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ABSTRACT
With four years of nearly continuous photometry from Kepler, we are finally in a good position
to apply asteroseismology to γ Doradus stars. In particular, several analyses have demonstrated
the possibility to detect non-uniform period spacings, which have been predicted to be directly
related to rotation. In this paper, we define a new seismic diagnostic for rotation in γ Doradus
stars which are too rapidly rotating to present rotational splittings. Based on the non-uniformity
of their period spacings, we define the observable � as the slope of the period spacing when
plotted as a function of period. We provide a one-to-one relation between this observable �

and the internal rotation, which applies widely in the instability strip of γ Doradus stars. We
apply the diagnostic to a handful of stars observed by Kepler. Thanks to g modes in γ Doradus
stars, we are now able to determine the internal rotation of stars on the lower main sequence,
which is still not possible for Sun-like stars.
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1 IN T RO D U C T I O N

With four years of nearly continuous photometry from Kepler, we
are finally in a good position to apply asteroseismology to γ Do-
radus (γ Dor) stars. These stars are late A- to early F-type stars,
with masses ranging from about 1.3 to 2 M�. They burn hydrogen
in their convective cores, surrounded by a radiative region, where
a shallow convective layer appears. Such shallow convective en-
velopes trigger gravity oscillation modes (g modes) driven by the
convective blocking mechanism (see Guzik et al. 2000; Dupret et al.
2005 and references therein). These modes probe the innermost re-
gions and in particular the interface between convective and radia-
tive layers. Therefore, γ Dor stars are ideal for studying convective
core physics. It is expected that phenomenon a such as transfer of
angular momentum and mixing of chemical elements occur at the
edge of convective cores, in the surrounding radiative regions (see
for instance Kippenhahn & Weigert 1994). Whether it is caused by
convective overshooting, shear induced turbulence or gravity waves
is still matter of debate.

Another interesting motivation for γ Dor stars seismology lies in
the fact that their mass range overlaps with the masses of the red gi-
ant stars observed by the NASA Kepler space photometry mission.
One of the most important developments in stellar physics which

� E-mail: rhita-maria.ouazzani@phys.au.dk

Kepler facilitated was the inference of the core rotation periods
of red giant stars (Beck et al. 2012; Deheuvels et al. 2012). Af-
ter 25 months of observation, from the seismic analysis of 1200
stars Mosser et al. (2012) measured the core rotation periods of
300 red giants, among which over one-third have masses between
1.2 and 2 M�. These were shown to be in disagreement with stel-
lar evolution modelling (Eggenberger, Montalbán & Miglio 2012;
Ceillier et al. 2013; Marques et al. 2013). Since then, a number
of non-standard angular momentum transport processes have been
implemented in stellar evolution models: transport by meridional
circulation and shear induced turbulence (Eggenberger et al. 2012;
Marques et al. 2013), transport by the Taylor–Spruit instability
(Heger, Woosley & Spruit 2005; Cantiello et al. 2014), by inter-
nal gravity waves (Fuller et al. 2014) and transport by mixed modes
(Belkacem et al. 2015). However, the slow core rotation of red giant
stars at the base of the red giant branch still remains unexplained by
theory. For that reason, we lack knowledge of the inner rotation pro-
file of low-to-intermediate mass stars on the main sequence (MS).
The work presented here aims to address this. We establish a new
method of measuring the core rotation periods of the intermediate-
mass stars on the MS, specifically for γ Dor pulsators.

The g modes in γ Dor stars typically have periods close to one
day, which makes ground-based study exceedingly difficult. At first,
the space missions such as MOST, CoRoT, and Kepler allowed us
to address the stability and hybridity of γ Dor stars (see for instance
Grigahcène et al. 2010; Uytterhoeven et al. 2011; Hareter 2012;
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Tkachenko et al. 2013; Zwintz et al. 2013). After four years of nearly
continuous data from Kepler, it is now possible to perform detailed
asteroseismic studies of γ Dor stars based on their g modes (see
Bedding et al. 2015; Van Reeth et al. 2015). Among the Kepler stars
with Kepler input catalogue (KIC) temperatures between 6000 and
10000 K, and log g values between 3.0 and 4.5, we have identified
around 6000 A- early F-type stars. Approximately, 1000 of these
show excess power in the γ Dor g-mode frequency range.

Unlike for low-mass stars, in γ Dor stars the convective envelopes
are too shallow to generate a magnetic field able to act as a magnetic
torque and slow down their surfaces (Schatzman 1962). For that
reason, these stars typically have projected rotation velocities of
around 100 km s−1 but that can reach up to 250 km s−1 (see for
instance Abt & Morrell 1995; Royer 2009).

When a star rotates, the degeneracy of the frequencies is lifted and
a rotational splitting appears between modes of same radial order
(n) and angular degree (�) but different azimuthal order (m). If the
star rotates slowly, the multiplet structure holds, and the splitting
directly gives the average rotation rate in the cavity probed by the
modes. This is possible thanks to a simple model of the effect of
rotation as a first-order perturbation of oscillations, an approach
derived by Ledoux (1951). Examples of measured rotation rates
using that method can be found for instance in Kurtz et al. (2014),
Saio et al. (2015), Schmid et al. (2015), Keen et al. (2015) and
Murphy et al. (2016). However, most of Kepler’s γ Dors do not
show clear multiplet structures. Also, if the rotation period is larger
or of the same order of the pulsation period, the rotational splitting
becomes difficult to determine and no longer provides an accurate
measure of the internal rotation rate.

For moderately rotating stars, the traditional approximation of
rotation (hereafter TAR; Eckart 1960), allows us to account for ro-
tation in the pulsation treatment. By making simplifying hypothe-
ses, the TAR conserves the separability of the oscillation equations.
In particular, it assumes that the star is rotating uniformly. In that
framework, Bouabid et al. (2013) showed the main features due to
the effect of rotation on the seismic spectra of γ Dor stars. With the
full four years of data from Kepler, Bedding et al. (2015) and Van
Reeth et al. (2015) were able to identify such features in observa-
tions, opening the way to the seismic determination of rotation in γ

Dor stars. The first attempt (Van Reeth, Tkachenko & Aerts 2016)
consisted of fitting the observed patterns to a grid of models using
χ2-minimization. These pulsation models were calculated using the
TAR.

We opt for the use of seismic diagnostics which are model inde-
pendent, and are therefore not affected by our lack of knowledge of
the stellar structure. Our choice is to lift the simplifying hypotheses
which are implied in the TAR, in order to obtain pulsation spectra
of g modes in rapidly rotating γ Dor stars, with the quality required
for comparison with observations. To do so, we make use of the
non-perturbative pulsation modelling method developed by
Ouazzani, Dupret & Reese (2012) and Ouazzani, Roxburgh &
Dupret (2015). As shown in Section 5.2, the formalism used allows
one to explore any kind of differential rotation profile, including
rotational velocities close to the break-up velocity.

