shrinkage needs to be 

investigated. PP fibers added into cement paste can be adhered to the cement particles, 

convert the granular cement into coarse particles, and enlarge interparticle friction, shear 

stress, and tensile strength, which can ultimately reduce the shrinkage at the plastic 

stage(S. Jian, W. Kong et al., 2014). Furthermore, due to the presence of fibrous materials 

on polypropylene fiber surface, water migration is challenged and the rate of water 

evaporation is minimized; leading to lower capillary tension caused by the water loss from 

the capillary voids. On the other hand, the mixture of polypropylene fiber shrinks the 

cracks generated by the inner stress of high performance concrete, especially for the 

cracks formed by dewatering of concrete in plastic stage (J. Sun, F. Luan & Yu Zhang, 2000). 

Extensive research on effects of PP fibers on plastic shrinkage and early age cracking is 

available in (Mazzoli, Monosi, & Plescia, 2015; S. Jian, et al., 2014) which is not within the 

scope of this study. A study by Kaufmann et al. (Kaufmann et al., 2004), explicitly 

compared the effect of PP and carbon fibers on autogenous shrinkage when 20% fine 

cement was used with a low water-to-cement ratio of 0.19. Figure 2-15illustrates the 

length change of the paste specimens as well as heat of hydration at the first 30 hrs. of 

hydration. As can be seen, the effect of 1% PP was remarkable on the reduction of 
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autogenous shrinkage. Swelling was also observed at times corresponded to the major 

peak of hydration which reduced the autogenous shrinkage. 

 

Figure 2-15. The effect of PP and carbon fibres on the autogenous shrinkage of pastes 

form (Kaufmann et al., 2004). 

Another synthetic fiber used in concrete is Polyvinyl alcohol (PVA) fiber with high strength 

and high modulus of elasticity. A uniform distribution of disorientated fibers can block 

micro-cracks in the matrix during the hardening process, and prevent them to grow into 

harmful cracks, and hence increase the cracking resistance at early ages. Incorporation of 

PVA fibers in concrete also increases the number of bubbles, pores and the porosity. In 

addition, polyvinyl alcohol fiber is hydrophilic, so it can adsorb water in the fresh concrete. 

A research by Shujin Li (Shujin Li, Hongping Qian & Zhengcheng Xu, 2014) showed that 

the addition of polyvinyl alcohol fiber decreased the initial free shrinkage of self-

compacting concrete, but the reduction range was limited.  

2.7.3.3 Cellulose fibers 

Cellulose fibers are other types of fibers being used in some applications in concrete 

industry. Cellulose is a natural polymer consisting of D-anhydro-glucose (C6H11O5) 

repeating units joined by β-1, 4-glycosidic linkages. Each repeating unit contains three 

hydroxyl groups which play an important role in directing the crystalline packing and the 

physical properties of cellulose by forming hydrogen bonds (Nevell & Zeronian, 1985). 

The reinforcing effectiveness of cellular fiber is due to the nature of cellulose and its 

crystallinity. In a study by Kawashima and Shah (Kawashima & Shah, 2011), the effect of 
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cellulose fibers on autogenous shrinkage of mortar with water-to-binder ratio of 0.28 was 

investigated. They reported that the addition of 1% cellulose fiber significantly inhibited 

the cracks caused by autogenous shrinkage due to the internal solidification of the matrix. 

It was stated that incorporation of cellulose fibers especially at higher contents had 

internal curing capabilities, however, it might cause an adverse effect on the workability. 

So, the improvement of dispensability could improve the applicability fibers to be used in 

concrete. Figure 2-16 shows the reducing effect of cellulose fibers on autogenous 

shrinkage during the first 7 days of hydration. 

 

 
Figure 2-16. Linear autogenous deformation of mortar specimens with and without 

cellulose fiber addition (Zeroed to time of final set) from (Kawashima & Shah, 2011). 

2.7.4 Chemical admixtures 

2.7.4.1 Water reducing agents 

In the premise of maintaining the liquidity, the addition of water reducing agents 

decreases the water-to-cement ratio and hence increases the possibility of autogenous 

shrinkage occurrence(Tam et al., 2012). Holt (Holt, 2005) reported that the addition of 1% 

superplasticizer to mortar with w/c of 0.3 increased the autogenous shrinkage by almost 

30%. They related the greater autogenous shrinkage of mortar specimens with SP to the 

improved cement dispersion and faster rate of hydration reactions in the matrix. On the 

other hand, the lower shrinkage of specimens with no added water reducing agent was 

attributed to increased heterogeneities, such as cluster formations between aggregates 

and their internal restraining effect. The acceleration of hydration rate and its subsequent 
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increase in autogenous shrinkage was also reported in (Beltzung & Wittmann, 2002). 

2.7.4.2 Shrinkage reducing agents 

The effects of shrinkage reducing agents on the autogenous shrinkage were reported by 

some workers (Dale P Bentz, 2008; D. P. Bentz et al., 2001; Lura, Pease, Mazzotta, 

Rajabipour, & Weiss, 2007; Rongbing & Jian, 2005). In order to explore the possibility of 

cracking by shrinkage in HPC, Yoo (D.-Y. Yoo, Banthia, & Yoon, 2015; D.-Y. Yoo, Kang, Lee, 

& Yoon, 2013) adopted three shrinkage reducing agent contents (0%, 1% and 2%) and 

three different reinforcement ratio (1.3%, 2.9% and 8.0%). Based on the hydration degree 

model, experimental and predicted results of tensile strength were obtained. Also, the 

effect of shrinkage reducing agents on autogenous shrinkage of fiber reinforced HPC in 

free and constrained state was explored. The results revealed that the content of shrinkage 

reducing agent had positive correlation with the tensile strength, but negative correlation 

with the autogenous shrinkage. It was observed that the high shrinkage reducing agent 

contents led to an increase in porosity of the interface transition zone between fiber and 

matrix. At higher reducing agent contents and lower reinforcement ratio, the autogenous 

shrinkage behavior was better suppressed. In another study by Rongbing and Jian 

(Rongbing & Jian, 2005), it was shown that for a shrinkage reducing agent content of 2%, 

the autogenous shrinkage of mortar declined by 30-40% in the first 60 days, and 20~30% 

when duration extended to 90 days. The shrinkage reducing agents efficiently delayed the 

development of capillary pressure on the concave surface, and lessened the shrinkage 

cracking of concrete at the plastic stage, especially for the high-strength concrete(Bullock 

& Foltz, 1995). However, shrinkage reducing agents also have a potential risk of early 

strength drop in concrete, extension of the aggregating time, and sometimes adverse 

interactions with other admixtures such as air entraining agent(Tam et al., 2012). 

2.7.4.3 Expansive agents 

The macroscopic expansion of system by inclusion of expansive agents can be utilized to 

partially compensate the autogenous shrinkage generated in the early stage. Liu et al. 

(Jiaping Liu, Qian Tian & Mingshu Tang, 2006) studied the effect of expansive agents on 

shrinkage cracking of concrete with high volume mineral admixtures. It was showed that 

under the sealed or sufficient curing conditions, concrete mixed with expansive agents 
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eliminated the autogenous shrinkage, and prompted self-expansion. At the same time, the 

initial cracking time was elongated and the ability of shrinkage cracking resistance was 

enhanced. In the dry environments, however, the initial crack time was half an hour earlier, 

and the crack width increased correspondingly. In a study by Mo et al. (L. Mo, Deng, & 

Wang, 2012), they compared the expansive effect of aluminate (AEA) and MgO (MEA) 

based expansive agents. It was reported that MEAs were more efficient in cement based 

materials with low water to binder ratio. Figure 2-17 shows the effect of two expansive 

agents on the autogenous shrinkage in comparison with the reference under non-wet 

curing condition. The higher effectiveness of MgO based agent was attributed to the 

relatively low water requirement for the hydration of MgO and its slow hydration rate, 

while aluminate based agents need higher amount of water to compensate the shrinkage 

cause by the self-desiccation of the system. To further reduce the autogenous shrinkage, 

some efforts have been made to combine expansive and shrinking reducing agents. 

Meddah et al. (Meddah, Suzuki, & Sato, 2011) studied combined effect of the admixtures 

on HPC with 10% silica fume and water-to-binder ratio of 15, 23, and 30%. Their results 

showed a remarkable reduction of 50% in autogenous shrinkage and self-tensile stress 

induced in concrete specimens with w/c of 0.15 when combination of agents was used. 

The hybrid mixture of agents was more effective on concrete with a w/b higher than 0.23 

by which the shrinkage was almost eliminated. The shrinkage reduction was related to the 

simultaneous action of the agents and their synergistic effect. However, it was reported 

that the inclusion of a combination of admixtures caused a slight decrease in the early age 

compressive and splitting tensile strengths as well as the modulus of elasticity. Oliveira et 

al. (Oliveira, Ribeiro, & Branco, 2014) also confirmed the advantageous combination of 

shrinkage reducing and expansive agents on autogenous shrinkage. They attributed that 

to a lower degree of restraint of the solid body with presence of shrinkage reducing agents 

when the expansive action occurred. They, however, suggested to formulate mixtures to 

have a desired autogenous shrinkage.  
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Figure 2-17. Autogenous shrinkage of paste specimens containing various contents of 

MEA and AEA under non-wet curing condition. 

2.7.4.4 Curing methods  

For high performance concrete with compact pore structure, external curing has little 

effect on lowering the autogenous shrinkage. Internal curing, though, can compensate the 

weak role of external curing on early shrinkage cracking of HPC. An extensive literature 

review is recently available on internal curing and its effects on early age shrinkage of 

HPC(J. Liu et al., 2017). The internal curing of concrete refers to the introduction of extra 

water by adding absorbent materials in concrete. When the internal relative humidity 

drops, the imbibed water can gradually be released into the matrix to compensate water 

consumption inside cement paste, hence, the concrete internal humidity can be 

maintained at a high level. By this mechanism self-desiccation can be suppressed, and the 

autogenous shrinkage can be effectively reduced. Commonly used materials for internal 

curing include porous shale, ceramic aggregate and polymer materials with high water 

absorption. Super absorbent polymers (SAPs) are new polymer materials with very high 

water absorbency and spatial network structure. SAPs are ideal internal curing materials 

with high adsorption rate and little influence on the strength; and easy to dehydrate(Ole 

Mejlhede Jensen & Hansen, 2001, 2002). Some scholars discussed the effects of adding 

SAP on mechanical properties and autogenous shrinkage deformation of low water-to-

cement ratio concrete (Craeye, Geirnaert, & De Schutter, 2011; McDermott, Chen, Williams, 

Markley, & Payne, 2004; Pang, Ruan, & Cai, 2011; F. Wang, Zhou, Peng, Liu, & Hu, 2009; 

Xinwei Ma, Xueying Li & Hejun Jiao, 2009). Nevertheless, so far, a convincing explanation 
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for mechanism of shrinkage rules of SAP has not been provided and sufficient theoretical 

support for making SAP as a curing agent in concrete engineering application is missing, 

which restricts its development and application. Jensen (Ole Mejlhede Jensen & Hansen, 

2001) was first to put forward the use of SAP as an inside curing materials. He investigated 

the possibility of using super absorbent polymer for self-curing from theoretical and 

experimental aspects. Bentz et al (Schlitter, Bentz, & Weiss, 2013) showed that 

incorporation of SAP could form a stable internal water supply source inside the bulk 

paste. Because of its sufficient fineness, it could be evenly distributed in concrete to inhibit 

uneven expansion and shrinkage and reduced the formation of micro cracks. Besides. It 

had no adverse effects on workability of mixture. The addition of SAP had a significant 

effect on reduction of the autogenous shrinkage of high performance concrete. Results 

showed that the autogenous shrinkage rate after 28 days was 32% ~ 46% of that of 

specimens without SAP. It should be stated that the addition of SAP had an undesirable 

effect on the strength and performance of high performance concrete. 

2.8 Conclusions and Outlook 

2.8.1 Concluding remarks 

Autogenous shrinkage is an unavoidable volume reduction due to the self-desiccation of 

concrete, especially when low water-to-cement ratio is applied. In this chapter, through 

the analysis of autogenous shrinkage research results of high performance concrete, the 

following conclusions can be drawn: 

 

(1) Capillary tension theory well explicates the autogenous mechanism in concrete. This 

theory can elaborate the accentuated influence of low water-to-cement ratio and SCMs 

in autogenous shrinkage of HPC as they remarkably affect the pore structure, relative 

humidity, self- stress, degree of hydration, and interface structure.  

 

(2) Although some studies have addressed the effects of pore structure and relative 

humidity in particular on autogenous shrinkage, the role of self-stress, degree of hydration 

and interface structure are mostly discussed through influence of cement, SCMs, 

aggregates, and etc.  
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(3) The utilization of low temperature and spherical shape cement can properly reduce 

autogenous shrinkage. Appropriate contents of fly ash can inhibit autogenous shrinkage 

of concrete, while silica fume increases autogenous shrinkage. The effect of slag on 

autogenous shrinkage, though, depends on its fineness. 

 

(4) Internal curing is an effective means to reduce the autogenous shrinkage of high 

performance concrete. Lightweight aggregate and high water absorbent polymers can 

considerably reduce the autogenous shrinkage of high performance concrete 

 

(5) The impact of steel fiber is associated with the content; low amount of steel fibers can 

restrain the autogenous shrinkage of concrete, while excessive contents increase 

cohesiveness and decrease workability of high performance concrete, which can lead to 

furthered autogenous shrinkage. 

 

2.8.2 Research needs 

Although meaningful results have been achieved in the research field of autogenous 

shrinkage of concrete with low water-to-cement ratio, the following aspects of the efforts 

also need to be carried out: 

 

(1) The definition of shrinkage is not entirely unified, and the established test methods 

also lack uniform standards, which restricts the further development of this field. 

 

(2) The effect of supplementary cementitious materials on shrinkage deformation 

behavior is still controversial, and its mechanism shows absence of an in-depth study. 

 

(3) Researches mostly intend for a single shrinkage behavior, but ignore the connection 

between various shrinkage mechanisms, which is difficult to grasp the characteristics of 

shrinkage and deformation of concrete. 

(4) The researches on mechanism of autogenous shrinkage are mainly limited to the 

capillary theory, and some factors have not been taken into account, such as temperature 
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and the type of supplementary cementitious materials. Moreover, effects of mixing content 

on shrinkage strain rate and ultimate shrinkage value are also unclear. Simultaneously, the 

influence mechanism of internal curing agents on autogenous shrinkage should be further 

reconnoitered. 
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CHAPTER 3 EVALUATION OF FIBRE ON AUTOGENOUS 

SHRINKAGE OF ULTRA-HIGH PERFORMANCE CONCRETE BY 

RING TEST 

Note: this chapter is based on the manuscript entitled “Combine tube test and ring test 

ultra-high performance concrete to predict the autogenous shrinkage of ultra-high 

performance concrete”, by Linmei Wu, Z Zhang and H Wang, published in Proceedings of 

the 1st RILEM International Conference on UHPC Materials and Structures, pp46-52, Oct 

27-30, 2016, Changsha, China  

ABSTRACT: Due to high content of cementitious materials and low water-to-binder ratio 

(w/b), ultra-high performance concrete (UHPC) have high autogenous shrinkage. In this 

study, the effects of steel fibre on the autogenous shrinkage of UHPC was evaluated by 

using ring tests and corrugated tube method under plastic film sealed conditions. The 

results indicated that the development of autogenous shrinkage of UHPC was mainly 

during the first 24 hours. The autogenous shrinkage of UHPC is significant reduced by 

adding steel fibre. The optimal fibre content was found to be 3% where UHPC exhibited 

highest strength (107 MPa at 3 day) and lowest autogenous shrinkage (750×10-6μm at 3 

day, which was only 30% of that of the specimens without steel fibre).  

3.1 Introduction 

Autogenous shrinkage of cement based materials is an important factor causing cracking 

of early-age cement(Pei, Li, Zhang, & Ma, 2014). It is defined as sum of chemical shrinkage 

and autogenous drying shrinkage (Dale P Bentz, 2008; L. Wu et al., 2017b). Nowadays, 

there are many methods to measure autogenous shrinkage. Autogenous shrinkage of 
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cement based materials is an important factor of cracking of early-age cement. There are 

different definitions of autogenous shrinkage and testing methods recently. Autogenous 

shrinkage should be defined as the summary of chemical shrinkage and autogenous 

drying shrinkage, not just refers one of them. Wherever all testing methods can be divided 

into two categories: direct and indirect measurement methods. The direct methods 

usually measure volumetric or one dimensional changes. The indirect methods usually 

measures porosity or humidity change of cement-based materials, which can reflect the 

autogenous shrinkage change. Indirect methods need to establish correlations between 

autogenous shrinkage and porosity or humidity. And all of the current testing methods for 

recording autogenous shrinkage can be divided into direct and indirect methods. 

Buoyancy method and corrugated tube measurement as the oldest and most common 

method of direct method, are mainly used for cement paste and mortar test, (R. Burrows, 

Kepler, Hurcomb, Schaffer, & Sellers, 2004; O Mejlhede Jensen & Hansen, 1995). but the 

testing result of usually buoyancy method shows poor repeatability (Turcry et al., 

2002).Corrugated tube measurement (Dale P Bentz & Peltz, 2008)combines the 

advantages and disadvantages of the measure volumetric and the one dimensional 

changes at the same time, starting from casting, it can avoid the influence of environment, 

but if you add fiber in UHPC , it is difficult to operate(Ole Mejlhede Jensen & Hansen, 2002). 

Even so, corrugated tube measurement is as the first selection for autogenous shrinkage 

so for(Bao, Meng, Chen, Chen, & Khayat, 2015; Hu et al., 2013). 

To reduce the magnitude of early-age shrinkage and cracking potential, several mitigation 

strategies have been proposed including the use of steel fiber. To appropriately utilize steel 

fiber, it is important to have a complete understanding of the driving forces behind early-

age volume change and how steel fiber work from a materials science perspective to 
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reduce shrinkage under unrestrained and restrained conditions. Autogenous shrinkage of 

cement based materials is an important factor governs cracking at early-age of hydration.  

Tensile stress can develop in concrete when constraint prevents the concrete from 

shrinking freely in response to drying, chemical reaction, or temperature reduction. When 

these tensile stresses exceed the tensile strength of the concrete, visible cracking may be 

expected to occur. While several test methods have been developed to assess a material's 

potential for early-age shrinkage cracking, this chapter describes the use of the ‘ring-test’ 

(Figure 3-1) for assessing the performance of a fiber reinforced concrete. 

 

Figure 3-1. Test steel ring (Note: Dimensions are in millimetres). 

Through a large number of documents, you can see that there are a lot of people did ring 

experiment, but are used for the experiment and the resistance to cracking, and the drying 

shrinkage test, in this chapter, the circle is applied to the autogenous shrinkage of UHPC, 

compared with the traditional method of corrugated pipe, and also got good result.  

In this chapter, the cracking sensitivity was evaluated when the UHPC was under concrete 

shrinkage stress. Steel-UHPC composite ring tests was used to evaluate comparatively. 

Measuring the compressive strain along circle direction in the steel ring and observation 

of cracking status on the ring specimen. 
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3.2 Test program 

3.2.1 Raw materials 

Portland cement P.I 42.5 complying with the Chinese Standards GB175-2007 was used. 

Table 1 summarizes the physical properties of the cement. Fly ash and ground furnace slag 

were used to partially replace cement in concrete mix, with the specific surface area were 

427 m2/kg and 446 m2/kg, respectively. Silica fume with 63%particle of 0.1~0.5 μm and 

specific surface area of 18500 m2/kg was used. Table 2 presents the chemical properties 

of the cement and these supplementary cementitious materials. The natural river sand 

with maximum particle size of 2.36 mm and fineness modulus of 3.0. It has apparent 

density and packing density of 2550 kg/m3 and 1570 kg/m3, respectively. The straight 

steel fiber with the diameter of 0.2 mm and length of 13 mm was used. A polycarboxylate 

based super-plasticizer (SP) with solid content of 21% was used.  

Table 3-1: Physical properties of Portland cement P.I 42.5 

 

Table 3-2: Chemical compositions of cementitious materials (%) 

Chemical 

Composition 
SiO2 Al2O3 Fe2O3 CaO MgO 

Cement 25.26 6.38 4.05 64.67 2.68 

Silica fume 90.82 1.03 1.50 0.45 0.83 

Slag 33 13.91 0.82 39.11 10.04 

Fly ash 54.29 22.55 5.53 1.34 2.56 

 

Density 

(kg/m3) 

80 μm-

residue 

on sieve 

(%) 

Specific surface 

area 

(m2/kg) 

Setting time(h) 

Flexural 

Strength 

(MPa) 

Compressive Strength 

(MPa) 

Initial Final 3d 28d 3d 28d 

3.15 0.3 380 2.5 3.4 6.4 9.0 33.0 60.0 
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3.2.2 Mixture proportions 

Mixture proportion of UHPC with w/b of 0.18 and binder-to-aggregate ratio of 1.1 was 

used, as shown in Table 3. The SP dosage was fixed at 2% by the mass of the binder. Steel 

fiber contents were 0, 1%, 2%, and 3% by the volume of concrete.  

Table 3-3: Mixture proportions of UHPC 

No. 
Cement 

(%) 

Silica fume 

(%) 

Slag 

(%) 

Fly Ash (%) SP 

(%) 
w/b binder-aggregate ratio 

Steel fiber content 

(V %) 

K1 55 20 25 0 2 0.18 1：1.1 0 

K2 55 20 25 0 2 0.18 1：1.1 1 

K3 55 20 25 0 2 0.18 1：1.1 2 

K4 55 20 25 0 2 0.18 1：1.1 3 

F1 55 20 0 25 2 0.18 1：1.1 0 

F2 55 20 0 25 2 0.18 1：1.1 1 

F3 55 20 0 25 2 0.18 1：1.1 2 

F4 55 20 0 25 2 0.18 1：1.1 3 

3.2.3 Mixing procedure and sample preparation 

In mixing procedure, dry powders, including cement, silica fume, slag or fly ash, and 

natural river sand, were first mixed for 3 min at high speed. Then water and super-

plasticizer were added and mixed for approximately 6 min at a low speed. Afterwards, 

steel fibers were added through passing a sieve with size of 5 mm and mixed for another 

6 min until the mixtures were uniformly distributed. Then UHPC mixtures were casted 

into molds and vibrated to consolidate the mixtures. 
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3.3 Test procedures 

3.3.1 Unrestrained autogenous shrinkage test: autogenous shrinkage 

corrugated tube measurement 

Fresh mixtures were filled into corrugated polyethylene tubes with 10 mm inner diameter 

using a hopper and rodded with a glass rod in order to eliminate the air and ensure their 

complete consolidation. After that, the free end was immediately sealed with a stainless 

steel head. Original lengths of specimen were measured as references. Then the gauge 

head was fixed at a distance of 2 mm to the free end. The experimental data were recorded 

immediately after the sensor was connected to the data acquisition system. The data 

record interval was 5 min and the measurement period were 72 hours. The experiment 

was conducted in a room at 20±2 °C and with precision of 0.0001 mm. The autogenous 

shrinkage was calculated as follows: 

0

0

l
aat

st


                              (3-1) 

where, εst is the autogenous shrinkage of concrete at time t (h); at is the distance between 

the sensor head and the steel free head (mm) at time t; a0 is the initial distance between 

the sensor head and the steel free head (mm); l0 is the original length of the specimens 

(mm). 

3.3.2  Restrained autogenous shrinkage test: ring test 

Figure3-2 shows an overview of the ring restraint test. Based on the procedures for the 

ring restraint test suggested by ASTM C 1581-04, a steel ring with outer diameter of 330

±3.3 mm and the inner diameter of 406±3 mm was used in the tests. The height of ring 

was 152±6 mm and the thickness of concrete was 38±3mm. Each ring specimen was 

equipped with four strain gauges that were placed at mid-height on the inner 
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circumference of the steel ring. The strain gauges were zeroed before concrete ring cast 

and the strains were automatically recorded every one minute after finishing the 

specimen surface. The fresh concrete material was cast into the ring mold in two layers 

and was consolidated by a vibrating table. After finishing the surfaces, the casting face was 

sealed with soft plastic sheet to prevent moisture exchange with its surroundings. All tests 

were carried out in the same laboratory where the autogenous shrinkage tests were 

carried out.  

