
remote sensing  

Article

Improving Biomass and Grain Yield Prediction of Wheat
Genotypes on Sodic Soil Using Integrated High-Resolution
Multispectral, Hyperspectral, 3D Point Cloud, and Machine
Learning Techniques

Malini Roy Choudhury 1, Sumanta Das 1,* , Jack Christopher 2 , Armando Apan 3,4, Scott Chapman 1,2 ,
Neal W. Menzies 1,2 and Yash P. Dang 1

����������
�������

Citation: Roy Choudhury, M.; Das,

S.; Christopher, J.; Apan, A.;

Chapman, S.; Menzies, N.W.; Dang,

Y.P. Improving Biomass and Grain

Yield Prediction of Wheat Genotypes

on Sodic Soil Using Integrated

High-Resolution Multispectral,

Hyperspectral, 3D Point Cloud, and

Machine Learning Techniques.

Remote Sens. 2021, 13, 3482. https://

doi.org/10.3390/rs13173482

Academic Editor:

Michael Schirrmann

Received: 26 July 2021

Accepted: 30 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The School of Agriculture and Food Sciences, University of Queensland, St. Lucia, QLD 4072, Australia;
m.roychoudhury@uq.edu.au (M.R.C.); scott.chapman@uq.edu.au (S.C.); n.menzies@uq.edu.au (N.W.M.);
y.dang@uq.edu.au (Y.P.D.)

2 The Queensland Alliance for Agricultural and Food Innovation, Leslie Research Facility,
University of Queensland, Toowoomba, QLD 4350, Australia; j.christopher@uq.edu.au

3 The School of Civil Engineering and Surveying, University of Southern Queensland,
Toowoomba, QLD 4350, Australia; Armando.Apan@usq.edu.au

4 The Institute of Environmental Science and Meteorology, University of the Philippines Diliman,
Quezon City 1101, Philippines

* Correspondence: sumanta.das@uq.edu.au

Abstract: Sodic soils adversely affect crop production over extensive areas of rain-fed cropping
worldwide, with particularly large areas in Australia. Crop phenotyping may assist in identifying
cultivars tolerant to soil sodicity. However, studies to identify the most appropriate traits and reliable
tools to assist crop phenotyping on sodic soil are limited. Hence, this study evaluated the ability of
multispectral, hyperspectral, 3D point cloud, and machine learning techniques to improve estimation
of biomass and grain yield of wheat genotypes grown on a moderately sodic (MS) and highly sodic
(HS) soil sites in northeastern Australia. While a number of studies have reported using different
remote sensing approaches and crop traits to quantify crop growth, stress, and yield variation,
studies are limited using the combination of these techniques including machine learning to improve
estimation of genotypic biomass and yield, especially in constrained sodic soil environments. At
close to flowering, unmanned aerial vehicle (UAV) and ground-based proximal sensing was used
to obtain remote and/or proximal sensing data, while biomass yield and crop heights were also
manually measured in the field. Grain yield was machine-harvested at maturity. UAV remote and/or
proximal sensing-derived spectral vegetation indices (VIs), such as normalized difference vegetation
index, optimized soil adjusted vegetation index, and enhanced vegetation index and crop height
were closely corresponded to wheat genotypic biomass and grain yields. UAV multispectral VIs more
closely associated with biomass and grain yields compared to proximal sensing data. The red-green-
blue (RGB) 3D point cloud technique was effective in determining crop height, which was slightly
better correlated with genotypic biomass and grain yield than ground-measured crop height data.
These remote sensing-derived crop traits (VIs and crop height) and wheat biomass and grain yields
were further simulated using machine learning algorithms (multitarget linear regression, support
vector machine regression, Gaussian process regression, and artificial neural network) with different
kernels to improve estimation of biomass and grain yield. The artificial neural network predicted
biomass yield (R2 = 0.89; RMSE = 34.8 g/m2 for the MS and R2 = 0.82; RMSE = 26.4 g/m2 for the
HS site) and grain yield (R2 = 0.88; RMSE = 11.8 g/m2 for the MS and R2 = 0.74; RMSE = 16.1 g/m2

