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Abstract  9 

Irrespective to how well structures were built, they all deteriorate. Herein, deterioration is defined 10 
as a slow and continuous reduction of structural performance, which if prolonged can lead to 11 
damage. Deterioration occurs due to different factors such as ageing, environmental and 12 
operational (E&O) variations including those due to service loads. Structural performance can be 13 
defined as load-carrying capacity, deformation capacity, service life and so on. This paper aims 14 
to develop an effective method to detect and locate deterioration in the presence of E&O 15 
variations and high measurement noise content. For this reason, a novel vibration-based 16 
deterioration assessment method is developed. Since deterioration alters the unique vibration 17 
characteristics of a structure, it can be identified by tracking the changes in the vibration 18 
characteristics. This study uses enhanced autoregressive (AR) time-series models to fit the 19 
vibration response data of a structure. Then, the statistical hypotheses of chi-square variance test 20 
and two-sample t-test are applied to the model residuals. To precisely evaluate changes in the 21 
vibration characteristics, an integrated deterioration identification (DI) is defined using the 22 
calculated statistical hypotheses and a Hampel filter is used to detect and remove false positive 23 
and negative results. Model residual is the difference between the predicted signal from the time 24 
series model and the actual measured response data at each time interval. The response data of 25 
two numerically simulated case studies of 3-storey and 20-storey reinforced concrete (RC) shear 26 
frames contaminated with different noise contents demonstrate the efficacy of the proposed 27 
method. Multiple deterioration and damage locations, as well as preventive maintenance actions, 28 
are also considered in these case studies. Furthermore, the method was successfully verified 29 
utilizing measured data from an experiment carried out on a box-girder bridge (BGB) structure. 30 
 31 
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1. Introduction 34 

Due to the rapid increase in the number of ageing civil structures in recent years, many 35 

structural health monitoring (SHM) systems are now being developed around the world to look 36 

after these infrastructure stocks. The accumulation of deterioration in conjunction with poor 37 

preventive maintenance plans has led many structures to a lower level of structural 38 

performance, potential damage and even on the verge of collapse or partial failure. Herein, the 39 

slow and continuous process of reduction in structural performance due to ageing, varying 40 

service loads and environmental factors is defined as deterioration1. The causes of deterioration 41 

process have been comprehensively investigated by Val and Stewart2 and Liu3.  To prevent the 42 

accumulation of deterioration and leading to damage, preventive maintenance actions are 43 
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required, which in turn require detecting and locating the structural deterioration. Preventive 44 

maintenance actions improve the performance of deteriorated structures and extend their life 45 

expectancy4.  46 

Detecting and locating deterioration in structures are crucial. However, due to slight 47 

changes in dynamic characteristics of deteriorated structures, unknown input excitations, 48 

significant level of measurement noise, and change in operational conditions, it is still quite a 49 

challenge to identify deterioration, and only few researchers have studied structural 50 

deterioration assessment. Sanchez et al.5 defined and examined four cases representing health 51 

cases related to deterioration of the reinforcement and concrete cover. Many other different 52 

corrosion models have been investigated to predict the effect of the corrosion of steel in 53 

concrete and to estimate the corrosion rate (for example see (Berto et al.6; Gulikers7; 54 

Morinaga8)). Wang and Liu9 modelled the cracking and spalling of the concrete cover due to 55 

corrosion of reinforcing bars by defining the effective depth of concrete cover to consider the 56 

loss of confinement of concrete cover. Some researchers defined deterioration as a continuous 57 

loss of cross-sectional area in time (Okasha & Frangopol10). For example, Barone et al.11 58 

considered annual deterioration rate (ADR) for cross-sectional area to be equal to 2 × 10−3 in 59 

a single component subjected to an increasing axial force. Zhou12 defined deterioration as a 60 

reduction of a small portion of concrete from the top surface of a specimen when the 61 

deterioration is the result of spalling of the concrete. These assumptions might be suitable for 62 

assessing one component with the same imposing load; however, it is not accurate for a 63 

building with many components and different loadings. As a result, a novel and accurate 64 

procedure for deterioration assessment of the current health state of buildings is necessary.  65 

Since the dynamic characteristics (natural frequencies, mode shapes, and damping 66 

properties) of a structure are correlated with their material and geometric properties, 67 

accumulated deterioration and damage alter their vibration characteristics. Hence, capturing 68 

changes in the vibration characteristics would similarly allow deterioration detection5. It is, 69 

however, worth noting that the changes due to deterioration are much subtler than those due to 70 

damage. Therefore, it is very challenging to detect deterioration, particularly using output-only 71 

based methods even though these methods are often preferred in practice due to their 72 

applicability to in-service structures.  73 

Reviews of SHM methods, as captured by Doebling et al.13, Carden and Fanning14 and 74 

