
International  Journal  of

Environmental Research

and Public Health

Review

Automated Detection of Hypertension Using Physiological
Signals: A Review

Manish Sharma 1,*, Jaypal Singh Rajput 1, Ru San Tan 2 and U. Rajendra Acharya 3,4,5

����������
�������

Citation: Sharma, M.; Rajput, J.S.;

Tan, R.S.; Acharya, U.R. Automated

Detection of Hypertension Using

Physiological Signals: A Review. Int.

J. Environ. Res. Public Health 2021, 18,

5838. https://doi.org/10.3390/

ijerph18115838

Academic Editor: Paul B. Tchounwou

Received: 9 April 2021

Accepted: 24 May 2021

Published: 29 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical and Computer Science Engineering, Institute of Infrastructure Technology Research
and Management, Ahmedabad 380026, India; jaypal.rajput.18pe@iitram.ac.in

2 National Heart Centre, Singapore 639798, Singapore; tanrsnhc@gmail.com
3 Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 639798, Singapore;

aru@np.edu.sg
4 Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
5 Department of Biomedical Engineering, School of Science and Technology, SUSS, Singapore 599494, Singapore
* Correspondence: manishsharma@iitram.ac.in

Abstract: Arterial hypertension (HT) is a chronic condition of elevated blood pressure (BP), which
may cause increased incidence of cardiovascular disease, stroke, kidney failure and mortality. If
the HT is diagnosed early, effective treatment can control the BP and avert adverse outcomes.
Physiological signals like electrocardiography (ECG), photoplethysmography (PPG), heart rate
variability (HRV), and ballistocardiography (BCG) can be used to monitor health status but are not
directly correlated with BP measurements. The manual detection of HT using these physiological
signals is time consuming and prone to human errors. Hence, many computer-aided diagnosis
systems have been developed. This paper is a systematic review of studies conducted on the
automated detection of HT using ECG, HRV, PPG and BCG signals. In this review, we have identified
23 studies out of 250 screened papers, which fulfilled our eligibility criteria. Details of the study
methods, physiological signal studied, database used, various nonlinear techniques employed,
feature extraction, and diagnostic performance parameters are discussed. The machine learning and
deep learning based methods based on ECG and HRV signals have yielded the best performance and
can be used for the development of computer-aided diagnosis of HT. This work provides insights
that may be useful for the development of wearable for continuous cuffless remote monitoring of BP
based on ECG and HRV signals.

Keywords: hypertension; ECG signal; HRV signal; BCG signal; PPG signal; deep learning; CNN;
ANN; RNN; supervised machine learning; HT ECG signal classification

1. Introduction

In adults, hypertension (HT) is diagnosed when repeated office measurement of systolic
blood pressure (SBP) is ≥140 mmHg, or diastolic blood pressure (DBP) is ≥90 mmHg [1].
HT can be classified into different categories based on the office measurement (Table 1) [1].
HT increase the force exerted by by the blood against the inner walls of the arteries, which
transport oxygen-rich blood pumped out of the heart to the rest of the body [2]. As such,
chronic HT can inflict damage to various vital organs of the body, such as lung, brain, heart,
and kidneys [2]. The World Health Organization estimates that nearly 1.3 billion people
suffered from HT in 2015 globally, and less than 20% received management [2]. HT is largely
asymptomatic, but symptoms can sometimes occur, including headaches, panic attacks
and dizziness.
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Table 1. Classification of HT based on office blood pressure measurement [1].

Category Systolic (mm Hg) Diastolic (mm Hg)

Normal BP <130 and <85
High-normal BP 130–139 and/or 85–89

Grade 1 hypertension 140–149 and/or 90–99
Grade 2 hypertension ≥160 and/or ≥100

1.1. ECG Signals and Blood Pressure (BP) Measurements

The electrocardiogram (ECG) records the electrical potentials on the body surface
that originate from heart, and the signals can provide information on the rhythm as
well as structure and function of the heart [3–6]. Using advanced analysis, the ECG
signals in HT subjects can be correlated to BP measurements and even discriminate for
higher clinical risk [7–10]. In HT, the heart observes more force and over time becomes
hypertrophied, which induces the ECG. Figure 1 is a graphical depiction of a typical normal
ECG waveform, which comprise the P wave, QRS complex and T wave representing
atrial depolarization, ventricular depolarization and ventricular re-polarization, as well as
standard ECG intervals, including RR interval, PR interval, QT interval and lengths of the
PR and ST segments. In [7], associations were found between SBP and DBP and changes in
the ECG at two intervals delineated by the peak of the R wave to the middle of the T wave
and the mid of the T-wave to the peak of the R wave as indicated in Figure 1, respectively,
using machine learning (ML) [11,12].

Figure 1. ECG waveform with standard intervals. Correlations have been found between systolic (SBP) and diastolic blood
pressure (DBP) measurements and morphological data in the corresponding indicated epochs. The Figure is generated from
PTB database (subject no. 14).

1.2. HRV Signal

The temporal variation of sequential heartbeats (RR intervals) is termed HRV [13].
From the ECG signal, R-peaks are first extracted and then HRV is deduced using com-
puter programming based on the difference in RR intervals (Figure 1). HRV reflects the
activity of automatic nervous system and provides a window into the cardiac sympathetic
and parasympathetic activities, which have significant physiological impact on heart rate
rhythm and contractile function [13]. HRV measurement is non-intrusive easy to perform
and results are reproducible. Importantly, it confers both diagnostic and prognostic im-
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plications for wellness and cardiac disease [14,15]. High HRV is associated with normal
subjects and reduced HRV may be pathological. HRV can be analyzed over either long or
short durations [14]. Long duration analysis encompasses activity throughout the day and
night (24 h analysis), where as short-duration analysis uses only five-minutes of HRV data.
In HT patients, HRV is affected by the presence of cardiovascular risk factors. In depressed
patients with HT, HRV is associated with vascular cardiac and renal target organ dam-
age [13,16]. The long-term (24-h) HRV is useful in the diagnosis of severe HT conditions.
An increased sympathetic activity saturate the ability to modulate heart rate, hence HRV is
depressed. To identify severe HRV or high-risk HRV, standard deviation of NN intervals
should be less than 50 to 70 msec and HRV triangular index is less than 20 units. Similarly,
the NN interval duration is 7.8 msec [17]. In summary, HRV is a simple non-invasive
method which can be used to assess the cardiovascular system [18].