In Section 2, we give a brief description of the stellar models
which have been explored in this study. In Section 3, we present the
non-perturbative approach, as well as of the TAR, and we provide an
in-depth comparison of the two methods to estimate the validity of
the traditional approximation. In Section 4, we describe the global
effects of rotation on the g-mode pulsation spectra and then, more
specifically, on the g-mode period spacings. This allows us to define
a new seismic diagnostic tool: the slope of the period spacing as a

function of the period. We explore the impact of different parameters
(i.e. stellar parameters, metallicity, centrifugal distortion, type of
mixing) on that new diagnosis tool in Section 5. Finally, we discuss
and summarize the results and give an example of application in
Section 6.

2 ST E L L A R MO D E L S

Stellar models were computed with the stellar evolution code
CLES (Scuflaire et al. 2008a) for masses between 1.2 and 1.9 M�,
and with initial helium mass fraction Y = 0.27. We adopted the
AGSS09 metal mixture (Asplund et al. 2009) and corresponding
opacity tables obtained with OPAL opacities (Iglesias & Rogers
1996), completed at low temperature (logT < 4.1) with Ferguson
et al. (2005) opacity tables. We used the OPAL2001 equation of
state (Rogers & Nayfonov 2002) and the nuclear reaction rates
from NACRE compilation (Angulo et al. 1999), except for the
14N(p, γ )15O nuclear reaction, for which we adopted the cross-
section from Formicola et al. (2004). Surface boundary condi-
tions at T = Teff were provided by ATLAS model atmospheres
(Kurucz 1998). Convection was treated using the mixing-length
theory (MLT) formalism (Böhm-Vitense 1958) with a parameter
αMLT = 1.70.

We considered models with and without instantaneous convective
core overshooting (expressed in local pressure scaleheight, Hp),
as well as with and without turbulent diffusion. Since the CLES

code does not include effects of rotation on transport of angular
momentum or chemical species, we instead introduced mixing by
turbulent diffusion, following the approach of Miglio et al. (2008).
This reproduces an effect of rotationally induced mixing, which
is quite similar to overshooting, but in addition tends to smooth
chemical composition gradients inside the star. In models, including
this type of mixing, the coefficient of turbulent diffusion was set to
Dt = 700 cm2 s−1 and kept constant to this value during evolution
and in every layer of the models. This value was selected from a
previous calibration to Geneva models with similar masses (Miglio
et al. 2008).

A grid of stellar models was computed accordingly to these pre-
scriptions, whose parameters are given in Table 2. We did not cal-
culate pulsational stability, but we made sure that the grid maps the
entire γ Dor instability domain (Bouabid et al. 2013). Table 1 gives
more details of the parameters of specific models used below for
illustration purposes.

As explained by Miglio et al. (2008), if no specific mixing is
added to models with growing convective cores (and therefore a
chemical discontinuity) on the MS, a contradictory situation appears
in regards to the convective criteria, leading to a semiconvective
region. More generally, the stratification at the boundary of the
convective core depends on the numerical treatment adopted. In our
CLES version, we do not apply a specific treatment to these transition
layers. Instead, a double mesh point is introduced at the boundary
of the convective core in the models used for the computations
of oscillations. This required modification of part of our pulsation
codes, i.e. the implementation of matching conditions at interfaces
between the convective core and the surrounding radiative region.
This treatment is especially important for pulsational studies, to
prevent numerical artefacts creating additional cavities trapping the
g modes.

3 O S C I L L AT I O N C O M P U TAT I O N M E T H O D S

Rotation induces centrifugal and Coriolis forces which distort the
star, i.e. the equilibrium structure is no longer spherical, and modify
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Table 1. Parameters of the models explored in detail in this study. They have been name as follows: the numbers
1, 2 and 3 correspond to the mass (resp. 1.4, 1.6 and 1.86 M�), then the letter z stands for ZAMS, m for mid main
sequence, t for TAMS and no superscript stands for models with turbulent diffusion (with Co = 700 cm2 s−1)
and no overshooting, prime (′) stands for no diffusion and no overshooting, and double prime (′′) stands for no
diffusion and overshooting (with αov = 0.2).

Model name 1z 2m 2z 2t 3t 3m 3m′ 3m′′

M/M� 1.40 1.60 1.60 1.60 1.86 1.86 1.86 1.86
Teff 6880 7190 7785 6160 6760 7960 8025 7911
log L/L� 0.627 1.036 0.852 1.181 1.355 1.269 1.202 1.256
log g 4.30 3.98 4.32 3.57 3.63 3.99 4.08 4.00
R/R� 1.38 2.13 1.46 3.43 3.48 2.27 2.07 2.26
Age (Myr) 185 1830 174 2694 1480 1048 782 991
Xc 0.68 0.35 0.68 0.03 0.06 0.34 0.32 0.34
Dt (cm2 s−1) 700 700 700 700 700 700 – –
αov – – – – – – – 0.2

the spectrum of eigenfrequencies and eigenfunctions of the oscil-
lation modes. In this paper, we explore gravity and gravitoinertial
pulsation modes of γ Dor stars models. In rotating stars, these modes
are often computed assuming simplifying hypotheses. This is the
case with the TAR (developed for geophysics by Eckart 1960, and
applied to stellar pulsations by Berthomieu et al. 1978). It neglects
the centrifugal distortion and part of the contributions of the Corio-
lis force. Another approach is to fully account for the Coriolis force
while neglecting the centrifugal distortion (Dintrans & Rieutord
2000), or while accounting for the distortion by means of the second-
order Legendre polynomial (i.e. using a Chandrasekhar and Milne
expansion; see Lee & Baraffe 1995). The most complete approach
accounts for both the Coriolis force and the full effect of the centrifu-
gal force through a two-dimensional (2D) non-perturbative method
as developed for polytropes by Reese, Lignières & Rieutord (2006),
for non-polytropic-homogeneous models by Reese et al. (2009),
and for distorted models of δ Scuti stars by Ouazzani et al. (2015).
These three methods – i.e. TAR, complete one-dimensional (1D)
and complete 2D – have been compared by Ballot et al. (2012) us-
ing polytropic models. According to them, the 1D non-perturbative
approach, which presents the advantage of requiring less numerical
resources, and the TAR give satisfactory results compared to the
full 2D approach. Throughout this study, we therefore work with
1D spherical stellar models. A further justification for this is given
in Section 5.2. Moreover, in this paper we have performed calcu-
lations with both the TAR and the non-perturbative approach. This
section describes the two methods in more detail, and compares
them for spherical models of γ Dor stars.

3.1 Non-perturbative modelling

The oscillation modes were computed as the adiabatic response of
the structure to small perturbations, i.e. of the density, pressure,
gravitational potential and velocity field. The ACOR code was devel-
oped for this purpose and is presented in Ouazzani et al. (2012). This
oscillation code solves the hydrodynamics equations perturbed by
Eulerian fluctuations, performing direct integration of the 2D prob-
lem. The numerical method is based on a spectral multidomain
method which expands the angular dependence of eigenfunctions
into spherical harmonics series, and whose radial treatment is par-
ticularly well adapted to the behaviour of equilibrium quantities in
evolved models (at the interface of convective and radiative regions,
and at the stellar surface). The radial differentiation scheme is made
by means of a sophisticated finite difference method, which is accu-
rate up to the fifth order in terms of the radial resolution (developed

by Scuflaire et al. 2008b, for the LOSC adiabatic code). This code has
been validated by comparison with the results of Reese et al. (2006)
for polytropic models. The agreement between the two codes is
excellent.