Chan and Thambiratnam15, show that most SHM studies have used vibration-based methods 75 

for damage detection, but not for detecting deterioration. Vibration-based damage detection 76 



(VBDD) methods have been extensively investigated in the past three decades13-19. The 77 

literature also indicates that time-series based methods are among the most promising output-78 

only VBDD methods in structural health monitoring. For instance, Mosavi et al.20 concluded 79 

that time-series based methods are sensitive and reliable techniques for structural assessment. 80 

Kadakal & Yuzugullu21 and Pardoen22 claimed that these techniques perform well under 81 

ambient vibration conditions. Recently, the authors of this present paper successfully 82 

developed time-series based deterioration assessment23-25. These methods have been proved to 83 

be successful in detecting deterioration but did not give any information on its location. 84 

Time-series methods compare baseline and assessment phases of a structure to identify 85 

changes in the structure. Many time series methods have been proposed for damage detection, 86 

including AR26-30, ARMA (Carden and Brownjohn31, Pandit et al.32  and Garcia and Roberto33) 87 

and ARMAX (Mei et al.34, Ngoan and Gül35 and Ay and Wang36) models. Among these 88 

methods, AR model has been found to be practical and reliable due to its capability of detecting 89 

damage in ambient vibration condition. For instance, Fugate et al.26 used AR model residuals 90 

as a damage feature, while Sohn et al.28, De Lautor and Omenzetter29,30 and  Zugasti et al.37 91 

presented VBDD methods based on AR model coefficients. Omenzetter and Brownjohn38 used 92 

coefficients of time-series models to detect structural changes or damage. Zhang39 could detect 93 

and localize damage in structures using AR time-series residuals under ambient vibration. 94 

Wang et al.40 used enhanced AR coefficients to detect structural damage in the presence of 95 

noise.  Zhang and Mita41 used the distance measure of AR models to detect and locate damage. 96 

They also used a pre-whitening filter to improve the accuracy of their damage detection 97 

method. Although these methods have been extensively used in VBDD29-39, none of them has 98 

been used in deterioration detection. 99 

This paper aims to develop a novel vibration-based deterioration assessment method. It 100 

first presents an innovative data normalization procedure. Then, an improved time-series model 101 

with a novel optimal model order (OMO) estimation technique is developed to estimate time-102 

series model orders. Next, DI is defined using the integrated statistical hypotheses of the chi-103 

square variance test and two-sample t-test on model residuals. A Fisher-criterion-based 104 

algorithm is then developed to estimate the deterioration location. Applicability of the proposed 105 

method is demonstrated through numerical simulations of 20-storey and 3-storey concrete 106 

frame structures and sensor data from an experiment carried out on a BGB structure. Details of 107 

these parts are presented in the next two sections of this paper before discussion and conclusion 108 

are made in the last two sections. 109 



2. Methodology 110 

2.1. Data normalization 111 
For time series analysis, the structural response data are assumed to be stationary. 112 

Nevertheless, recorded data under ambient excitations are often non-stationary. In order to use 113 

these data in time series based methods, normalization procedure is a necessary preprocessing 114 

step which accounts for the effects of the various E&O conditions on the structural dynamics17. 115 

Details of the used normalization procedure can be found in the recent publication of the 116 

present authors17. Its summary is as follows. 117 

Data collected from the SHM systems are standardized: 118 
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where ix  indicates the amplitude of measured acceleration response data; x , σ  and ˆix  are the 120 

mean, standard deviation (STD) and the standardized signal of ix , respectively. 121 

A noise-contaminated high-frequency content data increase the effect of E&O variations as 122 

well as the model residuals25. Hence, the data are filtered with low-pass Chebyshev filter which 123 

removes the high-frequency content. More information can be obtained from Smith42. In order 124 

to minimize the cross-correlation among multiple excitations, a pre-whitening filter is also 125 

applied to pre-whiten (de-correlate) the sensor signals from the vibration structure. As the 126 

excitations acting on real structures, such as wind, traffic loads and earthquakes, are correlated, 127 

the utilized de-correlation technique plays a key role in the accuracy of the proposed 128 

deterioration assessment method since it eliminates redundancy and reduces noise43.  129 