1.3. Photoplethysmography (PPG Signal)

PPG uses low-intensity infrared (IR) light sensor to detect the amount of light absorbed
by or reflected from tissues supplied by the blood vessels. It produces photo electric signal
either transmissive or reflective, which reflect the pulsatile blood volume in the area
covered by sensors [19,20]. The PPG signal contains information about the arterial and
venous circulatory system [19,20]. The PPG is correlated with and has been applied to the
measurement of heart rate, BP, and blood oxygenation there by providing clinically useful
information for physiological monitoring.

1.4. Ballistocardiogram (BCG) Signal

BCG measures the whole body motion in terms of displacement, velocity, and acceler-
ation in response to the cyclical ejection of blood from the heart [21]. It reflects the sum
of factors linked to heart and blood vessel function, and used to diagnose various cardio
vascular diseases [21].

In this paper, we reviewed PPG, BCG, ECG and HRV signals related computer-aided
diagnosis systems developed for the arterial HT. To the best of our knowledge this is
the first review to provide unique ranges for nonlinear features for healthy control (HC),
low-risk hypertension (LRHT), and high-risk hypertension (HRHT) ECG classes.

2. Methods and Material Used in Article Searching

This review was carried out based on the PRISMA model for the period between 09 Oc-
tober 2008 and 31 March 2021 [22]. Science Direct, Web of Science, Google Scholar, PubMed,
IEEE Explorer, and ResearchGate databases were systematically searched using the fol-
lowing keywords: (“hypertension”, “ECG and hypertension”, “HRV or hypertension”),
“photoplethysmography (PPG) and hypertension”, “photoplethysmography (PPG) and bal-
listocardiogram (BCG)”, “unsupervised machine learning and hypertension”, “supervised
machine learning and hypertension”, “detection of hypertension”, “convolution neural
network (CNN)”, “Hypertension and Convolution neural network”, “machine learning
and hypertension”, “hypertension and deep learning”, “recurrent neural network (RNN)”,
“support vector machine (SVM)”, “automated detection of hypertension”, “detection of
hypertension using ECG signal”, “hypertension or HRV signal”, “systolic blood pressure
(SBP)”, “diastolic blood pressure (DBP)”, “electrocardiogram (ECG)”, “systolic blood pres-
sure and hypertension”, “diastolic blood pressure and hypertension”, and “physiological
signal and hypertension”. We identified 250 research articles containing these keywords on
initial screening. Science Direct = 50, Web of Science = 40, Google Scholar = 40, PubMed
= 50, IEEE Explorer = 50, and ResearchGate = 20. Among these, 103 duplicate articles
were omitted.

We further excluded non-English articles and works that were not explicitly designed
for diagnosis of HT.

Finally, 23 articles were selected for this review. Figure 2 shows the flow diagram of
article selection, where n is the number of articles.
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Searched article online (n = 250)
Science direct = 50,  Web of science = 40, 

IEEE xplore = 40,   Pub med = 50,
Google scholar = 50,  Research gate = 20

Removed repeated articles (n = 103)

Find relevance article (Title +
Abstract) (n = 147)

Read full text of article (n= 55)

Removed not relevent articles (n = 92)

Final article included  (n= 23)

Removed not relevent articles (n = 32)

Figure 2. Flow diagram of the article selection process using PRISMA methodology.

3. Databases

The ECG, HRV, BCG, and PPG databases are used to develop an automated HT
systems and are summarized in Tables 2–4. The relative percentages of the different signals
used are: ECG = 30.43%, PPG = 17.39%, BCG = 8.69%, and HRV = 43.47%. The most
common databases are based on HRV and ECG signals.

3.1. ECG Signal Database

The open-source “Smart Health of Accessing the Risk of Events via ECG Signal”
database (SHAREE) used by [2,8,23–25] comprised of 24-hour ECG recorded using three
ECG leads (II,III, and V5) at 128 Hz sampling frequency.

3.2. ECG Derived HRV Signal Databases

HRV signals extracted from SHAREE were used in [13,16,26]. In [27], HRV signal
derived from 10-min ECG recordings from 568 subjects were studied.

One group studied 113 HRV signals [28], and later an expanded 185-sample HRV
dataset [29], derived from 7-min Lead II ECG recordings sampled at 500 Hz collected at the
same center.
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HRV signals were obtained from 7- to 9-hour ECG records (sampling frequency 200 Hz)
from 24 subjects in [30]. In [18], a Kubios HRV analyzer was used to derive HRV from
5-min Lead II ECG recordings.

Seventy-one HRV signals derived from 300-s ECG recordings were studied in [31].
Ten minute 12-lead ECG signals sampled at 200-Hz in 97 subjects were used to derive

the HRV dataset in [32].

3.3. BCG-Derived HRV Signals Database

BCG recordings sampled at 100 Hz were used to derive HRV signals for 18 subjects
in [33]. In [21], HRV signals were extracted from 67 normal and 61 HT BCG signals sampled
at 100 Hz with 16-bit resolution.

3.4. PPG Signal Database

In two different studies by the same group, 120-second PPG recordings (sampling
frequency 125 Hz) from Multiparameter Intelligent Monitoring in Intensive Care Database
(MIMIC) were used [34,35]. In [20], the same authors studied 124 180-second PPG signal
recordings ( sampling frequency 1kHz) collected at the same hospital. In [15], HRV signals
were extracted from 43 PPG recordings sampled at 64 Hz with 8-bit resolution. Twenty
PPG signals encompassing 1536 hours of data in normal and HT subjects were used to
derive HRV in [36].
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Table 2. All details used in HT diagnosis from ECG signal.

