
Five Examples of Web-services for Illustrating
Requirements for Security Architecture

Ronald G. Addie, Sam Moffatt, Stijn Dekeyser
Department of Maths and Computing

University of Southern Queensland
Toowoomba, Queensland, Australia 4350

{ron.addie,dekeyser}@usq.edu.au,pasamio@gmail.com

Alan Colman
Swinburne University of Technology
Hawthorn, Victoria, Australia 3122
AColman@groupwise.swin.edu.au

Abstract—The tension caused by the need for expressive
power when formulating security rules and the need to keep
computational complexity low when undertaking the necessary
access rule evaluations is a major challenge in the formulation
of good security architecture. This paper provides five examples
of security in web services. which illustrate this tension. These
examples highlight the need for more expressiveness in the rules
used to express policies in three cases, and in the other the fact
that XACML appears to have nearly adequate expressiveness
without undue complexity. Each example is expressed first
informally, by describing a service which could concievably be
provided in a web services architecture, then the example is also
outlined using either XACML, first order logic or both.

I. INTRODUCTION

In formulating security architectures for web services there
appears to be a conflict between:

(i) the need for expressive power in expressing policies;
(ii) computational simplicity in access algorithms; and

(iii) a natural desire to use the same language for policies
and access rules.

However, perhaps all these goals can be satisfied at once.
Limiting the expressive power of the language for expressing
policies because of the need for computational simplicity may
be a mistake.

The reason why abstract rules which may be very difficult
or even impossible to check may still be useful is that rules can
be useful, or even vital, without ever having to be evaluated.

A good example of this is rules defining integrity constraints
in a database. Suppose a database is designed to preserve the
rule that for every item in table carparts there is a exactly
one entry with the same partno in the table currentstock.
This is a useful rule and it might be necessary for this rule to
be true for many of the systems processes to function correctly
– including the evaluation of rules used for access control and
security in general. But checking that this rule is true would be
a very lengthy task, and is not necessary, because the database
uses checks carried out very efficiently at insert time which
ensure that this rule is true at all times.

A second example involves the traditional procedure for
authentication of users of a multi-user computer, e.g. running
unix, is to check the password entered by a user with the en-
coded password in the password file (typically /etc/passwd).
This procedure relies on the assumption that the password file

contains exactly one password for every user, however this
fact will not be checked as part of the authentication process.

This tension between the need for expressiveness in policies
and the need for speed and simplicity in the actual check
is further exacerbated by the diversity of applications which
arise naturally in this field – from shared access to files
via a network [1], on the one hand, and enforcement of
complex rules for mediating collaboration between colleagues
who share and manage the diverse roles of a conference
organisation and its clients [2], on the other.

A tentative solution to this problem is to define two different
languages – one for defining policies, and another for defining
algorithms for access; this approach is implicitly adopted by
some authors, however there are also clear advantages in
simplicity of the overall architecture if the same language is
used (perhaps with restrictions, depending on the use) for both
purposes.

In addition to defining policies and access rules in [2], [3]
an even higher level project of policy validation is envisioned.
The policy validation concept investigated here is to check
that appropriate coalitions of users can access the intended
targets and inappropriate coalitions can’t. The reason these
issues are particularly pertinent in these papers is that the
policies investigated include rules by which users may alter
each others access rules. However, the introduction of policy
validation as well as policy definition begs the question of why
the validity rules are not also adopted as part of the policies
themselves.

Let us now focus specific details of the language used for
definition of rules. Should the quantifiers of first order logic
(there exists x: ∃x, and for all x: ∀x) be used in a language for
defining security validation, security policy, or access control?
If these quantifiers are used, how are they to be interpreted?
The problem with quantifiers is that evaluating expressions
involving quantifiers is often undecidable, and even when
decidable, determining this may be a very lengthy task.

The differing expressive power of theories with restricted
use of quantifiers has been investigated in the mathematical
literature [4, Chapter D.1]. It is clear that allowing more use
of quantifiers increases expressive power, and barring the use
of quantifiers prevents certain concepts from being expressed.
Evaluating logical expressions which use quantifiers, even

when the domain over which they operate is finite, may have to
be disallowed during the process of deciding whether to allow
access. But, as explained earlier, the use of quantifiers in rules
may be useful even though such rules are never evaluated.

First order logic also widely uses schemes for generating
axioms in addition to simple axioms; One of the examples
below uses an axiom scheme in order to define a service.