In this study, we have relied on the non-adiabatic stability cal-
culations provided in Bouabid et al. (2013) in order to determine
the range of radial orders to investigate. All the pulsations spec-
tra presented here, whatever the method used, are calculated for
radial orders between n = −50 and −20. Note that, by conven-
tion, g modes radial orders are negative. With the non-perturbative
approach in particular, we have calculated pulsation spectra of
dipolar modes for all the models whose parameters are given in
Table 1, and for quadrupolar modes for the models 1z, 2m and
3t, covering a range of uniform rotation frequencies, from zero
to 23 μHz.

Here, the pulsation modes have been computed using up to five
spherical harmonics, i.e. for a given m, � = 1 to 9 with odd value for
dipolar modes, and � = 2 to 10 with even value for the quadrupolar
ones except for � = 2 zonal modes, where the � = 0 component is
included as well). We have made sure, by the mean of convergence
tests, that the frequencies do not vary significantly when adding a
sixth spherical harmonic in the series. The resulting modes have
multiple � characters, they are then assigned an effective angular
degree, taking the dominant contribution in the series.

3.2 The traditional approximation of rotation

In rotating stars, the equation system for pulsations is not separa-
ble in terms of the radial and horizontal coordinates, unlike for the
case without rotation. The TAR is an approximate treatment which
conserves the separability of the system. The first hypothesis is
made on the rotation profile by assuming solid-body rotation. The
centrifugal distortion is neglected and hence spherical symmetry is
assumed. Furthermore, considering the properties of low-frequency
high-order g modes, the TAR neglects the Coriolis force associ-
ated with radial motion and radial component of the Coriolis force
associated with horizontal motion. Practically, it consists of ne-
glecting the horizontal component of the angular velocity so that
� = [	 cos θ, 0, 0] in the spherical polar coordinates. Finally, the
Cowling approximation is made (Cowling 1941), which neglects
the perturbation of the gravitational potential. As a result, the mo-
tion equation for pulsations is separable in terms of the radius and
latitude. It can be reduced to an equation for the radial component,
which is similar to the one without rotation, and a Laplace tidal
equation for the horizontal component, whose eigenfunctions are
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the Hough functions. For a detailed derivation of these equations,
we refer to Unno et al. (1989), section 34.3, or Lee & Saio (1987).

This approximation has been implemented in the LOSC adiabatic
and MAD non-adiabatic oscillation codes, the details of which have
been given by Bouabid et al. (2013) and Salmon et al. (2014).

We have computed a selection of spectra with this method, for
the sake of comparison with the non-perturbative approach, for the
models 1z, 2m and 3m′′, and for the whole rotation frequency range
from 0 to 23 μHz.

3.3 Asymptotic formulation of the TAR

Under the TAR approximation, the simplification of the problem al-
lows for an asymptotic formulation derived from the Tassoul (1980)
formula for g-mode periods, where �(� + 1) is replaced by λ. This
eigenvalue depends on �, m and the spin parameter s = 2νrot/νco,
νco being the frequency of the mode in the corotating frame. For
the sake of clarity, we will use hereafter λ�, m, s(n), with n the radial
order of the mode. The asymptotic formula is then given by

Pco(n) = 2π2(n + 1
2 )√

λ�,m,s(n)

∫ r1
r0

N
r

dr
, (1)

where r0 and r1 are the limits of the g-mode cavity, determined
by ω2 < N2, S2

� , i.e. for an angular frequency squared smaller than
both the square of the Brunt–Väisälä (N) frequency and the square
of the Lamb frequency (S�). The period spacing, given as the dif-
ference between the periods of two modes of same angular degree,
same azimuthal order and consecutive radial orders, after some cal-
culations (see appendix A of Bouabid et al. 2013), can be expressed
as follows:

〈�Pco〉 � 2π2

√
λ�,m,s(n+1)

∫ r1
r0

N
r

dr
(
1 + 1

2
d ln λ
d ln s

) . (2)

Note that the period appears in both terms (hidden in the spin
parameter s) of these equations in non-linear terms, the periods and
period spacings are therefore obtained using an iterative scheme.
Initial guesses of the periods were obtained by taking the adiabatic
periods obtained in the case without rotation (low numerical cost)
as input. The equation was then solved with the Van Wijngaarden–
Dekker–Brent iterative scheme, which is a refined bisection method
(Press et al. 1996).

The asymptotic formulation requires very little computational
resources and time, which is an clear advantage compared to the
aforementioned methods. For that reason, it is used in this study for
a wide exploration of the Hertzsprung–Rüssell (HR) diagram (see
Section 5.1). However, we first investigate its domain of validity by
comparing with the non-perturbative method and the TAR.

3.4 Comparison of methods

It is important to emphasize that the choice of the set of variables
used in the pulsation calculations can lead to different numerical
results (see e.g. Godart et al. 2009). The non-perturbative method
implemented in ACOR relies on the Eulerian formalism, whereas for
the TAR, one can choose between the Eulerian or the Lagrangian
formulations. In the case where different choices are made for the
two calculations, even without rotation, the discrepancy between
the resulting pulsation frequencies is as high as 2 per cent in rela-
tive value (approximately 0.3 μHz at 15.0 μHz, i.e. 0.03 cycle/day
(c/d) at 1/30 c/d). This is due to the fact that the Brunt–Vaı̈ssälä
frequency (N2) does not appear explicitly in the Lagrangian formu-
lation of the motion equation. Due to numerical truncation errors,

N2 can wrongly take positive or negative values at the edge of a
convective region. The fact that N2 appears explicitly in the Eule-
rian formulation of the equations ensures that the correct value is
assigned. We confirm the statement in Godart et al. (2009) for γ

Dor stars, which present one or several convective regions: the Eu-
lerian formulation of the pulsation equations is the most appropriate
to the finite difference scheme. Accordingly, the Eulerian variables
are used hereafter in both ACOR and the TAR.

We calculated the discrepancy between the frequencies given
by ACOR and by the TAR in the non-rotating limit, for Eulerian
variables. For instance, for model 1z (parameters in Table 1), the
discrepancies are at most 3× 10−3 per cent in relative value. It is of
the same order of magnitude for models 2m and 3m′′.