S No. Author/Year Signal Feature Method Subject Database Results

1 Rajput et al. [2019] [8] ECG Signal fractal dimension and
Log energy

Wavelet decomposition using FB, fea-
ture extraction, student-t test, devel-
oped index

139 SHAREE 100 % discrimi-
nation of LRHT,
HRHT

2 Soh et al. [2020] [2] ECG 18, non-linear EMD is used to decomposed ECG sig-
nal up-to 5 level using IMF, feature ex-
traction, student t-test and then used
supervised KNN classifier

157 SHAREE, MIT-BIH ACC = 97.70% ,
SEN = 98.90%,
SPE = 89.10%

3 Rajput et al. [2020] [23] ECG SeEn and WlEn Wavelet decomposition using FB, fea-
ture extraction, used EBT classifier to
classify severity of HT

191 SHAREE, PTB ACC = 99.95%,
SEN = 98.64%,
SPE = 99.91%,
F1 = 97.3%
AUC = 1

4 Liang et al. [2018] [35] ECG, PPG Ratio, Slope, Power area,
waveform area, VPG and
APG, Time span, PPG ampli-
tude, PAT Feature

Classification of HT 121 MIMIC SEN = 94.26%,
SPE = 96.17%,
F1 = 94.84%

5 Soh et al. [2020] [24] ECG Total 1507 Classification using CNN, DL model 157 SHAREE, MIT-BIH ACC = 99.99%,
SEN = 100%,
SPE = 99.97%

6 Jain et al. [2020] [25] ECG 11 layer CNN Classification using CNN, DL model 191 SHAREE ACC = 99.68%
7 Present study ECG HOS, bispectrum, Cumu-

lant, RQA
Direct feature extraction and classifi-
cation

191 SHAREE, PTB ACC = 98.05%,
SEN = 95.66%,
SPE = 96.58%
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Table 3. All details used in HT diagnosis from HRV and BCG signals.

S No. Author/Year Signal Feature Method Subject Database Results

1 Melillo et al. [2015] [16] HRV PP ( SD1 and SD2), CD, DFA (fea-
tures: Alpha1,Alpha2), and RP and
HRV

Statistical analysis 139 SHAREE ACC = 85.7%,
SEN = 71.4%,
SPE = 87.8%

2 Ni et al. [2019] [13] HRV 18 HRV multidimensional features Wavelet transform, 139 SHAREE AUC = 0.95
3 Y.song et al. [2015] [33] HRV, BCG HRV time and frequency domain

feature and DFA
EEMD, data-mining, DFA 18 Private ACC = 92.3%

4 Poddar et al. [2014] [37] HRV Nonlinear parameters of PP, ApEn
and SeEn and HRV time and fre-
quency domain feature

Classification of HRV 113 Private ACC = 100%,
SEN = 100%,
SPE = 100%

5 Natrajan et al.[2014] [18] HRV HRV feature Statistical analysis using SPSS 60 Private HRV reduce in
HT subjects

6 Ni et al. [2017] [30] HRV ApEn and SeEn and HRV time and
frequency domain feature

Classification of HRV signal 24 Private ACC = 93.3%

7 Poddar et al. [2019] [29] HRV HRV time and frequency domain
feature

Classification of HRV 185 Private ACC = 96.7%

8 Koichub et al. [2018] [38] HRV HRV time and frequency domain
feature, CD

Statistical analysis 56 Private HRV decreased
in HT group

9 Tejera et al. [2011] [27] HRV LZ, and SeEn, HRV time and fre-
quency domain feature

ANN 568 Private SPE = 90% ,
AUC = 0.98

10 Mussalo et al. [2008] [32] HRV HRV time and frequency domain
feature

Statistical analysis using SPSS 97 Private LF, HF power de-
crease in SEHT
group

11 Liu et al. [2019] [21] HRV, BCG HRV time and frequency domain
feature, SeEn, DFA, BCG fluctuation
features

Classification, feature extraction,
selection, identification of HT

128 Open source ACC = 84.4%,
PRE = 82.5%,
REC = 85.3%

12 Kublanov et al. [2017] [31] HRV, ECG CWT, HRV feature Classification of HT 71 Private Score = 91.33% ±
1.73

13 Alkhodari et al. [2020] [26] HRV HRV feature Low and high-risk HT 139 SHAREE ACC = 97.08%
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Table 4. All details used in HT diagnosis from PPG signal.

S No. Author/Year Signal Feature Method Subject Database Results

1 Liang et al. [2018] [34] PPG CWT Classification using Pre-trained
CNN (GoogLeNet, 144 layer)

121 MIMIC F1-score = 92.55%

2 Liang et al. [2018] [20] PPG Ratio, Slope, Power area, waveform
area, VPG and APG, Time span, PPG
amplitude

Classification of HT 124 Private PP = 100%,
SE = 85.71%,
F1-score = 92.31%

3 Lan et al. [2018] [15] PPG, HRV HRV time and frequency domain fea-
ture

Data mining 43 Private ACC = 85.47%,
SPE = 83.33%,
PRE = 92.11%

4 Ghose et al. [36] PPG , HRV Mean, SD, min and max, HRV time
and frequency domain feature

Classification of HT 20 Private F1-score = 83%
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4. Pre-Processing of ECG Signals
4.1. Normalization

Rajput et al. [8,23] used Z-score normalization method for amplitude scaling of ECG
signal. The Z-score is the difference between the mean and actual ECG signal divided by the
standard deviation of the ECG signal. Similarly, Liang et al. [20,34,35] and Liu et al. [21] used
Z-score score normalization to normalize the amplitudes of PPG and BCG signals, respectively.

4.2. Segmentation

Segmentation is used to convert long-duration (e.g., 24-h) signals into short-duration
ones requiring shorter computation time for downstream analysis. Soh et al. [2] also
segmented the ECG signals of 139 HT subjects into 69,500 segments with, each sample size
of 2000 samples.

In [8,23,26] 24-hour ECG signals from (SHAREE) were segmented into 5-and 2-min
segments, respectively, for analysis.

In [13], 8-hour ECG signals from SHAREE were segmented into 4, 2, and 1-h as well
as 30, 20, 10, and 5-minutes segments for analysis. The performance of 20 and 5-min ECG
signals performed better than long-duration ECG signals. Melillo et al. [16] segmented
10-h ECG signals into 5min segments.