for the HS site) with slightly less error than the others. Wheat genotypes Mitch, Corack, Mace, Trojan,
Lancer, and Bremer were identified as more tolerant to sodic soil constraints than Emu Rock, Janz,
Flanker, and Gladius. The study improves our ability to select appropriate traits and techniques in
accurate estimation of wheat genotypic biomass and grain yields on sodic soils. This will also assist
farmers in identifying cultivars tolerant to sodic soil constraints.
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1. Introduction

Sodic soils occupy 581 million hectares globally, representing one of the significant
constraints to agricultural production [1,2]. Worldwide, Australia has the widest cover
of sodic soils (340 million hectares) [2]. Wheat is an important rain-fed crop grown in
northeastern Australia, and sodicity poses a major threat to its production as it limits plant
available water in the root zone [3–5]. To increase farm productivity and profitability, one
important strategy is to identify wheat genotypes with better tolerance to sodic soil condi-
tions. To do this, it is of importance to be able to evaluate and compare the performance of
genotypes in terms of their growth and yield response in sodic soil [6].

Crop phenotyping, i.e., the evaluation and quantitative measurement of complex traits
based on different characteristics over different growth stages [7], is widely used to identify
adaptive traits and quantify plant-soil-environment interactions [8,9]. Phenotyping has
traditionally relied on the collection of information about crop growth (e.g., biomass, leaf
appearance, crop height, crop nutrient content) over the growing season using manual field
sampling methods. However, manual methods are often time-consuming, labor-intensive,
and potentially inaccurate [10,11]. The use of unmanned aerial vehicles fitted with a vari-
ety of powerful and high-resolution sensors has provided an alternative method of data
collection that is inexpensive, as well as time- and labor-efficient, and which can provide
accurate soil-crop information in real time at a field to regional scale [12–14]. However,
limited studies have been reported using these approaches for crop phenotyping in con-
strained environments, particularly on sodic soils. These sensor-based approaches may be
useful for phenotyping crops/cultivars grown on sodic soils where spatial variability and
incomplete canopy cover can be major challenges to representative sampling. Although
a recent study reported the potential of a high-resolution UAV-thermal imaging sensor
to evaluate physiological performance, water status, and growth of wheat cultivars on
sodic soils [15], greater research is required using different cropping traits and multiple
sensor-based approaches for phenotyping on sodic soils that can improve estimation of
crop growth and yield for adaptation of wheat genotypes in sodic soil environments.

Remote sensing spectral information and traits obtained from visible and near-infrared
(VNIR) wavelengths can be used to determine crop health, vigor, moisture content, and
growth [16]. With recent advances in the airborne LIDAR and/or UAV red-green-blue
(RGB) sensor-based 3D point cloud techniques in high-throughput phenotyping (HTP), it is
also possible to obtain high-resolution crop architectural traits (height, volume, and canopy
cover) [17,18]. These architectural traits have been reported as important in influencing
aboveground biomass and/or grain yield variation [19–21]. In addition, a wide range
of proximal and handheld instruments, such as EMI (Geonics EM38®, Genonics LTD,
Canada) [22,23], GreenSeeker® handheld sensor [24], and ASD FieldSpec® range [25,26],
are now available to provide sound, detailed information on soil and crop characteristics at
close distances. Hyperspectral sensors with hundreds of spectral bands have demonstrated
potential for assessing and predicting crop performance and yield [26]. Researchers have
suggested that using combined trait information derived from a number of sensors can
be advantageous to quantify complex crop information on non-sodic soil [27,28]. How-
ever, the effectiveness of these remote sensing techniques has only been reported in the
absence of soil constraints. These combined traits information may, thus, also be useful
for assessing the performance of crops growing in sodic soils. However, there is currently
little published information available to identify appropriate physiological traits that can
be used to evaluate and forecast the relative performance of crops and/or cultivars using
these proximal and handheld instruments with that of UAVs on sodic soils. Hence, the
identification of robust techniques is required for phenotyping on sodic soils.