For comparison between the three methods, we investigated the
value of the mean period spacing. In the asymptotic method, it is
given by equation (2), using the simple change of reference frame,
possible only in the case of uniform rotation:

Pin = Pco

1 − m Pco
Prot

. (3)

For the TAR and the non-perturbative approach, we simply compute
the mean period spacing as the average of the period spacings over
the eigenmodes with radial orders between −50 and −20. Fig. 1
gives the mean period spacing as a function of the uniform rotation
frequency computed with the three methods in the top panel. The
largest discrepancies arise for the retrograde modes (solid lines),
whereas the zonal and prograde modes agree well. In the bottom
panel, we give the discrepancy of the TAR and of its asymptotic
formula, relative to ACOR. For retrograde modes, the error on the
mean period spacing is of 15 per cent for the asymptotic values.
This corresponds to a discrepancy of 2600 s (0.03 d) with the TAR
and 4300 s (0.05 d) with the asymptotic formula for a value of the
mean period spacing around 17 000 s (0.2 d). However, it seems
that, for any azimuthal order, the TAR is giving values which are
in agreement with the complete calculations within 0.2 per cent for
rotation frequencies lower than 11 μHz (1 c/d), whereas they agree
within 2 per cent for the asymptotic ones. For rotation frequencies
higher than 11 μHz, the retrograde modes period spacings computed
with the TAR differ from the non-perturbative ones by 7 per cent
in the worst case. The asymptotic formulation is more problematic
and can sometimes reach errors of around 15 per cent on the mean
period spacing.

The worst case arises for retrograde modes. The impact of the
number of spherical harmonics included in the pulsation modelling
has been investigated, and can be excluded as sources for these
discrepancies. In fact, when calculated in the corotating frame,
the discrepancies between the mean period spacings given by the
three methods are of same order for the different m components.
The stronger discrepancies in the inertial frame are to be attributed
to the denominator in equation (3), which is small when pulsation
periods in the corotating frame are close to the rotation period. Be-
cause retrograde (resp. prograde) modes are shifted towards shorter
periods in the corotating frame, i.e. closer to the rotation period, the
denominator in equation (3) is smaller for retrograde modes than
for prograde modes (which are shifted towards longer periods).
For example, for the highest rotation rate in Fig. 1 (νrot = 23 μHz,
Prot = 0.5 d), the excited modes have periods between 0.3 and
0.5 d for retrograde modes, and 0.9 and 2.3 d for prograde modes.
Therefore, the discrepancies are enhanced by the change of ref-
erence frame for retrograde modes. Hence, the need to adopt the
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Figure 1. Top: mean period spacing for modes with radial orders ranging
from n = −20 to n = −50, computed with the non-perturbative method
(ACOR, black), the traditional approximation (TAR, blue), and the asymptotic
formula derived from the traditional approximation (asymptotic, red), for
model 1z given in Table 1. Bottom: relative discrepancies with respect to
the non-perturbative calculations for the TAR (blue) and for the asymptotic
formulation (red). The solid lines correspond to the retrograde modes, the
dot–dashed lines to the zonal modes, and the dotted lines to the prograde
modes.

non-perturbative method when dealing with observations of retro-
grade modes.

4 EF F E C T O F ROTAT I O N O N G MO D E S

4.1 Global effect on the spectrum

Here, we explore the global effects of rotation on the frequency
spectrum. We aim to give some insights for interpretation of ob-
served pulsation spectra, giving the main indicators in terms of
observables.

Even in the corotating frame, and even when neglecting the dis-
tortion due to the centrifugal force, the degeneracy of pulsation
modes is lifted, and the rotational splitting of frequencies appears.
As the rotation rate increases, three rotation regimes can be identi-
fied. The classification of these regimes depends on the magnitude
of the rotational splitting δνm (i.e. the frequency difference between
modes of the same n, � and different m) compared to the frequency
separation between the modes of same {�, m} and consecutive ra-
dial orders �νn. Because g modes are supposed to be equally spaced

in period rather than in frequency, we can express that frequency
separation using the period spacing (�νn � �P/P2). Therefore, we
consider the factor δνm/(�P/P2) as the relevant indicator of the
effect of rotation on g-mode spectrum:

(1) For slow rotation, δνm/(�P/P2) < 10−1, i.e. the rotational
splitting is at least one order of magnitude smaller than the frequency
separation. In this case, the split multiplets can be easily identified,
and the rotation rate can be derived from the rotational splitting
using a linear formulation (Ledoux 1951). The period spacing is
not significantly sensitive to rotation, and remains the same for the
different components of the multiplets.

(2) For moderate rotation, δνm/(�P/P2) � 1, the splitting can be
larger than the frequency separation. Therefore, the multiplets are
more difficult to identify in the spectrum, but they remain possible to
highlight by using different visualization tools such as for instance
period échelle diagrams. See Bedding et al. (2015) for the first use
of such a tool for Kepler’s γ Dor, or Keen et al. (2015) for a specific
example. We give an illustration of a frequency spectrum in this
regime in Fig. 2 (left).

(3) For rapid rotation, δνm/(�P/P2) � 1, the structure of the pul-
sation spectrum changes radically. The prograde modes are shifted
towards higher frequency, whereas the retrogrades are shifted to-
wards lower frequencies, to such an extent that they appear in the
frequency spectrum as clusters of modes, each with a given angular
degree and azimuthal order and varying radial order (see Fig. 2,
right, and Van Reeth et al. 2015 for such features in Kepler observa-
tions). Note that this frequency grouping due to rapid rotation has
been found also in a Be stars observed by MOST (Cameron et al.
2008).

4.2 Effect of rotation on the period spacing

Miglio et al. (2008) have conducted an in-depth study of the be-
haviour of period spacings in high-order g-mode pulsators on the
MS, i.e. in SPB (slowly pulsating B) and γ Dor stars. They have
shown theoretically that the period spacings of these stars are not
constant if they have a sharp mean molecular weight gradient (∇μ)
above the convective core, i.e. when they are evolved enough, and
do not undergo diffusive mixing at the edge of the core. In that case,
the period spacing rather oscillates around a constant value. The
mean value depends on the sharpness of the mean molecular weight
gradient, whereas the periodicity of that variation, i.e. the number
of modes per cycle, is directly related to the location of the sharp
feature in ∇μ. More recently, Bouabid et al. (2013) explored γ Dor
period spacings theoretically, accounting for the effect of uniform
rotation in the framework of the TAR. Here, we do so, using the
non-perturbative approach, and we confirm the main features the
authors had identified then. These features are illustrated in Fig. 3.

When rotation is included, the period spacings do not oscillate
around a constant value, but around a linear trend, which, in the
inertial frame of the observer, is decreasing for prograde and zonal
modes, and mainly increasing for retrograde modes. As the rotation
increases (in Fig. 3, from no rotation in blue to 7 μHz, i.e. 0.6 c/d,
in black, and then 15 μHz, i.e. 1.3 c/d, in red), the slope of the linear
trend decreases strongly for prograde modes, less strongly for the
zonal modes and increases for the retrograde ones. In compari-
son to Bouabid et al. (2013), these rotation periods correspond to
	/	c = 0, 0.32, and 0.68, with 	c =

√
8 GM/27R3 being the crit-

ical break-up velocity defined by the Roche model. Additionally, in
the inertial frame, the pattern of the variation varies with the period.
More precisely, for retrograde modes, the cycle length of the period
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A new diagnostic for rotation in γ Dor stars 2299

Figure 2. Frequency spectra for model 2m (see Table 1). Left: rotating at a period of 11.6 d, Right: rotating at a period of 0.5 d. The inertia to the power −1/4
has been plotted on the vertical axis. In black are the quantities relative to zonal modes, in red to the prograde modes, and blue to the retrograde ones. In the
zoom box on the left-hand panel, the triplet � = 1, n = −32 is shown among the � = 1 modes spectrum. The quantity plotted in the y-axis is the inverse of
modes inertia, although this is not relevant here.