 130 
2.2. AR time-series model 131 

In the proposed method, deterioration identification can be achieved from changes in time-132 

domain response data. The AR statistical model is used to predict the signal in the current state 133 

of a structure using the past response of the structure. An AR model can be given as follows: 134 
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where p  is the model order (which will be explained in the next section); k ix −  represents the 136 

( )thk i−  previous response; x
iΦ is the thi  AR coefficient of the corresponding previous 137 

response, and x
ke  is the residual error of the model. Figure 1 shows a dataset and corresponding 138 

well fitted AR model. 139 



 
Figure 1. AR model fitted to a dataset using one-step-ahead error prediction 

 

2.2.1. Model identification 140 
Each time-series model requires a model order which is an unknown value. A model requires 141 

to be low enough (simplicity) to be generalized to a wide range of datasets and to be high 142 

enough (minimum residual) to capture the dynamic characteristics of a structure. In other 143 

words, a too simple fit increases the residual and a higher model order may not be generalized 144 

to the other datasets. The model orders specify the number of allocated unknown parameters 145 

to the models so as to predict the response of structures. Time-series model orders play a crucial 146 

role in detecting structural changes. Figueiredo et al.44 evaluated the effect of different model 147 

orders on the assessment of structural changes. To estimate the model orders, some methods 148 

use information criterion techniques such as Akaike and Bayesian information criteria, while 149 

others check the autocorrelation and cross-correlation of model residuals45. For instance, 150 

Entezami and Shariarmadar46 proposed an iterative model order estimation method based on 151 

the correlation of model residuals using Ljung-Box Q-test. Nevertheless, these techniques are 152 

mostly suitable for detecting damage but not deterioration. As the changes in the response of 153 

structures due to deterioration are much smaller than those caused by damage, the current 154 

techniques for estimating model orders which are widely used in damage detection, cannot be 155 

directly used.  156 

Recently, a novel technique for deterioration assessment methods, which is named best 157 

model order (BMO), was proposed in one of the publications of the present authors25. In the 158 

present paper, the BMO technique is further developed (i.e. OMO technique) which yields 159 

more sensitive deterioration features. In the OMO technique, a new λ  criterion is proposed to 160 

derive more accurate model order for deterioration assessment purposes. For a reasonable 161 

estimation, datasets in the baseline state should be selected from different E&O conditions such 162 



as different temperatures. Undoubtedly, the more datasets in the baseline, the more accurate 163 

the result. The OMO technique is described in the following steps. 164 

1) Normalizing all the selected datasets 165 

2) Selecting the first dataset and estimating AR models with different model orders 166 

3) Obtaining STD ratio of model residuals between the estimated models and the other 167 

normalized datasets. 168 
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where 1,2,...,i n= ; n  is the number of datasets in baseline state; 1, 2,...,j m= ; and m  is a 170 

high enough limitation for model order. 171 

4) Calculating residuals’ root mean square (RMSe) and mean (γ parameter)  172 
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where ( , )
k
i je  is residual error at the kth signal value. 174 

 γ µ= (RMS)   (5) 175 

5) Estimating the minimum model order which minimizes γ  parameter. This model order, 176 

which ensures the minimal of residuals, is the minimum required model order to capture 177 

structural dynamic characteristics. 178 

6) Determining λ  parameter and finding the model order which minimizesλ  value and is 179 

higher than previously estimated minimum model order. The minimum λ  value corresponds 180 

to model order having similar R values in average for all the used datasets. Hence, the estimated 181 

model order classifies selected datasets into a single cluster ensuring the model could be 182 

generalized to the other datasets, and would be the most sensitive model order to structural 183 

changes. 184 

 Rnormλ = −(R M )   (6) 185 

where M is a matrix of the mean of the vectors jR ( 1, 2,...,j m= ); R j  is a 1n×  vector of the 186 

R  parameters for thj  model order with n  different datasets; λ  is a 1m× vector. 187 

 188 

2.3. Deterioration identification 189 
 190 

In this study, a novel residual-based deterioration identification method is developed. The 191 

statistical hypotheses of chi-square variance test and two-sample t-test were conducted on 192 

residuals of time-series analyses. The deterioration features are defined as functions of the 193 



resulting T-values in the statistical hypotheses. The test statistics (T-values) are scalars of the 194 

probability of observing the test statistics as extreme as, or more extreme than, the observed 195 

values under the null hypotheses. Small values of T-values cast doubt on the validity of the null 196 

hypotheses. These hypotheses are conducted on residuals of time-series analyses resulting from 197 

the one-step-ahead error predictions, which are estimated in the baseline and assessment states 198 

of structures. If a structure does not change, the model should be able to appropriately predict 199 

the new signals in the assessment state assuming that the structural response is stationary. 200 