In this paper we present five examples which can be used
to consider issues in relation to security for web services. The
first example is a realistic general-purpose example in which
rules similar to the database integrity rules arise naturally – in
this example it appears that quantifiers are necessary in order
to be able to express the obvious required security policy; the
second example concerns a service for managing orders which
requires an integrity check for the access rules to be valid
- hence quantifiers appear to be necessary in the definition
of rules for this service also; the third example concerns a
delegation service. In this case there is no need for quantifiers
in order to define the natural policies for the service, but a
simple type of second order logic (which can be achieved by
axiom schemes) is required. The fourth example is the access
rules for the NTFS file system. It seems that specifying the
access rules for NTFS can be achieved using XACML in its
present form. The last example comes from the field of social
networking, where the evolution in security rules in recent
times has been rapid and problematic, confirming the thesis of
this paper that more expressive and flexible tools are needed.

The remainder of this section provides a literature review
and a definition of security architecture. The next five sections
are devoted to the five examples and the last section contains
some concluding remarks.

A. Existing Literature of Examples

The existing literature of examples of security for web
services is diverse and extensive. We merely attempt, here,
to present some of the important examples from the literature,
and to identify some important themes of this literature.

In [1, p729] an example is given of authentication and
delegation, leading, after several steps, to access to a requested
resource being granted. Delegation of authority is a strong
theme in the literature of examples. This paper makes use
of propositional logic as the language within which rules for
secure access should be expressed, which is also a common
practice in much of the literature.

In [2], [5], [3], [6] three different examples are presented
to illustrate two separate but closely related intiatives: (i) a
scheme for generating XACML code for access rules, and
(ii) a validation algorithm for access rules which seeks to
demonstrate by a model-checking method that desired access
is achieved, and undesired access is prevented.

The expressive power of XACML and RW (the more direct
language in which rules are initally expressed, in [5], [3], [6])
are tested by seeking examples where: (i) access rules depend
on the state of the system being accessed and also, potentially,
on data in documents in the system; (ii) the ability to control
access to the parameters of access control is also controlled by

the system; (iii) delegation of rights to access any aspect of the
system can be effected; and (iv) it is possible to express access
rules which require collaboration between multiple parties.[5]

One example models the operation of a paper reviewing
system, with editors, principle reviewers, secondary reviewers,
and authors. Complex access restrictions and rules are required
in this system. A second example is set in a health-care
setting and delegation is a required feature of this system,
i.e. the facility to allow one client to stand in for another, in
connection with certain roles. A third example describes an
Employee Incentive scheme in which the key resource under
the control of the director, managers, and other staff, is the
option for employees to be awarded bonuses.

B. Security Architecture

By security architecture for web services, we mean the
protocols, algorithms, and declarations (rules) which are put
in place in order to ensure that the identities of all the parties
to the transaction(s) are authenticated and clear throughout,
and in order that all the requirements of all parties are met at
all times.

For example, if two parties, A and B, engage in a transac-
tion, and party B requires party A to hold an account with
credit at least $100.00, the security architecture should be
able to ensure that this is the case as a pre-condition of the
transaction.

This example already shows how security architecture over-
laps unavoidably with business rules. Rather than resist this
overlap, we feel that it is best to seek an approach which can
deal with both in an integrated manner with the expectation
that a unified approach will deal with both problems (and
also access control – which might be regarded as a subset
of security architecture) more effectively.

The issue of managing identity has been deliberately ex-
cluded from consideration in this paper. A treatment in which
management of identity (including authentication and commu-
nication of information about participants which can be used
to confirm identity) is undoubtedely a very important aspect
of security architecture, however it is also useful to consider
other issues, and those are the focus of this paper.

C. How to define a service

In order to ensure that a web services exchange is valid we
must prove that at no time, during the course of the exchange
allowed by the security architecture, will any party participate
when the rules that it has adopted are not satisfied. We also
expect that when all the rules adopted by a participant are
valid that it will participate, and that includes responding to
the requests of other parties within a reasonable time.

So, if we confine ourselves just to the security aspects of
a web service, in order to satisfy ourselves that a service is
well-defined, and therefore is a valid service, it is sufficient
to show that the service will behave according to this simple
principle: to continue responding to requests precisely when
the all the rules that this service provider has defined are valid.

2

In each of the following examples, the task we set ourselves
is precisely this: to show how we can define a service so that
it behaves in this manner.

In particular, if an informal statement of the rules required
for a service is clear, which is the case in all the examples
below, our primary task is to answer this question: “Can the
informal rules for this service be defined in the proposed
security architecture?”