Figure 3. Period spacing as a function of the period for dipolar (� = 1)
retrograde (m = +1, top), zonal (m = 0, middle) and prograde (m = −1,
bottom) modes, for different rotation rates: in blue without rotation, in black
with a rotation frequency of 7 µHz (0.6 c/d), and in red with a rotation of
15 µHz (1.3 c/d). The period spacings computed with the TAR are repre-
sented by the dotted lines.

spacing oscillation increases with period, whereas it decreases for
the zonal and retrograde modes. Nevertheless, the number of modes
in the pattern, uniquely related to the location of the ∇μ (see Miglio
et al. 2008 for an elegant demonstration), remains constant.

To sum up, the effect of rotation is twofold. On the one hand,
the cycle length of the oscillation in period spacing varies, and on
the other hand, the period spacing shows a global linear trend. The
slope of this trend depends on the angular degree and azimuthal
order, so that

�Pn,�,m = ��,m Pn,�,m + r�,m, (4)

where �Pn, �, m is the period spacing, Pn, �, m the modes period and
��, m is the slope. In the following section (Section 5), we explore
how ��, m varies with different physical parameters, starting with
its dependence on the rotation rate.

4.3 The slope � as a diagnostic of rotation

In order to explore the dependence of � on rotation, we performed a
series of tests on three different stellar models: 1z, a 1.4 M� model
on the ZAMS (zero-age main sequence); 2m, a 1.6 M� model on
the MS; and 3t, a 1.86 M� model on the TAMS (terminal-age main
sequence, see Table 1), which cover the γ Dor instability strip.
For the sake of simplicity, we opted for the models with diffusive
transport. The impact of stratification at the edge of the convective
core is explored in Section 5.3. For each stellar model, we have
computed the pulsation spectra corresponding to uniform rotation
frequencies ranging from 0 to 23 μHz (i.e. 0.5 to 5 d in period).

For each pulsation spectrum, we made a linear fit to the period
spacing �P as a function of period (such �P versus P diagrams
are shown Fig. 3). The slope ��, m measured from that linear fit is
plotted against the corresponding rotation frequency in Fig. 4 for
dipolar (left) and quadrupolar (right) modes.

We see that the behaviour of ��, m as a function of the rotation
frequency is very similar for the three stellar models which have
been explored. Hence, given the differences between those mod-
els in terms of internal structure (evolutionary stage, extension of
convective and radiative regions, etc., see Table 1), the slope ��, m

does not depend on the internal structure. It seems to depend solely
on the mode angular degree and azimuthal order {�, m}, and on
the rotation rate of the model. For the sectorial retrograde modes
{� = 2, m = 2}, the slope ��, m has been plotted only up to
11 μHz because at higher rotation frequencies, their frequency
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2300 R.-M. Ouazzani et al.

Figure 4. Left: slope of the period spacing (as a result of a linear fit in a �P versus P diagram) as a function of the stellar model rotation frequency; for dipolar
modes (� = 1) and for models 1z, 2m and 3t which parameters are given in Table 1. Right: same but for quadrupolar modes (� = 2).

reaches negative values in the inertial frame, which results in fre-
quencies reflected around zero, therefore obeying a different dy-
namics (as found also in Bouabid et al. 2013).

The great advantage of � is that, except for retrograde modes, it
does not depend on the radial orders excited and detected, contrary
to the mean period spacing. Here, we have considered g modes with
radial orders n from −50 to −20, and we have verified that � does
not vary when the radial order range is truncated for prograde and
zonal modes. The case of retrograde modes is more problematic,
Section 6.2 is dedicated to this issue.

To sum up, modes in rapidly rotating γ Dor stars tend to cluster
in groups of modes of given {�, m}, and the period spacings of these
groups of modes follow a linear trend with a slope directly related
to the rotation rate. As such, the slope ��, m constitutes a promising
seismic diagnostic for rotation in γ Dor stars.

5 SE N S I T I V I T Y O F T H E SL O P E �

In the previous section, we have shown that the slope � of the period
spacing as a function of the period seems to depend strongly on the
rotation period of the model. We considered three different stellar
models of γ Dor stars, in three evolutionary stages of their MS. In
this section, we further investigate this rotation–slope relation, and
the impact of a changing stellar structure on that relation.

5.1 Sensitivity to the stellar parameters and the metallicity

In order to study the changes in the slope ��, m for varying stel-
lar parameters, we computed the g-mode spectra for the grid of
models given in Table 2, restricting ourselves to the case with tur-
bulent diffusion and no overshoot, but making use of the asymptotic
formulation accounting for rotation. As shown in Section 3.4, the
validity of the asymptotic formulation is limited. However, it is used
here because it allows us to thoroughly explore the γ Dor instability
strip which would be numerically significantly more expensive with
the TAR or with the complete method. Hence, this approach allows
us to assess the variation of the slope when varying the stellar pa-
rameters, not its absolute value, which can be erroneous due to the
limited validity of the asymptotic method.

Table 2. Parameters of the grid of models used in this work.

Quantity Values Step

M/M� 1.20–1.90 0.02
Z 0.010–0.018 0.004
αMLT 1.70 –
νrot (µHz) 0.0–23.0 2.0
Dt (cm2 s−1) 0/700 –
αov 0/0.2 –

Fig. 5 (left) gives the slope � (in colour scale) for dipolar prograde
modes in the grid of models given in Table 2, with turbulent diffu-
sion Dt = 700 cm2 s−1 and no overshoot, for a rotation frequency of
7 μHz, and a metallicity Z = 0.014. We refer to Figs 12–14 at the end
of the paper for a full overview for dipolar modes (prograde, zonal
and retrograde modes resp.), for two different rotation frequencies
(7 and 15 μHz) and three different metallicities. Also in these fig-
ures, we report on the mean and standard deviation of ��, m at a
given rotation period, and for a set of quantum numbers {�, m}.