4.3. Signal Filtering

Low and high-frequency noise signals, generated during the recording of ECG signal,
may affect the interpretation [39]. ECG signal noise can be induced by electrode contact
noise, electromyogram, channel noise, baseline wander, and power line interference [39]. It
is important to remove noise from the ECG signal to obtain higher classification perfor-
mance for which various methods are available. Ni et al. [30] used Savitzky-Golay filtering
to remove noise from the digitized ECG signal, while Soh et al. [2] used discrete wavelet
transform (DWT). For the removal of noise from PPG signals, Liang et al. [20,34,35] applied
Chebyshev II band-pass filter with a frequency range of 0.5–10 Hz.

4.4. Re-Sampling

Poddar et al. [28] employed BIOPAC 4.0 software to extract the RR tachographs from
ECG signals. The tachographs contained samples that were unevenly placed due to beat-
to-beat variation of RR intervals. Re-sampling at a frequency of 4 Hz was performed to
preserve the uniformity across the entire length of tachograph data.

4.5. Discrete Wavelet Transform (DWT)

Liu et al. [21] applied DWT to decompose the BCG signal into multiple time-frequency
resolutions, through which the details of the signal could be clearly described in time and
frequency domains jointly [9–11,40–42]. DWT decomposes the BCG signal into detailed
and approximate components, via iterative low and high-pass filtering [43–47].

4.6. Continuous Wavelet Transform (CWT) Used for PPG Signal Transformation

The PPG signals are converted into two dimensional images called scalograms and
fed as input to the convolutional neural network (CNN) for automated detection of HT
PPG signals [31,34].

5. Features Extracted in the Review Studies
5.1. HRV Features
5.1.1. HRV Time-Domain Parameters

HRV parameters are extracted from RR intervals and can be categorized into, short-
term variation (STV) and long-term variation (LTV) in the time domain [14]. LTV exhibits
slower, and STV faster fluctuation. RR intervals have the following intrinsic features:
intervals between normal heart beats of ECG signal (NN); standard error of NN intervals
(SENN); standard deviation of differences between adjacent NN intervals (SDSD); root
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mean square of successive differences between NN intervals (RMSSD); the number of
successive NN intervals that differs from each other by >50 ms of the whole recording
(NN50); and the percentage of successive NN intervals that differs by >50 ms of the whole
recording (pNN50%) [14].

5.1.2. HRV Frequency-Domain Parameters

Fast Fourier transform (FFT) decomposes the RR intervals into their frequency con-
stituents, which can be classified as very low frequency (VLF), low frequency (LF), and high
frequency (HF). Total power (TP) is a short-term estimate of total power of power spectral
density in the range of frequencies between 0 and 0.4 Hz. However, TP mainly reflects level
of the autonomic nervous activities (both parasympathetic (PNS) and sympathetic (SNS))
and humoral (hormonal) effects and circadian rhythm as well as ANS’s activity. Generally
decrease in TP is observed in individual under chronic stress or with disease [14,48]. HF
(0.15 to 0.4 Hz) and LF (0.04 and 0.15 Hz) reflect the modulatory effects of parasympathetic
and sympathetic activity, respectively, on the heart rate. Accordingly, the ratio of LF to HF
represents the sympathovagal balance. VLF( 0 to 0.04 Hz ) reflects the vascular response
associated with mechanisms caused by negative feelings [48,49].

5.2. Features of BCG Fluctuation

Cardiac mechanical operations modulate fluctuation pattern of the BCG signal, and car-
diovascular disease such as HT can be identified by evaluating the pattern of fluctuation
pattern [21]. As the BCG signal commonly includes noise from body motion and the
signal acquisition system itself, it is important that BCG fluctuation features acquired be
noise-sensitive. Four noise-insensitive features are used: zero-crossing rate (ZCR); average
cumulative amplitude change (ACAC); average number of extreme points (ANEP); and
average signal turns count(ASTC) [21].

5.3. Non-Linear Features Extracted from ECG and HRV Signal

The non-linear features that can be computed for ECG and HRV signals include: sam-
ple entropy (SeEn) [2,23], approximate entropy (ApEn) [2,27,28,30], renyi entropy (ReEn)
[2,13], wavelet entropy (WlEn)[2,23], detrended fluctuation analysis (DFA) [13,16,21,33],
correlation dimension (CD) [16,38], Lempel-Ziv complexity (LZ) [27], recurrence plot (RC)
[16], Poincare plot (PP) [16,28], empirical mode decomposition (EMD) [24], signal fractal
dimension (SLFD), Log energy (LOGE) [8], higher-order spectra (HOS), HOS cumulants,
fuzzy entropy, Kolmogorov-Sinai entropy, modified multiscale entropy, Shannon entropy,
permutation entropy, and Tsallis entropy [2].

5.4. Feature Selection, Reduction, and Ranking

Feature selection helps to select most relevant features which can be used to distin-
guish between normal versus HT classes. Various feature reduction techniques employed
include principal component analysis (PCA) [13,31], marginal Fisher analysis (MFA), linear
discriminant analysis (LDA), temporal pyramid pooling method (TPPM) [13], and inde-
pendent component analysis.

The features are organized and presented to the given classifier based on their ranking
one-by-one until the highest performance is obtained.

Student’s t-test [2,8,13,16,21], Bhattacharya, Wilcoxon, and receiver operating char-
acteristics (ROC) are the mostly used feature-ranking techniques. Multi-factor analysis
of variance (MANOVA) and the chi-square test [16] are utilized as the feature selection
methods for choosing the highly discriminant features to the classifier.

6. Computer-Aided Diagnosis Methods

In Figure 3, an outline of methods based on artificial intelligence (AI) is presented.
About 82.6%, 13.04% and 4.34% of authors used ML the statistical software SPSS, and other
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traditional methods, respectively to detect HT ECG signals automatically. ML-based
techniques are robust and accurate.

ECG, PPG, BCG
Signal Pre-processing

HRV Extraction 

Artificial
Intelligence (AI) Classification 

Feature
Extraction Feature Selection

 ECG derived
features

Normal

Abnormal

Figure 3. Proposed automated system to detect HT ECG signals.