  

      

Figure 3-2. Ring test. 
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3.4 Results and discussion 

3.4.1 Unrestrained autogenous shrinkage 

The experimental results of the development of autogenous shrinkage of UHPC with ages 

since material casting are shown in Figure 3-3(a) and (b) respectively for slag added UHPC 

and fly ash added UHPC under the plastic film sealing conditions. The development of 

autogenous shrinkage strain with age roughly obeys two-stage pattern, i.e. a fast 

developing stage within the first 12 h since the specimen cast followed by an increasing 

stage with a gradually reducing rate. The magnitudes of autogenous shrinkage strains in 

each stage are different for the slag and fly ash UHPCs with different fiber contents. The 

absolute value of autogenous shrinkage strains in the observed period are 2420 μm/m 

and 1320 μm/m respectively for non-fiber reinforced slag and fly ash added UHPCs, 

respectively. The autogenous shrinkage strain in second stage of non-fiber reinforced slag 

added UHPC is larger than that of non-fiber reinforced fly ash added UHPC and the 

development of autogenous shrinkage strain of non-fiber reinforced slag added UHPC is 

much faster than that of non-fiber reinforced fly ash based UHPC. The autogenous 

shrinkage strain of fiber-reinforced slag added UHPC is comparable with the autogenous 

shrinkage of similar fiber-reinforced fly ash added UHPC under the sealing conditions. 
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       (b) Fly ash added UHPC 

Figure 3-3. Development of autogenous shrinkage of UHPC. 

In the first 14 hours after specimen cast, the development of autogenous shrinkage of the 

slag UHPC and fly ash UHPC are very similar. When the specimens are starting to dry, an 

increased rate on the autogenous shrinkage will occur. The autogenous shrinkage strain 

of slag added UHPC is noted to be larger than that of the fly ash added UHPC. At 72 h, the 

autogenous shrinkage non-fiber reinforced UHPC is about 4 times larger than that 

containing 3% fiber. It is evident that the autogenous shrinkage of both the slag and fly 

ash added UHPC are greatly reduced after using the fiber.  

3.4.2 Restrained autogenous shrinkage 

The development of compressive strain along circle direction at middle location of the 

inner surface of the steel ring with age since casting of the slag and fly ash added UHPC 

are presented in Figure 3-4. The compressive strain increases with age after material 

casting. After the material cast, due to autogenous shrinkage of the concrete, a 

compressive circle strain along circle direction of the steel ring is formed and gradually 

increases. The circle strain with age firstly increases with a decelerated rate then gradually 

goes into a relative stable stage at which a steady strain value is achieved. For the non-
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fiber reinforced slag and fly ash added UHPCs, the circle strain are 1300 and 1280 μm/m 

respectively at 24 hours after casting, which become stable (almost constant). 
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(a) Slag added UHPC                      (b) Fly ash added UHPC 

Figure 3-4. The development of strain along circle direction at middle location of the 

surface of the steel ring with age. 

The development of compressive strain of the slag and fly ash added UHPCs are in a similar 

manner. It is noticed that the compressive strains of fiber reinforced UHPC (both slag and 

fly ash added) exhibit a higher development rate compared to non-fiber reinforced UHPC. 

At 72 h, the compressive strain under the sealing conditions for the slag and fly ash added 

UHPCs are 1410, 2750 and 3728 μm/m for the slag added UPHC and 1272, 2379, and 3225 

μm/m respectively for the fly ash added UHPC at fiber contents of 0%, 1% and 2%. The 

compressive strain of 2% fiber reinforced UHPC is 2.5 times larger than non-fiber 

reinforced UHPCs for both the slag and fly ash added UHPC. Apparently, the compressive 

strain of both slag based UHPC and fly ash based UHPC are greatly increased after using 

the fiber. 

3.4.3 Comparison of the two testing methods 

There was a great linear relationship between the shrinkage of steel ring εnet and the 

square root of age t by ring test, and the slope of the fitting line is the shrinkage strain rate 
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α, as shown in Eq. (3-2). The ring test is used to calculate the stress grow rate of concrete 

ring by ASTM C1581. Actually, there is also a linear relationship through the prism test 

method. 

                            (3-2) 

Where Ɛnet: is
 
strain development value (m/m); 

      α is coefficient of Strain development value (m/m)/d1/2; 

      t is the time of Strain development value 

      k is Random variable of linear regression.
 

The shrinkage strain rate α of mixtures can be calculated by Eq. (3-2).(C. Shi, B. Tong & F. 

He, 2011) Table3-4 and Table 3-5 show the shrinkage strain rate of different mixes by 

the corrugated tube test and ring test, respectively. 

Table 3-4: The shrinkage strain rate α of mixes by the corrugated tube test 

Title. K-1 K-2 K-3 K-4 F-1 F-2 F-3 F-4 

Autogenous 

shrinkage 38.64 8.76 14.34 6.86 20.19 7.28 7.03 3.42 

 
Table 3-5: The shrinkage strain rate α of mixes by the ring test 

Title. K-1 K-2 K-3 F-1 F-2 F-3 

Autogenous 

shrinkage 
348.3 250.2 106.9 313.2 216.2 85.99 

Autogenous and 

dry shrinkage 
416.8 264.8 130.4 375.7 238.2 107.5 

As can be seen from Table 3-4 and Table 3-5, the shrinkage strain rates by ring test are 

significantly higher than those of corrugated tube test. This result can be contributed to 

the restriction and higher elasticity modulus of steel ring. The shrinkage strain rate by the 

prism test, unrestrained ring test and restrained ring test. The maximum and minimum 

net t k  
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rate of shrinkage are respectively the result by unrestrained tube test and restrained ring 

test. Comparing with the shrinkage strain rate and cracking time of concrete, the ring test 

is more reasonable and satisfactory to characterize the actual shrinkage strain rate than 

unrestrained ring test. 

3.5 Theoretical models of autogenous shrinkage 

At one point, assuming that free Autogenous shrinkage deformation εsh will occur at the 

early UHPC bar since autogenous shrinkage. It can be argued that the Autogenous 

shrinkage deformation that develop in the restrained UHPC bar can be considered as a 

combination of two components as shown in Figure 3-5 (i.e., restrained Autogenous 

shrinkage deformation εsh,r and restrained stretch deformation εt. 

 

Figure 3-5. Free and restraint Autogenous shrinkage deformation of chart of UHPC bar. 

Defined the initial length of the UHPC bar as L, if no constraint exists, the free Autogenous 

shrinkage strain can be expressed as LLsh / . On the contrary, if the UHPC bar is 

restrained, the restrained autogenous shrinkage strain is LLL rsht /,  and the 

stretch deformation is LLL rsht /, . In general, the degree of constrained 

deformation can be described as constraint degree R (R=εt/εsh). When R=0, there are only 

free Autogenous shrinkage deformation will occur of the UHPC bar due to no restraint; 
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When R=1, the deformation of the UHPC bar is completely limited by the constraint and 

the free Autogenous shrinkage deformation εsh is equal to the restrained stretch 

deformation εt; When R=0~1, the UHPC bar is limited by some constraint and both 

restrained Autogenous shrinkage deformation and restrained stretch deformation exist, 

while the restrained stretch deformation is εt=R·εsh. 

In reinforced concrete, for example, assuming that the sectional area of concrete and rebar 

are Ac and As, respectively. The free Autogenous shrinkage deformation is εsh(t) at the age 

of t days and the restrained deformation is εsh-s(t) when the concrete is restrained by the 

internal rebar. The strain of concrete at t days can be expressed as Eq. (3-3). 

)()()( ,, ttt sshshtc                           (3-3) 

If the elastic modulus of rebar and concrete are Es and Ec, by the elastic mechanics, the 

compressive stress by the rebar and tensile stress of concrete are expressed as Eq. (3-4) 

and Eq. (3-5), respectively. 

)()()( , ttEt sshss                        (3-4) 

)()()( , ttEt tccc                        (3-5) 

Assuming that the deformation is compatible between the inner surface of concrete and 

the outside surface of steel ring, and then 

ctccsshs AttEttE  )()()()( ,,                      (3-6) 

The compressive strain of steel ring and the tensile strain of concrete are expressed as 

Eq. (3-7) and Eq. (3-8), respectively. 
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AtEtt
)(

)()()(


                       (3-7) 
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)(

)()(, tR
AtEAE

AEtt sh
ccss

ss
shtc  


                (3-8) 

Thus, it was demonstrated that the constraint degree is not only associated with the elastic 

modulus, but also related to the sectional area of bar. 

The restrained ring test of concrete is a conventional method used for evaluation of 

Autogenous shrinkage induced cracking performance of fiber reinforced concrete, which 

has been used for several decades. The restrained ring test consists of a cement material 

annulus that is cast around a steel ring. As the outer cement material, such as UHPC in 

present work shrinks, the steel ring limits the Autogenous shrinkage resulting in tensile 

stresses in UHPC ring and surface pressure stresses on the outer surface of the steel ring. 

The following section begins with a stress analysis of Steel Fiber-UHPC composite ring 

under surface pressure before analyzing the Autogenous shrinkage induced cracking 

performance of SFUHPC and traditional UHPC. 

First we consider a thin circular ring surfers external and internal surface pressure stress, 

q1 and q2, see Figure 3-6 E and μ are the elastic modulus and Poisson’s ratio of the material. 

a and b are the inner and outer radius of the ring. Now assume the material undergoes 

autogenous shrinkage strain εsh. In polar coordinate, the stress for plane stress can be 

expressed as: 

1 2
2 2

1
2(1 ) 1

r

r sha

EC ECE rdr
r r

 
 

   
                    （3-9） 

2
21

2

1
1)1(2 r
ECECErdr

r
E r

a shsh 






                （3-10） 
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Where C1 and C2 are constants which can be determined by the boundary conditions. From 

boundary condition that 1r q  at r = a and 2qr   at r = b, we obtain： 

)(1)1(2
1

2
2

2
221 






b

a shrdrEqaqb
abE

C 


               （3-11） 

)(1
21222

22

2 



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b
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b
Eqq

ab
ba

E
C 


                 （3-12） 

 

Figure 3-6. Circular ring under surface pressure. 

The two-layer Steel Fiber-UHPC composite ring can be separated into a steel ring and a 

UHPC ring with an external interfacial pressure stress and an internal interfacial pressure 

stress acted on the UHPC and steel interface respectively, as shown in Figure 3-7 for UHPC 

ring, we have q2 = 0 and q1 = q. For steel ring, we have q2 = q, q1 = 0 and 0sh . Using above 

conditions in (3-2), we obtain the constants of C1 and C2 for UHPC ring as: 
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Figure 3-7. Decomposing of concrete-steel composite ring. 

Clearly, the Autogenous shrinkage resulted stresses in UHPC ring are generated from 

volume change of UHPC layer and is a function of εsh as displayed in (3-3). In ring test, 

Autogenous shrinkage of UHPC is restraint by steel ring and tensile stress is created in the 

UHPC ring. Creep of cementitious material then immediately takes place as UHPC ring is 

loaded in tension. Then part of the Autogenous shrinkage strain is counteracted by the 

creep strain, behaving as the Autogenous shrinkage tress decreasing with age. Assume the 

creep factor is k, then the effective Autogenous shrinkage strain that actually be used for 

generation of Autogenous shrinkage stress in UHPC ring as εsh-e then we have: 

)()( tkt shesh                       （3-15） 

Replace εsh with εsh-e in (3-3), we can obtain the tensile stress along circular direction at 

outer (r = r3) and inner (r = r2) surface as: 

q
r
r

rr
r )1( 2
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2
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And the interfacial stress q can be expressed as: 
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On another hand, the interfacial stress q can be related with the inner surface strain on 

the steel ring,   as 

2

2

2

11 E
r
rq





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





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






                        （3-19） 

The compressive strain   can be measured from experiments. Thus, replace q in 

Equations (3-5) and (3-6) by Equation (3-7) respectively, we can calculate the shrinkage 

induced stresses in UHPC ring and the effective shrinkage strain used for generating the 

stress, kεsh. After comparing with the shrinkage stress, the shrinkage status of the ring 

under shrinkage load can then be evaluated. 

The following three figures are plotted according to the formulas (3-18) and (3-19).  In 

Figure 3-8 (a), the relationship of UHPC shrinkage strain and time series is described, in 

which K is extracted by the results of corrugated tube measurement. From the graph, we 

can see that steel fiber has remarkable effects on both slag based and fly ash based. With 

the enhancement of fiber mixing amount, shrinkage strain decreases fast, with strain 

value holding an increasing tendency in the following 72 hours, which is unconformable 

to the variation of strain. This phenomenon is resulted by shrinkage resistance force due 

to the regasification of concrete. 

Because of the high activity of slag, early stage shrinkage of slag based exceeds that of fly 

ash based. In Figure 3-8 (b) and (c), the unrestrained autogenous shrinkage of slag based 

and fly ash based is compared with their restrained shrinkage, respectively. It is showed 

that two kinds of strains have appropriate correlation and the accuracy of ring method 
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applied in testing autogenous shrinkage of UHPC is proved. The ring method is suitable 

for measuring early stage shrinkage of concrete, especially autogenous shrinkage. 

Guaranteeing the perfect seal of test specimens is a crucial factor to obtain accurate 

experimental data. However, two problems are expected for deeper research. The first is 

influence of the stiffness of the steel ring? Another is how can we measure the evolution 

of the Modulus? 
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(a) Free shrinkage of UHPC            
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(b) Slag based UHPC 
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(c) Fly ash based UHPC 

Figure 3-8. Comparison between effective shrinkage strain and free shrinkage of UHPC. 

The elastic modulus and cracking strength of UHPC with fiber and non-fiber, which should 

be used in the model, were obtained from references (Attiogbe, Weiss, & See, 2004) (Jun 

Zhang, Gao, & Wang, 2013),in which the tensile performance of UHPC with fiber and non-

fiber were investigated in details. The test results of elastic modulus and cracking strength 

of UHPC with fiber and non-fiber as a function of material age are presented in Figure 3-8 

respectively. Typical tensile stress–strain relationship of UHPC with fiber and non-fiber 

used in the present paper is presented in Figure 3-8, in which the determination of 

cracking strength is illustrated by the small graph displayed in the figure. Clearly, both 

materials have displayed strain-hardening and multiple cracking performances under 

tension and a similar ultimate tensile strain is obtained. The cracking strength of UHPC 

with fiber is higher than that of UHPC non-fiber. Figs. 8 present the relationship between 

average shrinkage stress along circle direction calculated from (18) and cracking strength 

versus time diagrams of UHPC with fiber and non-fiber respectively. From the results, first 

we can find that the shrinkage stress increases with age following the variation law of 

shrinkage versus time. As surface drying starts, the shrinkage stress increases suddenly 

also as shrinkage does at this moment. By comparing the development of shrinkage stress 
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between UHPC with fiber and non-fiber, we may find that the shrinkage stress keeps 

continuously increasing with age in UHPC ring. By contrast, the shrinkage stress in UHPC 

with fiber ring first increases with age then goes into a steady state without increasing 

with age. The above results mean that it is possible to build UHPC structures without 

shrinkage induced cracking during service un-der general environments. However, under 

rigorous environmental conditions, even the cracking cannot be prevented, the crack 

width can be controlled within a certain magnitude of opening. Such conclusion may 

enhance the applications of UHPC in practice, especially in the cases of shrinkage induced 

cracking should be avoided. Apart from shrinkage stress, the effective shrinkage strain, 

kεsh can be calculated from Eq. (3-19). The comparison between effective shrinkage strain 

and free shrinkage strain of UHPC with fiber and non-fiber are presented in Figure 3-8 

respectively, in which the two strains within the initial few days since specimen cast is 

displayed in the small figure. As expected, the effective shrinkage strain is lower than that 

of free shrinkage strain for given age. Such difference may due to creep and development 

of micro cracks if cracking already occurs in the ring specimen. Before cracking, the creep 

relaxation parameters of the tested material may be estimated by analyzing the difference 

between free shrinkage strains the effective shrinkage strain as displayed above. 

3.6 Conclusion  

Based on the results from this study, the following conclusions can be drawn: 

(1) The experimental results shown that the shrinkage of UHPC with fiber is significantly 

reduced due to the use of low shrinkage cement matrix comparing with UHPC non-fiber 

materials. Under the same restraint and environmental drying condition, UHPC with fiber 

presents super anti-cracking performance behaving as without visible cracks on the ring 
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specimen. The mechanisms of super anti-cracking performance of UHPC with fiber are 

interpreted by shrinkage induced stress analyses with UHPC-steel composite ring 

specimen. The model results show that much lower shrinkage stress is created in UHPC 

with fiber ring compared with that of UHPC non-fiber ring. This study indicates that it is 

possible to develop UHPC structures without shrinkage induced cracking during its 

service. However, the structures still remain the unique crack opening control and strain 

hardening performance in the case of cracking may not be avoided under rigorous 

environmental conditions. 

(2) The ring method is suitable for measuring early stage shrinkage of concrete, especially 

autogenous shrinkage. Guaranteeing the perfect seal of test specimens is a crucial factor 

to obtain accurate experimental data. However, two problems are expected for deeper 

research. The first is influence of the stiffness of the steel ring? Another is how can we 

measure the evolution of the Modulus? 
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CHAPTER 4  EFFECTS OF STEEL FIBER ON DRYING 

SHRINKAGE OF ULTRA HIGH PERFORMANCE CONCRETE 

Note: this chapter is based on the manuscript entitled “. Effects of Steel Fiber on Drying 

Shrinkage of Ultra High Performance Concrete.” by Linmei Wu, C. Shi, Z. Zhang & H Wang, 

published in journal of Materials Review, 23:007. September 2017.  

Abstract: This chapter reports the study of the influence of steel fibers on drying 

shrinkage of ultra-high performance concrete (UHPC) at fiber volume content of 0%, 1%, 

2% and 3%, temperature of 20 ± 2°C and relative humidity of 50 ± 5%. The results showed 

that during the first 7 days, the drying shrinkage rate of UHPC was very fast, while after 7 

days it gradually decreased. The interfacial bonding of steel fiber and the physical 

properties of steel fiber can effectively reduce the drying shrinkage. However, when the 

steel fiber exceeds an optimal volume, the effect of steel fiber on drying shrinkage can 

decrease. Compared with the steel fiber content at 2%, the drying shrinkage of the UHPC 

with 3% steel fiber was decreased by only 1.5%. The reason is that the increase in the 

steel fiber leads to an increase in the interface layer, the interface transition zone is usually 

more porous than the matrix, which easily leads to shrinkage, and consequently reducing 

the beneficial effect of steel fiber on drying shrinkage control. It was also found that the 

inhibition of fly ash on the drying shrinkage of UHPC was higher than slag. The experiment 

also tested the classic dry shrinkage models: the ACI model and the Wang Tiemeng model. 

Based on the two models and the experimental fitting, a new mathematical model (a 

combined index model) has been proposed. The results showed that the combined index 

model fitted better than the two models mentioned above. 
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4.1 Introduction 

Drying shrinkage of concrete is the shrinkage caused by evaporation of internal water in 

hardened concrete. Creep and drying shrinkage are very important time-dependent 

properties of UHPC, they are in direct relation to the performance of UHPC in concrete 

structures(P Acker, 2004). With the rapid development of UHPC in the world, more and 

more attention has been paid to the creep and drying shrinkage behavior of UHPC. In 

China, there are many research projects at present concentrating on raw materials, 

mixture design, properties and construction technology of HPC(V. Y. Garas et al., 2009; Z. 

Li, 2016). The drying shrinkage of cement-based materials is induced by the difference of 

moisture contents between the interior of the sample and surrounding environments. It 

was reported that the highest drying shrinkage occurs at the surface of samples and it 

gradually decreases when approaching to the inner part of the sample(Gilbert, 1988). 

Warping and cracks may take place when the relative humidity difference between the 

interior and outside is large enough, leading to the issues of durability(Barr, Hoseinian, & 

Beygi, 2003; L. Wu et al., 2017b). Worse still, drying shrinkage is to some extent 

irreversible, indicating that samples including specimens and structural components after 

first-time drying shrinkage are not able to recover to their initial dimensions when 

exposed to humidity again (FISCHER & Shuxin, 2003; Monteiro, 2006). 

 

Many influential factors can lead to drying shrinkage of concrete, including concrete 

compositions, types of mineral admixtures, curing time and temperature, relative 

humidity and water contents (Barr et al., 2003; H. Chen et al., 2012; FISCHER & Shuxin, 

2003; W. Zhang, Zakaria, & Hama, 2013). As a commonly used mineral additive for 

replacing ordinary Portland cement, mineral admixtures have a great effect on the 

shrinkage properties of OPC-based materials. However, the issue of specific effects still 

remains controversial(Chern & Chan, 1989; Khatri, Sirivivatnanon, & Gross, 1995). 

Shrinkage reducing admixtures can reduced the surface tension of water in the pores of 

concrete and the corresponding capillary pressure, leading to a decrease in the drying 

shrinkage of concrete(Mora-Ruacho, Gettu, & Aguado, 2009). It was reported that the 28-

day drying shrinkage was reduced by 50-80% for the concrete with the addition of 

shrinkage reducing agent compared to the one without addition(D. Bentz, M. R. Geiker, & 

K. K. Hansen, 2001). However, the usage of shrinkage reducing admixture may result in a 
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series of problems such as a reduced compressive strength during early curing stage, a 

prolonged setting time and complex reactions with other chemical admixtures (J. Brooks 

& Jiang, 1997; Folliard & Berke, 1997; Rodden & Lange, 2004). It was also reported that a 

prolonged curing time can also decrease the final drying shrinkage effectively (Dang et al., 

2013; Y. Huang, 2006; Jin & Al-Tabbaa, 2015).  

 

Many types of mineral admixture such as fly ash and limestone powder are used in 

concrete. However, there is limited information on the drying shrinkage behavior of 

concrete containing these mineral admixtures. Some researchers (Tongaroonsri, S., & 

Tangtermsirikul, S. 2009) studied the cracking behavior of concrete with low fly ash 

content (20% replacement). However, in real application fly ash is used to replace cement 

from 10% up to 50%. Mixture with lower water to binder ratio (w/b = 0.35) shows shorter 

cracking age than the mixture with higher water to binder ratio (w/b = 0.55). Fly ash and 

limestone powder significantly increase cracking age of concrete. The cracking age 

increases with the increase of the replacement ratio of fly ash. The higher shrinkage rate, 

when exposed to drying, of mixture with longer curing period leads to shorter cracking 

age. 

 

UHPC is an ultra-strength cement-based material with a good ductility and durability. 

According to the foreign standards, the compressive strength of UHPC should not be lower 

than 150 MPa. Compared to high performance concrete, UHPC has an increased ductility 

by more than 300 times which is comparable to some metals, making it more structurally 

reliable when the concrete structures are under loading or seismic conditions 

(PierreMounanga et al., 2012; C. Shi & Mo, 2015; Tarolli, 1997).  UHPC is more likely to 

shrinkage due to a large amount of binder used in the system. Under the standard curing 

conditions, the rate of shrinkage gradually decreases as time proceeds (GARAS et al., 2009; 

Koh, Ryu, Kang, Park, & Kim, 2011). According to Guangcheng Long et al. (M. Ba, Qian, & 

Hui, 2013), the drying shrinkage of UHPC after one-day casting is relatively small and can 

reach up to 800 μm/m after 120 days. It was also reported that the shrinkage of UHPC 

increases as the water/binder ratio increases (M. Ba et al., 2013; Cwirzen, Penttala, & 

Vornanen, 2008) and the usage of coarse aggregate can reduce the shrinkage of UHPC 

(Cwirzen et al., 2008) . In addition, it is found that 2% addition of steel fibers was able to 

reduce the shrinkage of UHPC by 57% after 14 days (GARAS et al., 2009). Moreover, the 
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shrinkage of sample with 14-day heat curing was significantly reduced compared to the 

normal curing condition (Xian et al., 2013). Furthermore, there is no significant effect of 

polymers on the shrinkage of UHPC at the water bath curing condition with temperature 

at 90 ℃ (P. Chen, Liu, & Mingwei, 2011; Dai, Ng, Zhou, Kreiger, & Ahlborn, 2012; GARAS et 

al., 2009). The addition of a certain amount of steel fibers can significantly reduce the 

autogenous shrinkage and drying shrinkage of UHPC (BuquanMiao, Jenn‐ChuanChern, 

& Chen ‐ AnYang, 2003; Dai et al., 2012).  Moreover, it was found by Yoo et al. 

(BuquanMiao et al., 2003) that an addition within 3% of steel fibers led to a reduced 

shrinkage of concrete whereas little change was observed when the amount of addition 

was more than 3%. It is thus apparent that there still remain uncertainty regarding the 

optimized amount of steel fiber addition. The drying shrinkage strength was highly 

dependent on fibbers’ modules of elasticity, and the steel fibres showed the best 

performance due to their hook-shaped tail (Yousefieh, Negin, et al., 2017).  

 

This study investigates the effect of different amount of steel fibers, 0%, 1%, 2% and 3% 

on the drying shrinkage of UHPC and the related mechanisms of the effect of binder 

components and steel fibers are also analyzed. In addition, different equations of time 

were developed to fit the experimental results.  