The two security architectures we consider, in the examples
(neither of which can be regarded as complete in all details),
are: (1) one based on XACML [7], [8], [9], in the sense that
this is the language used by all parties to define their access
control rules; and (2) one in which the language used for
defining access control has the same expressive power as first
order logic (the Predicate Calculus) [10], [11], [4].

II. EXAMPLE 1. ACADEMIC RECORDS

A. Informal description

The use of computers to store an academic record, and
networks to disseminate such academic records, and access
statements, from the student in question, to restrict access or
open access to academic records is an excellent application of
secure web services.

An informal academic record is shown in Figure 1 and
a more formal academic record is shown in Figure 2. A
completely formal example, which has been checked using an
implementation of a secure web server is presented in Section
6 of [12] .

Here is a scenario for the use of an electronic academic
record:

• The student (WLA), approaches a potential employer
(NBC), claiming to have a Bachelor of Certification
(BoC) from UoC. This claim is supported by a reference
to the academic record. See Figures 1 and 2.

• If NBC expresses sufficient interest, WLA passes a signed
document which states that NBC should be allowed to
access their academic record at UoC and informs the
University of the details of this document that should be
passed to NBC, including the validity period. See Fig. 3.

• NBC accesses the academic record at UoC, providing
their identity and the access document, thereby taking
advantage of the allowed access set up by WLA at the
previous step.

The access software reports, in the course of retrieving the
document, that it is genuine, that it is the academic record of
this same WLA, that the University is genuine, and that WLA
has a Bachelor of Certification issued at such-and-such a date.

This example is interesting because: (i) there are more than
two parties involved in the key transactions in a manner where
each has a distinct role; and (ii) the services provided are
intrinsically concerned with security. This supports the con-
tention that business rules and security rules may intimately
connected.

The following document is an academic
record for Wendy Louise Angstrom.
Wendy Louise Angstrom has completed
the following units, for partial completion
of the Bachelor of Certification and
received the indicated grades:
acadrecxacml
Unit Grade
---- -----
66311 A
66101 B
...

Fig. 1. An Academic Record - informal

<document type="academic record"
scope="this whole figure">

<statement type="definition">
<object>the student</object><isDefinedAs>...
</statement>
<statement>
....
</statement>
</document>

Fig. 2. An Academic Record – formal

B. XACML

There are several transactions to consider here: the request
from WLA to UoC to make the academic record available;
the message from WLA to NBC which says that it will be
available, and the request for the record from NBC to UoC.
We confine ourselves to the latter – extension to the other
cases is not difficult.

Because the permission to access the academic record
is transitory, we assume that a policy set is created as a
consequence of the request by WLA to UoC. This policy set
expresses the fact that NBC can access the transcript of WLA
between the dates nominated in the request from WLA to UoC.
The XACML is not shown here because of space limitations,
but is available on request.

Although the rules appropriate for this example can be
expressed in an XML form which in a broad sense can be
interpreted as XACML certain aspects of this example go
beyond the scope of the XACML standard as it now exists. In
the next subsection we will see that features of first order logic
which are not currently allowed for in XACML arise naturally
in this example. Another issue is that XACML rule-sets must
be applied to the problem in hand via one of the standard
algorithms, whereas the statements encoded as XML in this
example rely on being interpreted according to the rules of
logic. None of the standard XACML algorithms for applying
rules consistently respect the logical meaning of all rules.

For example, the algorithm which allows access only if
there are no rules which deny access and at least one rule
which allows access will not respect rules which allow access
whenever there are rules which deny access. This means that
the applicability of rules in XACML is conditional on the
context in which they are interpreted; a literal intrepretation

WLA permits NBC to access
citp://UoC.edu.au/acadrec/q123

Fig. 3. citp;//q123.graduate.UoC.edu.au/authacadrec/NBC

3

of rules may be misleading, which is a disadvantage. All the
XACML algorithms are deterministic and at most O(n) in
complexity, where n is the number of rules. More sophisticated
algorithms might not achieve this degree of efficiency, and
since in many applications access control must have low order
complexity, developers of XACML have been reluctant to
endorse more sophisticated rules. The architecture for access
control described in [12] makes use of a more sophisticated
algorithm which still has low complexity.

C. First-order Logic

Suppose it is desired to offer scholarships to all students
who complete a year of study in which they achieve a grade of
better than or equal to 6 (where the top grade is 7), in all their
courses for any year. Adopting the predicate grade(S,C,G,Y)
to mean “student S achieved grade G in course C in year Y ,
the rule fora student to be awarded a scholarship is(

∀C∀Ggrade(S,C,G,thisyear) =⇒ G≥ 6
)
. (1)

In this instance, checking that a condition defined by a
quantifier holds is both necessary and feasible.