6.1. Hypertension Diagnosis Index (HDI) [8]

Rajput et al. [8] developed an HDI using selected features to accurately discriminate
low-risk HT (LRHT) and high-risk HT (HRHT) with a single numeric value.

The orthogonal wavelet filter bank is used for five-level wavelet decomposition. Signal
fractal dimension (SLFD) and log energy (LOGE) features were then computed from the
decomposed coefficients. All 12 sub-bands of ECG signal were ranked by the Student’s
t-test ranking method. High-ranking feature sub-bands (SUB) were used to develop HDI
(Equation (1)). In Equation (1), various composite features were experimentally merged to
achieve the optimal difference between the two groups.

HDI = 6− (3× LOGESUB2 + 4× LOGESUB3 + SLFDSUB6)

−15× (SLFDSUB2 + SLFDSUB3 + SLFDSUB4), (1)

where LOGESUB2, LOGESUB3 denoting sub-bands (second and third) of log energy, while
SLFDSUB2, SLFDSUB3, SLFDSUB4, SLFDSUB6 are sub-bands (second, third, fourth, and sixth)
of signal fractal dimension feature.

7. Proposed Work after Understanding Review Studies

An outline of the proposed work is shown in Figure 4. In this work, we used the
public database used by authors in [23,24]. A total of 3694 ECG segments were obtained
from (SHAREE, and PTB data base) [23,24]. The LRHT have 3172 (SHAREE database),
HRHT (SHAREE database) have 442, and HC class have 80 (PTB database) ECG signals
segmented in to 2 minute duration. A single ECG-lead V5 have been chosen from both
databases. To match the sampling frequency of SHAREE and PTB database, we have
down-sampled the data obtained from PTB database. The details of the extracted features
are discussed below:
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SHAREE,  PTB ECG database

ECG Data Segmentation,
Down-sampling

Feature Extraction

Classification of ECG Signal
Using  Machine Learning

HC LRHT HRHT
Figure 4. Workflow of proposed methods for HT diagnosis using ECG signals. HC represents healthy
control, LRHT, low-risk hypertension, and HRHT is high-risk hypertension.

7.1. Features Extracted to the Proposed Work
7.1.1. Sample Entropy (SeEn)

It is a measure of uncertainty in the non-linear signal [2,23]. SeEn can be computed as;

SeEn = − log(
a
b
),

where a is the l + 1 length of vector, and b is the length l of vector with l = 2 [23].

7.1.2. Approximate Entropy (ApEn)

It is an approximation technique which is useful to measure homogeneity and com-
plexities in time-series data containing noise because of its stability to distinguish closely
linked stochastic processes. It is effective in short data intervals to differentiate between
chaotic and noisy time-series data [2,27,28,30]. For finite length N, ApEn is computed as:

ApEn(m, r) = Φ(r)m −Φ(r)m+1,

Φ(r) is a vector, while m = 2. The tolerance value r = 0.20 lies between 0.15 to 0.25 [28].

7.1.3. Renyi Entropy (ReEn)

It is used to measure the spectral intricacy of time-series signals and generalized as
the Shannon entropy [2,13]. ReEn is computed as :

ReEn(K) = − α

1− α ∑(log pα
j ),
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where K = discrete random variable, α is order (α ≥ 2) of ReEn, pj = denoted the total
spectral-power [24,50].

7.1.4. Wavelet Entropy (WlEn)

It is used to calculate the degree of disorder in an ECG signals [2,23,40,51].

WlEn = −∑
i<0

(Pi × ln(Pi)),

where i is a resolution level and Pi is probabilities with respect to i [52].

7.1.5. Log Energy (LOGE)

It is the logarithm of an energy of the ECG signal. The mathematical expression of
LOGE is given below [53].

LOGEr = log(∑n mr(n)
2),

where LOGEr is define the log energy of rth time-series, and the amplitude of nth sample
of rth time-series is mr(n).

7.1.6. Signal Fractal Dimension (SLFD)

It is used to measure similarity and complexity in physiological signals. It is the ratio
of fractal pattern with respect to which it is measured [53]. It is given by:

SLFD =
log(Al)

log( 1
l )

. (2)

7.1.7. Hurst Exponent (HE)

It is a measure of repeat-ability [54]. The generalize equation of HE is as follows:

HE =
Log( A

B )

Log(Y)
.

Here, Y represents the length of time-series data, while A
B denoted the re-scaled range value.

The difference of maximum and minimum value of mean is considered as A. However, B
represents the standard deviation.

7.1.8. Largest Lyapunov Exponent (LLE)

LLE is used to identity chaos in the physiological signal [55].

7.1.9. HOS Bispectrum (HOSB)

A third-order statistics computation is know as an HOS bispectrum [56]. The Fourier
transform of third order cumulant is the bispectrum S3(ω1, ω2) of a signal [57]. In a two-
dimensional frequency plot, the bispectrum shows the cross-correlation between frequency
components. Hence, the HOSB is define as:

S3(ω1, ω2) = X(ω1)X(ω2)X∗(ω1 + ω2). (3)

However, HOSB represents the triple product of its two frequencies. To define principle
region or non-redundant region sufficient condition ω2 ≥ 0, ω2 ≥ ω1, ω1 + ω2 ≤ π must
satisfied [56]. To analyze the bispectrum plots, different parameters namely moments,
centroid, and entropies of the distribution may be extracted [56]. These features and pa-
rameters are as follows:
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(a) Normalized bispectral entropy (NBE) [56,58]:

NBE1 = −∑
n

qn log qn, (4)

where qn = |B( f1, f2)|
∑Ω |B( f1, f2)|

and Ω represents the principle region.

(b) Normalized bispectral square entropy (NBSE) [58]:

NBSE = −∑
n

qn log qn, (5)

where qn = |B( f1, f2)|2
∑Ω |B( f1, f2)|2

. Both entropies are computed for parameters which have
values between 0 and 1.