4.2 Experimental program 

4.2.1 Raw materials 

Portland cement P.I 42.5, complying with the Chinese Standards GB175-2007(Jinfeng Wu, 

Ligang Yu & Xi Cai, 2009) was used. Table 4-1 summarizes the physical properties of the 

cement. Fly ash and ground furnace slag were used to partially replace cement in the 

concrete mixture, with the specific surface area of 427 m2/kg and 446 m2/kg, respectively. 

Silica fume with 63% particle size of 0.1-0.5 μm and specific surface area of 18500 m2/kg 

was used. Table 4-2 shows the chemical properties of cement, fly ash and slag. Natural 

river sand with a fineness modulus of 3.0 was used. Particles with size greater than 2.36 

mm were removed by sieving, apparent particle density is 2550 kg/m3，bulk density is 

1570 kg/m3，clay content is 1.0%，fineness modulus is 3.0，Screening results shows in 
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Table 7-3. The straight steel fiber with diameter of 0.2 mm and length of 13 mm was used. 

Lf=13 mm，df=0.2 mm，Tensile strength is 800 MPa，density is 7 850 kg/m3，elasticity 

modulus is 200 GPa. A polycarboxylene based super plasticizer (SP) was used. Its water-

reducing capacity was greater than 30%. The dosage of SP in the all mixture was 2 % by 

the mass of cementitious materials. 

Table 4-1: Chemical composition of material (mass %) 

Materials 
SiO2 
(%) 

Al2O3 
(%) 

CaO 
(%) 

MgO 
(%) 

SO3 
(%) 

Fe2O3 
(%) 

Na2O 
(%) 

K2O 
(%) 

Loss 
(%) 

Cement 21.53 4.60 64.09 1.50 2.32 3.37 0.12 0.32 1.80 

Fly ash 52.37 32.13 2.16 0.47 0.33 4.13 0.25 0.61 1.30 

Slag 31.64 13.16 38.62 10.85 3.14 1.03 0.31 0.40 0.98 

Silica fume 94.80 0.56 0.52 — 0.88 0.24 — — 3.15 

Table 4-2: Physical and mechanical properties of cement 

 

Table 4-3: Sieve analysis of river sand 

Sieve Size(mm) Retained (%) Cumulative retained (%) 

1.18 11.5 11.5 

0.63 17.9 29.4 

0.315 36.3 65.8 

0.16 32.3 98.1 

< 0.16 1.9  100 

 

4.2.2 UHPC Mixture proportions 

The mixture proportions of UHPCs were designed based on a previous study (Bazant & 

Baweja, 1995). In brief, the w/b of 0.18 and binder-to-aggregate ratio of 1:1.1 were 

selected and kept constant throughout the study. The SP was used at 2% by mass ratio of 

Cement 
Density 
(kg/m3) 

80μm-residue  
on sieve 

(%) 

Specific 
surface 

area 
(m2/kg) 

Setting time 
(h:m) 

Flexural strength 
(MPa) 

Compressive 
strength 

(MPa) 

Initial Final 3 d 28 d 3 d 28 d 

P.I 3.15 0.3 340 2:30 3:24 6.4 9.0 33.0 60.0 
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the binder. Steel fiber contents were 0, 1 %, 2 % and 3 % of the concrete by volume. Table 

4-4 shows the mixture proportions of UHPCs based on mass of ingredients.  

Table 4-4: Mixture ratio of UHPC 

No. 
Cement 

(%) 
Silica fume 

(%) 
Slag 
(%) 

Fly Ash 
(%) 

SP 
(%) 

w/b 
binder-to-aggregate 

ratio 
Steel fiber 

(% by volume) 

K1 55 20 25 0 2 0.18 1:1.1 0 

K2 55 20 25 0 2 0.18 1:1.1 1 

K3 55 20 25 0 2 0.18 1:1.1 2 

K4 55 20 25 0 2 0.18 1:1.1 3 

F1 55 20 0 25 2 0.18 1:1.1 0 

F2 55 20 0 25 2 0.18 1:1.1 1 

F3 55 20 0 25 2 0.18 1:1.1 2 

F4 55 20 0 25 2 0.18 1:1.1 3 

  *SP means the total mass of liquid-based SP.  

4.2.3 Mixing procedure and specimen preparation 

In mixing, dry powders, including cement, silica fume, slag or fly ash, and natural river 

sand, were firstly dry mixed for 3 min in a high-speed drum mixer. Then, water and 

superplasticizer were added and mixed for 6 min at low speed. Afterwards, steel fiber was 

added through passing a sieve with size of 5 mm and mixed for another 6 min until the 

mixtures were homogeneous. The obtained UHPC mixtures were then cast into molds and 

vibrated for consolidation. The cubic specimen size for the compressive strength test was 

40 × 40 × 40 mm3. The specimen size for long-term dimension stability test was 75 × 75 

× 275 mm3.The specimens were demolded 1 day after casting and then cured in lime 

saturated water at the temperature of 20 ± 2°C for 28 days. Then the properties of the 

hardened concrete such as compressive strength and initial length were measured before 

exposure to different conditions. 

4.2.4 Workability test 

The fresh mortar was filled into a mini cone placed on an automatic jump table as 

described in Chinese standard of GB2419-2005. The mini cone has an upper diameter of 

70 mm, a lower diameter of 100 mm, and a height of 60 mm. After mini cone was vertically 

lifted, the mortar was vibrated automatically for 25 times. Two diameters perpendicular 

to each other were then determined and mean value was reported. 
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4.2.5 Drying shrinkage test 

The surface area in contact with air is large and this could accelerate drying shrinkage due 

to water evaporation, and consequently increase the risk of cracking. Mould cast 75 × 75 

× 275 mm beams complying with BS EN 12617–4:2002 were monitored over six months 

in curing conditions in a climatic chamber (20 °C and 60% relative humidity). Each group 

comprised five specimens. 

 

The drying shrinkage was monitored based on the length change of the specimens 

according to Chinese standard GBJ82-85. The two measuring heads were embedded in the 

two sides of each specimen. The measurements were carried out at exposure ages of 1, 7, 

28, 56, 90, 120, 216, 448, 630 and 720 days. The length was measured by a digital 

micrometer (BC-300) and calculated by Eq. (4-1): 

                                                       (4-1) 

Where ε’st is the length change index of concrete at t days; 

      Lb is the standard length of specimen, which is the length of concrete subtracted 

the two times of the embedded depth of the measuring heads; 

      Lt is the measured length at t days; 

      L0 is the initial reading of the specimen.  

The reported result was the mean value of the length change of three specimens calculated 

accurate to 1×l0-6.  

4.2.6 Mass change 

The mass change was recorded concomitantly to the length change measurements. The 

mass was measured by electronic balance and mass change ratio was calculated by Eq. (4-

2): 

     𝜀 =
𝑚0−𝑚𝑡

𝑚0
                                 (4-2) 

Where m0 is the initial weight of the specimens after 28 days of standard curing (day 0); 

and mt is the weight of specimens at measured day t after exposure. 

4.2.7 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was employed to study the microstructure of UHPC. 

b

t
st L

LL 
 0'
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SEM samples were taken from freshly broken specimens, cut into small fragments and 

soaked in ethanol prior to testing, to stop the hydration of cement. Subsequently, the 

samples were dried at 65C and sputtered with gold before analyzing using ION SPUTTER 

E-1045.  

4.3 Experimental results 

4.3.1 Effect of steel fiber content on the workability of UHPC 

Figure 4-1 shows the effect of the fiber content on the flowability of UHPC. It can be seen 

that the flowability of UHPC was significantly reduced as the fiber content increased 

regardless of slag-based or fly ash-based systems. The flowability of UHPC for the slag-

based system without fiber addition was satisfactory which 218 mm was. However, the 

flowability decreased almost linearly after the addition of fibers. It is apparent that the 

flowability decreased by 30% when the addition level was 3%. With the same amount of 

fiber addition, the flowability of UHPC with fly ash addition was obviously higher than that 

of the UHPC with slag addition. This can be due to two reasons: 1) the most of the fly ash 

are round particles and the frictions between particles can be reduced because of its ball-

bearing effect; 2) some ultra-fine fly ash particles can fill in the voids among cement 

particles, thus increasing the bulk density. At the same time, the water content in cluster 

structures can also be reduced which leads to an increase in the amount of ‘free’ water 

with high mobility in the paste systems. The aforementioned two effects finally result in a 

satisfactory flowability of UHPC containing fly ash.  
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Figure 4-1. Effect of steel fiber content on workability of slag containing (K) and fly ash 

containing (F) UHPC mixtures. 

4.3.2 Effect of steel fiber content on the drying shrinkage of UHPC 

Figure 4-2 shows the drying shrinkage value changes up to 120 days of curing for slag-

based UHPC. It shows that the drying shrinkage gradually increases as time proceeds 

followed by little change at the end of 120 days. It can also be seen that samples with the 

addition of FA has a more pronounced beneficial effect in limiting shrinkage than slag. This 

can be explained by considering the replacement of cement by fly ash which reduced the 

amount of hydrated phase, thus leading to a decreased shrinkage. Another possible reason 

is that fly ash can fill in the voids in the hydrated matrix as fine aggregates and then reduce 

the shrinkage. According to Figure 4-2, it is obvious that as the addition level increases, 

the shrinkage of concrete decreases accordingly. For instance, the drying shrinkage was 

reduced by 3%, 19% and 30% when the steel fiber addition was 1%, 2% and 3% 

respectively. In comparison, the shrinkage reduction for the UHPC with FA addition was 

29%, 47% and 52% respectively for the same addition levels. It is obvious that the 

reduction in the drying shrinkage is less significant when the steel fiber addition increases 

for FA-based UHPC. In addition, the reduction of drying shrinkage was much higher for 

FA-based UHPC than that for slag-based UHPC when the steel fiber addition was 0% and 

1%. When the fiber addition is 2% and 3%, however, the reduction in the drying shrinkage 

is similar for both slag and FA-based UHPC. The drying shrinkage was decreased by about 

75% and about 85% for the FA-based UHPC with 2% and 3% steel fiber addition 

respectively, compared to the control UHPC. 
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(b) Fly ash-based UHPC 

Figure 4-2. Effect of steel fiber content on drying shrinkage of UHPC. 

Figure 4-3(a) and (b) shows the mass changes (%) of UHPC during the drying test with 

Calcite 
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different additions of steel fibers for slag-based and FA-based respectively. It can be seen 

that the percentage mass loss increases as the curing age increases regardless of slag or 

FA-based binders and no significant changes occurred after 14 days. For the slag-based 

UHPC, the addition of steel fibers is able to reduce the mass loss of UHPC effectively and 

the mass loss is decreasing with an increasing amount of fiber addition. However, it is 

found that the mass loss was considerably decreased at 90 days of curing when the 

addition was 1%. For the FA-based binders, a small amount of addition, 1% and 2%, 

decreased the mass loss of UHPC with a similar degree. However, the higher level of 3% 

addition led to a slight increase in the mass loss of UHPC. It is also noticed that without 

fiber additions, the mass loss of FA-based UHPC is smaller than that of the slag-based 

peers whereas the opposite was true when the curing age was more than 7 days. 

Comparing the Figure 4-2 and Figure 4-3, it is apparent that the mass loss is closely 

associated with the drying shrinkage evidenced by their similar trend and increasing rate.  
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(a) Slag-based UHPC                   (b) Fly ash-based UHPC 

Figure 4-3. Effect of steel fiber content on mass loss of UHPC. 

4.3.3 SEM images of interface between fiber and UHPC matrix 

Figure 4-4(a) shows the ESEM images of the sample interface between fibers and binder 

matrix for the slag-based UHPC with 2% fiber addition after 3 days of curing with a 

zoomed-in magnitude of 500 times. Figure 4-4(b) is a zoomed-in portion marked with the 

yellow dash rectangle in Figure 4-4(a) with a 2000-order of magnitude. Figure 4-5(a) is 

the SEM of the sample for the FA-based UHPC with 2% fiber addition during the early 

curing stage and Figure 4-5(b) is the corresponding region enlarged by 10,000 times. It is 

apparent that many small pores were observed on the surface of hydration products 

irrespective of slag or FA-based binder matrix in the early curing age. Some pores have a 
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diameter near to or more than 5 μm. This is particular the case for capillary pores between 

steel fibers and cement binder matrix, with a large volume and some accumulations of big 

crystals. The phenomenon is due to the hydrophobicity of the steel fiber surface which 

results in a larger water/cement ratio compared to that of the binder matrix. As a result, 

the water layer increases in thickness and a reduced ion concentration can be obtained. 

Under this condition, the ettringite and Ca(OH)2 crystals tend to grow larger without 

limitation and to orientate in a specific direction, forming a layer rich in crystals. This 

finally leads to a higher porosity of interface and the contact between C-S-H gel and fiber 

surface is less like to occur (GARAS et al., 2009). At the same time, the amount of hydrated 

C-S-H decreases because of the reduced concentration of ions in the interfacial transition 

zone, making the contact points between C-S-H gel and fiber surface fewer (GARAS et al., 

2009). All of the aforementioned reasons make the ITZ between fibers and binder matrix 

the weakest part in UHPC. The insignificant bonding strength between the fiber and 

binder matrix because of the weak ITZ results in the limitations of drying shrinkage during 

the early stage of curing for UHPC with the addition of steel fibers.  

 
(a) 

 
(b) 

Figure 4-4. SEM images of the slag containing sample with 2% steel fiber at 3 days. 

Clcte 
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(a) 

 
(b) 

Figure 4-5. SEM images of the fly ash containing sample with 2% steel fiber at 3 days. 

Figure 4-6(a) and (b) is the ESEM image showing the morphology of the slag-based UHPC 

sample with 2% steel fibers after 120 days of curing with a 250-time of enlargement and 

the corresponding area within the rectangle is enlarged by 8000 times respectively. Figure 

4-7(a) shows the SEM images of the FA-based UHPC sample with 2% steel fiber addition 

after 120 days of curing with Figure 4-7(b) showing the zoomed-in region with a 5000-

time enlargement. It can be seen that the surface of steel fibers was covered with some 

hydration products of OPC which improved the bonding between fibers and binder matrix. 

With the addition of steel fibers, they can improve the strength, ductility and limit the 

propagation of cracks. Based on the micro morphologies of the interface between the 

fibers and binder matrix after 120 days, it is apparent that the ITZ was densified compared 

to that after 3 days of curing. However, a closer examination of the ITZ with a higher 

resolution of images implies that there still remained some small gaps and space between 

fibers and binder matrix even after 120 days of curing regardless of either it was slag or 

FA-based UHPC. A too much higher steel fiber addition would lead to an adverse effect on 

limiting the drying shrinkage because of a higher content of ITZ with high porosity 

between steel fibers and binder matrix.  

Clcte 
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(a) 

 
(b) 

Figure 4-6. SEM images of the slag containing sample with 2% steel fiber at 120 days. 

 
(a) 

 
(b) 

Figure 4-7. SEM images of the fly ash containing sample with 2% steel fiber at 120 days. 

 

4.4 Discussion 

4.4.1 The evolution of drying shrinkage against curing age for UHPC 

Guoxing Huang et al. (Wei Sun, 1987) summarized three equations to describe the 

relationship between drying shrinkage and time, which are shown as follows: 

Hyperbolic function:       
( ) tX t

a bt


                              (4-3) 

Logarithmic function:     
0( ) ( 1)X t a b In t                           (4-4) 

Clcte 

Clcte 
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Exponential function:     ( ) ( 1 )btX t X ae                            (4-5) 

Where X(t) is the shrinkage at time t, and e refers to the natural logarithms, a and b are 

experimental constants. According to the current studies, Eq. (4-3) can be applied to 

normal concrete and lightweight concrete and Eq. (4-4) are suitable for FA-based and high 

strength concrete. Based on the experimental data (the shrinkage curve of UHPC with 

addition of steel fibers in this study, a formula based on the combined exponential 

correlation is shown as Eq. (4-6):  

( ) bt dtX t ae ce                           (4-6) 

where X is the end point of the shrinkage based on fitting, a,b,c,d are experimental 

constants as shown in Table 4-5. It shows that composite exponential function Eq. (4-6) is 

able to describe the relationship between autogenous shrinkage and curing age 

satisfactorily.  

Table 4-5: Comparison of experiment data with the calculated results 

No. a（×10-4） b（×10-3） c（×10-4） d R2 

K-1 7.155 1.97 -5.45 -0.177 0.957 

K-2 6.896 1.51 -3.374 -0.051 4 0.790 

K-3 5.632 2.516 -4.126 -0.033 8 0.979 

K-4 1.041 3.76 -8.983 -0.018 0.951 

F-1 7.288 2.52 -5.047 -0.132 2 0.932 

F-2 6.43 2.799 -4.484 -0.129 9 0.924 

F-3 3.75 2.845 -3.268 -0.192 5 0.878 

F-4 5.84 2.88 -3.719 -0.105 4 0.937 

 

4.4.2 The comparisons between different equations 

Up to now, all equations describing the relationship between drying shrinkage and time 

used in the world for estimation in most of the structural design standard are based on 

the experiments and semi-empirical equations. The semi-empirical equations were 

developed based on the diffusion theories. The most representative model overseas is the 

ACI estimation equation which was set up based on the correction coefficient obtained by 

calculating the deviations of the experimentally determined influential factors from 

standard conditions. The drying shrinkage after 7-day humid curing of concrete can be 
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expressed as: 

( ) ( )
35sh sh

tt u
t

 
                           (4-7) 

The drying shrinkage after 1 to 3 days of vapor curing can be described as: 

( ) ( )
55sh sh

tt u
t

 
                           (4-8) 

εsh (μ)=780 γcp·γλ·γh·γs·γφ·γc·γa·10-6 mm/mm            (4-9) 

where t is the curing days, γcp、γλ、γh、γs、γφ、γc and γa are the correction coefficients 

of initial curing conditions, relative humidity, averaged thickness, slump of concrete, the 

contents of fine aggregates, cement contents and air contents respectively. 

Tiemeng Wang(Lixue Wu, 2008) obtained the following drying shrinkage equation based 

on the experiment results within about 20 years obtained in China: 

4 0.01
1 2( ) 3.24 10 (1 )t

y nt e M M M    
              (4-10) 

Mn is the correction coefficients under nonstandard conditions, such as cement types, 

cement grade, water to cement ratio, curing conditions and reinforcements and so forth. 

According to the aforementioned equations in this study, the experimental data of drying 

shrinkage of UHPC with different additions of steel fibers is fitted with ACI equation, the 

equation proposed by Tiemeng Wang and Eq. (4-6) with the results show in Table 4-6. It 

is apparent that the correlation coefficient derived from Eq. (4-6) is the highest followed 

by that derived from ACI calculation equation. The lowest coefficient was seen for the 

equation developed by Tiemeng Wang. 

 

Table 4-6: Regression results for the relationship between drying shrinkage and 

time of UHPC 

sample Equation Regressed Equation 

Correlation 

Coefficient 

(R2) 

K-1 

ACI Equation y=5.764×10-5x/(1+0.060 31x) 0.9764 

Wang Equation y= -7.508×10-4×e(-0.045 83x)+ 8 173×10-4 0.9890 

Equation（6） 
y=7.922×10-4 e(-0.000 173 9x)-1.026×10-4e(-

2.075x) 
0.9886 

K-2 

ACI Equation y=41.81×10-5x/(1+0.043 01x) 0.9865 

Wang Equation y=-7.498×10-4×e(-0.035 32x)+8.078×10-4 0.9969 

Equation（6） y=8.385×10-4e(-0.026 45x)-2.103×10-4e(-1.437x) 0.9969 
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K-3 

ACI Equation y=26.36×10-5x/(1+0.032 51x) 0.9812 

Wang Equation y=-6.346×10-4×e(-0.039 73x)+6.992×10-4 0.9830 

Equation（6） y=4.644×10-4e(0.202 1x)-2.93×10-5e(-2.67x) 0.9906 

K-4 

ACI Equation y=23.12×10-5x/(1+0.031 98x) 0.9824 

Wang Equation y=-5.589×10-4×e(-0.023 87x)+6.105 0×10-4 0.9853 

Equation（6） y=4.648×10-4e(0.127x)- -7.261×10-5e(-1.756x) 0.9870 

F-1 

ACI Equation y=179.1×10-5x/(1+0.124 6x) 0.9075 

Wang Equation y=-1.03×10-3×e(-0.375x)+1.409×10-3 0.9880 

Equation（6） y=1.5410×10-4e(-0.045 81x)-3.634×10-4e(-1.296x) 0.9886 

F-2 

ACI Equation y=176.3×10-4x/(1+0.184x) 0.8892 

Wang Equation y=-6.523×10-4×e(0.038 62x)+9.721×10-4 0.9836 

Equation（6） y=8.484×10-4e(0.085 44x)-3.417×10-5e(-2.855x) 0.9905 

F-3 

ACI Equation y=29.11×10-5x/(1+0.031 2x) 0.9336 

Wang Equation y=-7.268×10-4×e(-0.017 17x)+8.520 0×10-4 0.9928 

Equation（6） y=-1.324e(-0.275 6 x)+1.324e(-2.753x) 0.9946 

F-4 

ACI Equation y=1.976×10-5x/(1+0.021 25x) 0.9656 

Wang Equation y=-6.974×10-4×e(-0.016 57 x)+7.708×10-4 0.9927 

Equation（6） 
y=9.461×10-4e((-0.055 42x)-5.382×10-4e(-0.576 

3x) 
0.9960 

 

4.4.3 UHPC Drying shrinkage mechanism 

Drying shrinkage refers to the shrinkage caused by the water loss from cementitious 

materials due to the lower humidity of the surrounding environment compared to the 

inner humidity of the cementitious materials. The fully saturated binder matrix is not able 

to maintain its dimensional stability when exposed to the outside environment with a 

lower saturated humidity. This is mainly due to the loss of physically bound water which 

leads to a shrinkage strain. It is usually supposed that the drying shrinkage of concrete is 

related to the migration of adhesive water in the cement matrix. Therefore, the most 

probable reason for shrinkage goes to the driving force induced by the difference in 

relative humidity between the concrete and outside environments and the second reason 

is the migration of water maintained in the capillary pores (< 50 μm) because of the 

hydrostatic tension caused by the drying process (Bangham, Fakhoury, & Mohamed, 1932; 

Bazant & Baweja, 1995).   
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Compared to autogenous shrinkage, drying shrinkage of concrete can last for a relatively 

longer time. The increasing rate of drying shrinkage is higher in the early stage of curing 

than that in the later curing stage. To be specific, the drying shrinkage increases at a 

relatively high rate within 7 days followed by a gradual decreasing rate in the drying 

shrinkage development which can be explained by considering the mechanisms. Figure 4-

8 shows a typical drying shrinkage curve of traditional cement stone (Bangham et al., 

1932). Based on the porous structures and water content status inside, the drying 

shrinkage is normally separated into two stage: the initial stage (marked as ‘AB’) during 

which stage free water in large pores and large capillary pores (radius of pores > 100 nm) 

is lost first. This only gives rise to a loss in mass for cement stone rather than a shrinkage 

due to the fact that free water is attached on the microstructure of hydrated phases but 

without any physical-chemical bonding. When most of the free water is lost, an obvious 

shrinkage takes place as shown in ‘BC’ stage if the drying continues. This can be attributed 

to the compressive stress of the walls of capillary pores produced by the loss of water; 

with the further decrease in the relative humidity, most of the capillary pores suffer a 

complete water loss and the capillary pressure changes depending on the water content 

in the cement stone which reaches the greatest value and then starts to decrease, 

described as ‘CD’. After the complete loss of water in capillary pores, adsorbed water starts 

to evaporate, the loss of which leads to a reduced opening pressure. This makes the two 

solid surfaces, i.e. meso-scale crystals, become closer, resulting in the shrinkage stage ‘DE’; 

finally, layer water formed as the single molecule water film is lost from the C-S-H layered 

structures, which is ‘EF’ stage in the shrinkage curve. The resistance for the water loss in 

early stage is less compared to that in the later stage because it is mainly the capillary 

water that is lost during this stage. Therefore, the drying shrinkage development in the 

early stage is quicker compared to the later stage.  
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Figure 4-8. A typical graph of drying shrinkage of hardened cement paste (Courtial et 

al., 2013). 

Generally speaking, the rate of drying shrinkage for UHPC is relatively high within 14 days 

of curing followed by a gradual decreasing rate in drying shrinkage until 100 days after 

which the shrinkage decreased. Besides, concrete with a low water/binder ratio exhibits 

a large autogenous shrinkage but a small drying shrinkage whereas the concrete with high 

water/binder ratio has an opposite behavior.  In addition, the shrinkage and creep of 

UHPC with the addition of steel fibers are very small (Courtial et al., 2013). There is a 

linear correlation between shrinkage and relative humidity. The addition of silica fume 

can lead to a larger shrinkage compared to the concrete with addition of slag. Moreover, 

the shrinkage can be reduced by decreasing water/binder ratio or adding steel fibers.  