In many situations, it is natural to create a list of students
satisfying condition such as (1), and to use membership of
this list as a proxy for checking the condition. Again, even
though the condition is important, we do not need to check it
explicitly.

III. EXAMPLE 2. ORDER OPTIMIZATION

Suppose a web server provides the service of checking
orders against a list of alternative providers. Alternative
providers can also be added to the list by a process involving
submission, and confirmation or denial.

A. Informal description

We assume that there is, at any time, a list of alternative
suppliers and for each supplier it is possible to inquire if this
supplier provides an item, and then, if the item is provided, to
inquire as to the price and delivery cost of that item or a list
of items.

The service provided is to check that there are no changes
which can be made to the order which will reduce the total
cost. For simplicity, we limit the types of changes to ones
which change the supplier and we ignore delivery charges. It
is therefore sufficient to consider changes for one item at a
time.

Informally, the defining rule for this server is that for any
item, and any supplier in the list of allowed suppliers, if we
change the supplier for this item to the new supplier, the total
cost will be greater than in the order as it stands. This rule
can readily be stated in first order logic, as we see in the next
subsection, but the statement requires quantifiers, which means
that it can’t be expressed in XACML as it currently exists.

B. First-order Logic

Let O denotes the order, cost(O) denotes the cost of order
O, and chsup(O, I,S) denotes the order obtained from order
O by replacing the supplier of item I by supplier S. Then the
defining rule for this service can be stated in the following
form:

∀S∀I
(
I ∈ O.itemlist=⇒ cost(O)< cost(chsup(O, I,S))).

IV. EXAMPLE 3. DELEGATION

Suppose a web service, DS, provides a higher-level service
of delegation which is intended to work with any other web
service, WS. Informally, a client, S (secretary, for example),
of WS sends a message (or a request) to WS and DS which
states that another client, M (member, say), should assume all
the authorities and responsibilities of S at WS for a period of
time date1 to date2. These requests should have no effect
unless an assenting message (or request) is sent by M accepting
these authorities and responsibilities. If such a request is made,
however, during the relevant period, the web service WS should
operate as if the client M is able to substitute for S in relation
to their authority and responsibilities.

A. Formal Statement

The delegation service should refuse to act on this request
unless it is accompanied by proof that the requestor is xxx,
and xxx is the treasurer. If this is the case, the action taken
by DS should be to put in place the following policy, which
refers to the site AF:

If P(x) is any statement with one free
variable then
(P(xxx)∧date> StartDate∧date< FinishDate)=⇒
P(yyy)

Observe that this statement refers to any statement P.
This appears to make use of second order logic, since it
is a statement which refers to other statements. However,
by convention, statements of this sort are allowed in first
order logic by allowing a scheme of axioms where, e.g. P,
varies over all possible expressions of the indicated kind, i.e.
statements with one free variable x. Such a scheme of axioms
may be (and usually is) infinite in extent, although it is usually
assumed that the axioms can be enumerated by means of an
algorithm.

For example the principle of mathematical induction, for
the natural numbers, must be expressed in this way [10, p21].
In fact, as a consequence of this necessity of using a scheme
of axioms to describe the natural numbers, many if not most
axiomatic systems used in mathematics make use of infinite
schemes of axioms. Infinite schemes of axioms are not ruled
out in applications because it is never necessary to use more
than a finite number of the axioms in an individual proof,
and because the axioms that are needed can be generated, or
checked, by means of the algorithm which enumerates them.

Let us suppose that the site DS stores this delegation
assertion at the address http://Delegator.com.au/wssecurity/
treasurerdelegation10-4-2010-20-4-2010.xml. In order to put
this delegation assertion into effect, the site DS must now

4

send its response to the request from AF. This response should
include the following:

The delegation you requested
is now in place at
http://Delegator.com.au/wssecurity/treasurer-
delegation10-4-2010-20-4-2010.xml

Let T denote the collection of rules at http://Delegator.com.
au/wssecurity/treasurer-delegation10-4-2010-20-4-2010.xml.
This might include rules specified by means of a scheme, as
well as specific rules. As part of its response to the request
from DS, the AF site should make sure that the following
policy assertion is in place:

If φ is any statement such that T ` φ, then ` φ. (2)

The symbol ` denotes “is valid”. When used in conjunction
with a theory, e.g. T , as in T ` φ, the interpretation is that
φ is either an axiom in the theory T or follows from them.
When T is omitted, the interpretation is relative to the current
context. So (2) says that the axioms set up at DS for AF to
use for delegation are adopted as axioms at AF.