The first striking feature is the uniformity of the values for the
prograde modes, for the zonal modes, as well as for the retrograde
modes at the lowest rotation period. For these, mostly the low-mass
end of the MS in the HR diagram seems to depart significantly
from the uniform slope value by 2σ . The low end of the mass
range corresponds to the mass limit for the disappearance of the
convective core. Therefore, this variation at the low-mass end of the
instability strip is due to the drastic differences of internal structure
between radiative cores models (with masses ranging approximately
from 1.2 to 1.3 M�) and convective core models everywhere else.
To illustrate this point, the size of convective cores in the models
covering the instability strip is plotted in Fig. 5 (right). The dark
blue points are models which do not manage to sustain a convective
core when they leave the ZAMS. This hypothesis is supported by
the fact that the slope is closer to the mean value at the beginning
of the MS, i.e. when the star has developed a convective core, and
the discrepancy appears progressively when the core can no longer
sustain convection.
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Figure 5. Left: slope � of the period spacing of prograde modes computed with the asymptotic relation (see equation 2) in the HR diagram for a grid of
models with turbulent diffusion (Dt = 700 cm2 s−1), no overshoot, for masses and αMLT given in Table 2, for a value of the metallicity of Z = 0.014 and for a
value of the rotation frequency of 7 µHz (0.6 c/d). Right: size of convective cores in the HR diagram for the same models.

The metallicity does not affect the slope in most of the instability
strip, except again in the low-mass end (as illustrated in Figs 12 and
13). Note that when the metallicity increases, the variation seems to
increase and to extend in mass. This is particularly obvious for the
dipolar prograde modes, for a rotation of 7 μHz (Fig. 12, left). This
confirms the fact that the origin of the variation is likely due to the
absence of a convective core, given the appearance of a convective
core occurs at higher masses with increasing metallicity.

Note that at a given rotation period, this effect is higher for
prograde modes than for zonal modes, and in turn higher for zonal
modes than for retrograde modes. An exploration of the kernels of
modes of different azimuthal orders at a given radial order showed
that prograde modes probe deeper layers than zonal and retrograde
modes. This confirms the conclusion that the variation is due to the
appearance of a convective core, and is all the more important for
the modes which probe closer to the core.

Apart from these local variations in the low-mass end of the
HR diagram, the slope � varies very little with the stellar mass,
evolutionary status (along the MS) or metallicity. The mean values
agree within the standard deviation regardless of the value of the
metallicity, and are identical in most cases. The standard deviations
themselves are typically one order of magnitude lower than the mean
value, and vary from 4 per cent in the best case (zonal modes at
15 μHz of rotation) to 18 per cent in the worst (for the zonal modes
with 7 μHz of rotation frequency). The behaviour of retrograde
modes will be discussed further in Section 6.

5.2 Impact of the centrifugal distortion

In order to assess the influence of centrifugal distortion on g-mode
spectra in γ Dor stars, we compared pulsations computed for a
spherical model with those computed for an equivalent model, dis-
torted a posteriori. The spherical model is labelled 3m′ in Table 1,
with a differential rotation profile, i.e. a convective core which ro-
tates at around 15 μHz (1.3 c/d), and an envelope at a rate of 7 μHz
(0.6 c/d). The 2D model was built following the method devel-
oped by Roxburgh (2006). It consists of building the 2D acoustic
structure of a rotating star in hydrostatic equilibrium, starting with
spherical profiles of the structural quantities, and including the cen-
trifugal force, using an iterative scheme. The pulsations of both

Figure 6. Period spacing as a function of the period for dipolar modes as
a function of the period for model 3m′ (see Table 1). The red curves refer
to the distorted model and the grey curves to the corresponding spherical
model.

models were calculated using the ACOR code. For the 2D model, we
used the 2D integration scheme which has been adapted to han-
dle non-barotropic models of stars (for more details, see Ouazzani
et al. 2015). The dipolar modes spectra were computed using five
spherical harmonics in both schemes. In Fig. 6, we show the period
spacing of dipolar g modes plotted against the period. Although the
periods and the period spacings of individual modes seem to differ
significantly, as shown in Fig. 6, the global characteristics are con-
served: the mean value of the period spacing, the number of modes
per pattern, the extent of the pattern in period and, particularly,
the slope ��, m for each group of modes of same azimuthal order.
The slopes obtained in the pulsation spectra for the spherical and
the distorted models are given in Table 3. Note that we do not find
higher deviations for the retrograde modes than for the prograde
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2302 R.-M. Ouazzani et al.

Table 3. Slopes � of the period spacing ridges for the pul-
sation spectra of the spherical model (�1D, left), and of the
distorted model (�2D, right). The uncertainties are in fact
spread due to the wiggles in the period spacings, because no
mixing was included in these models (see Fig. 6).

Modes �1D �2D

Prograde − 0.035 − 0.041
Zonal − 0.012 − 0.013
Retrograde 0.0010 0.0009

ones. However, the error in slope induced by spherical modelling
of the structure is of the same order as the dispersion due to chang-
ing stellar parameters or mixing (see the next section). Additionally,
the intense computational resources required by the 2D calculations
prevent a global seismic approach at this stage. We will therefore
consider spherical modelling for the remainder of this paper.

5.3 Effect of the diffusive or instantaneous mixing

To infer the effect of the stratification at the edge of the core, we in-
vestigated the g-mode period spacings of three models located close
to each other in the HR diagram (see Fig. 7, top), but with three dif-
ferent mixing scenarios. The model 3m′ was computed without any
mixing (see Table 1, and in black in Fig. 7), the model 3m presents
diffusive mixing with a coefficient Dt = 700 cm2 s−1 (Fig. 7 in blue),
and model 3m′′ includes overshooting over 0.2 local pressure scale-
heights (Fig. 7 in red). Note, from the HR diagram (Fig. 7, top), that
switching on mixing at the convective core boundary, by extending
the mixed region, results into a longer core-hydrogen burning phase.

In Fig. 7 (middle), we give the hydrogen profile of the three mod-
els. As illustrated, the effect of turbulent diffusion is to smooth out
the composition gradient without changing its position, whereas the
convective core overshoot moves the location of the discontinuity,
without impacting the gradient as such.

To understand the effect on pulsations, we plot the Brunt–Väı̈ssälä
frequency profiles (bottom), which is the buoyancy frequency un-
der which the g modes are trapped. Since the mixing changes the
location or the sharpness of the gradient of mean molecular weight,
it changes the profile of N2, and therefore g-mode cavity.

The pulsation spectra of these models were computed with the
non-perturbative method (Section 3.1), for � = 1 modes with radial
orders varying from −50 to −20. In Fig. 8, the period spacing as
a function of the period of dipolar zonal modes, for two different
rotation frequencies (7 and 15 μHz), and for the three mentioned
mixing cases. The cases of prograde and retrograde modes are
similar in every aspect. As illustrated in Fig. 8, period spacings
show various behaviour: a steep molecular-weight gradient (such
as in models 3m′ and 3m′′, red and black resp.), results in a periodic
pattern in the period spacing. The periodicity of this behaviour
varies with the location of the mixed region boundary (Miglio et al.
2008), the closer the boundary is to the centre, the higher the number
of modes per pattern. In the presence of diffusive mixing (model
3m, blue), the period spacing shows a smooth behaviour. The aim
here is to assess whether this has an impact on the value of the slope
�. In Table 4, the values of � for the three different mixing cases
and for two rotation periods (corresponding to Fig. 8) are given for
dipolar modes. We compare the spread in � due to different mixing
scenarios with the spread due to varying mass and evolutionary
stage given in Figs 12–14. Once again, apart from the retrograde
modes (which show a spread of 0.005 in slope), it seems that for
the prograde and zonal modes, this spread is of the same order than

Figure 7. Top: HR diagram where the three models considered here are
shown, together with the evolutionary tracks they belong to. Middle: hy-
drogen profile of the three models. Bottom: square of the Brunt–Väı̈ssälä
frequency scaled by the Keplerian angular velocity, as a function of the frac-
tional radius. The three models are 1.86 M�, with different stratification at
the edge of the convective core: either with turbulent diffusion (3m, blue) or
overshooting (3m′′, black) or none (3m′, red).

the dispersion with mass and age (around 0.003). Therefore, we
conclude that the mixing at the edge of the convective core does
not impact the slope � of the period spacing of prograde and zonal
modes significantly.