Remote Sens. 2021, 13, 3482 3 of 27

A wide range of vegetation indices (VIs), such as normalized difference vegetation
index (NDVI), enhanced vegetation index (EVI), and optimized soil adjusted vegetation
index (OSAVI), can be computed from multispectral and/or hyperspectral data collected
using UAVs or proximal sensing. These VIs provide information about crop health, green-
ness, and vigor [29–31]. The NDVI is one of the most well-known VIs for monitoring
crop growth and predicting grain yield [32–36]. However, sparse vegetation or soils that
generate high reflectance (especially in dryland agriculture) can adversely affect the relia-
bility of NDVI. Rondeaux et al. [37] reported that OSAVI was an improved model of NDVI
that could measure canopy reflectance by using 0.16 as an optimal value for reducing the
variation of canopy reflectance in the presence of soil background conditions. In contrast,
Gao et al. [38] reported that EVI can be more responsive to canopy cover, structural vari-
ation, and architecture in comparison to NDVI, especially at a regional scale [39]. Huete
et al. [40] also suggested that EVI decouples the background effects from the canopy and
is less sensitive to atmospheric influence. Furthermore, NDVI and EVI together can be
used to detect temporal vegetation cover and provide insights into canopy biophysical
information. While a number of different VIs exist to predict crop growth and yield, it is
often difficult to determine which is the most useful for a specific study, and the relative
performance of VIs can vary depending on the site-specific soil and environmental condi-
tions. There is also limited information on the usefulness of VIs in crop growth and yield
estimation, particularly on sodic soils. Hence, a comprehensive assessment of these VIs
derived from a different remote and/or proximal sensors is required to select appropriate
traits for reliable crop growth and yield forecasting on sodic soils.

An accurate and reliable seasonal crop growth and yield forecast is essential for
agriculture risk assessment and improving productivity. A number of multivariate predic-
tive machine learning (ML) algorithms can be used in agricultural yield forecasting and
modeling [41–44]. ML has been proven to improve decision making and provide reliable
outcomes that are consistent and robust [45–47]. Although a number of studies have re-
ported the usefulness of various ML algorithms, including support vector machine (SVM),
artificial neural network (ANN), classification and regression tree (CRT), Gaussian process
regression (GPR), and multilinear regression (MLR), for agricultural yield estimation at
various spatial extensions (Table 1), the authors are currently unaware of any published
assessment on the usefulness of these integrated ML and optical remote sensing-based
approaches for crop growth and yield estimations, especially in constrained sodic soils.
Hence, a thorough evaluation of these ML approaches is required to determine its utility
for crop growth and yield prediction on sodic soils.

Accurate crop growth and yield prediction can be reliant on the nature and importance
of input cropping traits and data variability. It can also be specific to different environments
and sites. Hence, a thorough evaluation of these approaches is necessary for adaptation in
sodic soils. The present study proposes an integrated optical remote sensing and ML-based
framework to quantify wheat genotypic traits to assist estimation of growth and yield on
sodic soils. The research objectives are to (1) assess the utility of a variety of remote sensing
techniques and traits to determine crop growth and yield of wheat genotypes on sodic soils,
(2) examine the abilities of different ML algorithms coupled with remote sensing-derived
biophysical traits to improve prediction of wheat biomass and grain yields, and (3) quantify
the impacts of sodic soils on wheat crop growth and yield of to identify tolerant genotypes
on sodic soils. The present study tests if integrated optical remote sensing and ML-based
techniques can accurately forecast yield and help to distinguish tolerant genotypes on sodic
soil that can assist agronomists/researchers to select appropriate techniques/traits for
phenotyping on sodic soils by reducing the need for extensive, labor-intensive, and manual
methods of phenotyping to examine the traits and crop growth. In addition, the study may
also guide decisions for farmers to select genotypes tolerant to sodic soil constraints to
maximize productivity in sodic soil environments.
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Table 1. Findings from the previous literatures.