 

Based on Figure 4-2, the UPHC with FA addition has a smaller drying shrinkage compared 

to the counterpart with slag addition which indicates that FA has a certain effect on 

limiting drying shrinkage. This can be due to the delayed moisture loss because of the FA 

addition which then limits the drying shrinkage. It is reported that concrete with a 

water/binder ratio at 0.30 and sealed curing conditions, the decreasing rate of relative 

humidity inside the concrete gradually was reduced when FA addition increased from 15% 

to 60%. When the addition of FA was larger than 40%, the reduction in the inner relative 

humidity after 120 days of curing was no more than 13%. In comparison, the oncrete 

without FA addition experienced a reduction in the relative humidity by more than 20%. 

With the 60% addition of FA, the inner relative humidity did not start decreasing until 
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after 7 days of curing (Bouzoubaâ, Zhang, & Malhotra, 2001; Sprince, Korjakins, & 

Pakrastinsh, 2013; Zheng-wu, Zhen-ping, & Pei-ming, 2004). Rongyan Hui et al. (Concrete 

shringkage, 1990) found that the drying shrinkage of dam concrete was reduced by about 

50% when adding 20% of FA into the dam cement and this reduction was about 90% when 

the addition was 40%. When using ultra-fine FA, the drying shrinkage can be greatly 

reduced with an increasing amount of addition and the initiation of cracks was delayed at 

the same time(P. C. Aitcin, 1986). This can be explained by considering the slow hydration 

process of FA when mixed with water which means that the effective water/cement ratio 

is increased, leading to a reduced drying shrinkage of the concrete. It is worth noting that 

the drying shrinkage may not be reduced when the FA addition is low as Jiang et al.(G. 

Long, Z. Jiang et al., 2005) found that with an addition of 10%, the drying shrinkage can 

either be decreased or increased. Additionally, the early-age formation of cracks cannot 

be avoided by adding FA and it is more likely to suffer from plastic shrinkage and cracking 

without a proper curing condition (Dan & Mehta, 1988; Gaddam, Inyang, Ogunro, 

Janardhanam, & Udoeyo, 2009; Hamedanimojarrad, Ray, Thomas, & Vessalas, 2012) .  

 

The effect of slag on the drying shrinkage can be due to its activity. According to the study 

conducted by Tazawa (Cusson, Daniel, & Hoogeveen, 2008; E. I. Tazawa & S. Miyazawa, 

1995) et al., the drying shrinkage of concrete increases as the addition of slag increases 

when using a type of slag with a specific surface area more than 400 m2/kg. This 

phenomenon lasts until the addition amount is more than 75% after which a decreasing 

trend was observed. Within the addition amount ranging between 0-90%, the drying 

shrinkage decreases with an increasing amount of addition when the slag fineness was 

338 m2/kg whereas with the fineness up to 836 m2/kg, the opposite is true for the 

addition range between 0-60%. Worse still, the drying shrinkage started to occur earlier 

and it became larger for the long-curing age with an increasing amount of addition (Cui, 

For, Lecturer, Liang, & Gao, 2011). However, some researchers do not believe that slag can 

lead to an increased drying shrinkage (B. Wang, Wang, & Ming, 2007).  For instance, the 

concrete manufactured using number 500 finely grinded slag cement displayed a volume 

increase rather than a drying shrinkage (K. Huang, Min, Mo, & Wang, 2013). In this study, 

the activity of slag used is relatively higher and exhibits no limiting effect on the drying 

shrinkage.  
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The drying shrinkage of concrete can be reduced by adding fibers, especially for steel 

fibers. It is due to the fact that steel fibers have a relatively large plastic modulus and the 

bonding strength between the steel fibers and mortar matrix makes them act as a skeleton 

supporting the concrete matrix when concrete undergoes autogenous shrinkage. 

Therefore, a reduced shrinkage during early stage of curing was obtained to some extent 

(A. Noushini, Vessalas, & Samali, 2015). As the curing age proceeds, the plastic modulus of 

concrete matrix increases, leading to a reduced impact on the shrinkage by steel fibers. On 

the other hand, there exists an ITZ between steel fibers and concrete matrix which 

contains a lot of pores. It was confirmed that the porosity in ITZ is 6-10% higher than that 

of binder matrix according to the quantitative analysis which can be observed with the 

SEM analysis (A. Turatsinze, H. Farhat, & J. L. Granju, 2003; Z. Wu, Shi, & Khayat, 2016). 

When the addition of steel fibers reaches a certain point, the limitation effect on the drying 

shrinkage is weakened as the addition increases. This is attributed to the increased 

numbers of ITZ areas within which the bonding strength between steel fibers and matrix 

is low.  This explains why the drying shrinkage of UHPC was similar regardless of slag or 

FA-based when the fiber addition is 2% and 3% in the study.  

4.5 Conclusion 

The effect of amount of steel fiber addition on the shrinkage of UHPC is investigated in the 

study. Several conclusions are drawn based on the experimental results and related 

discussions: 

(1) UHPC displayed a rapid increase in the drying shrinkage followed by a 

decreasing rate  

(2) It is found that fibers can be used to effectively reduce the drying shrinkage of 

UPHC. However, it is worth noting that there is little beneficial effect of steel 

fiber for reducing drying shrinkage when the addition of steel fiber is more 

than 2%. To be specific, the shrinkage was only reduced by 1.5% for the 3% 

steel fiber addition of UHPC compared to the UHPC with 2% addition. The 

reduced shrinkage can be attributed to the interface between steel fibers and 

concrete matrix whereas this beneficial effect can be limited when the addition 

of steel fibers surpasses a threshold because of the presence of more interfaces; 
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(3) A more significant effect for reducing drying shrinkage of UHPC is observed by 

adding fly ash compared to slag addition which can be explained by considering 

the drying shrinkage mechanisms of UHPC. The drying shrinkage is mainly 

induced by the hydrated phases but limited by the unhydrated phases and 

aggregates. Thus, on the one hand, by replacing the cement with fly ash, the 

number of hydrated phases decreases leading to a reduced shrinkage. On the 

other hand, fly ash is also considered as fine aggregate which has a space-filling 

effect and limit the drying shrinkage at the same time; 

(4) The correlation coefficient obtained by using ACI equation to fit the 

experimental data is lower than that obtained with the equation proposed by 

Tiemeng Wang et al. The combined exponential equation developed in this 

study is better at describing the relationship between the drying shrinkage and 

time for UHPC with the addition of steel fibers compared to the other two 

equations.  
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CHAPTER 5 EFFECTS OF ULTRA-FINE FLY ASH UFA 

CONTENT ON EARLY AGE SHRINKAGE AND 

MICROSTRUCTURE DEVELOPMENT OF ULTRA-HIGH 

STRENGTH CEMENT BASED MATERIALS 

Note: this chapter is based on the manuscript entitled “Effects of ultra-fine fly ash (UFA) 

content on early-age shrinkage and microstructure development of ultra-high strength 

cement-based materials (UHSC)”, by Linmei Wu, Z Zhang and H Wang, published in 

Proceedings on– the 15th International Congress on the Chemistry of Cement, Prague, 

Czech Republic, 2019. 

Abstract: The use of Ultra fine fly ash (UFA) can significantly enhance mechanical 

properties of concrete given its beneficial filling and pozzolanic effects. In this study, the 

effect of UFA content on flowability, heat of hydration, mechanical properties and early 

age shrinkage properties were determined for ultra-high strength cement-based 

materials (UHSC) containing 0-75% UFA by the mass of binder. Thermal gravimetry (TG) 

and Fourier transform infrared (FTIR) were used to quantitatively determine the calcium 

hydroxide (CH) content and pore structure, respectively. The results indicated that the 

optimal UFA content could be in the range of 15%-30% in terms of flowability, mechanical 

properties, CH content, porosity, and interfacial bonding properties. The TG analysis 

revealed that the use of 15%-30% UFA efficiently consumed the CH, transforming it to C-

S-H gel. Results show that the addition of 30% UFA significantly improved the early age as 

well as later age compressive strengths of ordinary and (high volume fly ash) HVFA 

concretes. All above measured durability properties of HVFA concretes are also improved 

and in most cases the HVFA concrete containing 30% UFA exhibited superior durability 

properties than ordinary concrete containing 100% cement. The results also indicate the 

effectiveness of UFA in producing high packing density and in accelerating the pozzolanic 

activity to produce more C–S–H gel by consuming calcium hydroxide (CH) in HVFA 

concretes. 
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5.1 Introduction 

Ultra-high strength cement-based material (UHSC) is an advanced material that is 

characterized by high content of cementitious materials, sand, superplasticizer and/or 

fibers and absence of coarse aggregate (P Richard & Cheyrezy). The very low water-to-

binder ratio and dense microstructure allows its high strength generally over 120 MPa. 

However, the higher the compressive strength is, the more brittle the matrix becomes. 

Owing to the use of very fine sand instead of ordinary aggregate, the content of cement in 

UHSC is as high as 900–1000 kg/m3(Pierre Richard & Cheyrezy, 1995; L. Wu et al., 2017b). 

In addition, fly ash is an essential ingredient in UHSC.  

Application of fly ash concrete for more than ten years history, the concrete mixed with fly 

ash, not only can partially replace cement, reduce the project cost, but also can improve 

and enhance the performance of concrete. It has an extreme fineness and a high 

amorphous silica content. The typical fly ash (FA)-to-cement ratio used is 0.25 regarding 

the filler effect and pozzolanic effect (E.-H. Yang, Yang, & Li, 2007b). The high cement 

content with the FA-to-cement ratio of 0.25 leads to a high amount of FA in UHSC mixtures. 

However, this also causes some disadvantages in the modern construction industry, 

particularly in developing countries where there are limited resources and significant cost 

constraints. This provides the motivation for researching other potential materials with 

similar performances instead of fly ash. 

The quantity of fly ash to replace the cement for typical application is limited to 15–20% 

by mass of the total cementitious material(Bendapudi & Saha, 2011; Supit, Shaikh, & 

Sarker, 2014). As a by-product of industrial process, the utilization of fly ash has made 

some progress in addressing the challenges of sustainable construction. In addition, fly 

ash has pozzolanic activity which is attributed to the presence of SiO2 and Al2O3(Udoeyo, 

Inyang, Young, & Oparadu, 2006). It reacts with calcium hydroxide during cement 

hydration, to form additional Calcium Silicate Hydrate (CSH) and Calcium Aluminate 

Hydrate (CAH) which are effective in forming denser matrix leading to higher strength and 

better durability (Bendapudi & Saha, 2011; Malvar & Lenke, 2006; Shaikh & Supit, 2015). 

The use of high volume fly ash as partial replacement of cement in concrete has also been 

studied. The main concern in this regard is whether or not cement can be replaced by fly 
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ash above the limiting quantity of 15–20% by mass in the concrete. Indeed, the small 

percentage is beneficial in optimizing the workability and low cost but it may not improve 

the durability to any considerable extent (Aggarwal, Gupta, & Sachdeva, 2010). On the 

other hand, due to slow pozzolanic properties of fly ash particles, low early age strength 

and durability properties are observed (Barbhuiya, Gbagbo, Russell, & Basheer, 2009; Choi, 

Lee, & Monteiro, 2011). Moreover, the optimization of high volume fly ash has raised many 

arguments and limitations regardless of the fact that the variation of constituent in fly ash 

such as alkalis, sulfates, lime and organics may affect the crystallization and slow down 

the pozzolanic reaction (Bendapudi & Saha, 2011). In order to overcome this deficiency, 

the incorporation of very small size pozzolanic materials such as silica fume in concrete 

containing fly ash has also been studied (Bingöl & Tohumcu, 2013; Gesoğlu, Güneyisi, & 

Özbay, 2009; Nochaiya, Wongkeo, & Chaipanich, 2010).Finer and amorphous materials are 

expected to accelerate the pozzolanic reaction to improve the early age strength 

characteristics of mortars and concretes. 

Most ultra-fine fly ash (UFA) particles are finer than cement particles, and fly-ash particles 

will fill in the gap left by cement particles, the physical filling effect thus can improve the 

strength of concrete(Cheng, Huang, Huang, & Yen, 2011). Low water requirement ratio can 

reduce the water to binder ratio of blended paste, which is also beneficial for strength and 

durability. The above two are its physical functions. CH is not only the production of 

cement hydration, but also the reactant of UFA pozzolanic reaction. So, pozzolanic reaction 

of UFA can promote the cement hydration, generate more C-S-H gel, contributing to an 

increased strength and durability of paste or concrete. According to informed researches, 

Hydration activity of fly ash is low, and the hydration heat evolution of it is always 

neglected (J. C. Wang & Yan, 2006). And in this study, quantitative analysis on the 

contribution of UFA and cement in pozzolanic hydration heat were made to determine if 

it can be neglected. 

Extensive research has been done on UHSC, but limited investigations have focused on the 

enhancement of micro and macro-structure development. In this chapter, the effect of UFA 

content on properties including flowability, heat of hydration, compressive strengths, and 

early age shrinkage properties of UHSC were investigated. The results are compared with 

those obtained from the control sample and the SF modified sample. It provides important 

implications to improve the durability and mechanical properties of UHSC. 
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5.2 Test program 

5.2.1 Raw materials 

A P.I 42.5 Portland cement complying with the Chinese Standards GB175-2007 was used. 

Table 5-1 summarizes the main chemical composition and physical properties of the 

cement. The UFA is manufactured by proprietary separation system that includes selective 

air classification. The commercially available product typically has a mean particle 

diameter of about 3 micrometers, with over 90% of the material (by volume) having a 

particle diameter less than 7 micrometers (as measured by a laser interferometer). Table 

5-2 presents the chemical compositions of cement and mineral admixtures. The natural 

river sand with maximum particle size of 2.36 mm and fineness modulus of 3.0 was from 

Xiangjiang River. The apparent density and packing density were 2550 kg/m3 and 1570 

kg/m3, respectively. A polycarboxylate based superplasticizer (SP) with water-reducing 

efficiency greater than 30% was used in this study.  

Table 5-1: Physical properties of cement 

Cement 
Density 
(kg/m3) 

80μm-residue 
on sieve 

(%) 

Specific 
surface area 

(m2/kg) 

Setting time(h) 
Flexural 
Strength 

(Mpa) 

Compressive 
Strength 

(Mpa) 

Initial Final 3d 28d 3d 28d 

P.I 3.15 0.3 380 2.5 3.4 6.4 9.0 33.0 60.0 

 

Table 5-2: Chemical composition of materials (%) 

Chemical 
composition 

SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI 

Cement 25.26 6.38 4.05 64.67 2.68 - - 0.94 0.9 

Silica fume 90.82 1.03 1.50 0.45 0.83 0.86 0.17 - 4.34 

Slag 33.00 13.91 0.82 39.11 10.04 1.61 0.26 0.92 0.33 

UFA 73.4 17.7 4.4 0.9 0.6 1.03 0.11 0.2 1.66 
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5.2.2  Mixture proportions 

Based on the preliminary study, mixture proportion of UHSC with a water-to-binder (w/b) 

ratio of 0.18 and binder-aggregate ratio of 1.1 was used, as shown in Table 5-3. The SP 

dosage was fixed at 2% by mass of the binder. For preparation of mixtures, the powder 

components were dry-mixed at a low speed for 3 min, then water and SP were slowly 

added. The material was then mixed for 6 min at low speed and 1 min at high speed. 

Table 5-3: Mixture proportions of UHSC. 

No. 
Replacement 

ratio 

Cement 

(%) 

Silica 

fume (%) 

 

UFA (%) 

SP 

(%) 
w/b 

binder-aggregate 

ratio 

U0 0 90 10 0 2 0.18 1：1.1 
U1 1/6 75 10 15 2 0.18 1：1.1 
U2 1/3 60 10 30 2 0.18 1：1.1 
U3 1/2 45 10 45 2 0.18 1：1.1 
U4 2/3 30 10 60 2 0.18 1：1.1 
U5 5/6 15 10 75 2 0.18 1：1.1 

SP*: total mass of liquid-based SP 

5.2.3 Test procedures 

 Flowability test 

The flowability of all UHSC mixtures was measured in accordance with the Chinese 

Standards GB/T 2419-2005. The mixtures were cast into a mini cone mould placed on an 

automatic jolting table. The mould was lifted vertically and immediately jolted for 25 

times (one second for each time). Then two diameters perpendicular to each other were 

determined and mean value was reported. 

 Corrugated tube measurement 

Fresh mixtures were filled into corrugated polyethylene tubes with 10 mm inner diameter 

using a hopper and rodded with a glass rod to eliminate large air bubbles and ensure the 

mortar in a dense condition. The free ends of tubes were immediately sealed by a 

stainless-steel cover. Then the gauge head was fixed at a distance of 2 mm to the free end. 

The lengths were recorded at an interval of 5 min for the first 72 hours. The experiment 
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was conducted at 20±2 °C and with precision of 0.0001 mm. The autogenous shrinkage 

was calculated as follows: 

                             (5-1) 

where, εst is the autogenous shrinkage of concrete at time t (h); at is the distance between 

the sensor head and the steel free head (mm) at time t; a0 is the initial distance between 

the sensor head and the steel free head (mm); l0 is the original length of the measured part 

of specimens (mm). 

 Powder X-ray diffraction analytical methods 

The preparation of samples for XRD was the same as those prepared for TGA. The 

prepared powders were analyzed by using Philips X-ray diffractometer with CuKα 

radiation. The samples were step-scanned from 10 to 70° (2θ) at a rate of 5°/min. 

 Compressive strength test 

Specimens of 40×40×160 mm3 were cast for compressive and flexural strength tests. 

Three samples of each batch were used. They were demolded 24 h after casting and cured 

in lime-saturated water until the age of 1, 3, 7, 28, and 91 d. Three-point bending testing 

was first performed to obtain the flexural strength. Then the six broken specimens with 

sizes of approximately 40×40×40 mm3 were used to test compressive strength. The mean 

values of the three (flexural strength) and six samples (compressive strength) were 

reported. 

 Micro-hardness measurement 

Micro-indention is based on applying a static load for a known period of time and 

measuring the response in terms of size of indentation. In this study, a 498 mN load was 

applied on the samples for 10 s. Points within 0–200 μm distance from the fiber edge was 

measured. During the indention process, areas with sand were avoided. The micro-

hardness or Vickers hardness (HV) was captured during the measurement. The average 

values of four indentations were reported. 
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 Thermal-gravimetric analyses  

Thermogravimetric (TG) and derivative Thermogravimetric (DTG) analyses were used to 

quantitatively estimate the amount of hydration products in the UHSC. A Netzsch STA 409 

PC equipment was employed. Samples taken from UHSC matrix were put into a vacuum 

drying chamber to reach constant mass. After that, these dried samples were ground to 

powder and sieved on a square mesh sieve with diameter of 45 μm. The tested samples 

up to 10-15 mg, were heated from 0 to 1000°C under nitrogen gas flow at a constant 

heating rate of 10°C/min. The decomposition of hydration products were observed and 

quantified (Washburn, 1921). The decomposition of CH is shown as follows:  

                     OHC a OC a ( O H ) 2
℃450

2               (5-2) 

According to this equation, the proportion of CH to the residual mass at 1000°C was 

determined as follows:  

                      %100
18
74







remain

loss

m
mm                   (5-3) 

Where m (%) is the proportion of CH content to residual mass; mloss (%) is the mass loss 

of samples at about 450°C; mremain (%) is the residual mass after heating; 74 and 18 are 

the molar masses of Ca(OH)2 and H2O, respectively. 

 Heat of hydration 

The hydration heat was determined using an isothermal calorimeter. About 4 g paste 

samples was weighed and filled into a glass bottle then placed into TAM Air isothermal 

calorimeter immediately for measurement of heat of hydration. When the glass bottle was 

place into TAM Air isothermal calorimeter, the data acquisition system was initiated at the 

same time to record the output voltage from which the heat flow in the system could be 

calculated. All measurements were lasted for 2 hours. 
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5.2.4 FTIR spectrum analysis 

Powder samples were taken from the split specimen at depths of 0, 5, 10, 15, 20, 25, 30 

and 35 mm measured from the edge of the split surface. The IR spectrum of each powder 

sample mixed with KBr in a proportion of 1:10 was obtained to facilitate quantitative 

measurement of the depth of carbonation. The background spectrum of the laboratory 

environment was scanned before the powder sample was scanned. Carbonation is 

represented by the transformation of the C–O bonds of CO2 into C–O bonds in the CaCO3. 

Thus, a study of the characteristic peak of the C–O functional group in the wave number 

range of 1410-1510 cm-1 would identify the carbonation in concrete (Collepardi, 2000). 

5.3 Results and Discussion 

5.3.1 Effect of UFA content on flowability of fresh UHSC  

The variation of mini slump flow of UHSC mixtures with different UFA contents is given in 

Figure 5-1. From the curves, it is evident that generally, the flow spread increased as the 

UFA content increased. It is also evident that the addition of UFA up to 75% always 

increased the flow spread of the cement paste. For instance, the addition of 15%, 30% and 

40% UFA increased the flow spread from absolute 200mm to 210mm and 215 mm, 

respectively. This phenomenon may be explained by the following effects: (1) the slurry 

effect - the UFA particles, being very fine, tend to move together with the water to form a 

water-UFA slurry, which has a larger volume than the water itself and therefore would 

increase the inter-particle spacing between the rough cement grains; and (2) the ball 

bearing effect - the UFA particles, being perfectly spherical in shape and smooth, would 

act as ball bearings to reduce the inter-particle friction between the rough cement 

grains(Kwan & Chen, 2013; L. Wu et al., 2017b). 
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Figure 5-1. Effect of UFA Content on Flowability of Fresh UHSC Mixtures. 

5.3.2 Effect of UFA content on compressive strength of UHSC 

At a W/C ratio of 0.18 or lower, the addition of up to 30% UFA significantly increased the 

strength( Kwan & Chen, 2013), while the addition of 45% or more UFA caused the strength 

to decrease. However, there are a little different in these compressive strengths. The 

influences of UFA content on compressive strengths of the UHSC mixture are showed in 

Figure 5-2. After 7 d, the increase in compressive strength was limited to only 11%. The 

incorporation of UFA accelerated the early hydration of cement, thus lead to early strength 

increase. Besides, a significant increase in strength was observed with the increase of UFA 

replacement from 0 to 30%. However, when UFA exceeded 45%, the strengths tended to 

decrease. The compressive and flexural strengths of U0 at 28 d were 89.8 and 19.1 MPa, 

respectively. When 15%, 30%, 45%, and 60% UFA replacement were used, the 

compressive strength increased by approximately 18%, 16%, 28%, and 8%, respectively, 

as shown in Figure 5-2 (a). The flexural strength increased by approximately 11%, 15%, 

29%, and 9%, respectively.  

The addition of 15%-30% UFA decreased the porosity and improved the strength due to 

its filling effect in addition to the pozzolanic reaction (Vikan & Justnes, 2007). However, a 

high content of 45% UFA increased plastic viscosity, which could result in air entrapment. 

Furthermore, high UFA content could significantly increase the risk of micro-cracking due 

to autogenous shrinkage, which can affect mechanical properties (Lura, Jensen, & Breugel, 

2003). The compressive strength increased with the mortar’s age and the pozzolanic 

reaction of fly ash was affected by the components of the mortar. The compressive 



 

 144  

 

strength increased with the mortar’s age due to differences in pozzolanic reactivity. The 

pozzolanic reaction of fly ash was significantly affected by SiO2, Al2O3, and Fe2O3 

components, which form the framework of the glass phase, and CaO, MgO, Na2O, and K2O 

components, which depolymerize the glass structure(Cho, Young Keun, Sang Hwa Jung, 

2019). 
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Figure 5-2. Effect of UFA Content on mechanical properties of Fresh UHSC. 

5.3.3 Effect of UFA content on micro hardness of UHSC 

The micro-hardness of matrix with different distances to fiber edge is indicated in Figure 

5-3. UHSC with 15% UFA had higher micro-hardness than that of the reference batch. This 

suggested high strength hydration products for UHSCs with UFA. 

 

Figure 5-3 summarizes the micro-hardness results of the UHSC samples that were 

obtained at different content of UFA. With increase of UFA content, the micro-hardness 

value of the matrix increased, while the addition of 45% or more UFA caused the micro-
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hardness value to decrease. For example, in the NS1.0 sample at 28 d, the micro-hardness 

of matrix at 40 μm from the surface was 84.1 HV. It increased to 88.6 and 100.5 HV at 80 

and 120 μm, respectively. The micro-hardness did not significantly change beyond 120 μm. 

For the NS1.0 samples at 1 and 7 d, the micro-hardness within distance of 80 μm from the 

fiber edge was obviously lower than that with far distance.  