(c) A weighted center feature of bispectrum (WCOB) is described as [58]:

WCOB1m =
∑Ω(kB(k,l))

∑ΩB(k,l)
(6)

WCOB2m =
∑Ω(lB(k,l))

∑ΩB(k,l)
. (7)

Here, k and l represents the frequency bin index in the principle region of bispectrum
plot [58]. Similarly, some moments related features are given below:

(d) Bispectrum logarithmic amplitude feature [58]:

M1 = ∑
Ω

log(|B( f1, f2)|). (8)

(e) Bispectrum sum of logarithmic amplitude of diagonal elements feature [58]:

M2 = ∑
Ω

log(|B( fq, fq)|). (9)

(f) Bispectrum first-order spectral moments of amplitude of diagonal elements fea-
ture [58]:

M3 =
N

∑
q=1

k log(|B( fq, fq)|). (10)

(g) Bispectrum mean magnitude feature [58]:

mAmp =
1
L ∑

Ω
|b( f1, f2)|. (11)

(h) Bispectrum phase entropy feature [58] :

Phe = ∑
n

p(Φn) log p(Φn). (12)

Here, the number of points is represented by L of the principle region, Φ is the phase
angle, and Ω refer the space of the region [58].

7.1.10. Higher Order Spectral Cumulant (HOSC)

Obtaining the nonlinear dynamical characteristics of ECG signal using lower-order
(first) of statistics is complex [57]. Therefore, higher order statistics, such as second, third
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and fourth, are widely used to analyze the ECG signal. Hence, HOS cumulant higher
order statistics features are used in analysis of non-stationary ECG signals in various
applications [57].

Let {r1, r2, r3...., rq} is representing a zero mean random process for q dimensional
multivariate. While mr

1, mr
2, mr

3, and mr
4 are the order of moments from first to fourth [57].

As well as k, l represents the lag-parameters. Hence, using the non-linear combinations of
the moments, cumulant can be computed.

Cr
1 = mr

1 (13)

Cr
2 = mr

2(k) (14)

Cr
3 = mr

3(k, l) (15)

Cr
4 = mr

4(k, l, q)−mr
2(k)−mr

2(l − q)−mr
2(q− k)−mr

2(q)m
r
2(k− l). (16)

Here Cr
1, Cr

2, Cr
3, and Cr

4 are the order of cumulants from first to fourth. In this work, we
have computed second, third, and fourth order cumulants.

7.1.11. Recurrence Plot (RP)

For the physiological signal in the time domain, RP can find hidden patterns which
are not clearly identifiable [57]. Recurrence can be defined as the value of k and l dropped
below the threshold value ε is known as recurrence. Assuming rk in an L dimensional
space be the kth point. However, a dot is considered at (k, l) as the distance between the rk
and rl is closer. When k = l, the recurrence plots are symmetric along the diagonal, as rk is
close to rl , then rl is close to rk. Hence, a RP is R× R square of an array dots [57]. This may
also be presented in time-related space as a R× R matrix. The yellow dot implies there has
been a recurrence.

7.1.12. Recurrence Quantification Analysis (RQA)

RQA is better choice for dynamical system used to measure the number and duration
of recurrence. It helps to measure and analyze the recurrence plot of non-stationary
physiological signal [57]. In the time domain, RQA evaluates the non-stationary and
hidden periodicity of signals. The following RQA features are used in this work:

(a) Recurrence rate (RR), (b) Determinism (DET), (c) Entropy (ENT), (d) Laminarity
(LMR) [57].

7.2. Results

The proposed work is performed on LRHT, HRHT and HC subjects. A total of 3694
ECG segments were obtained from SHAREE and PTB databases. The LRHT have 3172,
HRHT have 442, and HC class have 80 ECG signal segments of 2 min duration.

An experiment is performed on MATLAB 2016b version 9.1.10 (licensed) and work
station (personal computer) with Intel i7 processor, 16GB RAM, 1TB HD, and 4 GB graphics
card. We have tried several non-linear features to obtain the optimum results. However,
higher order spectral cumulant, bispectrum and recurrence quantitative analysis (RQA)
yielded optimum results.

In addition to this, the optimum performance were obtained using the combination
of HOS bispectrum, cumulant and RQA feature. A total of 9 bispectrum-based features
are extracted and shown in Table 5. The detailed of RQA and HOS cumulant features are
presented in Tables 6 and 7 respectively.

The highest classification accuracy, sensitivity and specificity of 98.05%, 95.66%,
and 96.58%, respectively are obtained using support vector machine classifier with ten-fold
cross-validation strategy. Table 8 represents the confusion matrix obtained for SVM clas-
sifier using all bispectrum, cumulant and RQA features. Table 9 shows the performance
measures obtained for each class using HOS bispectrum, cumulants and RQA features
with SVM classifier. The highest AUC of 1.00 is obtained using SVM classifier (Figure 5).
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Figure 6 shows the plot of accuracy % versus the number of features. HOS bispectrum
magnitude and contour plots for HC, LRHT and HRHT class are shown in the Figures 7–12.
Figure 13 shows the recurrence plots for HC, LRHT, and HRHT classes. Summary of
classification performance obtained using various combination of features is shown in
Table 10.

Table 5. Summary of bispectrum features (mean ± standard deviation) values obtained for
three classes.

Bispectrum LRHT HRHT HC

NBE1 0.927 ± 0.044 0.866 ± 0.076 0.582 ± 0.237
NBSE 0.707 ± 0.161 0.538 ± 0.181 0.097 ± 0.11
WCOB1m 3324 ± 1369 2297 ± 1170 714 ± 820
WCOB2m 1524 ± 733 846 ± 620 333 ± 387
M1 1.9 × 108 ± 1.4×107 1.8 ×108 ± 1.3 × 107 3×108 ± 1.4×107

M2 40,873 ± 2946 38,718 ± 2743 63,642 ± 2803
M3 9.7×107 ± 7×106 8.9×107 ± 6×106 1.5×108 ± 7×106

mAmp 4.3×109 ± 4× 1010 9.6×109±3.5× 109 7.7×1014±1.8× 1015

Phe 3.58 ± 0.00028 3.58 ± 0.00048 3.56 ± 0.063

Table 6. Summary of RQA features (mean ± standard deviation) values obtained for three classes.