Hence, if a structure deteriorates, the new signal would be different from its prediction; in other 201 

words, the model fails to predict the signal well. The higher the structural changes are due to 202 

deterioration, the higher the residuals would be.  203 

 204 

Chi-square variance test: This test used to test whether the variances of a population is 205 

equal to a hypothesis value. The test statistic is 206 
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where 1s  and 2s   are the sample standard deviations of the baseline and test datasets, 208 

respectively, and n is the sample size. 209 

 210 
 211 

Two-sample t-test: This test used to test whether two population means are equal. The 212 

test statistic is 213 
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where 1µ  and 2µ  are the sample means of the baseline and test datasets, respectively. 215 

To enhance the accuracy of the deterioration assessment method, the following integrated 216 

deterioration identification is defined by Equation 10. This equation ensures the sensitivity of 217 

the method to both changes in mean and variance of the response data due to deterioration.  218 

1 2T T T= ×        (9) 219 
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where, T is the integrated tests statistics; A  is the assessment condition and B  is the baseline 221 

condition of structures.  222 

Having notified of the deterioration identification requirement, a statistical evaluation is 223 

carried out to statistically determine the deterioration location. The following algorithm using 224 

Fisher criterion is used. The Fisher criterion  f  is given as:  225 
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where µ  and σ  are the mean and the variance of the calculated DI, respectively; A  is the 227 

assessment condition and B  is the baseline condition of structures. 228 

Fisher criterion is carried out to statistically determine the deterioration location and 229 

severity. It statistically measures the changes in the damage/deterioration features with respect 230 

to the reference condition of the structure. The sensor location associated with the largest Fisher 231 

criterion value could be identified as deterioration location (Mosavi et al.20). However, Fisher 232 

criterion is associated with some false positive and negative results. In order to enhance the 233 

fisher criterion method, g criterion is proposed as follows: 234 
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where 1,2,...,j k=  and k is the number of sensor. This Equation cancels the false deterioration 236 

location from different sensors. The concept behind this equation is that small values of fisher 237 

criterion correspond to result from sensors far from the deterioration location. It should be 238 

noted that the G criterion is the g normalized. G =1 is corresponding to the location of 239 

deterioration. 240 

max( )
j

j

g
G

g
=                 (13) 241 

2.3. Outlier removal via Hampel identifier 242 
The previous study by the present authors25 showed that the method can identify 243 

deterioration without false positive and negative results. However, those conclusions were 244 

based only on two simulation case studies. Data in real-world structures often contain outliers 245 

due to E&O variations and high measurement noise content. To remove these false positive 246 

and negative results, Hampel identifier is used to filter and clean the data. This filter-cleaner 247 

excludes outliers from the results without overly smoothing them and preserves all other 248 



information47. Removing outliers from results increases the accuracy of results. More 249 

information can be found in Hampel48.  250 

To summarise, first, the measured vibration response data is normalized. Then, AR time-251 

series models fit the normalized data with proper model orders estimated using the proposed 252 

model identification technique. The proposed deterioration indicators are then calculated, and 253 

outliers are identified and removed from the results. Ultimately, deterioration is then identified 254 

by the proposed algorithms. 255 

 256 

3. Case studies    257 

3.1. Case study 1: Three (3) -storey RC frame 258 

This is a finite element model (FEM) of a 3-storey reinforced concrete (RC) frame which 259 

was used in a  previous paper of the present authors25. This 3-storey RC frame building (Figure 260 

2) was designed and then modelled by computer program IDARC49. Dimensions of all columns 261 

and beams are 2350 350mm×  and 2300 300mm× , respectively. Table 1 shows the natural 262 

frequencies ( ef ).  263 

In this case study, the annual deterioration rate (ADR) of 32 10−× is considered for the 264 

50-year deterioration period. During this time, the cross-sectional areas of reinforcement bars 265 

of the left column at the first storey are gradually reduced50 to simulate deterioration. Besides, 266 

at the age of 21 years old, this column experiences a slight damage. The slight damage is 267 

simulated as a sudden reduction in the cross-sectional area equal to 5 years of deterioration. 268 

The deterioration rate (DR) can be obtained by ADR times the duration of deterioration (DOD) 269 

process (in years). For more information see the previous paper of the current authors25. 270 

 1
year

Reduced cross sectional areaADR
Referencecross sectional area

 
= − 
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  (14) 271 

 DR ADR DOD= ×   (15) 272 

 273 

Table 1. Dimensions of columns and beams 
Mode 

ef  (Hz) 
1st 2.16 
2nd 7.68 
3rd 15.75 

 