 

The micro-hardness increased with prolongation of hydration time. For the NS1.0 sample 

at 1, 7, and 28 d, the micro-hardness at 80 μm from the fiber edge were 82.9, 85.4, and 

96.6 HV, respectively. In addition, the NS1.0 at 28 d showed greater micro-hardness 

compared to the reference sample NS0. This indicated that the incorporation of 1% nano-

SiO2 can enhance the quality of the matrix. It was suggested that bond between fibers and 

matrix was mainly dominated by adhesion or chemical bond, which is governed by the 

main hydration product C-S-H with diameter of 10 nm. In addition to the pozzolanic 

reaction of UFA that resulted in greater volume of C-S-H gel, the UFA acts as nucleus for 

the precipitation of C-S-H.  
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Figure 5-3. Effect of UFA Content on micro hardness of UHSC Mixtures. 

5.3.4 Autogenous shrinkage 

Figure 5-4. Shows the effect of UFA content on autogenous shrinkage of UHPC. The 

autogenous shrinkage increased with the increase of UFA content. Specimens with 25% 
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and 30% silica fume showed a autogenous shrinkage more than 4000με at 72h, and 

about 3000με for specimens with 15% and 20% silica fume, while only 2200με for 

those specimens with 10% silica fume. It was obviously that the autogenous shrinkage 

of specimens with the 30% silica fume was about twice of that with 10% silica fume. 

This was consistent with the results in a previous publication. 
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Figure 5-4. Effect of UFA Content on autogenous shrinkage of UHSC Mixtures. 

5.3.5 XRD of UFA  

The characteristics of the raw materials based on XRD analysis are shown in Figure 5-5 

previous analysis by the authors also showed that ultrafine fly ash is about more 

amorphous class F fly ash. According to the XRD pattern for the unreacted UFA sample, 

it is apparent that the main crystalline phases are quartz (SiO2), mullite (Al6Si2O13), 

magnetite, hematite (Fe2O3). 
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Figure 5-5. XRD pattern of UHSC Mixtures. 

5.3.6 Effect of UFA content on heat of hydration of UHSC 

It is clear from the spectrum of the rate of heat evolution that as the content of UFA 

increases, the height of early rate peak decreases gradually, ranging from 0.0011 W/g 

when there was no UFA to less than 0.0002 W/g for the content at 45 %. At the same time, 

the time required to reach the maximum hydration rate was longer with an increase of the 

UFA amount. Without any UFA addition, the time was around 50 hours whereas this value 

for the 30% UFA content was more than 60 hours. For the content at 60% and 75 %, there 

was even no peak during the testing period (0-140 h). 

It is clear from the spectrum of the rate of heat evolution that as the content of UFA 

increases, the height of early rate peak decreases gradually, ranging from 0.0011 W/g 

when there was no UFA to less than 0.0002 W/g for the content at 45 %. At the same time, 

the time required to reach the maximum hydration rate was longer with an increase of the 

UFA amount. Without any UFA addition, the time was around 50 hours whereas this value 

for the 30% UFA content was more than 60 hours. For the content at 60% and 75 %, there 

was even no peak during the testing period (0-140 h). The delayed and reduced hydration 

rate can be explained by considering two effects that UFA have on the cement hydration 

process. Firstly, the UFA tend to absorb more water due to their high specific surface area 

(18.5 m2/g). Thus, the available water for the cement hydration was reduced, leading to a 

reduced and delayed hydration rate. Secondly, the cement content decreased when the 

UFA content increased. Compared to UFA, normal cement has a higher rate of hydration. 
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In comparison, however, UFA mainly has a retardation effect on the cement-FA system, 

especially during the dormant period (Langan, Weng, & Ward, 2002). This result 

corresponds well with many other studies which show that the inclusion of fly ash led to 

a decreased degree of hydration (Dale P Bentz, 2014; Poon, Lam, & Wong, 2000; Yoshitake, 

Wong, Ishida, & Nassif, 2014).  

 

Figure 5-6. Effect of UFA Content on rate of hydration of UHSC Mixtures. 

5.3.7 TIR of UHSC Mixtures 

Figure 5-7 shows the effect of UFA Content on FTIR of UHSC U0 and U2. As time 

proceeded, the peak at around 3420 cm-1 which belongs to the OH stretching in water, 

shifted to higher frequency for U2; whereas for U0, the opposite seemed to occur, 

shifting from 3447 to 3420 cm-1. This contradictory result requires further 

investigation. What is obvious for both U1 and U2 is the diminishing peaks around 

450-480 from 0 to 14-day curing, assigned to the SiO from SiO4. Another band locating 

at around 1110-1120 cm-1 decreased sharply from 0-day to 14-day with a slight shift 

towards higher frequency, 1119 to 1220 and 1120 to 1130 for U0 and U2 respectively. 
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Figure 5-7. Effect of UFA Content on FTIR of U0 and U2. 

  Figure 5-8 shows the effect of UFA Content on FTIR of UHSC Mixtures. The broad band 

centered at ~3440-3450 cm-1 is observed in all cases and is difficult to interpret in this 

case. Thus, this information is not discussed in detail in this study. There is little difference 

in the peaks centered at 475±3 cm-1 irrespectively of 0 day or 14-day curing. This is also 

the case for the peak located around 1120±5 cm-1. It is worth pointing that the 

wavenumber at around 475 and 1120 for U3 (45% UFA content) displayed the greatest 

peak among all samples.  
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Figure 5-8. Effect of UFA Content on FTIR of UHSC Mixtures. 

5.3.8 SEM of UHSC Mixtures 

Figure 5-9 (a and b) illustrates the SEM images of UFA, It is apparent that UFA particles 

are finer than the normal fly ash particles which explains why UFA exhibit a higher 

reactivity during hydration process. This is significantly finer than typical FA as 

demonstrated in figure. 

 

Figure 5-9 (c and d) illustrates the SEM images of the surface and surface layers, Figure 5-

9 (e and f) illustrates the SEM images of the surface and surface layers. The formation of 

calcite is detected on surface as well as internal layers near the surface of the specimens. 

The micrographs show that the samples with 15% UFA obtained a more compact and 

densified microstructure after 7 days of curing compared to that of samples with 30% and 

45% UFA addition. This can be explained by considering the effect of fly ash on hydration 

process: fly ash can delay the hydration reactions which results in a more porous 

microstructure. After 28-day curing time, fewer pores were observed for all mixes 

irrespective of addition levels of UFA because of the continuous formation of hydration 

products making the binder matrix more compact. However, it is obvious that the sample 

with 15% UFA had a denser matrix in comparison to other two binders although the 

difference was not as prominent as that for 7-day curing. The SEM results correspond well 

with the compressive strengths after 7 days and 28 days of curing accordingly. The sample 

with 15% UFA showed the highest compressive strength among all samples with different 

UFA contents. It is also worth noting that after 7-day curing, there were more un-reacted 
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fly ash particles observed in the binder matrix compared to after 28-day of curing which 

again confirmed the delayed fly ash reaction evolution. 

  
(a) UFA 

 
(b) FA 

 
(c) With 45% UFA in 3 days 

 
(d) With 45% UFA in 28 days 

 

(e) With 15% UFA in 3 days 

 

(f) With 15% UFA in 28 days 

Figure 5-9. SEM images of UHSC mixtures specimen. 

5.4 Conclusion 

Based on the results from this study, the following conclusions can be drawn: 

(1) Due to the accelerated hydration of cement by UFA the compressive and flexural 

strengths of UHSC containing UFA were significantly enhanced at early age up to 7 d. After 
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7 d, about 11% increase in strengths was obtained. The compressive and flexural 

strengths of UHSC samples with 30% UFA at 28 d were 28% and 29% higher than those 

of the reference sample, respectively. However, when 30% UFA was replaced, strengths 

decreased due to reduced workability and entrapment of air bubbles. 

(2) The concrete containing 30 % UFA yielded the highest compressive strength at all ages. 

The early age compressive strength of HVFA concretes is also improved due to addition of 

30% UFA. Most significant improvement of about 200% is observed in HVFA concrete 

containing 52% fly ash and 8% UFA at 3 days. 
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CHAPTER 6 MICROSTRUCTURE DEVELOPMENT OF ULTRA-

HIGH PERFORMANCE CONCRETE AFTER LONG TERM 

EXPOSURE TO DIFFERENT CONDITIONS 

Note: this chapter is based on the manuscript entitled “Carbonation and chloride 

ingression of ultra-high performance concrete (UHPC) after long-term exposure to 

different conditions”, by Linmei Wu, Z Zhang and H Wang, submitted in journal of 

Construction and Building Materials. 

Abstract: In UHPC mixes, the hydration degree of cement paste is low under the 

conditions of extreme-low W/B. The utilization of supplementary cementitious materials 

(SCMs) fly ash, slag and silica fume to partially replace the cement not only decreases un-

hydrated cement but also improves this reaction at late age. In this study, carbonation and 

chloride ingression in UHPC after exposure to three different conditions: water, seawater, 

and outdoor for a duration of 1080 days, were studied to examine the effects of SCMs on 

the long-term durability. The results indicated that the optimal steel fiber content is 2% 

when considering flowability, mechanical properties, CH content and porosity. The UHPC 

specimens exposed to seawater at 1080 d also efficiently consumed CH. TGA/DTG results 

indicated that the CH was consumed with the formation of CaCO3 (calcite) due to the 

carbonation effect at outdoor conditions whereas for the water and seawater immersion 

conditions, the CH was transformed into other reaction products including Mg(OH)2 and 

ettringite. Moreover, seawater and water conditions led to a decrease of C-S-H content, 

which was particularly evident after 28 day. Fibre addition improved the performance of 

fly ash based UHPC, while it had little impact on the slag-based counterpart. Because of a 

denser microstructure evidenced by diffusion coefficient and porous characteristics, slag 

based samples. XRD and SEM analysis implies that for the sample exposed to outdoor and 

seawater condition based UHPC underwent less deterioration compared to fly ash (FA) 

containing UHPCs, more calcite was formed than the water condition. To compare the 

seawater and outdoor exposures, the surface layer of the sample immersed in seawater 

had some brucite and calcite as well as Friedel’s salt and sulfoaluminates. However, for 

outdoor condition, the surface pH dropped due to the penetration of CO2 into the binder 

neutralizing the pore solution. As time passed, more large-sized and smallsized pores 

formed in the seawater because of the expanding effect induced by ettringite, whereas for 
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outdoor environments, more medium-sized pores were produced due to the formation of 

calcites.   

6.1 Introduction 

The need to address the aging of today’s infrastructures presents engineers and designers 

with a unique opportunity to redefine the methods and materials with which new civil 

projects are undertaken. Engineers must look to new innovations, considering resilience 

to natural hazards, efficiency in design, and sustainability of materials while cultivating 

new structural concepts. Ultra-high performance concrete (UHPC) is one such 

innovation(L. Wu, Farzadnia, Shi, Zhang, & Wang, 2017a). UHPC as a new class of 

cementitious materials that have exceptional mechanical and durability characteristics(C. 

Shi, Wang, Wu, & Wu, 2015a). Since last thirty years, ultra-high performance concrete 

(UHPC) has become more and more popular material in civil engineering. However, there 

was speculation that the long-term performance of UHPC may be negatively affected by 

the exposure to different conditions due to the abundant amount of unhydrated 

cementitious particles in the matrix(L. Wu et al., 2017a; Yingzi Yang, Yang, & Li, 2011). In 

the marina, water and outdoor environment, physical and chemical reaction were 

occasion on the UHPC structure. 

Carbonation is known as a neutralizing process, a chemical reaction of Ca(OH)2 and 

calcium–silicate–hydrate (C–S–H) with CO2 to form CaCO3 and water (G. Kim et al., 2016). 

Carbonation reduces the hydroxide concentration in the pore solution, destroying the 

passivity of the steel fiber (Taylor-Lange, Juenger, & Siegel, 2013).The traditional way of 

determining the depth of carbonation is to spray phenolphthalein indicator onto the 

surface of a freshly split concrete prism. Several reports have discussed the deterioration 

of carbonated concrete, proposing a formula to describe carbonation (C.-F. Chang & Chen, 

2006; Papadakis, 2000; Saetta, Schrefler, & Vitaliani, 1993). In addition, corrosion of UHPC 

is of great concern because it is the most widespread cause of degradation in reinforced 

concrete structures. Initially, steel embedded in concrete is naturally protected from 

corrosion by the alkalinity of its pore solution (12.5 and higher) (Ahmad, 2003; Bertolini, 

Elsener, Pedeferri, Redaelli, & Polder, 2013; Poupard, L'hostis, Catinaud, & Petre-Lazar, 
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2006) . This high alkalinity enables the formation of a passive film on the rebar surface 

which prevents the development of an active corrosion process. However, this passive 

state can be inhibited by the destruction of the protective film due to the penetration of 

aggressive ions (chlorides) or an acidification of the environment in the vicinity of the 

rebar (carbonation). In the marine environment, steel corrosion is the natural result of 

the chloride penetration in concrete cover. Even UHPC are much more densified compared 

to normal concretes, there are still lots of small pores, and the corrosion may also happen 

in UHPC, but little research has been conducted about it. 

For conventional concretes, a similar trend of durability is reported but at higher 

magnitudes especially when exposed to aggressive conditions (Nanukuttan et al., 2015; M. 

Santhanam & Otieno, 2016; Thomas, 2016). It is due in large part to the diffusion of 

external ions into the matrix which could adversely affect it because of the carbonation 

(in outdoor conditions) or chloride ingression (in seawater). On the contrary, several 

researches on the durability of UHPC demonstrated low permeability against diffusion of 

external agents into the matrix. In the study by Alkaysi et al. (A. Mo, El-Tawil, Liu, & Hansen, 

2016), the air void content and the total charge pass were as low as 5.8% and 89 coulombs , 

respectively, for the UHPC specimens with 1.5% fiber. Yu et al. (R. Yu, P. Spiesz, & H. J. H. 

Brouwers, 2014) reported the porosity was about 3% for the limestone incorporated 

UHPC, which is in agreement with the study (Abbas, Soliman, & Nehdi, 2015). In another 

study by Tafraoui et al. (Tafraoui, Escadeillas, & Vidal, 2016a), the gas permeability of 

UHPC and chloride diffusion coefficient were reported to be lower than 1.5×10-19m2 and 

1.7×10-14(m2/s), respectively. The superior durability of UHPC is mostly related to the high 

packing density and low porosity induced by low water-to-binder ratio, and pozzolanic 

reactivity of supplementary cementitious materials incorporated in the matrix (C. Shi, Wu, 

Xiao et al., 2015b; D. Wang et al., 2015).  

A lot of research has been carried out on UHPC property and microstructure, but most of 

them focused on the short term performances with just normal curing conditions.  

However, very limited has been reported in the literature about the long-term 

performance of the UHPC, especially when the UHPC specimens were subjected to 

different exposure conditions (water, seawater and outdoor). In this chapter, long-term 

behavior of ultra-high performance concrete maintained in water, seawater, and outdoor 

conditions for up to 1080 days was investigated. Outdoor condition imitates the natural 
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environment which mainly focused on the nature carbonation of long term. In comparison, 

seawater condition simulates the marine environment, focusing on the relationship 

between corrosion depth and the properties of UHPCs. 

6.2 Experimental program 

6.2.1 Raw materials  

Portland cement P.I 42.5, complying with the Chinese Standards GB175-2007 was used. 

Table 6-1 summarizes the physical properties of the cement. Fly ash and ground furnace 

slag were used to partially replace cement in the concrete mixture, with the specific 

surface area of 427 m2/kg and 446 m2/kg, respectively. Silica fume with 63% particle size 

of 0.1-0.5 μm and specific surface area of 18500 m2/kg was used. Table 6-2 shows the 

chemical properties of cement, fly ash and slag. Natural river sand with a fineness modulus 

of 3.0 was used. Particles with size greater than 2.36 mm were removed by sieving. The 

straight steel fiber with diameter of 0.2 mm and length of 13 mm was used. A 

polycarboxylene based super plasticizer (SP) was used. Its water-reducing capacity was 

greater than 30%. The dosage of SP in the all mixture was 2% by the mass of cementitious 

materials. 

Table 6-1: Physical properties of Portland cement P.I 42.5. 

 

Table 6-2: Chemical composition of cementitious materials (weight %), LOI is loss on 

ignition.      

Chemical 

composition 
SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI 

Cement 25.26 6.38 4.05 64.67 2.68 - - 0.94 0.9 

Silica fume 90.82 1.03 1.50 0.45 0.83 0.86 0.17 - 4.34 

Slag 33.00 13.91 0.82 39.11 10.04 1.61 0.26 0.92 0.33 

Fly ash 54.29 32.55 5.53 1.34 2.56 1.34 0.49 0.35 1.55 

Density 

(kg/m3) 

80 μm-residue 

on sieve 

(%) 

Specific 

surface area 

(m2/kg) 

Setting time(h) 
Flexural Strength 

(MPa) 

Compressive Strength 

(MPa) 

Initial Final 3d 28d 3d 28d 

3.15 0.3 380 2.5 3.4 6.4 9.0 33.0 60.0 
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6.2.2 Mixture proportions  

The mixture proportions of UHPCs were designed based on a previous study (C. Shi, Wang 

et al., 2015a). In brief, the w/b of 0.18 and binder-to-aggregate ratio of 1:1.1 were selected 

and kept constant throughout the study. The SP was used at 2% by mass ratio of the binder. 

Steel fiber contents were 0, 1%, 2%, and 3% of the concrete by volume. Table 6-3 shows 

the mixture proportions of UHPCs based on mass of ingredients.  

Table 6-3: Mixture proportions of UHPCs. 

No. w/b 
Mass of ingredients (kg/m3) 

Water Cement Silica fume Slag Fly Ash  SP* Sand Fiber 

K0 

K2 

K3 
 

0.18 164 550 200 250 0 20 1100 0.0 

K1 0.18 164 550 200 250 0 20 1100 78.5 

K2 0.18 164 550 200 250 0 20 1100 157.0 

K3 0.18 164 550 200 250 0 20 1100 235.5 

F0 0.18 164 550 200 0 250 20 1100 0.0 

F1 0.18 164 550 200 0 250 20 1100 78.5 

F2 0.18 164 550 200 0 250 20 1100 157.0 

F3 0.18 164 550 200 0 250 20 1100 235.5 

  *SP means the total mass of liquid-based SP.  

6.2.3 Mixing procedure and specimen preparation 

In the mixing procedure, dry powders, including cement, silica fume, slag or fly ash, and 

natural river sand, were first mixed for 3 min in a high-speed drum mixer. Then, water and 

superplasticizer were added and mixed for 6 min at low speed. Afterwards, steel fibers 

were added through passing a sieve with the size of 5 mm and mixed for another 6 min 

until the mixtures were uniformly distributed. UHPC mixtures were then cast into molds 

and vibrated to consolidate the mixtures. The specimens were demolded after one 1 day 

and then cured in water at the temperature of 20±3°C for 28 days. The properties of 

hardened concrete such as compressive strength and initial length were measured at 28 

d before exposure to different conditions. Figure 6-1 illustrates the mixing and specimen 

preparation procedure. 
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Figure 6-1. The mixing and preparation procedure of UHPC specimens. 

 

The UHPC is a very dense and impermeable composite and previous studies have shown that 

the ingression of chloride into the matrix and the carbonation depth is minimal compared to 

normal strength concrete. Hence, to explain the long-term performance of the specimens, 

samples were taken from a 5 mm surface layer by slicer (Figure 6-2) with the maximum 

exposure duration (esp. in outdoor conditions).  

 
Figure 6-2. Slicer. 

6.2.4 Exposure conditions 

UHPC specimens were exposed to three conditions for a duration of 1080 days as shown 

below: 

(1) Outdoor. Specimens were exposed to the natural outdoor conditions in Changsha. 

Specimens were placed facing south at a 45° inclination. Figure 6-3 illustrates 

mean values of the temperature and humidity in Changsha, China. The curing 

temperature and humidity changed according to the local weather with a 

All the components 
dry-mixed for 3min 

Mix for 6min 
at low speed  

Mix for 1min 
at high speed 

Add water and 
SP slowly 

Add fiber Cast 
and compacted 

Standard 
curing for 24 

h 

Demolding and 
curing until 28 d  

Exposure to 
different 

conditions 
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minimum temperature of -1C and relative humidity of 76% and a maximum 

temperature of 33C and relative humidity of 86% during the exposure period.   
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Figure 6-3. Mean values of temperature and humidity change of Changsha during the 

exposure time. 

(2) Tap water. The UHPC specimens were immersed in the normal tap water, no lime 

was used. 

(3) Seawater. According to the composition of a natural seawater in the Gulf of China 

(NS) and the artificial seawater as specified by ASTM D-14 (AS1) (as shown in 

Table 6-4), an artificial seawater (AS2) was prepared for the use of this study. 

Given the long-time process of corrosion, the concentration of AS2 was elevated 

to accelerate the corrosion process.  

After the curing scheme, the specimens were exposed to the three conditions from day 

zero (0), which denotes the first day of exposure. Water and seawater in storage tanks 

were refreshed every three weeks.  

Table 6-4: The compositions of the natural seawater in the Gulf of China (NS), the ASTM 

D-14 specified artificial seawater (AS1) and the artificial seawater used in this study 

(AS2) (g/L). 

Chemical NaCl Na2SO4 MgCl2 MgCl2·6H2O MgSO4·7H2O CaSO4·2H2O CaC12 CaCO3 KCl 

NS 21.0 - 2.54 - 1.54 2.43 - 0.1 - 

AS1 24.5 4.1 - 2.54 - - 1.2 - 0.1 

AS2 25.0 10.0 12.7 7 - - - - 0.1 
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6.2.5 Testing methods 

 Flowability 

The fresh UHPC mixtures were filled into a conical mold in the form of a frustum. Then it 

was automatically vibrated for 25 times on a flow table. Two diameters perpendicular to 

each other were determined. The mean value of the two measurements was recorded as 

the mini slump flow. 

 Test of depth of colorless region using phenolphthalein indicator 

The test specimens were taken out of the outdoor and seawater exposure after 1080 days 

and split in a tensile splitting test. After splitting the concrete specimens, the freshly split 

surface was cleaned and sprayed with a phenolphthalein pH indicator. The indicator used 

was a phenolphthalein 1% ethanol solution with 1 g phenolphthalein and 90 ml 95.0 V/V% 

ethanol diluted in water to 100 ml (Fukushima, Yoshizaki, Tomosawa, & Takahashi, 1998). 

Carbonation depth is assessed using a solution of phenolphthalein indicator that appears 

pink in contact with alkaline concrete with pH values in excess of 9 and colourless at lower 

levels of pH. The test is most commonly carried out by spraying the indicator on freshly 

exposed surfaces of concrete broken from the structure or on split cores. Hence there may 

be corrosion in the zone ahead of the front defined by the indicator. In general the change 

in pH occurs in this zone which is only a few millimetres ahead and the phenolphthalein 

method provides a good indication of the location of the depassivation front, the test is 

covered by BS EN 14630(B. EN, 2006). 

 Thermogravimetric analysis (TGA) 

TGA was performed using a Netzsch STA 409 PC equipment to qualitatively determine the 

changes of chemical phases in specimens in different conditions at exposure ages of 60 

and 1080 days. The tested powder samples of selected mixtures were weighed (10 mg) 

and heated from room temperature to 1000°C in a nitrogen atmosphere at a heating rate 

of 10°C/min.  
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 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was employed to study the microstructure of UHPC. 

SEM samples were taken from freshly crushed specimens, cut into small fragments and 

soaked in ethanol prior to testing, to stop the hydration of cement. Subsequently, the 

samples were dried at 65C and sputtered with gold before observation using ION 

SPUTTER E-1045. 

 Powder X-ray diffraction analytical methods 

The preparation of samples for XRD was the same as those prepared for TGA. The prepared 

powders were analyzed by using Philips X-ray diffractometer with CuKα radiation. The 

samples were step-scanned from 10 to 70° (2θ) at a rate of 5°/min. 

 Pore structure measurement 

Mercury intrusion porosimetry (MIP) is considered as the most commonly used pore 

structure characterization technique for cement-based materials. This technique is based 

on the principle that mercury, a typical non-wetting liquid, can only intrude a porous 

material if a certain pressure is applied on the measured samples. The samples were 

broken into 3.5-5.0 mm pieces and soaked in acetone to stop further hydration. Then they 

were dried at 60°C in oven for 24 h before examination. The experiments were carried out 

under low pressure of 0.2758 MPa and high pressure of 413.7 MPa, respectively. A glass 

tube with the specimen and mercury in was subsequently placed in a low and high 

pressure analysis port. Full-scan auto mode was selected with contacted angle and surface 

tension of 140o and 480 mN/m respectively. The intrusion mercury volume was recorded 

at each pressure point. 