RQA LRHT HRHT HC

RR 8×10−4 ± 7×10−5 9× 10−4 ± 8 ×10−5 5× 10−4 ± 1× 10−5

DET 0.375 ± 0.0928 0.483 ± 0.138 0.508 ± 0.0972
ENT 0.486 ± 0.112 0.628 ± 0.190 0.662 ± 0.143
LMR 2.448 ± 0.407 2.685 ± 0.868 2.748 ± 0.289

Table 7. HOS cumulant second, third, and fourth order features computed (mean ± standard
deviation) values obtained for three classes.

HOS Feature LRHT HRHT HC

Cumulant2 125.23 ± 432.91 93.42 ± 176.32 8×105 ± 2× 106

Cumulant3 17.232 ± 4269.5 −1111.3 ± 4534 −8 ×108 ± 7× 109

Cumulant4 92,476 ± 1 ×106 1× 105 ± 5 ×105 3× 1012 ± 6 ×1013

Table 8. Confusion matrix with SVM classifier using HOS bispectrum, cumulant and RQA features.

HC HRHT LRHT

HC 79 0 1
HRHT 0 393 49
LRHT 0 22 3150

Table 9. Performance parameters obtained using HOS bispectrum, cumulants and RQA features
with SVM classifier.

Class Accuracy% Sensitivity% Specificity% F1-Score%

HC 99.97 98.75 100 99.37
HRHT 98.07 88.87 99.32 91.71
LRHT 98.05 99.30 90.42 98.87
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Figure 5. ROC plot obtained with SVM classifier.

Figure 6. Graph of accuracy (%) versus combined features (bispectrum, cumulants and RQA).
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Figure 7. HC-bispectrum plot.

Figure 8. HRHT-bispectrum plot.

Figure 9. LRHT-bispectrum plot.
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Figure 10. HC-contour plot.

Figure 11. HRHT-contour plot.

Figure 12. LRHT-contour plot.
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(a) (b)

(c)

Figure 13. Recurrence plots for various groups: (a) healthy controls, (b) HRHT, and (c) LRHT.

Table 10. Summary of classification performance obtained using various combination of features.

S.No Feature Accuracy % AUC Classifier

1 HOS cumulant order2,3,4 90.2 0.99 EBT
2 HOS bispectrum 96.3 0.99 KNN
3 RQA 91.0 1.00 EBT
4 bispectrum, Cumulant, RQA 98.05 1.00 SVM
4 SeEn 84.3 0.74 TREE
5 WeEn 88.0 0.96 TREE
6 ApEn 81.8 0.94 EBT
7 ReEn 78.9 0.88 EBT
8 SeEn, WeEn, ApEN, ReEn 89.1 0.97 EBT
9 SLFD 87.1 0.96 SVM
10 HE 87.8 0.92 SVM
11 LLE 82.4 0.86 NB
13 SLFD, HE, LLE, 88.1 0.97 EBT
15 LOGE 86.4 0.94 TREE
16 SeEn, WeEn, ApEN, ReEn, SLFD, HE, LLE, LOGE 95.5 0.99 EBT
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8. Discussion

Tables 2–4 summarizes all studies using ECG, BCG, PPG, and HRV signals. It is also
evident from Table 2 that the ECG-based computed aided diagnosis system obtained the
highest area under receiver operating characteristics (AUC=1.00) performance compared to
rest of methods. Moreover, Table 2 represents the highest classification accuracy of 99.99%
using ECG signals.

Table 11 lists the summary of artificial intelligence (AI) techniques used to classify HT
based on ECG and HRV signals. On the other hand, Tables 2–4 summarize the methods,
features, subjects, results and type of databases that have been used to diagnose HT using
HRV, ECG, BCG, and PPG signals. In both ECG and HRV signal-based studies, authors
have used transformational approaches, converted time-domain signals into the frequency
domain, extracted non-linear features and classified using SVM and KNN classifiers.
The summary of automated systems developed for HT are as follows:

• Rajput et al. [8] developed an HDI accurately using ECG signals to stratify low-risk
versus high-risk HT with a single numeric value.

• Poddar et al. [28] used HRV signals to classify HT and normal subjects using SVM
classifier with 100% accuracy using 20 features. They have used a balanced data set of
56 normal and 57 HT subjects in their study.

• Rajput et al. [23] classified ECG signals into three classes (LRHT, HRHT, and HC)
using features extracted from the five-level wavelet decomposition of ECG signals.
They have obtained 99.95% classification accuracy using SeEn and WeEn features
with unbalanced data set. Testing error is found to be only 3.26% with hold-out
validation method.

• Soh et al. [24] developed a CNN architecture for the classification of normal and HT
ECG classes and achieved an accuracy of 99.99%, sensitivity of 100% and specificity
of 99.97%.

Table 11. Summary of works carried out on automated detection of HT diagnosis.

S No. Author/Year Type of ML Classifier

1 Soh et al. [2020] [2] Supervised ML KNN
2 Melillo et al. [2015] [16] Supervised ML AB, NB, RF, SVM
3 Ni et al. [2019] [13] Supervised ML SVM,RF,NB
4 Song et al. [2015] [33] Supervised ML SVM, RF, KNN
5 Poddar et al. [2014] [37] Supervised ML SVM
6 Ni et al. [2017] [30] Supervised ML Linear SVM
7 Poddar et al. [2019] [29] Supervised ML SVM, KNN
8 Tejera et al. [2011] [27] ANN ANN
9 Rajput et al. [2020] [23] Supervised ML KNN, SVM, TREE, and EBT

10 Liu et al. [2019] [21] Supervised ML SVM, DT, NB
11 Liang et al. [2018] [34] DL CNN, GoogLeNet
12 Liang et al. [2018] [20] Supervised ML LDA, SVM, KNN, LR
13 Liang et al. [2018] [35] Supervised ML AB, KNN, EBT, LR

14 Lan et al. [2018] [15] Semi-supervised
learning -

15 Ghose et al. [36] Supervised ML AB, KNN, EBT, DT, RF, NB, SVM
16 Kublanov et al. [31] Supervised ML LDA, SVM, KNN, NB, DT
17 Soh et al. [2020] [24] DL model CNN
18 Jain et al. [2020] [25] DL model
19 Alkhodari et al. [2020] [26] ML RUSBOOST, TREE, SVM
20 Present study Supervised ML KNN, EBT, SVM
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In this work, bispectrum based features obtained the highest classification accuracy of
96.5% among the nonlinear features. The summary of classification performance obtained
using various combination of features is shown in Table 10.