Studies Traits Findings Representative Environments

[43]

NDVI, absorbed photosynthesis
active radiation (APAR), surface

temperature (Ts), and water stress
index were derived from National

Oceanic and Atmospheric
Administration (NOAA) Advanced

Very-High-Resolution
Radiometer (AVHRR) data for crop

yield simulation over 10 years

ANN-based model was successful
in accurate crop yield forecasting

Winter wheat belt of He-Nan
province, China on non-sodic soils

[44] Landsat 8 OLI-based NDVI
time-series data

Boosted regression tree (BRT)
performed best for all the years,

followed by random forest
regression (RFR) and GPR silage

maize yield prediction

Irrigated field at Moghan fertilized
plain, northwest Iran

[46]

Various soil, weather parameters,
genetic potential, planting density,

rotation, and N fertilizer factors
were used as the input

The backpropagation, feedforward
ANN forecasted corn yields with
~80% accuracy; predicted yields

were sensitive to rainfall, N
fertilizer, and soil phosphorus

Morrow Plots, campus of the
University of Illinois at

Urbana-Champaign, United States
Flanagan silty loam and non-sodic
soil; different fertilizer treatments

were applied

[48]
Crop water stress indices derived
from UAV-based thermal imagery

and agrometeorological parameters

CRT accurately estimated wheat
biomass and grain yield Sodic soils in Australia

[49] UAV-based VIs and canopy height ML-based Ridge regression
achieved accurate yield estimation Non-sodic soils, Texas

[50]

Spectral indices, ground-measured
plant height, and UAV

hyperspectral imagery extracted
plant height

Partial least squares regression
(PLSR) performed best in winter
wheat yield estimation, closely
followed by an ANN; random

forest (RF) could not perform well

In National Precision Agriculture
Research Demonstration Base in
Xiaotangshan Town, Changping

District, Beijing, China
Non-sodic soils and warm

temperate continental monsoon
climatic conditions

[51]
Spectral, structural, and plant

height information (UAV
multispectral and digital images)

RF produced balanced outcome
among four algorithms (MLR, SVM,

ANN, and RF) in maize
above-ground biomass estimation

The research station, Xiao Tangshan
National Precision Agriculture

Research Center of China,
Changping District of Beijing City

Warm temperate semi-humid
continental monsoon climate and

non-sodic soils

[52] Spectral vegetation indices (UAV
imagery)

Green NDVI (GNDVI) explained
better variation of wheat yield than

NDVI over two growing seasons

Athalassa experimental station
Shallow sandy clay loam soil,

water-limited environment, and
non-sodic soils

[53]

VIs (ground-based hyperspectral
data and UAV-based RGB)

imaging), plant height (UAV-based
multitemporal crop surface models)

MLR or multiple nonlinear
regression using combined VIs and
plant height information performed

best for summer barley biomass
estimation study

Campus Klein-Altendorf
agricultural research station,

Germany, non-sodic soils
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2. Materials and Methods
2.1. Site Selection and Soil Sampling

The experiment was performed at two rain-fed sites, one moderately sodic (MS)
(28.15◦S and 150.22◦E) and the other highly sodic (HS) (28.08◦S and 150.15◦E), near Goondi-
windi in northeastern Australia. Both sites have well-structured gray vertisols with high
clay content and are located at an average elevation of 268 m above mean sea level. During
the normal crop growing season from May to October, air temperature varied between
~5 and ~35 ◦C for both sites with seasonal means of 14.7 ◦C for the MS and 14.9 ◦C for
the HS site [15,54]. Mean relative humidity was 54.6% for the MS and 54.3% for the HS
site, and total in-season crop rainfall was 86.0 mm for the MS and 85.6 mm for the HS site
(Figure 1) [15].
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Figure 1. In-season crop rainfall and air temperature (monthly mean) of the moderately sodic (MS) and highly sodic (HS)
sites in the wheat-growing season of 2018 [15]. The error bars represent the standard error of the monthly mean values.