V. EXAMPLE 4. NTFS
Describing NTFS access control is sufficiently complex

that it immediately begs the question: shouldn’t this system
be described by means of a language? Since a language for
security controls exists, namely XACML, let us consider how
it might apply to NTFS.

A. The NTFS Access Model

The NTFS Access Model is based on the use of access
control lists (ACLs). Each file and directory (container) has
an ACL which is composed of a list of access control entries
(ACEs). Access to a file is controlled by its ACL and the ACL
of its container, and possibly its container’s container, and so
on. An ACE defines who the entry applies to (user or group),
a list of actions and if they are permitted or denied and an
ACE of a container type may optionally nominate if the ACE
will be inherited to child items.

With one exception, the rules are evaluated by traversing
the ACL of the target resource until a match (either a deny or
allow) for a given action is found. If a match cannot be found
in the ACL for the target resource, the inherited access controls
in the ACL’s of the target resources’ ancestors are traversed
until either a match is found or all ancestors and their lists
have been exhausted without match. If no match was found
then the permission is denied. The exception is that in the
case of files, some access attributes of the file’s container take
precedence over those of the file itself.

ACE’s have two flags to control inheritance: object inherit
and container inherit. If object inherit is set it will apply to all
child files. If container inherit is set it will apply to all child
folders. If neither is set then the ACE is not inherited. Both
object inherit and container inherit can be set and permissions
will then apply to both child files and folders.

It is important to note that with NTFS rules are checked
starting from the target resource through the ancestor list to
the root of the file system. Thus (except in the case of files

vis-a-vis their containers) the rules of the children override
any rules of the parents. Access control list entries are also
evaluated in the order that they are found and evaluation stops
after the first match is found. This means that if the first match
is an allow then any later matching rules, including a deny,
will be ignored. Finally while Windows defines a “canonical”
order for access control entries – deny rules first then allow
rules (so deny rules take precedence), this canonical order is
not mandatory.

The exception to this upward order of evaluation of ACLs,
is that when attempting to open a file, its container’s “List
File/Read Data” permission will be consulted before consult-
ing the ACL of the file. This behaviour is unique to files.
Folders do not exhibit this behaviour, e.g. you can open a
folder so long as you have permission to do so over that folder,
even if the parent folder does not permit the action.

A common myth about NTFS is that deny rules inherently
overrule allow permissions. By default Windows will structure
the ACE’s in the ACL for an item with deny entries ahead
of allow entries. As such this makes the statement true as
the deny entries are tested before the allow entries. However
third party applications can construct an ACL that isn’t in
this order, for example by positioning allow entries ahead
of deny entries. Since entries are evaluated in the order they
appear in the list, an ACE that allows access ordered before
one that denies access will result in the request being granted
access. Furthermore an ACL that grants access will overrule
a deny ACE that is inherited from an ancestor – and this is
true without recourse to any third-party software for managing
ACLs.

One final rule is that the owner of an object can always
change the discretionary access control list. So while another
user might set the access control entries to prevent access to a
file by its owner, the owner will always have effective rights
to read and change the permissions of the object.

NTFS defines four categories of action:
• Generic Rights — These are similar to the UNIX model,

generic read, generic write, generic execute and all per-
missions. All items (files and directories) have these
actions. It should be noted that generic all permission
is a specific bit that matches all permissions of generic
read, write and execute.

• Standard Rights — These are NTFS specific ACL’s such
as synchronise, write owner, write DAC, read control and
delete. All items (files and directories) have these actions.
“Write DAC” controls altering the discretionary access
control list, or the permissions of the item. There is a
permission for being able to access the ACL for the item
(Access System Security) and maximum allowed is a bit
used in access control checks to return the maximum
allowable permissions for an item (it isn’t stored on the
file system).

• File Rights — Execute; Read, Write and Append data
to the file; read and write the attributes and extended
attributes for a file.

• Directory Rights — List, add file, add subdirectory, read

5

and write extended attributes, traverse, delete child and
read and write attributes.

While there is space in the data structure for extra actions
(as noted by the Figure 4), the access model does not allow
an arbitrary action to be defined within the existing security
system.