 
Figure 2. 3-storey RC frame 



The effect of the deterioration on the dynamic characteristics and frequency content are 274 

illustrated in Figure 3. This figure shows periodogram power spectral density (PSD) estimate 275 

of the response data for the frame with the healthy state and 50 years of deterioration. PSD 276 

calculates the significance of different frequencies in time-series data. Athough the PSD of a 277 

deterirorated structure may appear more noisy than that of the healthy structure, the peak 278 

frequencies can be seen very close between these two cases. It can be concluded that, frequency 279 

domain methods are not effective to detect small structural changes such as the deterioration 280 

investigated in the current study.Therefore, only the AR time-series approach will be applied 281 

in the next case studies. 282 

 
Figure 3. Periodogram power spectral density (PSD) estimate 

 283 
The response data of a real structure51 under ambient vibrations with a sampling 284 

frequency of 2000Hz and sample size of 120000 data points are used as input ambient 285 

excitations for the simulated RC frame. Then, the response acceleration data of the simulated 286 

structure with the mentioned deterioration cases are utilized as input data for the proposed 287 

method. The response acceleration data are decimated using a factor of ten in order to mitigate 288 

the high-frequency content42,52. It  reduces the original sample frequency of 2000Hz down to 289 

200Hz. Then, a 10% white Gaussian noise is added to the data. The contaminated data with 290 

noise simulates the recorded sensor data in real-world conditions. Then the normalization 291 

procedure is conducted. The normalized data is then modelled as AR time-series models. For 292 

a proper AR estimation and enhancing the sensitivity of the time-series based deterioration 293 

evaluation, OMO technique is used. Finally, the deterioration identification is calculated using 294 

equation 14. Possible outliers are then removed using Hampel filter-cleaner. 295 

The proposed OMO technique is performed on 1440 datasets in the baseline state in order 296 

to estimate optimal model orders for each sensor data. The optimal model orders are chosen in 297 

a range of 1 to 40. Figure 4a illustrates γ criterion of AR models for all the considered baseline 298 

datasets (1440 datasets). This criterion suggests that the minimum model order of 10 is required 299 



to fit well the time history, since γ  parameter is minimized and almost constant with model 300 

orders higher than ten. This model order satisfies the minimum complexity of time-series 301 

models52. The optimal model order corresponds to the minimum of λ  parameter for model 302 

orders higher than the minimum model order obtained from γ  parameter (Figure 4b). This 303 

figure shows that the optimum model order for the used datasets is 14 (the model order 304 

corresponding to the minimumγ  parameter for model orders higher than 10). It is important to 305 

note that the optimal model order should be separately estimated for each sensor. 306 

 
(a) 

 
            (b) 

Figure 4. OMO technique: (a) γ parameter, (b)λ parameter 307 
 308 

Estimating the proper model order is the key to precisely identify deterioration. Figure 5 309 

shows the effect of different model orders on DI. As shown above, the optimal model order for 310 

the chosen datasets is 14. A higher model order, for instance order of 30, increases the residuals 311 

and results in false positive and negative values. On the other hand, a lower model order, for 312 

example model order of 7, fails to identify deterioration. 313 



 
Figure 5. Effect of different model orders on DI 

 
Results of the deterioration assessment of the simulated deterioration are presented in 314 

Figure 6. It shows that the proposed method is able to detect deterioration and sudden damage. 315 

DI values are zero when the frame is just built (time=0). By the time at which the structure 316 

experienced deterioration, the DI increases in time. At the age of 21 years, the method clearly 317 

detects the slight, but sudden damage. 318 

 
 

Figure 6. Deterioration identification 
 319 

To locate deterioration, a novel fisher criterion-based method is proposed in the current 320 

study. This method uses the DI values calculated in the deterioration detection method. So as 321 

to cancel any false positive/negative results in deterioration localization due to using the fisher 322 

criterion, Equations 14 is proposed. This equation cancels all the non-zero but low values of 323 

fisher criterion. The concept behind this method is that fisher criterion gives higher values 324 

when deterioration location is closer to the sensor. Figure 7 clearly illustrates that the proposed 325 

method clearly locates deterioration in the 1st storey.  326 



 
Figure 7. Deterioration location 

 327 
3.2. Case study 2: the 20-storey RC frame 328 

The 20-storey RC frame is a FEM model which was used in the previous paper of the present 329 

authors25. Table 2 presents the dimensions of this 4 span frame (Figure 8) which is modelled 330 

by computer program IDARC49. Table 3 shows the first seven natural frequencies ( ef ).The 331 

same data with the sampling frequency of 2000Hz and the sample size of 120000 data points 332 