At each site, soil samples were collected from a minimum of eight points using a hy-
draulic sampling rig to take 50 mm diameter soil cores to a depth of 150 cm. The soil
samples were dried at 40 ◦C and ground to <2 mm. In a 1:5 soil water suspension [55], pH,
EC, and chloride (Cl) were measured; the EC of saturated extract (ECse) was then com-
puted from EC 1:5, and the clay content was determined using the pipette method [56,57].
Exchangeable Na and the cation exchange capacity (CEC) were measured using a 1 M
NH4Cl (pH 8.5) extraction solution [58], and ESP was calculated from exchangeable Na
relative to CEC. The volumetric moisture content as a percentage was determined after
drying samples at 105 ◦C to obtain the gravimetric soil moisture content before multiplying
this by the soil bulk density (BD) [15]. The soil physicochemical properties of both sites are
presented in Figure 2.
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Figure 2. Soil physicochemical properties including pH (a), Cl concentration (b), electrical conductivity (c), exchangeable
sodium percentage (d), clay content (e), and initial volumetric soil moisture prior to sowing (f) for the moderately sodic
and highly sodic sites at 0–150 cm soil depth. The error bars represent the standard error of the mean from eight sampling
points at each site [15,59].

2.2. Experimental Design and Crop Biophysical Measurements

We used a randomized complete block design (RCBD) for the experiment with
eight replications [15,54,59]. Four of the replications (72 plots) were used for destruc-
tive plant sampling, crop height, and biophysical measurements close to flowering stage,
110–112 days after sowing (DAS), and another four replications (72 plots) were used for
grain yield measurements at maturity (152 DAS). Eighteen contrasting wheat genotypes
were tested (Supplementary Table S1) [15,54,59], making a total of 144 plots (four columns
and 36 rows) (Figure 3). Destructive sampling plots and grain harvest plots for each geno-
type in each replicate block were arranged in adjacent pairs. Each plot was 5 × 2 m at
harvest and consisted of five planting rows with 30 cm spacing in between (Supplementary
Figure S1) [15,54,59]. The crops were sown in late May and harvested in early November
of 2018.
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Figure 3. Layout design of experimental trials. The destructive sampling plots (in odd numbers) marked by yellow color
and yield plots (in even numbers) in green color show the alignment of each genotype side by side [15].

The aboveground biomass yield at both sites was harvested from a 3× 0.5 m area from
the middle three rows of each destructive sampling plots at 110–112 DAS (Supplementary
Figure S1), stored in paper bags, and then dried at 70 ◦C for 72 h to determine plant dry
weight (DW) [15,48]. In addition, crop heights were measured manually by placing a ruler
vertically on the soil surface and measuring the height of plants from the middle three rows
in each plot. Average plant height of a plot was then estimated using the mean of these
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measurements. Grain yield was measured from the yield plots by machine harvesting at
crop maturity (152 DAS).

2.3. Remote Sensing Data Collection and Preprocessing
2.3.1. Proximal Sensing for Canopy Reflectance Measurements

We used a handheld GreenSeeker® 505 (Trimble Inc., Sunnyvale, CA, USA) active
sensor to measure NDVI from tillering to crop maturity to acquire data on growth and
greenness during these crop development stages. NDVI values range between 0 and +1.
Higher values indicate greater canopy cover and/or greenness suggesting good canopy
health. The sensor was conveyed at an average speed of 0.84 m/s and an elevation of 0.5 m
from the top of the canopy from the middle three rows of each biomass sampling plot
(Supplementary Figure S1). The measurements were taken continuously and at the same
speed without stopping the sensor in between plots [15]. The field of view of the sensor
was oval, and it changed with the elevation from the ground. Bare soil reflectance was
measured separately from outside of the plot area and calibrated using a calibration panel
to reduce the effect of soil reflectance on the canopy [15,59].