 Nitrogen adsorption and desorption (NAD) analysis 

NAD analyses were conducted with the gas volumetric analyzer Quantachrome 

Instruments QuadraSorb Station 1. The ground cement paste powders were preheated at 

60℃ for 24 h under vacuum condition to eliminate the influence of free water. 
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6.3  Results and discussion 

6.3.1 Effect of steel fiber content on flowability of fresh UHPC 

Figure 6-4 shows the flowability of the mixtures with different contents of fibers. It is 

observed that, for K0 and F0 mixtures without steel fibers, the slump flowability was 

higher than 200 mm. With the incorporation of 3% steel fiber, the slump flowability 

decreased to 140 and 150 mm, respectively. Moreover, the slump flowability of fly ash 

containing mixture is higher than slag containing mixture, which is due to the ball bearing 

effect of fly ash (NetAnswer). 
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Figure 6-4. Effect of steel fiber contents on flowability of slag containing (K) and fly ash 

containing (F) UHPC mixtures. 

 

6.3.2 Carbonation degree of UHPC 

Figure 6-5 presents the mean depth of the region of colorless phenolphthalein “Xp”. In the 

noncarbonated part of the specimen, where the UHPC porous solution was still highly 

alkaline, a purple-red color was obtained. In the carbonated part of the specimen exposed 

to seawater where the alkalinity of concrete is reduced, no coloration occurred. The 

average depth “Xp” of the colorless phenolphthalein region was measured from three 

points, perpendicular to the two edges of the split face, both immediately after spraying 

the indicator  
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For the sample in seawater condition, almost no uncolored area was measured. After 

immersion in outdoor condition for 1080 days, the UHPC sample displayed a depth at 

about 0.1mm due to carbonation (Figure 6-5). These two different results indicate that for 

outdoor immersion, some CO2- penetrated the binder matrix and neutralized the pH of the 

pore systems by depleting the OH-. In contrast, in seawater conditions, mainly it’s the ion 

exchange that dominates the decalcification reactions. To be specific, Ca2+ was replaced by 

Mg2+ and reacts with SO42- to form ettringite leading to a huge consumption of Ca rather 

than OH-. 

          

(a) Seawater 1080d                   (b) Outdoors 1080d 

Figure 6-5. Sectional colour image of UHPCs sprayed with a phenolphthalein solution. 

6.3.3 TG/DTG analyses 

Figure 6-6 shows the TG/DTG curves of the samples immersed in different environments 

for 28 days. The effects of various environments on the binder phases of Fly-ash based F0 

UHPC is presented. In outdoors, more Ca(OH)2 and CaCO3 left. (The endothermal peaks at 

the four temperature ranges, from low to high temperature in order, are due to the 

dehydration of C-S-H and ettringite as well as evaporable water in pore systems, 

dehydroxylation of CH, and decomposition of CaCO3, respectively.) The hydration of C-S-

H, ettringite and AFm phases are linked with the peaks up to 400°C, the second peak 

belong to the dehydration of calcium hydroxide ranging between 450°C to 500°C and the 

third one between 500 °C to 800 °C is assigned to the decarbonation of calcium carbonate 

(Alarcon-Ruiz, Platret, Massieu, & Ehrlacher, 2005). For the first peak, it was obvious that 
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the samples subjected to outdoor condition obtained a higher peak with the intensity 

much stronger than the other two conditions. In DTG curve, the peak is almost 0.35 

(%/min) whereas the peaks for the other two are only at about 0.18 (%/min). This 

indicates that the sample in the outdoor condition had much more C-S-H and other phases 

and most hydrated phases disappeared for the sample exposed to water and seawater. The 

largest peak assigned to calcium hydroxide and the least one belonging to the 

decomposition of calcium carbonates also imply that the samples exposed to outdoor 

condition experienced fewer changes in phases compared to other two conditions. 
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Figure 6-6. TG and DTG curves of UHPCs exposure to different environment after 28 d. 

 

Figure 6-7 shows the TG and DTG curves phase change of outdoors, water and seawater 

at 360 and 1080 d .The hydration products in hardened concrete are calcium silicate 

hydrate (C-S-H) with endothermal peak at approximately 80-90°C, ettringite with 

endothermal peak around 130°C, calcium hydroxide (CH) with an endothermal peak in 

the range of 450-550°C, and calcium carbonate with endothermal peak in the range of 

600-700°C. The peak assigned to the decarbonation of carbonates for the sample in the 

outdoors was more significant than the other two peaks indicating that the samples had 

larger amount of calcite. This also is in line with the obviously smaller peak which belongs 

to the dehydration of calcium hydroxide at about 460-470 °C. This can be explained by 

considering the fact that due to the carbonation effect induced by CO2, some calcium 

hydroxides were transformed to calcium carbonates. The greatest mass loss at about 

100 °C is associated with the evaporation of free water and dehydration of loosely bonded 

water in C-S-H gel. The samples immersed in seawater underwent the largest mass loss, 
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implying that water is less tightly bonded compared to the other two conditions. 

Therefore, the exposure towards seawater led to a great loss of C-S-H gel which can be 

attributed to the reaction between C-S-H gel and different ions in seawater, especially 

sulfates. It is already known that sulfate can react with Ca2+ leading to the dissolution of 

CH and decalcification of C-S-H. This is also in consistent with the small peak, 

corresponding to the dehydroxylation of CH for seawater since some CH reacts with 

various ion species in the seawater, such as Mg2+ and sulfates, as in the following equation: 

Ca(OH)2 (s) → Ca2+ (aq) + 2OH- (aq) 

Mg2+ + SO42- + Ca2+ (aq) + 2OH- (aq) CaO·Al2O3·CaSO4·18H2O 

→Mg(OH)2 (Brucite)+3CaO·Al2O3·3CaSO4·32H2O (Ettringite)    

MgSO4 (aq) + Ca(OH)2(aq)+CaO·Al2O3·CaSO4·18H2O 

→Mg(OH)2(Brucite)+3CaO·Al2O3·3CaSO4·32H2O(Ettringite)                       (6-1) 

Compared to the other conditions, the sample in water had more CH and less calcite with 

more tightly bonded water. This implies that the water immersion condition is the least 

aggressive environment compared to outdoor and seawater. 
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(a) TGA of F0 for 360d                       (b) DTG of F0 for 360d                                                   
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(C)TGA of F0 for 1080d               (d) DTG of F0 for 1080d                                                

Figure 6-7. TGA curves of UHPCs after exposure to different conditions after 360d and 
1080d. 

Figure 6-8 shows the effects of steel fiber contents on TG and DTG curves of UHSC exposed 

to outdoors and seawater after 90 d and 1080d 28 d. The peaks at around 730 °C indicates 

the decarbonation of calcium carbonates, i.e. calcite. Thus, the larger mass loss for Fly ash-

based samples (F0 and F2) indicates a larger amount of calcite which is attributed to more 

ingress of CO2 into the sample. This is due to a higher porosity and greater pore diameter 

of the sample. With easier access into the porous systems, more carbonates penetrated 

the binder matrix and thus leading to higher amount of calcite. CO2 also resulted in the 

decalcification from C-S-H gel and more water from C-S-H gel was released out and less 

tightly bounded. Thus, it is seen that the peak at around 120 ℃, assigned to the amount of 

evaporable water in the binder system was also larger.  

Compared to the samples without fiber additions, the samples with fibres (F2, K2) 

suffered less from both the mass loss due to water evaporation and decarbonation of 

calcite as well as the dehydroxylation of CH. This is contributed to the improved porous 

system where less CO2 were present in the porous networks, and thus less calcite and free 

bonded water were formed. 
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(a) TGA of UHPCs for 360d                  (b) DTG of UHPCs for 360d 

0 200 400 600 800 1000
90

92

94

96

98

100

102

Outdoors at 1080d

 
 

T
G

(%
/o

C
)

Temperature(
o

C)

 F0

 K0

 F2

 K2

0 200 400 600 800 1000
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

Outdoors at 1080d

 

 
D

e
ri

v
a

ti
v
e

 t
h

e
rm

o
g

ra
v

im
e

tr
y

 (
%

/m
in

))

Temperature (
o

C)

 F0

 K0

 F2

 K2

 

(c) TGA of UHPCs for 1080d                  (d) DTG of UHPCs for 1080d 

Figure 6-8. TGA curves of UHPCs with steel fiber after exposure to different conditions 

after 90d and 1080d. 

Figure 6-9 shows TGA curves and the contents of CH and CaCO3 for slag containing and fly 

ash containing specimens without fibers. As can be seen, the decomposition peaks of 

calcium hydroxide and CaCO3 were detected at ~180 ℃ and ~780°C ℃, respectively. In 

general, the results show low amount of CH in the surface layers, which can confirm either 

consumption of CH by slag and fly ash through pozzolanic reactions [9-10] or another 

reaction mechanism such as leach-out. As the specimens subjected to the TG analysis 

contained no fibers, the conventional penetration mechanism due to surface corrosion of 

fibers is considered as least probable. In outdoor conditions, more carbonates were 

formed with the greatest amount of CH left as the CH can only be assumed by CO2. However, 
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for the exposure condition in seawater and water, the leaching effect of CH in both 

conditions and the reactions between different ions in the seawater and CH led to the 

greatest depletion of CH. The largest mass loss around 100℃ indicates that the outdoor 

samples had the largest amount of evaporable water indicating that C-S-H gel in the 

system was preserved better compared to other circumstances.   
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(c) TGA of K-0 at 720 d                          (d) DTG of F-0 at 720 d 

Figure 6-9. TGA curves of UHPCs after exposure to different conditions.  

6.3.4 CH content 

Figure 6-10 shows the CH content of UHPC samples at different ages. The samples exposed 

to outdoor condition had the greatest amount of CH left, indicating that carbonation effect 

has less negative impact on the consumption of CH compared to the seawater and water 

condition. This can be explained by considering that for seawater and water conditions, 

Mg2+, SO42- can react with OH- and Ca2+ respectively, leading to the formation of brucite, i.e. 

Mg(OH)2 and ettringite.   
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For the sample with fibre addition K2, the CH content after 1080 days of exposure was 

larger compared to the corresponding sample K0 without fibre. This was apparent for K0 

and K2 whereas not the case for F0 and F2. Moreover, it can be seen from the comparison 

between. K2 and K0 have lower porosity and smaller pore diameter compared to F2 and 

F0. a much higher reaction consumption rate towards CH compared to CO2. 
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(c) The amount of CH content in seawater       (d) The amount of CaCO3 content in seawater 

Figure 6-10. Amount of CH formed in UHPC samples with age.  

6.3.5 Analysis of XRDA test results 

The carbonation can be also through conventional carbonation as long-term exposure 

may also cause surface corrosion (as specially observed in seawater specimens but also 

probable in high humidity of outdoor conditions in Changsha), which can provide pathway 

for infiltration of CO2. The discussion is revised accordingly and both hypothesis; leach out 

and conventional carbonation are discussed. Besides, the details of the TGA test is added 

to the revised manuscript to solidify the judgment. Furthermore, in parallel with TGA 
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analysis, the XRD test was conducted on the same powder sample previously, albeit, 

authors did not used in the previously submitted manuscript to avoid redundancy. In the 

revised manuscript the XRD patterns are also added to support the results.  
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(b) XRD patterns of F-0 after exposure to different conditions at 720d 

Figure 6-11. XRD patterns of F-0 after exposure to different conditions. 

Figure 6-11 is XRD patterns of F-0 after exposure to different condition. The results reveal 

that as the exposure prolongs to 1080 days, the amount of CH is decreased in all specimens, 

though, at different rates, which is along with increase in the content of CaCO3. The CaCO3 

content is the highest in the specimens exposed to the outdoor condition followed by 

those immersed in seawater. The XRD patterns from the surface layers also confirm the 

relative higher contents of CaCO3 in the specimens exposed to the seawater and outdoor 

conditions. 
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6.3.6 Pore structure characteristics 

 Mercury intrusion porosimetry (MIP) results analysis 

Table 6-5 is the MIP results of UHPC. Figure 6-12 is the Effects of different environment on 

porosity and pore size distribution of UHPCs. For the samples immersed in the seawater for 

different durations, the pore volume changed over exposure period, which was obvious after 

180 days. The 28-day and 90-day results indicate that most of the pores are in a range between 

20-100 nm, whereas after 180 days the dimeter of the pores increased significantly. After 1080-

day of exposure, the diameter of many pores was greater than 100 μm. It is also noteworthy that 

the volume of small-sized pores (< 20 nm) also increased at the same time indicating that some 

medium-sized pores were filled by the reaction products and thus the pore size decreased 

accordingly. The rapid changes in the pore sizes with an increase in the volume of both large 

pores (>100 μm) and small pores (<50 nm) suggests that there was a considerable accumulation 

of the amount of reaction products, such as ettringite, in the porous networks after 180 days of 

immersion. This is also consistent with the SEM results in which ettringite was observed after 

1080 days.  

 

When the F0 samples immersed in the three conditions, it is obvious that when exposed to the 

outdoor environment, most of the pores had a dimeter between 20 and 100 nm with the volume 

up to 67.5 % and the most probable diameter at 22.8 nm as shown in Figure 6-12. However, 

there were more small-sized pores (<20 nm) and larger pores (>100 nm) when exposed to the 

water and seawater conditions. The most probable diameter for the water and seawater 

condition was 13.3 and 14.2 nm respectively. In addition, there were also some pores ranging 

between 20 and 50 μm, which was especially the case for the samples submerged in water. This 

can be explained by considering the possible reaction products formed during the process: in 

outdoor conditions, the products are mainly calcite with a molar volume at 31.20 cm3/mol, 

whereas one of the reaction products ettringite due to the immersion in seawater has a molar 

volume at 710.32 cm3/mol. This significant volume increase of ettringite led to the growth in 

the pore size.  
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Table 6-5: MIP results of UHPC. 

No 
total 
volume 
(cm3/g) 

The most 
probable 
pore (nm) 

mean 
diameter 
(nm) 

Median 
pore 
diameter 
(nm) 

Pore size distribution (%) 

<20nm 20-100nm >100nm 

Water1080d 0.081 13.3 21.7 21.7 46.5 23.4 30.0 
Seawater1080
d 

0.09 14.2 17.4 17.3 59.3 21.1 19.6 

Outdoors1080
d 

0.124 31.5 37.0 38.0 8.5 67.5 19.6 

Seawater90d 0.134 20.8 24.0 24.5 37.4 41.5 21.1 

Seawater28d 0.146 22.8 36.3 38.0 17.5 47.1 35.6 
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Figure 6-12. Effects of different environment on porosity and pore size distribution of 

UHPCs.  
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 Nitrogen adsorption and desorption (NAD) results analysis 

Figure 6-13 plots the pore analysis of K0 and F0, respectively after 1080-day immersion 

in seawater. Table 6-6 is the characteristic properties of UHPC specimens. The porosities 

of the two mixtures fall within the range of reported for UHPC (Abbas et al., 2015; 

Abdulkareem, Fraj, Bouasker, & Khelidj, 2018; N. K. Lee, Koh, Kim, & Ryu, 2018) . The 

results from NAD pore structure analysis show that the slag containing and fly ash 

containing specimens both have low porosity, which means a potential of extremely slow 

CO2 infiltration to the matrix.  

The obtained results tend to indicated pervious, low quality mixes not up to the standards 

for UHPC, with significant exchanges with surrounding liquids or water vapor. 
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Figure 6-13. The pore analysis of K0 and F0, respectively after 1080-day immersion in 

seawater. 
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Table 6-6: Characteristic properties of UHPC specimens. 

 

6.3.7 SEM/EDX 

Figure 6-14 (a and b) illustrates the SEM images of the surface and surface layers (in 

powder form) of the seawater exposed specimens, respectively. The formation of brucite 

on the surface and co-existence of brucite and calcite in a few micrometers from the 

surface of the specimens are observed. The same findings were reported by Palin et al. 

(Palin, Wiktor, & Jonkers, 2015). The formation of expansive phases as well as surface 

corrosion can explain the expansion of UHPC specimens in seawater. Santhanam et al. 

(Manu Santhanam, Cohen, & Olek, 2006b) reported the deposit of ettringite in a region 

close to the surface of the conventional concrete specimens in seawater followed by some 

cracks but at a higher depth comparing to this study. Also, formation of a brucite layer and 

a small deposit of a mixture of chloroaluminate (possibly Friedel's salt) and 

sulfoaluminates were noticed (Z. Shi et al., 2017). Similar observations were reported by 

Brown and Badger (Brown & Badger, 2000) and Brown and Doer (Brown & Doerr, 2000). 

Figure 6-14 (c and d) illustrates the SEM images of the surface and surface layers (in 

powder form) of specimens exposed to outdoor conditions. The formation of calcite is 

detected on surface as well as internal layers near the surface of the specimens. However, 

in previous studies on carbonation of UHPC with a short-term exposure, the diffusion of 

CO2 into the matrix is reported to be zero due to the impermeable matrix of the UHPC 

(Tafraoui, Escadeillas, & Vidal, 2016b). The formation of CaCO3 on the surface layers of the 

UHPC can be related to the long-term exposure to outdoor conditions by which surface 

corrosion can provide pathway for CO2 to infiltrate into the surface layers. However, the 

preliminary test on specimens using Phenolphthalein alcohol solution as the indicator is 

unable to measure the extent of carbonation due to the very dense matrix of specimens. 

UHPC 

Compressive 
strength 

(MPa, fiber 
content 2%) 

Chloride diffusivity 
coefficient (m2/s) 

Water absorption 
in vacuum 

(%) 

Total pore 
volume 
(cc/g) 

Average pore 
Diameter 

(nm) 

K 130 1.3×10-13 1.5 0.0087 7.62 

F 120 2.6×10-13 1.8 0.0181 10.96 



 

 178  

 

Brucite

 
(a) surface of K-0 exposed to seawater at 

1080 d 

 
(b) 0.5 mm internal layer (ground) part 

 

 
(c) surface of F-0 exposed to outdoor 

conditions at 1080 d 

 
(d) 0.5 mm internal layer (ground) part 

  
Figure 6-14. SEM images of specimens after exposure. 

Figure 6-15 shows the surface and internal fibers in specimens exposed to seawater after 

1080 days. As seen, the inner fibers are protected from the corrosion, while surface 

corrosion is apparent. The surface corrosion of fibers is also reported in a previous study 

(Balouch, Forth, & Granju, 2010). However, the surface corrosion alone cannot be 

responsible for the low strength development of the specimens exposed to seawater as 

the internal fibers were maintained unaffected, however, development of associated micro 

cracks on the surface can provide path for the external agents to further diffuse in the 

surface layers.  

Calcite 
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(a) F4 exposure at seawater after 

1080d 

 

(b) fiber distribution of F3 

 

(c) SEM of F3 seawater  

 

(d) SEM of F3 seawater  

Figure 6-15. Surface appearance and internal fibers of specimen F-3 exposed to 

seawater after 1080 days. 

6.4  Conclusion 

Based on the results from this study, the following conclusions can be drawn: 

(1) Due to the ball effect of fly ash, the flowability of UHPCs containing fly ash were better 

than UHPCs containing slag. With the increase of the content of steel fiber, the flowability 

of fresh UHPCs decreased, cause the Elastic Modulus and physical effect of steel fiber. 

(2) TG/DTG analyses indicated that UHPC specimens exposed to seawater at 1080 d also 

efficiently consumed the CH. The TGA/DTG results indicated that Ca(OH)2 was consumed 

with the formation of CaCO3 (calcite) due to the carbonation effect in outdoor conditions 
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whereas for the water and seawater immersion conditions, the Ca(OH)2 was transformed 

into other reaction products including Mg(OH)2 and ettringite. Moreover, seawater and 

water condition led to a loss of C-S-H gel, which was especially the case after 28 day of 

immersion.  

(3) XRD and SEM analysis implies that for the sample exposed to outdoor and seawater 

condition based UHPC underwent less deterioration compared to FA containing UHPCs, 

more calcite was formed than the water condition. To compare the seawater and outdoor 

exposures, the surface layer of the sample immersed in seawater had some brucite and 

calcite as well as Friedel’s salt and sulfoaluminates. However, for outdoor condition, the 

surface pH dropped due to the penetration of CO2 into the binder neutralizing the pore 

solution. As time passed, more large-sized and small sized pores formed in the seawater 

because of the expanding effect induced by ettringite, whereas for outdoor environments, 

more medium-sized pores were produced due to the formation of calcites.   

(4) Fiber addition improved the performance of fly ash (FA) based UHPC, while it had little 

impact on the slag-based counterpart. Because of a denser microstructure evidenced by 

diffusion coefficient and porous characteristics, slag based samples.  
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CHAPTER 7 LONG-TERM PERFORMANCE OF ULTRA-HIGH 

PERFORMANCE CONCRETE (UHPC) UNDER DIFFERENT 

EXPOSURE CONDITIONS 

Note: this chapter is based on the manuscript entitled “Long-term performance of ultra-

high performance concrete (UHPC) under different exposure conditions”, by Linmei Wu, Z 

Zhang and H Wang, submitted in journal of Construction and Building Materials. 

Abstract: The low hydration extent of cement particles in UHPC under the conditions of 

extremely low W/B can be altered by the incorporation supplementary cementitious 

materials (SCMs) and fibers in a long-term of view, which may affect their performances 

when exposed to different conditions. This study investigated the effects of slag, fly ash, 

and fiber contents on long-term strength development, dimensional stability, and mass 

change in three exposure conditions: water, seawater, and outdoor, for a duration of 720 

days. Thermogravimetric analysis (TGA), X-ray diffractometry (XRD) and scanning 

electron stereoscopy (SEM) were applied to examine the hydration phases during this 

exposure period. The results showed that the specimens in water and outdoor conditions 

experienced a shrinking behavior, while in contrast, the specimens exposed to seawater 

expanded slightly with a higher rate of mass gain. The compressive strength of specimens 

under seawater and outdoor expose conditions were lower than those in water and the 

main hindering mechanism to strength development was the shortage of calcium 

hydroxide from the matrix, which led to lower reaction extent of SCMs.  

 

Key Words: UHPC; Long-term performance; Compressive strength; Dimensional stability; 

Mass change  

7.1 Introduction 

Ultra-high performance concrete (UHPC) is a composite material with improved static and 

dynamic mechanical properties comparing to conventional concretes; and excellent 

durability, which has the most promising function in marine structures, as well as in 
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infrastructures (Paul Acker & Behloul, 2004; Schmidt & Fehling, 2005). Numerous studies 

of UHPC have reported their durability performances. The chloride ingression and 

carbonation have been proven to be extremely low in the UHPC, due to dense and 

impermeable matrix (D. Wang et al., 2015). In a study by Safeer Abbas et al. (Abbas et al., 

2015), no deterioration in mechanical properties of UHPC was observed after various 

severe exposures to chloride ions. Tafraoui et al. (Tafraoui et al., 2016a) showed that the 

gas permeability of UHPC and chloride diffusion coefficient were lower than 1.5×10-19m2 

and 1.7×10-14(m2/s), respectively. A study by Piérard et al. (Julie, Dooms, & Cauberg, 2012) 

showed a carbonation depth of only 1.5 to 2.0 mm after a one year of exposure to a 1-

percent CO2 atmosphere. Although studies have shown that UHPC is resistant to harsh 

environments, the examinations were mostly limited to the short-term performances. 

There is limited reporting their long-term performances, particularly under different 

exposure conditions. It is known that exposure conditions, as external factor, can led to 

substantially different behavior of concretes. In a study by Islam et al. (Islam, Islam, 

Mondal, & Islam, 2009), up to 22% reduction in compressive strength was reported in 

conventional concrete specimens exposed to seawater with a duration of 12 month. 

Formation of expansive phases as well as leachable compounds were considered as the 

main reasons for the strength deterioration in the conventional slag concrete. It was 

reported that seawater infiltrated the matrix and reacted with the hydrated products of 

cement and slag forming ettringite and the Friedel’s salt by which the micro cracks 

propagated and the bond between hydrated product and aggregate particles loosened; 

the concrete gradually became porous due to leaching action of the newly formed 

compounds which further decreased the compressive strength (Islam et al., 2009). It 

is reported that HPC for marine structure is durable and the chloride diffusion coefficient 

is just 1/10~1/15 compare with normal concrete(Leng, Feng, & Lu, 2000). However, 

chloride ions penetrate into the HPC used in Hong Kong-Zhuhai-Macao Bridge, especially 

when steel fiber is used in HPC, seawater is corrosive to the interfacial between the 

concrete and fiber (Pengsheng, Shengnian, & Jianbo XIONG, 2017). The addition of steel 

fiber could prevent steels from corrosion. However, after concrete cracks, for any mix 

design of concrete, the steel corrosion would accelerate under the seawater conditions 

(Aıtcin, 2003). So when the external condition becomes worse such as marine 

environment or outdoors, the durability of UHPC is affected. 
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On the other hand, unlike in conventional concretes, which are mixed at a regular water-

to-cement ratio (w/c = 0.32-0.5), UHPC usually consists of extremely low water-to-

cementitious materials ratio (w/c = 0.14-0.24) and high contents of superplasticizer. At 

the conditions of ultra-low w/c, abundant amounts of un-hydrated cementitious materials 

in the matrix (C. Shi, Wang et al., 2015b) (Manzi, Mazzotti, & Bignozzi, 2013) may affect 

the long-term performance of UHPC. Due to ongoing hydration, it has a retrieving effect 

on physicochemical properties of UHPC, also known as “autogenous/self-healing” 

(Mihashi & Nishiwaki, 2012; M. Wu, Johannesson, & Geiker, 2012). Recently, hydro-chemo-

mechanical and micromechanical modellings have been proposed to represent these 

healing capacity of UHPC (Davies & Jefferson, 2017; Hilloulin, Grondin, Matallah, & Loukili, 

2014). However, when SCMs (slag and fly ash etc.) are incorporated in UHPC, the hydration 

process and healing capacity at later ages might be alternated due to the lack of sufficient 

Ca(OH)2. when the slag is be used as SCMs, it can help to consume CH(P.-K. Chang & Hou, 

2003), the self-healing of HPC decreased in the long term. There was a decrease in 

sorptivity (water absorption) with age for HPC with fly ash in it. Fly ash was less 

pronounced in improving the sorptivity after 44 days(Elahi, Basheer, Nanukuttan, & Khan, 

2010), when the fly ash is used as SCMs, it will affect the durability of HPC. 