(sample length was 120000/60=60 seconds) are used to excite the model and record the 333 

structural responses.   334 

Table 2. Dimensions of columns and beams 
 BEAM COLUMN 
STOREY Dimensions 

(mm) 
Steel area 

(mm2) 
Dimensions 

(mm) 
Steel area 

)2mm( 
16-20 400*400 900 400*400 4560 
11-15 450*450 900 500*500 7385 
6-10 500*500 900 600*600 9646 
1-5 550*550 1000 700*700 9646 

 

Table 3. The first seven natural frequencies in Hz 
MODE 1ST 2ND 3RD 4TH 5TH 6TH 7TH 

(HZ) 0.54 1.5 2.5 3.8 5 6.45 8.04 
 

 
Figure 8. 20-storey RC frame 

 335 
Similarly, deterioration is simulated with ADR for 50 years of deterioration. During this 336 

period, the cross-sectional areas of reinforcement bars of the left columns are gradually 337 

reduced50 according to the deterioration scenarios (Table 4). In scenario #1, the left column at 338 

level 10 experiences deterioration but not damage for 50 years. In scenario #2, the left columns 339 

at levels 5 and 15 experience deterioration for 50 years and preventive damage maintenances 340 

at the age of 28 years. In scenario #3, the left columns at levels 3, 8, 14 and 20 experience 341 

deterioration for 50 years and slight preventive damage maintenances at the age of 32.  342 

Table 4. Deterioration scenarios 343 
SCENARIOS STORIES EXPLANATIONS 

1 10 50-year deterioration  
2 5 & 15 50-year deterioration & maintenances at 

the age of 28 



3 3,8,14 & 20 50-year deterioration & maintenances at 
the age of 32 

 344 
Similar to the previous case study, the response data of the real structure51 under ambient 345 

vibration with the same sampling frequency and sample size are used as input ambient 346 

excitations. Then, the response acceleration data of the simulated deteriorated structure are 347 

utilized as input data for the proposed method. Furthermore, white Gaussian noise with the 348 

signal-to-noise ratio per sample of 10 (10% noise) is added. Then, the data normalization 349 

procedure is conducted. The optimal model orders are estimated for each sensor channel using 350 

the proposed OMO technique. The acceleration response data are then modelled as AR time-351 

series. Finally, possible outliers are removed from the calculated DI using Hampel filter-352 

cleaner. 353 

The results of the deterioration assessment under the three different scenarios are 354 

presented in Figures 9 to 11. These figures show that the proposed method clearly detects the 355 

simulated deterioration and preventive damage maintenances in all scenarios. DI shows zero 356 

value when the frame is just built (time=0). By deterioration of the structure in the 50-year time 357 

period, the DI clearly shows increasing deterioration in the structure. In scenario #1, the 358 

structure deteriorates for 50 years at the 10th floor. The results in Figure 9 clearly show that the 359 

proposed method clearly detects deterioration of the frame for 50 years at the 10th floor. The 360 

DI increases in time due to accumulation of deterioration in time. In scenario #2, the structure 361 

starts deterioration at the 5th and 15th floors. Then, preventive maintenance actions are 362 

performed in both floors at the age of 28, in which the method clearly detects and depicts both 363 

deterioration and the maintenance actions (see Figure 10). The latter can be seen as a sudden 364 

decrease in the DI values. In scenario #3, the method detects a progressive and steady 365 

deterioration trend at first. Then, at the age of 32 the slight preventive maintenance actions are 366 

detected as shown in Figure 11. Besides, it is evident that deterioration in each storey affects 367 

the DI results of other stories. However, the DI values are greater when the sensor location is 368 

closer to deterioration location. 369 

The results of G criterion (Equation 15) for locating deterioration are depicted in Figure 370 

12. It is verified that the proposed method can clearly locate deterioration. Figure 12a clearly 371 

shows that in scenario #1, the 10th storey has deteriorated. In scenario #2, the 5th and 15th floors 372 

deteriorated. Figure 12b shows the same results. In scenario #3, all the 3rd, 8th, 14th and 20th 373 

floors are deteriorated, and the deterioration localization method clearly detects deterioration 374 



in these floors in Figure 12c. As a result, it can be concluded that the proposed method can 375 

clearly detect and locate deterioration. 376 

 377 

 
Figure 9. Deterioration identification, scenario #1 

 