Finally, privileges are special rights assigned to users or
groups that enable overriding other aspects of the file system.
NTFS has “Back up files and directories” privilege, and “Take
ownership of files or other objects” privilege. The back up
privilege permits applies to all files and folders however it has
to be invoked by a particular application.

B. Transforming NTFS Rules into XACML

To properly emulate NTFS, at least two policies need to
be defined. The first of these is the policy that defines overall
rules of the system. The first rule in this system policy is that
the owner of a file can always change the DACL of the file.
This means that the owner can never be locked out of their
own file. Other core rules are the privileges that permit access.
Privileges in this context are evaluated as their own action
type and are located ahead of any other rule. This policy is
referenced by every other policy set first prior to defining their
own rules to ensure that these system rules have priority.

From here further policies need to be defined for folders
and for files. As inheritance for access controls on folders
can apply to either just the folder itself (no inheritance), just
to child files, just to child folders, or to both child files and
folders. To handle this, four policies need to be defined so
that each of the possible inheritance options a folder can have
are put into effect. Files need their own rules which should be
evaluated prior to that of the parent container – except when
the parent has a deny for the read data/list files action (this
requires another policy for folders).

The default manner in which rules are evaluated in the
XACML model of NTFS implemented here is the “first-
applicable” algorithm. This means that the first matching rule,
be it deny or allow, is returned. This is broadly similar to the
approach adopted in in NTFS so it is difficult to conceive of
adopting any other algorithm.

Using this algorithm, at a first attempt, a reasonable strategy
appears to be to use the following policies in the order
indicated:
• System Rules
• The folder’s “read data/list files” rule
• File rules
• Folder rules that are inheritable to files
• Folder rules that are inheritable to folders
• Folder rules that are inheritable to files and folders
• Folder rules that are non-inheritable
However, there is a problem with this model in that folder

rules that are inheritable to files and folders might deny a user
access however, if there is a rule that allows the user access
in the folder rules that are inheritable to files the user will be
granted access. This is not an accurate representation of what

would normally occur because normally, in NTFS ACL’s, deny
rules appear before access rules, and so in this example access
should be denied. To resolve this the three inheritable rules can
be split into “deny” rules and “permit” or “allow” rules, and
all the deny rules can be invoked ahead of all the deny rules.
This leads to the following policies, in order of execution:
• System rules
• The parent folder’s “read data/list files” rule
• File rules
• Folder deny rules that are inheritable to files
• Folder deny rules that are inheritable to folders
• Folder deny rules that are inheritable to files and folders
• Folder permit rules that are inheritable to files
• Folder permit rules that are inheritable to folders
• Folder permit rules that are inheritable to files and folders
• Folder rules that are non-inheritable
This permits reasonable emulation of the way the NTFS

model works (except for the possibility of ACL’s not in
canonical order).

Sample System Rules Policy

In [13] there are various examples of applying XACML to
NTFS access control rules. Pages 49 through to 57 present
extensive examples of how to represent various NTFS access
controls utilising XACML. Page 50 introduces the first policy
which covers a folder that has inheritable permissions where
the owner can read and write the files. The second policy is
introduced on page 52 that is specific to an individual file with
a permission to explicitly exclude a user identified as “john”.
Finally a third policy starting on page 55 prevents user “fred”
from writing to a folder in such a way that the permission is
not inherited.

Through reviewing the various permissions it appears to be
extremely complicated to achieve the rules exhibited by NTFS.
Many pages are spent in the required amount of XACML to
express an equivalent concept to the NTFS rules. Some of this
can be attributed to the nature of XML however much is due
to the complexity of the NTFS permissions model.

C. Limitations

The XACML samples referenced above are intended to in-
dicate that the NTFS access rules can be successfully modelled
using XACML. However, there are some assumptions and
constraints which limit the scope of this model:
• It is assumed that all NTFS ACEs are in “canonical” order

– which is not mandatory;
• the concept of ownership has not been fully modelled in

the XACML examples referenced above.
The behaviour of the NTFS model is to evaluate the ACE’s

stored in an object ACL in order and return the result of the
first match. By default, the Windows GUI positions deny rules
ahead of allow rules however this is not a technical limitation.
It would be possible to create an allow ACE ahead of any
deny ACE which then could be followed by allow ACE’s.
This situation is not handled but would be possible, however
it would just complicate the transformation further.

6

Fig. 4. NTFS Access Mask Layout

XACML doesn’t necessarily support the concept of an
“owner”, however this could be emulated. For example, a
special “owner()” function could be used to match subjects
that own their resources.