 

Given the application environments of UHPC, usually rigid or corrosive, the long-term 

performance and the durability, rather than the high strength, are the most concerned 

(required) characteristics. Hence, a comprehensive understanding on the long-term 

performance of UHPC exposed to different conditions is critical. This chapter studies the 

long-term behavior of different SCM-containing UHPCs exposed to water, seawater, and 

outdoor conditions for a duration of 720 days, by investigating the changes in compressive 

strength, dimensional stability and mass change. To better understand the results 

obtained at macro level, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and 

scanning electron microscopy (SEM) were conducted to examine the phase change and 

microstructure of UHPCs after long-term exposure. 
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7.2 Experimental program 

7.2.1 Raw materials  

Portland cement P.I 42.5, complying with the Chinese Standard GB175-2007 was used. 

Table 7-1 summarizes the physical properties of the cement. Fly ash and ground blast 

furnace slag, with the specific surface areas of 427 m2/kg and 446 m2/kg, respectively, 

were used to partially replace cement in the concrete mixture. Silica fume with 63% 

particles between 0.1 to 0.5 μm (diameter) and specific surface area of 18500 m2/kg was 

used. Table 7-2 shows the chemical composition of cement, silica fume, fly ash and slag. 

The natural river sand with maximum particle size of 2.36 mm and fineness modulus of 

3.0 was applied to cast UHPC specimens. It had a specific weight and bulk density of 2550 

kg/m3 and 1570 kg/m3, respectively. The straight steel fiber with diameter of 0.2 mm and 

length of 13 mm was used. A polycarboxylate based super-plasticizer (SP) with a solid 

content of 21% was applied to adjust to desirable workability.  

Table 7-1: Physical properties of Portland cement P.I 42.5. 

Density 
(g/cm3) 

80 μm-residue 
on sieve 

(%) 

Specific 
surface area 

(m2/kg) 

Setting time (h) 
Flexural strength 

(MPa) 

Compressive 
strength 

(MPa) 

Initial Final 3 d 28 d 3 d 28 d 

3.15 0.3 380 2.5 3.4 6.4 9.0 33.0 60.0 

 

Table 7-2: Chemical composition of cementitious materials (weight %), LOI is loss on 

ignition. 

Chemical 

composition 
SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 LOI 

Cement 25.26 6.38 4.05 64.67 2.68 - - 0.94 0.9 

Silica fume 90.82 1.03 1.50 0.45 0.83 0.86 0.17 - 4.34 

Slag 33.00 13.91 0.82 39.11 10.04 1.61 0.26 0.92 0.33 

Fly ash 54.29 32.55 5.53 1.34 2.56 1.34 0.49 0.35 1.55 

7.2.2 Mixture proportions  

The mixture proportions of UHPCs were designed based on a previous study (C. Shi, Wang 

et al., 2015a). In brief, the w/b of 0.18 and binder-to-aggregate ratio of 1.1 were selected 

and kept constant throughout the study. The SP was used at 2% by the mass of the binder. 
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Steel fiber contents were 0, 1%, 2%, and 3% by the volume of concrete. Table 7-3 shows 

the mixture proportion of UHPC based on mass of ingredients.  

Table 7-3: Mixture proportions of UHPCs. 

No. w/b 
Mass of ingredients (kg/m3) 

Water Cement Silica fume Slag Fly Ash SP* Sand Fiber 

K0 

K2 

K3 
 

0.18 164 550 200 250 0 20 1100 0.0 

K1 0.18 164 550 200 250 0 20 1100 78.5 

K2 0.18 164 550 200 250 0 20 1100 157.0 

K3 0.18 164 550 200 250 0 20 1100 235.5 

F0 0.18 164 550 200 0 250 20 1100 0.0 

F1 0.18 164 550 200 0 250 20 1100 78.5 

F2 0.18 164 550 200 0 250 20 1100 157.0 

F3 0.18 164 550 200 0 250 20 1100 235.5 

  *SP means total mass of liquid-based SP.  

 

7.2.3 Mixing procedures and specimen preparation 

In mixing, dry powders, including cement, silica fume, slag or fly ash, and natural river 

sand, were firstly dry mixed for 3 min in a high-speed drum mixer. Then, water and 

superplasticizer were added and mixed for 6 min at low speed. Afterwards, steel fiber was 

added through passing a sieve with size of 5 mm and mixed for another 6 min until the 

mixtures were homogeneous. The obtained UHPC mixtures were then cast into molds and 

vibrated for consolidation. The cubic specimen size for the compressive strength test was 

40 × 40 × 40 mm3. The specimen size for long-term dimension stability test was 75 × 75 × 

275 mm3.The specimens were demolded 1 day after casting and then cured in lime 

saturated water at the temperature of 20 ± 2°C for 28 days. Then the properties of the 

hardened concrete such as compressive strength and initial length were measured before 

exposure to different conditions.  

 

7.2.4 Exposure conditions 

 

UHPC specimens were exposed to three conditions for a duration of 720 days. 

(4) Outdoor. Specimens were exposed to the natural outdoor conditions in Changsha. 

Specimens were placed facing south at a 45° inclination. Figure 7-1 illustrates 

mean values of the temperature and humidity in Changsha, China. The curing 
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temperature and humidity changed according to the local weather with a 

minimum temperature of -1C and relative humidity of 76% and a maximum 

temperature of 33C and relative humidity of 86% during the exposure period.   
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Figure 7-1. Mean values of temperature and humidity change of Changsha during the 

exposure time. 

 

(5) Tap water. The UHPC specimens were immersed in the normal tap water, no lime 

was used. 

(6) Seawater. According to the composition of a natural seawater in the Gulf of China 

(NS) and the artificial seawater as specified by ASTM D-14 (AS1) (as shown in 

Table 7-4), an artificial seawater (AS2) was prepared for the use of this study. 

Given the long-time process of corrosion, the concentration of AS2 was elevated 

to accelerate the corrosion process.  

After the curing scheme (put the specimens were demolded 1 day after casting and 

then cured in lime saturated water at the temperature of 20 ± 2°C for 28 days), the 

specimens were exposed to the three conditions from day zero (0), which denotes the 

first day of exposure. Water and seawater in storage tanks were refreshed every three 

weeks.  

 



 

 190  

 

Table 7-4: The compositions of the natural seawater in the Gulf of China (NS), the ASTM 

D-14 specified artificial seawater (AS1) and the artificial seawater used in this study 

(AS2) (g/L). 

Chemical NaCl Na2SO4 MgCl2 MgCl2·6H2O MgSO4·7H2O CaSO4·2H2O CaC12 CaCO3 KCl 

NS 21.0 - 2.54 - 1.54 2.43 - 0.1 - 

AS1 24.5 4.1 - 2.54 - - 1.2 - 0.1 

AS2 25.0 10.0 12.7 7 - - - - 0.1 

 

7.3 Testing methods 

7.3.1 Workability  

The fresh mortar was filled into a mini cone placed on an automatic jump table as 

described in Chinese standard of GB2419-2005. The mini cone has an upper diameter of 

70 mm, a lower diameter of 100 mm, and a height of 60 mm. After mini cone was vertically 

lifted, the mortar was vibrated automatically for 25 times. Two diameters perpendicular 

to each other were then determined and mean value was reported. 

7.3.2 Compressive strength 

At exposure ages of 1, 7, 28, 56, 90, 120, 216, 448, 630, and 720 days, the compressive 

strengths of the specimens were tested according to EN 196-1 (T. EN, 2005). At least three 

specimens were tested at each age to obtain the average strength. 

7.3.3 Nitrogen adsorption and desorption (NAD) analysis 

NAD analyses were conducted with the gas volumetric analyzer Quantachrome 

Instruments QuadraSorb Station 1. The ground cement paste powders were preheated at 

60℃ for 24 h under vacuum condition to eliminate the influence of free water. 

7.3.4 Dimensional stability  

The long-term dimensional stability was monitored based on the length change of the 

specimens according to Chinese standard GBJ82-85. The two measuring heads were 

embedded in the two sides of each specimen. The measurements were carried out at 
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exposure ages of 1, 7, 28, 56, 90, 120, 216, 448, 630 and 720 days. The length was 

measured by a digital micrometer (BC-300) and calculated by Eq. (7-1): 

                       
b

t
st L

LL 
 0'                                     (7-1)                         

Where ε’st is the length change index of concrete at t days; 

      Lb is the standard length of specimen, which is the length of concrete subtracted 

the two times of the embedded depth of the measuring heads; 

      Lt is the measured length at t days; 

      L0 is the initial reading of the specimen.  

The reported result was the mean value of the length change of three specimens calculated 

accurate to 1×l0-6.  

7.3.5 Mass change 

The mass change was recorded concomitantly to the length change measurements. The 

mass was measured by electronic balance and mass change ratio was calculated by Eq. (7-

2): 

     𝜀 =
𝑚0−𝑚𝑡

𝑚0
                          (7-2) 

Where m0 is the initial weight of the specimens after 28 days of standard curing (day 0); 

and mt is the weight of specimens at measured day t after exposure. 

7.3.6 Thermogravimetric analysis (TGA) 

Thermogravimetric analysis was performed using a Netzsch STA 409 PC equipment to 

quantitatively determine the changes of mineral phases in UHPC under different 

conditions at exposure ages of 60 and 720 days. The samples were taken from the surface 

layer (2 mm) of the side with maximum exposure (esp. in outdoor conditions) using a 

Small CNC lathe microtome (Model C000057). The tested powder samples of selected 

mixtures were weighed (10 mg) and heated from room temperature to 1000°C in a 

nitrogen atmosphere at 10°C/min. Derivative thermogravimetry was used to estimate the 

extent of carbonation on the surface layers of the specimens after exposure to different 

conditions.  
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7.3.7 X-ray diffractometry (XRD) 

The preparation of samples for XRD was the same as those prepared for TGA. The 

prepared powders were analyzed by using Philips X-ray diffractometer with CuKα 

radiation. The samples were step-scanned from 10 to 70° (2θ) at a rate of 5°/min. 

7.3.8 Scanning electron microscopy (SEM) 

Scanning electron microscopy (SEM) was employed to study the microstructure of UHPC. 

SEM samples were taken from freshly broken specimens, cut into small fragments and 

soaked in ethanol prior to testing, to stop the hydration of cement. Subsequently, the 

samples were dried at 65C and sputtered with gold before analyzing using ION SPUTTER 

E-1045.  

7.4 Experimental results 

7.4.1 Workability  

Figure 7-2 shows the workability of the mixtures with different contents of fibers. It is 

observed that, for K0 and F0 mixtures without steel fibers, the slump flowability is higher 

than 200 mm. With the incorporation of 3% steel fiber, the slump flowability decreases to 

140 and 150 mm, respectively. Moreover, the slump flowability of fly ash containing 

mixture is higher than slag containing mixture, which is due to the ball bearing effect of 

fly ash (NetAnswer). 
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Figure 7-2. Effect of steel fiber contents on flowability of slag containing (K) and fly ash 

containing (F) UHPC mixtures. 

 

7.4.2 Porosity 

Figure 7-3 plots the pore analysis of K0 and F0, respectively. The porosities of the two 

mixtures fall within the range of reported for UHPC (Abbas et al., 2015; Abdulkareem et 

al., 2018; N. K. Lee et al., 2018) . The results from NAD pore structure analysis show that 

the slag containing and fly ash containing specimens both have low porosity, which means 

a potential of extremely slow CO2 infiltration to the matrix.  
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Figure 7-3. Cumulative pore volume and Pore size distributions in K0 and F0 as 

calculated by the BJH method with desorption data. 

 

7.4.3 Compressive strength development  

Figure 7-4 shows the compressive strength development of the UHPC specimens 

subjected to the three exposure conditions over a period of 720 days. The results illustrate 

a distinct trend for the strength development after exposure to water, seawater and 

outdoor conditions. The specimens in water obtain higher strength, while the strength 

increase is less in those exposed to outdoor conditions. On the contrary, the specimens in 

seawater experienced slight decrease in strength at the initial days, followed by a strength 

gain at later ages after 56 days.  
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(e)                                    (f) 
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(g)                                    (h) 

 

Figure 7-4. Compressive strength development of UHPCs under the three exposure 

conditions. 

 

Figure 7-4 (a-d) illustrate the compressive strengths of slag containing UHPCs with 0, 1, 2, 

and 3% fiber addition under the three exposure conditions. The strength development 

continues in the testing period. In ages earlier than 216 days, the strength development is 

more remarkable for all specimens, especially for K-3 specimens immersed in water. This 

can be attributed to the increased bond strength at the interface of fibers as the strength 

of the matrix, which continuously being condensed as later pozzolanic reaction 

undergoes(Habel et al., 2006; Wille, Naaman, El-Tawil, & Parra-Montesinos, 2012). 

Extensive studies indicated that the incorporation of steel fiber significantly increased the 

mechanical properties of UHPC, such as compressive strength, flexural strength and 

ductility (Hoang & Fehling, 2017; Simões et al., 2017). Wu et al. (Z. Wu, C. Shi, & K. H. 
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Khayat, 2016) showed that formation of higher and stronger hydration products in the 

vicinity of fibers and the refinement of the interfacial zone of fiber-matrix in UHPC. The 

strength loss of K-0, K-1, K-2 and K-3 at 28 days under outdoor conditions (compared to 

the initial strength at day 0) is probably due to the drying shrinkage of samples, as being 

taken out from the saturated lime water. However, as steel fiber content is increased to 

3%, the negative effect of drying shrinkage on strength is controlled.  

 

The strength development rate at early ages is comparatively lower in the specimens 

exposed to the outdoor conditions. The negative effect of slag incorporation on 

carbonation of conventional concrete is reported by Gruyaert et al.(Gruyaert, Heede, & 

Belie, 2013). The authors in [29] showed that gas permeability of the mixtures increased 

with the increase of slag content and the carbonation reaction led to coarsening of the 

pore structure under CO2 exposure conditions. However, previous studies have confirmed 

very low CO2 penetration of UHPC (NetAnswer). It is noted that exposure to seawater 

decreases the early age strength and hinders the ultimate strength growth in all the 

specimens. The ultimate strengths of slag-containing UHPC specimens increase by ~25% 

after 720 days of exposure. The increased ratios of strength in water and outdoor 

exposures are as high as ~45% and ~30%, respectively. Although the increase under 

seawater exposure conditions is relatively lower, compared to the loss of strength of 

conventional concretes under seawater conditions, the UHPC exhibit better resistance in 

a long-term view. 

 

Figure 7-4 (e-h) shows the effect of exposure conditions on fly ash containing UHPC 

specimens. The strength increases consistently during the exposure time to water. This 

strength development characteristic is related to the well-known filler and pozzolanic 

effect of fly ash, which serves better at later ages due to its slow pozzolanic reactivity 

(Bouzoubaa, Zhang, Malhotra, & Golden, 1999; De Weerdt et al., 2011; Deschner et al., 

2012). Zhao et al. (Y. Zhao, Gong, & Zhao, 2017) reported that fly ash has less contribution 

to compressive strength of high performance concrete comparing that of slag, which is in 

a good agreement with the result of this study at day 0. In this study, although the initial 

strengths of the fly ash containing specimens at day 0 are lower, the ultimate compressive 

strengths are comparable to those of slag containing specimens after 720 days of exposure. 

It is noted that unlike the slag containing specimens, there is no initial strength loss for 
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the fly ash containing specimens when immersed samples are taken out of the lime water. 

This is due to the better   

The exposure to outdoor and seawater conditions reduces the strength development rates. 

The beneficial effect of fly ash on long-term performance of the conventional concrete is 

well documented (Ahmaruzzaman, 2010). Chalee and Jaturapitakkul (Chalee & 

Jaturapitakkul, 2008) reported that the compressive strength of the conventional concrete 

containing fly ash is maintained higher than that of cement based concrete after exposure 

to marine environments for a duration of 21 years. Moffatt et al. (Moffatt, Thomas, & Fahim, 

2017) also reported similar findings; the concretes with fly ash exhibited higher strength 

at later ages than those controls without fly ash after 24 years of exposure to the marine 

environment. The improved performance of the fly ash containing concrete is related to 

the refined pore structure as well the depleted calcium hydroxide content due to the 

pozzolanic effect of fly ash. In this study, the addition of fibers provided similar 

enhancement of strength to that of the slag containing specimens.  

 

7.4.4 Dimensional stability  

 

Figure 7-5 shows the length changes of UHPC specimens exposed to outdoor, water and 

seawater conditions. The length change is less pronounced for specimens in water and 

seawater than those exposed to the outdoor conditions. On the other hand, it is observed 

that the length change is in the form of shrinkage in the specimens exposed to outdoor 

and water, while an expansion is observed in the specimens exposed to seawater. In all 

exposure conditions, the stabilizing effect of fibers is apparent. In general, using fibers in 

UHPC results in increased strain capacity and energy absorption by controlling expansion 

and crack propagation (D. Y. Yoo & Banthia, 2016). 

 

Figure 7-5 (a-b) illustrates the length changes of UHPC specimens in the form of shrinkage 

when exposed to the outdoor conditions. The shrinkage is severe for both K-0 and F-0 

specimens as the exposure duration prolonged to 720 days. However, the addition of 

fibers restricts the shrinkage by up to 78% and 83% for slag containing and fly ash 

containing UHPC specimens, respectively. The restricting effect is lower when only 1% 
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fiber is used in the mixture. Wioletta et al. (Raczkiewicz, 2017) showed that the addition 

of 1% steel fibers reduced the total shrinkage of tested specimens by more than 26% in 

the period of one year. They also reported that the incorporation of 1% steel fiber 

stabilized the length change in the first 80 days of outdoor exposure. In the present study, 

the length change is generally stabilized at ages later than 150 days. During almost the 

same age, the strengths reach the highest, which shows a direct relationship between the 

length change and strength development, which is reported elsewhere (J. Brooks, 2005). 

On the other hand, it is observed that slag containing specimens showed almost 24% 

higher length change than those with fly ash. For conventional concrete, Shariq et 

al.(Shariq, Prasad, & Abbas, 2016) reported that the concrete with slag exhibited higher 

shrinkage strain than that of the plain concrete. Slag particles absorb more water than 

cement, which in a low w/b concrete with insufficient free water can lead to a higher 

amount of capillary pressure formed in the cement matrix, and results in more severe 

shrinkage of concrete (Hooton, Stanish, & Prusinski, 2009). On the other hand, the lower 

activity of the fly ash comparing to that of slag, increases its filling effect and decreases the 

tortuosity of the system and hence hinders that drying out process (Y. Zhao et al., 2017).  

 

Figure 7-5 (c and d) shows the lengths of UHPC specimens are maintained well in water. 

Although the same shrinking trend is observed for specimens immersed in water, the 

change ratio is much lower than those exposed to the outdoor conditions. For example, 

the length changes of K-0 and F-0 in water are 90%, and 88 % lower than those under 

outdoor conditions, respectively. The addition of fibers also decreased the length change 

of specimens but at a lower rate than those exposed to the outdoor conditions. 

Furthermore, the incorporation of slag and fly ash has a negligible effect on the shrinking 

behavior of the specimens immersed in water. Similar to the outdoor exposure, a rapid 

increase is observed in the length during the first 150 days, with a more gradual increase 

afterwards. The specimens in water have a more stable behavior in the long run than those 

exposed to the outdoor conditions.  

 

Unlike the former two series of exposures, UHPC specimens in seawater (Figure 7-5 (e-f)) 

show expansive trend with a magnitude almost like those immersed in water. However, 

the incorporation of slag causes more expansion compared to that of fly ash. The results 

show that expansion of K-0 is 11% higher than that of F-0 at 720 days. Addition of 2 and 
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3% fibers also showes to be more effective in slag containing specimens where 80% and 

84% reduction are observed in long run (720 days), respectively. The expansion is more 

rapid in the first 200 days and becomes more gradual especially in the fly ash containing 

specimens as the exposure elongated. Santhanam et al.(Manu Santhanam, Cohen, & Olek, 

2006a) also reported an expansion of 1.2% in mortars immersed in seawater for a 

duration of 32 weeks. They related the expansion to the formation of ettringite after 12 

weeks of immersion. The quantity of brucite also fluctuated between 2 and 3%; all phase 

changes were concomitant with the reduction in calcium hydroxide. The expanding 

behavior of conventional concrete is also reported in other researches, which is related to 

the formation of Friedel’s salt and ettringite due to ingression of chloride and sulfates in 

the matrix (P. Mehta, 1999; Nagataki & Gomi, 1998; YaoZhong, 1993). Ghazy and Bassuoni 

(Ghazy & Bassuoni, 2017) reported up to 1% expansion of concrete specimens after 540 

days of exposure to different salts. They found that the combination of MgCl2 and CaCl2 

(which resembles seawater) had more expansive effect on the specimens than NaCl2 alone. 

Their results showed a complex mechanism of damage by penetrated MgCl2, by which 

Mg2+ and Cl− ions caused instability in the pore solution due to the reduction of pH. This 

process decomposed calcium hydroxide and released OHˉ ions to balance the pH of the 

solution. Increasing the concentration of Mg2+ and OHˉ ions within the surface of the 

specimen formed brucite, while Cl− ions were bound temporarily by the aluminate phases 

forming Friedel's salt. Furthermore, the presence of high concentration of Clˉ ions led to 

the formation of porous calcium-silicate-hydrate (C-S-H), due to the leaching of Ca2+ ions 

and formation of soluble CaCl2. As a result, the leaching of Ca2+ ions from C-S-H increased 

the penetration of Mg2+ ions into the cement gel, changing it to non-cementitious 

magnesium-silicate-hydrate (M-S-H).  
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Figure 7-5. Length change of UHPCs under different exposure conditions: (a), (c), (e) 

slag containing UHPC specimens; (b), (d), (f) fly ash containing UHPC specimens.   
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7.4.5 Mass change  

 

Figure 7-6 shows the mass change for the specimens exposed to the three conditions. The 

results reveal that the changes in the length of the UHPC specimens are concurrent with 

their mass gain over exposure time, which can be related to the progressive hydration of 

cementitious binder (Soliman, 2011). However, mass gain has dissimilar increase rates in 

the slag containing and fly ash containing UHPC specimens when seawater exposure 

conditions are applied. The increase in the mass is the least in the specimens exposed to 

outdoor in all UHPC specimens, initiating with a rapid increase at the early ages, with a 

steady growth along the exposure duration. Comparatively, the mass gain is higher for 

those specimens immersed in water where up to 0.7% increase is observed in all 

specimens during the first 150 days with a more gradual increase as the exposure 

proceeding. The seawater exposed specimen exhibit a rapid mass gain continues to 216 

days, up to 1% increase in mass. Santhanam et al. (Manu Santhanam et al., 2006a) 

reported up to 3% increase in the mass of mortars with w/b of 0.485 after 21 weeks of 

immersion in seawater. There is a sudden change in the mass initiating at 12 weeks which 

is attributed to the formation of ettringite after 12 weeks and an increase in the amount 

of brucite between 12 and 21 weeks, based on thermogravimetric analysis. They also 

reported a complete consumption of calcium hydroxide with the presence of infiltrated 

seawater in the matrix. As in carbonation due to outdoor exposure, the depletion of CH 

along with formation of CaCO3 is reported to bring about up to 11% in volume increase 

and 35% increase of mass of conventional concrete (Ceukelaire & Nieuwenburg, 1993).  