 

 378 



 

 

 
Figure 10. Deterioration identification scenario #2 

 379 

 380 



 
Figure 11. Deterioration identification scenario #3 

 

 

 381 

 
(a) 

 
(b) 

 

 
(c) 

Figure 12. Deterioration location (a) scenario #1; (b) scenario #2; (c) scenario #3 
 382 



3.3. Case study 3: box-girder bridge structure  383 

The proposed method in the current study is experimentally validated using sensor data 384 

from a test on a large-scale BGB structure. The BGB structure was constructed to study the 385 

pre-stress force identifications in pre-stressed concrete BGBs53, then load-carrying capacity 386 

assessment54 and damage detection elsewhere before being used for deterioration detection 387 

validation in the present study.  388 

This simply supported BGB model is 6m long and 5.8m long between the supports. The 389 

pre-stressing tendons of the model are removed before the tests. Figures 13a shows the actual 390 

BGB test setup while Figures 13b and 13c show the detailed dimensions of the BGB structure. 391 

In Figure 13c, A to I indicate positions where the sensors are attached. 392 

 
(a)  

(b) 
 

 
(c) A to I indicate positions of accelerometers 

Figure 13. The box-girder model (a) test setup, (b) cross-section, (c) detailed dimensions (all dimensions are in cm).  

 393 
The box-girder model is excited by hitting randomly along the length of the model by an 394 

impact hammer to simulate ambient vibration. 18 accelerometers are attached to the structure 395 

to measure its response according to the sensor layout shown in Figure 14. This figure shows 396 

the detailed model of the BGB structure modelled by ARTeMIS software55. The numbers 397 

beside each sensor indicate the sensor number. For instance, sensor 6 is located at section C on 398 

the top flange. A centralised data acquisition system and an in-house software program based 399 

on National Instruments hardware and software (LabVIEW) are used to collect and record the 400 



data56. The analogue sensor data are recorded continuously for approximate 2 minutes and 401 

discretised to computer hard disk at a sampling frequency of 2048 Hz.  402 

 
Figure 14. The box-girder sensor arrangement 

 403 
The experiment is conducted in three different structural state conditions. In the first state 404 

(test 01), the BGB model is under baseline conditions. In order to simulate the second structural 405 

state (test 02), static and cyclic loads are applied at the mid-span of the two girders using Moog 406 

system as shown in Figure 15. Some very small cracks, which could be hardly seen without 407 

using a magnifying glass, occurred at the bottom flange and the lower part of the webs (Figure 408 

16). The third structural state (test 03) is created by applying further static loads at the same 409 

position. The previous cracks are lengthened to the near top part of the webs and some new 410 

cracks are developed (Figure 17). It should be noted that these cracks are very small and they 411 

could be hardly seen or noticed. Figure 18 shows a developed crack in test 02. As shown, this 412 

crack can be hardly seen (Figure 18a). In order to enhance the visibility of this crack, image 413 

processing is conducted (Figure 18b). Figures 19a and 19b show a lengthened crack in test 03. 414 

As shown in Figure 19b, after image processing, a new crack is detected. Since these cracks 415 

could hardly be visible, they were highlighted by a yellow marker on the BGB structure.  416 

The response acceleration data from each sensor are measured and recorded during the 417 

conducted tests and normalized afterwards. The proposed OMO technique is then applied on 418 

the normalized data to estimate optimal model order for each sensor. The response data are 419 

modelled as AR time-series, and deterioration indicator is defined using the T-values of the 420 

statistical hypothesis of chi-square variance test. The deterioration assessment results of some 421 

sensors are shown in Figure 20. It should be noted that datasets 1 to 70, 71 to 197 and 198 to 422 

316 correspond to test 01, test 02 and test 03, respectively. The results clearly show that the 423 

proposed method successfully detected deterioration and the sudden damage in this real-world 424 

structures. DI values are zero in average at the baseline condition (test 01). DI increases in test 425 



02 and test 03 due to changes in the state conditions. Moreover, the slight increase in the trend 426 

during test 02 suggests that the BGB structure is deteriorating during this time due to external 427 

forces.  428 

 
Figure 15. The Moog system 

 429 

 
Figure 16. Crack distribution in test 02 at (a) bottom flange, (b) South girder, (c) North girder 

 430 
 431 

 
Figure 17. Crack distribution in test 03 at (a) bottom flange, (b) South girder, (c) North girder 



 432 

 
(a) 

 
(b) 

Figure 18. A developed crack in test 02: (a) the original image (b) the processed image 