Canopy reflectance was also measured using a spectroradiometer (ASD FieldSpec®

HandHeld 2, Malvern Panalytical Ltd., Malvern, UK) under cloud-free, wind-free, and
sunny conditions between 11:00 a.m. and 3:00 p.m. Weekly in-situ monitoring of crop
development was conducted, and a date near flowering (110–112 DAS) was selected
for crop assessment. A date near flowering was chosen since this is the most crucial
time before grain filling when the canopy is most fully developed and likely to modify
the reflectance most efficiently [15]. The instrument was calibrated using a standard
white spectralon calibration panel at each time of point shoot to reduce the effects of soil
reflectance on canopy spectral measurements. The continuous spectra were recorded in
Vis to NIR from 325 nm to 1075 nm with ±1 nm accuracy and a resolution of <3 nm for
each spectrum. The field of view of the sensor was 25◦ and, in each plot, five spectral
measurements of 0.2 m diameter area of the canopy were recorded from the middle three
rows (Supplementary Figure S1) by locating the sensor in a vertical position 0.5 m above the
canopy cover [26]. The measured canopy reflectance data were then exported into an ASCII
file using ViewSpec Pro, an integrated package with RS3 spectral acquisition software
(Analytical Spectral Devices Inc., Boulder, CO, USA) [60]. Subsequently, the raw data were
exported into the R statistical software platform and converted into hyperspectral data by
using the hyperSpec package [61]. The preprocessing (‘cleaning’) was carried out using
a spreadsheet program. Accordingly, the bands introducing excessive variation (‘noise’)
into the data (901–1050 nm) and very short wavelength bands (325–399 nm) were excluded.

2.3.2. UAV-Based Sensing

The multispectral data were obtained at both sites via UAV campaigns (Figure 4) at
110–112 DAS in sunny, cloud-free, and low-wind conditions during midday. The propeller
aero points were positioned on the ground uniformly for recording GPS positioning
information (Figure 4d) before starting the flight. The flight plan was set up in the Pix4D
capture software platform (Pix4D S.A., Switzerland) using a 2D polygon mission tool
with lower ground sample distance (GSD = 1.3 cm/px), 85% image overlapping, a field
of view (FOV) of 85◦, and 30 m flight height. A five-band multispectral RedEdge-M
camera (MicaSense Inc., Seattle, DC, USA) (Figure 4c) with a 5.4 mm focal length was
used to capture high-resolution (1280 × 960 pixels) multispectral imagery. The camera
was mounted on a DJI Matrices 100 (SZ DJI Technology, Shenzhen, Guangdong, China)
quadcopter. The imagery was acquired with bandwidth and the center wavelength of
20 nm at 475 nm (blue), 20 nm at 560 nm (green), 10 nm at 668 nm (red), 10 nm at 717 nm
(red edge), and 40 nm at 840 nm (near infrared) [34,62]. The raw images were recorded
in 16 bit raw GeoTiff files stored on a local digital card, with the images uploaded to
ATLAS cloud (MicaSense Inc., Seattle, DC, USA) for visualization, further processing, and
information extraction.
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Image preprocessing, including orientation correction, tie point matching, reflectance
calibration, and orthomosaicing was performed in Agisoft Metashape 1.5.5 software plat-
form (Agisoft LLC, St. Petersburg, Russia) [63]. A Calibrated Reflectance Panel (CRP)
(MicaSense Inc., Seattle, DC, USA) was used before and after the individual flights for
calibrating GeoTiff layers of five spectral bands for the conversion of digital number (DN)
into reflectance (Figure 4e). Pixels of the canopy were segmented from background soil
reflectance using Otsu’s thresholding method [64,65] in the MATLAB R2020a image pro-
cessing platform (The Mathworks® Inc., Natick, MA, USA) (Supplementary Figure S2),
which finds the optimal threshold by maximizing the weighted sum of between-class
variances. Lastly, statistics of plot-wise mean canopy reflectance were extracted from the
canopy pixels using the zonal statistics tool in Arc GIS 10.7.1 software platform (ESRI Ltd.,
Redlands, CA, USA).