The results here are conclusive that the mass gain in the UHPC specimens exposed to 

different conditions are much smaller than those in conventional concrete reported 

earlier (2-12% based on exposure time, specimen size and w/b (M. F. Ba, Qian, & Wang, 

2013; Bissonnette, Pierre, & Pigeon, 1999)). However, the incorporation of fly ash and slag 

has a remarkable influence on the mass gain of specimens exposed to seawater, unlike 

those maintained in water and outdoor conditions. It should be stated that the mass gain 

in the specimen immersed in water is in the form of shrinkage while for the seawater 

exposed specimens, the mass gain caused the expansion. Considering the impermeable 

property of UHPC matrix, a different mechanism from that of conventional strength 

concrete is expected. 
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Figure 7-6. Mass change of UHPCs under different exposure conditions: (a), (c), (e) slag 

containing UHPC specimens; (b), (d), (f) fly ash containing UHPC specimens.   
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7.5 Discussion 

The results showed that UHPC demonstrated different performances in water, seawater, 

and outdoor conditions. In general, the UHPC in water gained higher strength in a duration 

of 720 days, which is concurrent with shrinkage and mass gain. The strength development 

is more remarkable at later ages for fly ash containing UHPCs and at earlier ages for slag 

containing UHPCs. However, no significant difference is observed in terms of length 

change and mass gain. For the specimens exposed to the outdoor conditions, the strength 

development is at a lower rate comparing to those immersed in water; and less mass gain 

is noticed. However, their length changes are up to ten times more than those immersed 

in water. For seawater exposed specimens, a different trend is observed, and the 

specimens show an expansive behavior. The strength gain is hindered, and a higher mass 

gain is recorded. The incorporation of fly ash and slag had almost similar effects on 

specimens when exposed to water and outdoor conditions but differed for those 

immersed in seawater. On the other hand, the inclusion of fibers especially at higher 

contents restricts the length change and increases the compressive strength.  

 

For conventional concretes, a similar trend of durability is reported but at higher 

magnitudes especially when exposed to aggressive conditions (Nanukuttan et al., 2015; M. 

Santhanam & Otieno, 2016; Thomas, 2016). The reason is mostly related to the diffusion 

of external ions into the matrix which could adversely affect it due to carbonation (in 

outdoor conditions) or chloride ingression (in seawater). On the contrary, several 

researches on the durability of UHPC demonstrated low permeability against diffusion of 

external agents into the matrix. In the study by Alkaysi et al. (A. Mo et al., 2016), the air 

void content and the total charge pass were as low as 5.8% and 89 coulombs , respectively, 

in the UHPC specimens with 1.5% fiber. Yu et al. (R. Yu et al., 2014) reported the porosity 

was about 3% for the limestone incorporated UHPC, which is in agreement with (Abbas 

et al., 2015). In another study by Tafraoui et al. (Tafraoui et al., 2016a), the gas 

permeability of UHPC and chloride diffusion coefficient were reported to be lower than 

1.5×10-19m2 and 1.7×10-14(m2/s), respectively. The superior durability of UHPC is mostly 

related to the high packing density, low water-to-binder ratio, low porosity and pozzolanic 

reactivity of supplementary cementitious materials incorporated in the matrix (C. Shi, Wu, 

Xiao et al., 2015b; D. Wang et al., 2015).  
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Taking the dense matrix of UHPC into account, the recorded changes in the compressive 

strength, mass and length of the UHPC specimens in this study needed further study 

through chemical and microstructural analyses as the diffusion of external agents into the 

matrix is least probable. In general, two mechanisms can be used to explain the long-term 

performance of the UHPC specimens in this study. Firstly, limited diffusion of the external 

agents into the surface layers of specimens can be expected as the exposure time lasts for 

about 2 years. Figure 7-7 shows the surface and internal fibers in specimens exposed to 

seawater after 720 days. As seen, the inner fibers are protected from the corrosion, while 

surface corrosion is apparent. The surface corrosion of fibers is also reported in a previous 

study (Balouch et al., 2010). However, the surface corrosion alone cannot be responsible 

for the low strength development of the specimens exposed to seawater as the internal 

fibers were maintained unaffected, however, development of associated microcracks on 

the surface can provide path for the external agents to further diffuse in the surface layers. 

Figure 7-8 (a and b) illustrates the SEM images of the surface and surface layers (in 

powder form) of the seawater exposed specimens, respectively. The formation of brucite 

on the surface and co-existence of brucite and calcite in a few micrometers from the 

surface of the specimens are observed. The same findings were reported by Palin et al. 

(Palin et al., 2015). The formation of expansive phases as well as surface corrosion can 

explain the expansion of UHPC specimens in seawater. Santhanam et al. (Manu Santhanam 

et al., 2006b) reported the deposit of ettringite in a region close to the surface of the 

conventional concrete specimens in seawater followed by some cracks but at a higher 

depth comparing to this study. Also, formation of a brucite layer and a small deposit of a 

mixture of chloroaluminate (possibly Friedel's salt) and sulfoaluminate were noticed [60]. 

Similar observations were reported by Brown and Badger (Brown & Badger, 2000) and 

Brown and Doer (Brown & Doerr, 2000). 

 

Figure 7-8 (c and d) illustrates the SEM images of the surface and surface layers (in 

powder form) of specimens exposed to outdoor conditions. The formation of calcite is 

detected on surface as well as internal layers near the surface of the specimens. However, 

in previous studies on carbonation of UHPC in a short-term exposure, the diffusion of CO2 

into the matrix is reported to be zero due to the impermeable matrix of the UHPC (Tafraoui 

et al., 2016b). The formation of CaCO3 on the surface layers of the UHPC can be related to 
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the long-term exposure to outdoor conditions by which surface corrosion can provide 

pathway for CO2 to infiltrate into the surface layers. However, the preliminary test on 

specimens using Phenolphthalein alcohol solution is unable to measure the extent of 

carbonation due to the very dense matrix of specimens. Therefore, TGA and XRD analyses 

were performed at selected ages to elaborate the extent of intrusion of aggressive agents. 

 

 

Surface corrosion                 Internal fibers 

Figure 7-7. Surface appearance and internal fibers of specimen F-3 exposed to seawater 

after 720 days. 

 

(a) surface of K-0 exposed to seawater at 720 d (b) 0.5 mm internal layer (ground) part 

  

Brucite 

Calcite 

Brucite 
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c) surface of F-0 exposed to outdoor    
  conditions at 720 d 

d ) 0.5 mm internal layer (ground) part 

Figure 7-8. SEM images of specimens after exposure. 

Figure 7-9 shows TGA curves and the contents of CH and CaCO3 for slag containing and fly 

ash containing specimens without fibers. As can be seen, the decomposition peaks of 

calcium hydroxide and CaCO3 were detected at ~180oC and ~780oC, respectively. In 

general, the results show low amount of CH in the surface layers, which can confirm either 

consumption of CH by slag and fly ash through pozzolanic reactions [9-10] or another 

reaction mechanism such as leach-out. As the specimens subjected to the TG analysis 

contained no fibers, the conventional penetration mechanism due to surface corrosion of 

fibers is considered as least probable. 
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Figure 7-9. TGA curves of UHPCs after exposure to different conditions. 

The results reveal that as the exposure prolongs to 720 days, the amount of CH is 

decreased in all specimens, though, at different rates, which is along with increase in the 

content of CaCO3. The CaCO3 content is the highest in the specimens exposed to the 

outdoor condition followed by those immersed in seawater. The XRD patterns from the 

surface layers also confirm the relative higher contents of CaCO3 in the specimens exposed 

to the seawater and outdoor conditions. 
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Figure 7-10. XRD patterns of F-0 after exposure to different conditions at 720 d. 

As the mixture compositions in each series (K-0 and F-0) are the same, it can be concluded 

that the variation of CH content in specimens after different exposure is due to a factor 

other than pozzolanic reactions. It is probably dominated by the influence of exposure 

conditions. The interaction of aggressive ions and the CH can be mainly dominated by the 

leach out of CH, which was also reported in studies by Carde and François [64] and 

Heukamp (Carde & François, 1997; Heukamp, 2003). They argued that at the contact of 

cement-based materials with water, ionic transfer occurs between external water and 
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soluble matrix. The ionic transfer breaks the chemical equilibrium of the medium and 

hydrates, so the equilibrium will be restored as long as dissolution or precipitation of 

hydrates are possible (Matite & Moranville, 1997; Revertegat, Richet, & Gegout, 1992). The 

calcium hydroxide is the first mineral to be dissolved, followed by progressive 

decalcification of C-S-H. As for fiber reinforced specimens, it may also be safe to state that 

the dominant mechanism is the leach-out of CH into the outside environment as surface 

corrosion can be uniform in all specimens owing to the similar contents of fiber used. 

 

Assuming the dominant role of leach-out, the TGA results show that the CH leaching rate 

from the matrix varied in different exposure conditions. The rate is at the highest for the 

specimens exposed to seawater. The mechanism, therefore, can be explained as follows: 

the rate of leaching is the highest in seawater as the leached CH reacted with chemical 

constituents in seawater; causing a concentration gradient in the pore solution at the 

vicinity of the exposed surface, which promoted further leaching (Tasong, Lynsdale, & 

Cripps, 1999). For examples, the cation ions like Mg2+ combine with SO42- in seawater can 

react with CH and calcium monosulfoaluminate hydrate to promote formation of brucite 

and ettringite, as in the following equation:  

MgSO4+Ca(OH)2+CaO·Al2O3·CaSO4·18H2O→Mg(OH)2(Brucite)+3CaO·Al2O3·3CaSO4·32H2O 

( Ettringite)                                                            (7-3) 

 

Formation of brucite continues until Ca(OH)2 is completely depleted in the solution. 

Soluble carbonates in seawater can further react with CH to form calcite on the surface of 

the concrete (Morse, Mucci, & Millero, 1980). This can increase the concentration gradient 

in seawater and hence increase the leaching. It should be noted that in the test setup of 

this study seawater is refreshed in the tank every 3 weeks so the concentration gradient 

is maintained throughout the exposure period which enhance the leaching process. In 

outdoor exposed specimens, the reduction in CH is also observed but at a rate much lower 

than those in seawater, however, the CaCO3 formation is more pronounced as seen from 

the TGA curves and XRD patterns. In a consideration of the low to zero penetration in the 

UHPC (Andrade, Frias, & Aarup, 1996; Piérard, Julie, & Cauberg, 2012), it can be stated 

that formation of CaCO3 is a result of the reaction of CO2 in the environment with the 

surface CH rather than infiltration of CO2 into the matrix. The formation of CaCO3 can fill 

the pores on the surface of the UHPC specimens. As can be seen for Figure 7-10, the CH 
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contents of specimens exposed to the outdoor condition is the highest one, while the 

eminent peaks of CaCO3 are also detected, showing the hindering effect of calcite 

crystallization. Muller et al. (Müller, 2010) reported that carbonation completely filled 

microcracks. The filling effect of carbonation on the surface layer can also promote the 

hydration of the cementitious binder by reducing the drying out of the matrix and 

contribute to further strength gain over time. Besides, the stabilization of changes in mass 

and length at about 150 days can be related to the filled surface porosity, which could 

reduce the interaction of CH and external agents and contributed to formation of a closed 

system reducing changes in mass and length. In this case, the carbonated surface can act 

like a shield to improve the internal curing and improving the dimensional stability. 

Similar systems were used by Shi et. al. (Pan, Shi, Jia, Zhang, & Wu, 2015) as in CO2 surface 

treatment. The remarkable strength development of specimens in the outdoor condition 

can be attributed to this mechanism. However, in the UHPC specimens with fly ash, the 

amount of leaching CH and the carbonation rate is less than that of slag containing 

concrete, which may be related to more gradual hydration process in presence of fly ash. 

Fly ash reacts with calcium hydroxide in a pozzolanic reaction to produce C-(A)-S-H, which 

can refine the pore structure and improve the mechanical properties and the 

impermeability of the matrix (Gebler & Klieger, 1986). In this study, the CH content is the 

highest for specimens in water, which may also be related to the blockage of the pores but 

by hydration products at the vicinity of the surface owing to hydration of the adjacent 

unhydrated particles and water. The filled-out pores can hinder the CH leach-out into the 

water and contribute to higher strength gain in the specimens.  

 

Overall, the leaching of CH from specimens exposed to seawater and those maintained in 

the outdoor conditions along with limited diffusion of the external agents into the matrix 

in fiber reinforced specimens can explain the lower strength gain over the exposure time. 

For the specimens in water, the maintained calcium hydroxide can react with slag or fly 

ash to form C-S-H and further strengthen the matrix (Madhavi, Raju, & Mathur, 2014). The 

higher shrinkage rate in outdoor specimens can also be corresponded to the accumulated 

carbonation shrinkage resulted from both mechanisms which brought about mass gain as 

well. On the contrary, the formation of expansive phases on the surface of specimens in 

seawater such as brucite, calcite as well as the surface corrosion lead to the highest 

recorded mass and length after the long-term exposure.  
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7.6 Conclusion 

This study investigated the effect of supplementary cementitious materials, namely, slag 

and fly ash, as well as steel fiber content on the long-term performance of UHPC in water, 

seawater and outdoor conditions for a duration of 720 days. The results from compressive 

strength, dimensional stability and mass change showed distinct behaviors of the UHPC 

specimens after exposed to the three different conditions.  

 In general, the compressive strength of UHPC specimens in water kept increasing 

in the period of 720 days. The strength development is more remarkable at later 

ages for fly ash containing UHPC and at earlier ages for slag containing UHPC. For 

the specimens exposed to the outdoor condition, the strength development is at a 

lower rate comparing to those immersed in water. On the contrary, the strength 

gain is hindered in seawater exposed specimens. The use of steel fibers, especially 

at 2 and 3% contents increases the strength.  

 The length change is in the form of shrinkage in specimens exposed to the outdoor 

condition, while an expanding trend is observed for the specimens in seawater. The 

specimens in water show the best dimensional stability. The incorporation of slag 

and fly ash is not a key influencing the dimensional stability, while increase in the 

fiber contents contributes to more stable behavior of the UHPC in terms of length 

change. 

 The exposure conditions also affect the mass change for both slag and fly ash 

containing specimens over time, albeit, it was significantly lower than those 

recorded for the conventional concrete reported in the literature. The mass gain is 

the highest in seawater exposed specimens followed by those kept in water. The 

specimens exposed to the outdoor conditions have the lowest change in mass in 

which up to only 0.2% is recorded. Neither fiber content nor incorporation of 

slag/fly have significant effect on the mass gain during the exposure duration. 

 The slow diffusion of external agents into the surface layers and the CH leach-out 

are two possible mechanisms responsible for the distinct long-term performance 

of the UHPC specimens exposed to three different conditions. However, results of 

TGA and XRD on specimens without fibers show that CH leach-out should be the 

dominant mechanism. TGA curves shows that the CH content in seawater exposed 

specimens is detected to be the lowest at 60 and 720 days. As the comparison is 
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made in the specimens of the same mixture composition, it is concluded that the 

CH leached out from the matrix varied due to the difference in exposure conditions.  
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK 

8.1 General discussion 

The aim of this thesis was to conduct fundamental research on the early-age shrinkage 

and long-term stability of UHPC, their micromechanics, formation kinetics and stability, to 

ensure highly durable products. Based on systematic experimental studies on setting and 

hardening process, microstructure development, deformation, increase of toughness, 

constitutive relationships and durability, it clarified the mechanisms of setting and 

hardening, the features of microstructure development, and the relationships between 

microstructure and macro-properties of UHPC. The effects of fibres on toughness of UHPC 

will be explained. Based on the migration of chloride ion in UHPC, the requirements for 

cover design of rebar reinforced UHPC structure in marine environments was be proposed. 

The research works included understanding UFA physics and chemistry and their effects 

on the UHPC early age hydration reactivity, investigating the effects of slag, fly ash, and 

fiber contents on long-term strength development, dimensional stability, and mass change 

in three exposure conditions: water, seawater, and outdoor, for a duration of hydration and 

microstructure development. The research was provide scientific base for production and 

application of UHPC in Australia. 

The first key outcome of this research was the discovery the effect of supplementary 

cementitious materials, namely, slag and fly ash, as well as steel fiber content on the long-

term performance of UHPC in water, seawater and outdoor conditions for a duration of 

1080 days. The results from compressive strength, dimensional stability and mass change 

showed distinct behaviors of the UHPC specimens after exposed to the three different 

conditions. The results from compressive strength, dimensional stability and mass change 

showed distinct behaviors of the UHPC specimens after exposed to the three different 

conditions. The second key outcome is as the discovery of the importance of fly ash 

particle physics in UHPC, which answered a set of questions concerning which UFA is most 

suitable and why, and understood the micromechanism of autogenous shrinkage and 

drying shrinkage from pore structure, mechanical, moisture lose and chemical stability. 
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8.2 Conclusions 

Based on the results from this study, the following conclusions can be drawn: 

In chapter 2, Autogenous shrinkage is an unavoidable volume reduction due to the self-

desiccation of concrete, especially when low water-to-cement ratio is applied. Capillary 

tension theory well explicates the autogenous mechanism in concrete. This theory can 

elaborate the accentuated influence of low water-to-cement ratio and SCMs in autogenous 

shrinkage of HPC as they remarkably affect the pore structure, relative humidity, self- 

stress, degree of hydration, and interface structure. Although some studies have 

addressed the effects of pore structure and relative humidity in particular on autogenous 

shrinkage, the role of self-stress, degree of hydration and interface structure are mostly 

discussed through influence of cement, SCMs, aggregates, and etc. The utilization of low 

temperature and spherical shape cement can properly reduce autogenous shrinkage. 

Appropriate contents of fly ash can inhibit autogenous shrinkage of concrete, while silica 

fume increases autogenous shrinkage. The effect of slag on autogenous shrinkage, though, 

depends on its fineness. The impact of steel fiber is associated with the content; low 

amount of steel fibers can restrain the autogenous shrinkage of concrete, while excessive 

contents increase cohesiveness and decrease workability of high performance concrete, 

which can lead to furthered autogenous shrinkage. 

In chapter 3 reports the effects of steel fibre on the autogenous shrinkage of UHPC was 

evaluated by using ring tests and corrugated tube method under plastic film sealed 

conditions. The results indicated that the development of autogenous shrinkage of UHPC 

was mainly during the first 24 hours. The autogenous shrinkage of UHPC is significant 

reduced by adding steel fibre. The optimal fibre content was found to be 3% where UHPC 

exhibited highest strength (107 MPa at 3 day) and lowest autogenous shrinkage (750×10-

6μm at 3 day, which was only 30% of that of the specimens without steel fibre). 

In chapter 4 reports the study of the influence of steel fibers on drying shrinkage of ultra-

high performance concrete (UHPC) at fiber volume content of 0%, 1%, 2% and 3%, 

temperature of 20 ± 2°C and relative humidity of 50 ± 5%. The results showed that during 

the first 7 days, the drying shrinkage rate of UHPC was very fast, while after 7 days it 

gradually decreased. The interfacial bonding of steel fiber and the physical properties of 
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steel fiber can effectively reduce the drying shrinkage. However, when the steel fiber 

exceeds an optimal volume, the effect of steel fiber on drying shrinkage can decrease. 

Compared with the steel fiber content at 2%, the drying shrinkage of the UHPC with 3% 

steel fiber was decreased by only 1.5%. The reason is that the increase in the steel fiber 

leads to an increase in the interface layer, the interface transition zone is usually more 

porous than the matrix, which easily leads to shrinkage, and consequently reducing the 

beneficial effect of steel fiber on drying shrinkage control. It was also found that the 

inhibition of fly ash on the drying shrinkage of UHPC was higher than slag. The experiment 

also tested the classic dry shrinkage models: the ACI model and the Wang Tiemeng model. 

Based on the two models and the experimental fitting, a new mathematical model (a 

combined index model) has been proposed. The results showed that the combined index 

model fitted better than the two models mentioned above. 

In chapter 5 is about the Effects of ultra-fine fly ash (UFA) content on early-age shrinkage 

and microstructure development of ultra-high strength cement-based materials (UHSC). 

Due to the accelerated hydration of cement by UFA the compressive and flexural strengths 

of UHSC containing UFA were significantly enhanced at early age up to 7 d. After 7 d, about 

11% increase in strengths was obtained. The compressive and flexural strengths of UHSC 

samples with 20% silica fume at 91 d were 28% and 29% higher than those of the 

reference sample, respectively. However, when 25% silica fume was replaced, strengths 

decreased due to reduced workability and entrapment of air bubbles. 

In chapter 6 and 7 is about the long term hydration mechanisms and microstructure 

development of UHPC, Due to the ball effect of fly ash, the flowability of UHPCs containing 

fly ash were better than UHPCs containing slag. With the increase of the content of steel 

fiber, the flowability of fresh UHPCs decreased, cause the Elastic Modulus and physical 

effect of steel fiber. TG/DTG analyses indicated that UHPC specimens exposed to seawater 

at 1080 d also efficiently consumed the CH. The TGA/DTG results indicated that Ca(OH)2 

was consumed with the formation of CaCO3 (calcite) due to the carbonation effect in 

outdoor conditions whereas for the water and seawater immersion conditions, the 

Ca(OH)2 was transformed into other reaction products including Mg(OH)2 and ettringite. 

Moreover, seawater and water condition led to a loss of C-S-H gel, which was especially 

the case after 28 day of immersion. Fiber addition improved the performance of fly ash 

(FA) based UHPC, while it had little impact on the slag-based counterpart. Because of a 
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denser microstructure evidenced by diffusion coefficient and porous characteristics, slag 

based samples. 

In general, the compressive strength of UHPC specimens in water kept increasing in the 

period of 1080 days. The strength development is more remarkable at later ages for fly 

ash containing UHPC and at earlier ages for slag containing UHPC. For the specimens 

exposed to the outdoor condition, the strength development is at a lower rate comparing 

to those immersed in water. On the contrary, the strength gain is hindered in seawater 

exposed specimens. The use of steel fibres, especially at 2 and 3% contents increases the 

strength. The length change is in the form of shrinkage in specimens exposed to the 

outdoor condition, while an expanding trend is observed for the specimens in seawater. 

The specimens in water show the best dimensional stability. The incorporation of slag and 

fly ash is not a key influencing the dimensional stability, while increase in the fiber 

contents contributes to more stable behaviour of the UHPC in terms of length change. The 

exposure conditions also affect the mass change for both slag and fly ash containing 

specimens over time, albeit, it was significantly lower than those recorded for the 

conventional concrete reported in the literature. The mass gain is the highest in seawater 

exposed specimens followed by those kept in water. The specimens exposed to the 

outdoor conditions have the lowest change in mass in which up to only 0.2% is recorded. 

Neither fiber content nor incorporation of slag/fly have significant effect on the mass gain 

during the exposure duration. The slow diffusion of external agents into the surface layers 

and the CH leach-out are two possible mechanisms responsible for the distinct long-term 

performance of the UHPC specimens exposed to three different conditions. However, 

results of TGA and XRD on specimens without fibers show that CH leach-out should be the 

dominant mechanism. TGA curves shows that the CH content in seawater exposed 

specimens is detected to be the lowest at 60 and 720 days. As the comparison is made in 

the specimens of the same mixture composition, it is concluded that the CH leached out 

from the matrix varied due to the difference in exposure conditions. 
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8.3 Future work  

This research was try to understand the hydration mechanisms and microstructure 

development of UHPC with a wide range of densities and strengths under laboratory 

conditions. In the research two important issues were noted: the high shrinkage of UHPC 

and modelling of hydration based on UHPC. The following aspects of the efforts also need 

to be carried out: 

(1) The definition of shrinkage is not entirely unified, and the established test methods 

also lack uniform standards, which restricts the further development of this field. 

(2) The effect of supplementary cementitious materials on shrinkage deformation 

behaviour is still controversial, and its mechanism shows absence of an in-depth study. 

(3) Researches mostly intend for a single shrinkage behaviour, but ignore the connection 

between various shrinkage mechanisms, which is difficult to grasp the characteristics of 

shrinkage and deformation of concrete. 

(4) The researches on mechanism of autogenous shrinkage are mainly limited to the 

capillary theory, and some factors have not been taken into account, such as temperature 

and the type of supplementary cementitious materials. Moreover, effects of mixing content 

on shrinkage strain rate and ultimate shrinkage value are also unclear. Simultaneously, the 

influence mechanism of internal curing agents on autogenous shrinkage should be further 

reconnoitred. 

(5) As the UHPC is a complex multi-phase material, the structure can change because of 

hydration heat and different components used. Therefore, the multiscale homogenous 

approach should take the time scale, scholastic and the chemical admixtures into account. 

The multiscale XFEM can describe the multiple phase materials and track the dynamic 

boundary of inclusion (like aggregate, C-S-H gel, fiber) with level set method and can be 

applied instead of FEM. 
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Appendix 

A1. The bending failure morphology of the UHPC samples 

 

A2. Three point bending load displacement curve of slag containing UHPC 
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A3. Three point bending load displacement curve of fly ash containing 

UHPC 
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A4. Steel fibres (3%) distribution of the sample F4 
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A5. SEM of the UHPC samples 
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