 433 

 
(a) 

 
(b) 

Figure 19. A developed crack in test 03: (a) the original image (b) the processed image 

 434 

 435 

   

  
Figure 20. Deterioration identification in the box-girder model 

 436 
Deterioration locations were estimated using the proposed method in this study. Results of G 437 

criterion for locating deterioration in test 02 are shown in Figure 21. It is verified that the 438 

proposed method can clearly locate deterioration. This figure clearly shows that the proposed 439 



method is able to locate very small cracks. For instance, in test 02, only a few cracks were 440 

developed in the middle span (points D, E and F), and in state #3, the cracks lengthened and 441 

more cracks developed in other locations (points A, C, D, E, F and G). 442 

 
(a) 

 
(b) 

Figure 21. Deterioration location on the box-girder in (a) test 02 (b) test 03 
 

 443 

4. Further Discussions     444 

4.1. Noise content 445 

In order to illustrate the efficiency of the proposed method in the current study, similar 446 

to the case study 1, the response acceleration data of the simulated deteriorated frame is utilized 447 

as input data for the proposed method, and different white Gaussian noise of 2%, 5%, 10%, 448 

15% and 20% are added to the data. Equation 16 is used to simulate a linear deterioration in 449 

time with a slight but sudden damage in year 16. The results of the deterioration identification 450 

are shown in Figure 22 which demonstrates that the proposed method is able to detect 451 

deterioration and sudden damage in the presence of high noise content. The noise in the data 452 

had a negligible impact on the results and validated the efficiency of the proposed methodology 453 

developed in the current study. 454 

 
Figure 22. Deterioration identification under different noise content 

 455 

4.2. Outlier removal 456 



In order to investigate the effects of removing the outliers via Hampel identifier, the 457 

deterioration assessment results with and without outliers are represented in Figure 23. In this 458 

figure, data from case study 3 (BGB structure) are used. This figure illustrates that Hampel 459 

identifier successfully removed all the false positive and negative results. The results indicate 460 

that Hampel filter-cleaner only removes the outliers. In other words, if the structural 461 

characteristics change due to deterioration or damage, the filter does not remove the DI 462 

changes. 463 

 
Figure 23. Outlier removal effects on deterioration identification results 

 464 

4.3. Sample length 465 

In a recently published paper of the current authors25, different sample lengths were  466 

tested in two numerical case studies. They concluded that the sample length has a negligible 467 

effect on their deterioration assessment method. In order to test time series based deterioration 468 

identification methods in real structures, this study used different sample lengths in the 469 

experimental case study in order to further investigate their impact on the deterioration 470 

evaluation (see Figure 24). Results show that sample length has a negligible impact on the 471 

proposed deterioration identification method. 472 

 
Figure 24. Deterioration identification using different sample lengths 

 473 

 474 
5. Conclusion 475 



The main contribution of this study is the development and application of an integrated 476 

deterioration assessment method, which for the first time enables structural deterioration to be 477 

globally detected and located using a vibration-based method. This method is based on time-478 

series analysis, statistical hypotheses, Hampel identifier and Fisher criterion. A normalization 479 

procedure and a model identification technique are also developed to enhance time series 480 

analysis to achieve deterioration identification. Acceleration data from two simulation case 481 

studies of 3-storey and 20-storey RC frames and one experimental dataset from a BGB 482 

structure are adopted to assess the efficiency and robustness of the new deterioration 483 

identification method proposed in this study. The results show that: 1) the developed method 484 

is capable of detecting and locating deterioration. 2) Time-series model orders play a crucial 485 

role in detecting small changes in dynamic characteristics of structures. 3) The method is able 486 

to detect sudden structural changes due to damage, preventive maintenance actions, cumulative 487 

deterioration or other external excitation sources, such as blast and earthquake. 4) The proposed 488 

method is able to identify deterioration in the presence of high level of noise content. 5) Hampel 489 

identifier successfully removes all the false positive and negative results. 6) Sample length had 490 

a negligible impact on the proposed deterioration identification method. 7) The method does 491 

not require data from deteriorated states to be available beforehand. 8) The method can be used 492 

to assess deterioration in real-time. 493 

Although the method showed great success in deterioration assessment, some challenges 494 

remain to be addressed in the future studies, including developing the method to be able to 495 

estimate the severity of deterioration and to provide early warning before damage due to 496 

accumulated deterioration. Any information on the possible time and location of structural 497 

damage due to accumulated deterioration can improve safety of structures, enhance their 498 

performance and save time and money. 499 
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