VI. FACEBOOK

Facebook is the most popular social networking site avail-
able today with more than 400 million active users. Facebook’s
platform has evolved from a closed social network at a
university level to increasingly publicly data exposed to the
entire internet. Facebook’s privacy model has under gone
significant changes [14], [15] and at present very little is in
fact protected. Both wall posts and photos default, at this time,
to enable everyone to view them, although users can change
the defaults to permit the user to limit their access.

Facebook permits users to be granted or explicitly prohibited
access to either a wall post or a photo. Named lists of users
can also be created which can also be used for access control
purposes. Photos can also be stored within albums which also
have their own security controls.

Facebook’s access control allows each item to have its own
access control. While this is effective, it does not scale with
the number of items managed by a user. Take for example two
Facebook albums of photographs. One set is from a family
event whilst the other is from a friend’s party. In this situation
you would rather not have your friends perhaps see your family
photos whilst you may not be interested in your family seeing
what antics you get up to with your friends.

An example like this, presented by Paul Adams in The Real
Life Social Network [16], demonstrates just a situation. In
this example, Debbie, the social networker, is a member of
various groups: her family, friends from LA, friends from San
Diego and a group of ten year old kids to whom she teaches
swimming. Debbie’s LA friends work in a gay bar and share
pictures which she comments on. Debbie realises that because
of her commenting on them, the ten year old kids can now
also see these photos. Adams notes that Debbie was upset for
not realising that the system allows this to happen.

This adds an extra dimension to the problem. To handle the
original situation one could simply create two lists of people.
One list for family members and another list for friends. Then
with both of these groups with each item ensure that the

appropriate security level is assigned. However in Debbie’s
particular situation the problem is a lot more complicated:
Facebook doesn’t have access control for comments. Her
commenting and liking those photos immediately shared it
with all of her friends — the LA friends, San Diego friends,
her family and the ten year old’s.

A similar situation exists with tagging in Facebook. People
can be tagged in videos, images, notes and other updates.
People can untag themselves however they have no easy ability
to prevent someone from tagging them. Until such time as the
person logs in and untags themselves, the picture can appear
in their friends stream if they can see it. People could tag
undesirable pictures of others and this will appear to their
friends even if the person tagging the photo isn’t a direct friend
(e.g. a friend of a friend).

Facebook offers reasonable levels of access control for
content that you provide. However the “social graph” provides
the ability for people to be linked either through their own
actions (commenting on other peoples content) or through
the actions of others (being tagged in photos provided by
others) which offer no means of protection and is immediately
exposed to all friends regardless of the actual context.

It is this concept of “context” that Adams introduces with
different groups which we naturally socialise within. Adams
suggests that we need to have support from the social net-
working systems to provide this functionality. Cluster analysis,
based on the interconnectedness of the friends in the network
could, provide a automatic grouping, although triend networks
do not necessarily form consistent clusters.

A. A new security-related feature

Consider a “new feature” which might be added to face-
book, as follows: photos can be tagged, in facebook, by the
owner of the photo. This associates another facebook user with
the photo, and usually implies that the person is visible in
the photo. We would like the tagged person to have certain
rights in relation to this photo by virtue of being tagged. All
sorts of possibilities can be conceived (this is the problem, and
perhaps also the opportunity presented by this example). For
simplicity let us consider just one new feature in relation to
rights: the tagged person can show the photo to other users.
This means that the tagged user is indicating that a certain

7

additional person, other than the owner, can access the photo.

B. A tentative solution

When the tagged user indicates that a certain additional user
should have access to a photo, the system should add this
additional person to a list of users with access to the photo.
This would probably be achieved by a simple action with the
mouse which updates the access list and sends a message to the
person being given access informing them of the availability
of the photo. The system would then need to check this list
when access to the photo is being granted. The list of users
with such rights would probably need to be kept separately
from other lists so that it can be managed appropriately.

It would be possible to hard-code the necessary access
procedures into the software for the system, however doing
so would compromise the maintainability of the system and
potentially lead to difficult to control bugs. A better approach
would be to implement a generic rule-based system in which
rules such as these would be encoded in XACML or another
formal language.

The rules that we have already described, informally, for
this system, are as follows:
• photo owners can tag photos with the names of users;
• tagged users have the right to provide other users with

access to photos, which actually means adding these users
to a list of users allowed access by taggers;

• users in the latter list can view such photos.

C. Implications

The most significant implication of the rules described
above is that a user in the tagger-generated user access list
can access a photo. Formulation of a rule of this nature
in a language such as XACML is not difficult to envisage.
Enforcing such a rule is also not difficult to envisage.