It can be noted from Table 5 that bispectrum features are clinically significant and
show clear difference between three classes. On the other hand, Hos cumulant order-three
mean and standard values yielded the large difference among three class as mentioned in
Table 7, hence it is useful for 1-D signal features extraction. However, RQA RR feature also
comprising distinct difference in all three class.

It is well recognized that the bispectrum conserves the phase information [57]. Be-
cause of this property, it is used to examine quadratic nonlinear differences between various
frequency components of ECG signals. Such interactions have been observed between dif-
ferent frequencies of three classes of ECG signals. This analysis may be useful for detecting
changes in ECG signals. For a normal, LRHT, and HRHT ECG signal, the magnitude and
its contour representation are shown in the Figures 7–12. It can be noted from Figures 7–12
that, these plots are unique and can be used to discriminate the class of the ECG signal
(HC, LRHT, or HRHT). Similarly, Figure 13 shows the recurrence plots for HC, LRHT
and HRHT ECG signals. These plots are unique and can also be used to differentiate the
three classes. We have obtained the highest classification performance only using HOS
bispectrum features without transforming the ECG signals (Table 10). The advantages of
proposed study are: (i) many nonlinear features are employed which can be used for the
classification. (ii) Proposed unique HOS bispectrum and recurrence plots for three classes.
(iii) HOS-based features are more robust to noise.

In general, works conducted using ML and DL coupled with ECG signals have yielded the
highest and optimum performance. The works done in Tables 2–4, [2,8,13,16,21,21,23–26,34,35]
have used public (open source) databases, while the rest of the studies have used private
databases. This underscores the importance of public databases for computer aided diagnosis
systems development.

Liang et al. [20,34,35] detected HT using PPG signal in three separate studies using
public and private databases. They achieved a best classification F-score of 94.84%.

Liu et al. [21] diagnosed HT from BCG-derived HRV signal, and achieved highest
classification accuracy of 84.4% using ML.

Such results demonstrate the effectiveness of transformation methods that combine
nonlinear and entropy-based features. ML methods work well with balanced and smaller
databases. The performance of ML models also depends on the features extracted and
classifiers used.

In the future, we intend to use deep learning architectures to detect the HT ECG
signals using large database [59]. The biggest challenge for this study is the availability of
the large public database.

Figure 14 illustrate the cloud based proposed model. Initially, the ECG, PPG, BCG,
and HRV signal recorded from patients and stored in hospital database. The stored signals
were sent to the cloud based model, where it is installed. The cloud based model analyze
the provided data and detect the hypertension accurately. To the same, the results were
revert from cloud to hospital. Hence, the Doctors can compare the results obtained by
cloud based model as well as manually finding. Table 12 have all the list of abbreviation
used in the paper.
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ECG, PPG,
BCG,HRV 

Signal
Local Web Server Notification sent on

patients mobile 

Cloud analysis of  ECG, PPG, BCG, HRV signal using 
proposed method 

Figure 14. Proposed cloud based model.

Table 12. Abbreviation used in the review study.

Abbreviation Full Form Abbreviation Full Form

SLFD Signal fractal dimensions LOGE Log energy
LLE Largest Lyapunov Exponent HOS Higher order spectral
OGWB Orthogonal wavelet filter bank
HT Hypertension SBP Systolic blood pressure
HRV Heart rate variability DBP Diastolic blood pressure
ECG Electrocardiography DWT Discrete Wavelet Transform
PPG Photoplethysmography BCG Ballistocardiogram
LVH left ventricular hypertrophy VG ventricular gradient
PPG Photoplethysmography HDI Hypertension diagnosis index
ML Machine learning
DL Deep Learning ANN Artificial Neural Network
CNN Convolution neural network RNN Recurrent Nural Network
SVM Support vector machine KNN K-nearest neighbour
CWT Continuous Wavelet Transform FFT Fast Fourier transform
ANOVA Analysis of variance ROC Receiver operating characteristics
EBT Ensemble Bagged Tree AB Ada boost
LR Logistic Regression NB Navy Bayes
RF Random Forrest LRA Linear Regression Analysis
SeEn Sample entropy ApEn Approximate entropy
ReEn Reny entropy WlEn Wavelet entropy
DFA Detrended fluctuation analysis CD Correlation Dimension
LZ Lempel-Ziv complexity RC Recurrence Plot
PP Poincare plot EMD Empirical Mode Decomposition
VPG Velocity plethysmogram APG Acceleration plethysmogram
PAT Pulse arrival time INVD Inverse dower
ACC Accuracy SPE Specificity
SEN Sensitivity PRE Precision
REC Recall AUC Area under the curve
PPV Positive predictive value NPV Negative Predictive Value
SPSS Statistical Package for the Social Sci-

ences
MANOVA Multivariate analysis of variance

MANOVA
PRISMA Preferred reporting items for systematic

reviews and meta-analyses
HRHT High-risk hypertension

RUSBOOST random under-sampling boosting KNN K-nearest neighbour
HC Healthy control LRHT Low-risk hypertension
DT Decision tree LDA Linear Discriminate analysis
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9. Conclusions

We have reviewed many automated HT diagnosis methods using ECG and other
physiological signals. Many ML models have been developed using nonlinear features and
various classifiers. Few DL architectures have been proposed to detect HT ECG signals.
Combined with low-cost wearable devices, such methods have the potential to monitor
for continuous, non-intrusive cuffless and wireless remote BP. Such automated systems
are reliable, accurate and can also be used to detect other cardiac ailments. It can be used
in hospital intensive care units (ICUs) to aid the staff to alert the sudden rise in the BP of
patients immediately and provide accurate treatment.
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