6 R ESULTS AND DI SCUSSI ON

In the previous section, we have explored the dependence of the
parameter �, which is the slope of the period spacing as a function
of the period. Here, we try to draw a unique relation between this
slope and the internal rotation frequency.

6.1 A one-to-one �–νrot relation

We evaluate the scatter caused by the differences in structure
encountered in the γ Dor instability strip. As mentioned in
Section 5.1, the asymptotic formulation of the TAR is convenient
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A new diagnostic for rotation in γ Dor stars 2303

Figure 8. Period spacing as a function of the period for zonal dipolar modes
computed for models with turbulent diffusion (3m, blue), overshooting (3m′′,
black) or none (3m′, red, see Table 1), with linear fits, for uniform rotations
of 7 and 15 µHz.

Table 4. Slope ��, m, given by the linear fit of �P versus P, for the dipolar
modes computed in the three stellar models listed in Table 1.

Model # m = −1 m = 0 m = 1

νrot = 7.0 µHz 3m − 0.030 − 0.019 − 0.0023
3m′ − 0.028 − 0.016 0.0003
3m′′ − 0.030 − 0.019 − 0.0007

νrot = 15.0 µHz 3m − 0.045 − 0.024 0.042
3m′ − 0.045 − 0.022 0.045
3m′′ − 0.047 − 0.023 0.048

to determine scatter, even if the absolute values can differ from
the non-perturbative calculations. Hence, the strategy is to define
the slope–rotation relation by averaging between the values for the
models 1z, 2m and 3t. For each rotation frequency, the scatter in
slope � was computed using the asymptotic formula for the grid of
models given in Table 2. The result is given in Fig. 9, for dipolar
modes. This figure shows that there is a one-to-one relation between
the slope of the period spacing, as a function of the period, and the
internal rotation frequency in γ Dor stars. This relation shows that
the observable � could be used as a diagnostic for the rotation fre-
quency in the same way that rotational splitting is used in the slowly
rotating case. Note that the relation presented in Fig. 9 is valid for
dipolar modes. Similarly, it is possible to establish a �-rotation re-
lation for quadrupolar modes, as shown in the right-hand panel of
Fig. 4.

6.2 The case of retrograde modes

Once again, the largest spread is obtained for the retrograde modes.
In the inertial frame, the impact of rotation on gravity modes is
twofold: (i) the intrinsic effect of rotation on modes dynamics
(mainly through the Coriolis force, but also through the centrifugal
force) and (ii) the change of reference from the corotating frame to
the inertial one. The zonal modes are not affected by the change of
the reference frame, but prograde and retrograde modes are shifted

Figure 9. Diagram giving the one-to-one relation between the slope of the
period spacing, i.e. the observable �, and the rotation frequency established
as an average of the non-perturbative calculations for models 1z, 2m and
3t. Only dipolar modes are considered here. Prograde modes are presented
in red, zonal modes in black and retrograde modes in blue. The dispersions
correspond to the variations of � due to the mass, age on the main sequence,
metallicity and type of mixing on the edge of the convective core, computed
at each rotation rate for the grid of models given in Table 2 using the
asymptotic formula.

towards shorter and longer periods, respectively. Depending on the
sign of the azimuthal order, this either adds to (for prograde modes)
or subtracts from (for retrograde modes) the intrinsic effect of ro-
tation. The specificity of retrograde mode period spacing in the
inertial frame comes from the competition between the two effects.
Although quantitatively inaccurate (see Section 3.4), the asymptotic
formulation of the period spacing in the traditional approxima-
tion can help understand this phenomenon qualitatively. From
equation (2), the period spacing in the inertial frame can be consid-
ered as

�Pin ∝ 1
√

λ�,m,s

(
1 − m Pco

Prot

) , (5)

where the factor
√

λ�,m,s
−1 comes from the Coriolis effect on the

pulsations in the corotating frame and (1 − m Pco
Prot

)−1 comes from the
change of reference frame. We identify the following three different
regimes for the behaviour of retrograde modes period spacing in the
inertial frame, illustrated in Fig. 10:

(1) For slow rotation, i.e. when the pulsation periods are signif-
icantly smaller than the rotation period, the period spacing follows
the behaviour given when the effect of rotation is accounted for
perturbatively, at first order (Ledoux 1951). This is illustrated in
Fig. 10, with the two green ridges, calculated for models rotating at
2.33 μHz (Prot = 4.97 d). The green open triangles are the period
spacings obtained using the Ledoux formula to derive the retrograde
modes periods from the zonal modes ones, whereas the green open
circles were obtained with the ACOR non-perturbative calculations.
From this figure, we notice that for inertial periods smaller than
Prot/4 (straight dashed green line in Fig. 10), the inertial period
spacing follows the first-order perturbative formalism.

(2) For inertial pulsation periods higher than Prot/4, the ro-
tational effect in the inertial frame is then determined by the
equation (5). For Pin smaller than Prot (Pco smaller than Prot/2,
i.e. in the superinertial regime), �Pin behaviour is dominated by the
factor

√
λ�,m,s

−1, that is, by the Coriolis impact in the corotating
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2304 R.-M. Ouazzani et al.

Figure 10. Period spacing as a function of period in the inertial frame
for retrograde modes computed for a 1.86 M� (filled symbols), and a
1.60 M� (open symbols) stellar models, with the ACOR code (circles), or
with the Ledoux splitting (triangles), for slow rotation (νrot1 = 2.33 µHz,
green) and rapid rotation (νrot2 = 13.0 µHz, blue). The two vertical dashed
lines stand for the period in the inertial frame which equals the rotation
period Prot2 = 0.89 d for the rapid rotation case, and when it equals a quarter
of the rotation period for the slowly rotating case Prot1/4 = 1.24 d. Some
modes are discarded for not presenting a clear � = 1 character.

frame. This results in a decreasing contribution to �P with respect
to P. This is illustrated for the rapidly rotating case in Fig. 10, for
the parts of the blue ridges which are leftwards of the dashed blue
line. Even for the slowly rotating case, this effect is noticeable, as it
makes the non-perturbative calculations (green open circles) deviate
from the ones based on Ledoux (1951) (green open triangles).