What is more difficult to envisage, but nevertheless is clearly
required, is that rules such as this should be formulated,
formalised, validated or tested, implemented, modified, used,
and eventually decommissioned, on a regular basis. Facebook
gives us an example where the complexity of the access rules is
sufficient that a regular process of rule development appears
to be necessary merely to support normal operation of the
system.

This suggests that the expressive features in the language
for expressing rules need to be as full as possible – ideally
complete, in the sense that any reasonable rule can be specified
within this language.

VII. DISCUSSION ANC CONCLUDING REMARKS

The access control architecture implied in the use of
XACML is unable to accomodate examples of Sections II–
IV and Section VI .

Accomodating these examples in XACML appears to re-
quire fundamental changes, such as introducing a new algo-
rithm for applying rules to access control, adding quantifiers to
the vocabulary of XACML, and including schemes of rules as
well as simple rules. These changes would enable XACML

to be as expressive as first order logic which is a well-
established object of study in mathematical logic, with a highly
developed theory, including a completeness theorem [10], [4],
which suggests that once these extensions of XACML are
incorporated, no more extensions will be necessary.

In this paper we have seen five examples which illustrate
why each of these extensions is needed.

Although the extensions to XACML introduce additional
complexity, it has been shown that these extensions can be
introduced in a way that the potential additional complexity
is avoided. For example, we could add an auxiliary access
control algorithm which denies access whenever application
of the primary access control algorithm is unable to complete
its determination within a specified time.

Speed of evaluation of access rules is of paramount im-
portance in many situations, however we have seen that this
does not preclude appropriate use of rules which potentially
introduce undesirable complexity.

Three of the new examples presented here confirm the
usefulness of additional expressive power in the definition of
security policies, confirming the hypothesis with which the
paper began, that additional expressive power may be needed
for XACML to achieve its intended objectives.

REFERENCES

[1] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin,
“A calculus for access control in distributed systems,” ACM Transactions
on Programming Languages and Systems, vol. 15, no. 4, pp. 706–734,
1993.

[2] Dimitar P. Guelev, Mark D. Ryan, and Pierre-Yves Schobbens, “Model-
checking Access Control Policies,” in Seventh Information Security Con-
ference (ISC’04). Lecture Notes in Computer Science. 2004, Springer-
Verlag.

[3] Mark D. Ryan Nan Zhang and Dimitar Guelev, “Evaluating Access
Control Policies Through Model Checking,” in Eighth Information
Security Conference (ISC’05). Lecture Notes in Computer Science. 2005,
Springer-Verlag.

[4] Jon Barwise, Ed., Handbook of Mathematical Logic, North Holland,
1977.

[5] Nan Zhang, Mark Ryan, and Dimitar P. Guelev, “Synthesising Verified
Access Control Systems in XACML,” in LNCS, 2nd ACM Workshop on
Formal Methods in Security Engineering. 2004, Springer-Verlag.

[6] Nan Zhang, Mark Ryan, and Dimitar P. Guelev, “Synthesising Verified
Access Control Systems through Model Checking,” Journal of Computer
Security, vol. 16, no. 1, pp. 1–61, 2007.

[7] Simon Godik and Tim Moses, “eXtensible 2 Access Control Markup 3
Language (XACML) Version 1.0,” Tech. Rep., OASIS, 2003.

[8] Intel, “The XACML Enabled Gateway - The Entrance to a New SOA
Ecosystem,” Tech. Rep., Intel Corporation, 2009.

[9] OASIS (Organization for the Advancement of Structured Informa-
tion Standards), “OASIS eXtensible Access Control Markup Language
(XACML) TC,” 2010.

[10] S. C. Kleene, Introduction to Metamathematics, D. van Nostrand, 1952.
[11] Elliot Mendelson, Introduction to Mathematical Logic, Van Nostrand,

Princeton, New Jersey, 1964.
[12] R. G. Addie, “Certified Documents and their Interchange,” Tech.

Rep. SC-MC-2002, University of Southern Queensland, Department of
Mathematics and Computing, 2010.

[13] Samuel Alexander Moffatt, “Access control in semantic information
systems,” Masters dissertation, University of Southern Queensland,
2010.

[14] Kurt Opsahl, “Facebook’s Eroding Privacy Policy: A Timeline,” April
2010.

[15] Matt McKeon, “The Evolution of Privacy on Facebook,” April 2010.
[16] Paul Adams, “The Real Life Social Network,” July 2010.

8