(3) For Pin higher than Prot, the effect of the change of reference
frame dominates. Since �Pin tends to infinity when Pco = Prot, �Pin

is dominated by an asymptotic behaviour towards infinity.

In order to explain the spread in � for retrograde modes shown
in Fig. 9, we have plotted the retrograde �Pin ridges for two differ-
ent stellar models rotating at the same rate (Fig. 10, blue circles).
Overall, the two blue curves follow the same behaviour with respect
of the pulsation period, shifted towards higher �P values for the
more massive model. The difference between the two ridges resides
in the period of modes of given radial order: for the 1.6 M� model
(blue open circles), the modes are more numerous on the decreasing
part of the ridge than for the 1.86 M� model (blue filled circles).
As a result, when performing a linear fit of these points, the slope
of the ridge corresponding to the 1.6 M� model is smaller than
for the 1.86 M� model. In other words, because these ridges are
not linear, the periods change of the excited modes (radial orders n
between −50 and −15) due to a change of the model’s parameters
impacts �. This explains why the spread in linear slope is much
higher for retrograde modes than for zonal or prograde modes, for
which the two factors in equation (5) go in the same direction.
Therefore, should the diagnostic given in Fig. 9 be used on obser-
vations of retrograde modes, we would recommend a more detailed
modelling accounting for the period range on which the parameter
� is determined.

Figure 11. Period spacing as a function of the period for four sequences
of modes observed in four stars observed by Kepler: KIC 6762992 in black
points, KIC 4177905 in red points, KIC 4253413 in blue points, and KIC
5476299 in green points. The grey lines correspond to the linear fits used to
determine the slope of the respective ridge.

Note that this could be treated more easily in the corotating
frame. However, analyses in the inertial frame are needed to relate
to seismic observables, which are measured in the inertial frame. In
addition, it is relevant to work in the inertial frame in the case of
differential rotation, because the change of frame is not straightfor-
ward.

6.3 Application to observations

As a proof of concept, we use four stars observed by Kepler, one of
which (KIC 4253413) was previously presented in Bedding et al.
(2015). These stars have been observed quasi-continuously by the
Kepler spacecraft for 18 (KIC 4253413 and KIC 6762992), 17 quar-
ters (KIC 5476299) and 15 quarters (KIC 4177905), respectively.
The measured oscillation periods shown in the period spacing ver-
sus period diagram Fig. 11 were extracted through the classical
pre-whitening procedure using Period04 (Lenz & Breger 2005).

In order to apply the diagnostics based on the slope of the pe-
riod spacing sequence, �, it is necessary to identify the angular
degree and azimuthal order associated with an observed sequence
of g modes. To do so, we rely on the combined knowledge of the
mean value of the period spacing, of the slope � and of the range
of observed periods. The mean value of the period spacing mainly
carries information on the angular degree �. As seen in Fig. 1, it can
be drastically changed by rotation; therefore, a firm identification
requires the knowledge of the other observables. As seen in Fig. 9,
when negative � is found, there is a need to distinguish between
zonal and prograde modes. An easy case arises when we deal with
dipolar modes, with steep slopes (i.e. � values lower than −0.025),
because only prograde modes can reach these values. In that case,
one should rely on the range of observed modes. The shift in fre-
quency prograde and retrograde modes undergo depends on rotation
and should be consistent with the value of �.

Hence, based on the range of periods, the period spacings in the
range of observed periods, and the slope of the period spacing, the
three sequences of modes could unambiguously be identified as
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A new diagnostic for rotation in γ Dor stars 2305

Figure 12. Slope � of the period spacing of zonal modes computed with the asymptotic relation (see equation 2) in the HR diagram for a grid of models with
turbulent diffusion (Dt = 700 cm2 s−1), no overshoot, for masses and αMLT given in Table 2, for three different values of the metallicity – from Z = 0.010 (top)
to Z = 0.018 (bottom) – and two values of the rotation frequency – 7 µHz (0.6 c/d, left) and 15 µHz (1.3 c/d, right).
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2306 R.-M. Ouazzani et al.

Figure 13. Slope � of the period spacing of prograde modes computed with the asymptotic relation 2 in the HR diagram for a grid of models with turbulent
diffusion (Dt = 700 cm2 s−1), no overshoot, for masses and αMLT given in Table 2, for three different values of the metallicity – from Z = 0.010 (top) to Z =
0.018 (bottom) – and two values of the rotation frequency – 7 µHz (0.6 c/d, left) and 15 µHz (1.3 c/d, right).
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Figure 14. Slope � of the period spacing of retrograde modes computed with the asymptotic relation 2 in the HR diagram for a grid of models with turbulent
diffusion (Dt = 700 cm2 s−1), no overshoot, for masses and αMLT given in Table 2, for three different values of the metallicity – from Z = 0.010 (top) to Z =
0.018 (bottom) – and two values of the rotation frequency – 7 µHz (0.6 c/d, left) and 15 µHz (1.3 c/d, right).
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Table 5. Results for KIC 6762992, KIC 4177905, KIC
4253413 and KIC 5476299.

KIC Slope � νrot (µHz)

6762992 −0.028 7.1 ± 0.9
4177905 −0.035 9.8 ± 1.2
4253413 −0.036 10.7 ± 1.4
5476299 −0.043 17.8 ± 2.9

dipolar prograde modes. Indeed, the slopes for all the stars are too
steep to be attributed to zonal or retrograde modes, and the mean
value of the period spacings are not compatible with modes of higher
degree �. The slopes of the period spacing as a function of the period
spacing was determined using a simple linear fit of the data points.
The diagram given in Fig. 9 was then used in order to determine the
rotation frequency as well as the respective uncertainty, which are
given in Table 5. The latter is due to our lack of additional constraint
on the star’s structure, i.e. stellar parameters and internal physics. A
refined approach with tailored modelling in a star by star approach
would help reducing this uncertainty, but this is out of the scope of
this paper.

6.4 Conclusion

Based on the non-uniformity of the period spacings of γ Dor stars,
we defined a new observable �, the slope of the period spacing when
plotted as a function of period. After a series of tests, we showed that
this observable is uniquely related to the internal rotation. In this
study, we have assumed a uniform rotation, the case of differential
rotation will be investigated in a forthcoming paper. The relation
between � and the internal rotation applies widely on the MS part
of the instability strip of γ Dor stars. As a proof of concept, we
apply the new asteroseismic diagnostic to a handful of γ Dor stars
observed by Kepler. Using the g modes observed in these stars,
we are able to measure the internal rotation on the lower MS,
which is still not possible in Sun-like stars. Combined with the core
rotation rates determined in red giant stars (see Mosser et al. 2012
and references therein), these measurements will provide stringent
constraints on angular momentum transport along the evolution
of low-mass stars. The method presented here will allow one to
retrieve internal rotation rates for a large sample of stars, which is
particularly relevant in the context of the upcoming space missions
TESS and PLATO.
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Scuflaire R., Théado S., Montalbán J., Miglio A., Bourge P.-O., Godart M.,

Thoul A., Noels A., 2008a, Ap&SS, 316, 83
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