In addition, a high-resolution RGB camera (DJI Technology, Shenzhen, Guangdong,
China), fitted with a 24 mm lens with a field of view (FOV) of 25◦ × 20◦ and 5472 × 3648 pixel
resolution, was used to acquire RGB images of the site at 110–112 DAS. The camera
was mounted on a DJI Phantom 4 Professional UAV at 30 m flight height with a GSD
of 1.3 cm/px, 85% image overlapping, and a FOV of 85◦. The RGB mission planning
and setup was similar to that used for the UAV multispectral mission. The images were
then loaded and aligned in Agisoft Metashape 1.5.5 software platform (Agisoft LLC,
St. Petersburg, Russia) for orthomosaicing and further preprocessing and point cloud
extraction. Initially, a sparse point cloud was generated with the formation of camera
positioning [66]. Gradually, dense point clouds were generated using a dense stereo-
matched algorithm with the structure from motion (SfM) technique and exported for crop
height extraction in the Lidar 360 software platform (GreenValley International, Berkeley,
CA, USA). The average point density of the SfM captures was 824 and 945 pt/m2 for the
MS and the HS site, respectively. Furthermore, an *.LAS file (Lidar data exchange) was
created and converted to a multipoint structure for measuring crop height. Lastly, by
taking a horizontal cross-sectional profile of the point cloud for each plot (Figure 5), the
vertical difference (‘z’ direction) between the reference soil surface and the apex point
(average top of the terminal spikelet) was measured [67], and plot-wise crop heights were
calculated by taking the mean of at least the 5000 highest cloud data points in each plot
(Supplementary Figure S3).
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2.4. Vegetation Indices Derived from UAV Multispectral and Proximal Hyperspectral Data

Several vegetation indices (NDVI, OSAVI, and EVI) were derived from UAV multi-
spectral imagery and proximal hyperspectral data to evaluate crop characteristics (Table 2).
The NDVI was calculated as the simple normalization process between near-infrared (NIR)
and red (R) spectral bands using Equation (1). We also computed OSAVI as an improved VI
over the NDVI. The OSAVI enhances canopy reflectance by subduing the soil reflectance us-
ing an optimized soil adjusted coefficient (L = 0.16) in Equation (2). The EVI was computed
using Equation (3) for its ability to optimize crop reflectance with improved sensitivity for
the biomass yield prediction.

Table 2. Vegetation indices evaluated in this study.

Vegetation Indices Equations References

NDVI NDVI = (NIR − R)/(NIR + R) (1) [68,69]

OSAVI OSAVI = ((NIR − R)/(NIR + R + L)) (2) [37]

EVI EVI = G NIR − R
NIR + C1 × R − C2 × B + L (3) [40,70,71]

NIR is near infrared, R is red, B is blue wavelengths, G is the gain factor = 2.5, C1 = 6 and C2 =7.5 are the coefficients
of aerosol resistance term, and L = 1 is the canopy background adjustment factor in Equation (3). For hyperspectral
VIs, we used the reflectance of the wavebands 864 nm (NIR), 671 nm (R), and 467 nm (B) [40,68,70].

2.5. Statistical Analyses
2.5.1. Regression Analysis

A linear regression model was fitted in MATLAB R2020a (The Mathworks® Inc.,
Natick, MA, USA) to predict biomass and grain yield in response to individual VIs and
crop heights using a 10-fold cross-validation method. A test of significance at p < 0.05
for a difference from ‘0’ was used to determine significance of biomass and grain yield
prediction. The accuracy of the models was assessed by measuring the root-mean-square
error (RMSE) (Equation (4)) and coefficient of determination (R2) Equation (5) in the cross-
validation. In general, small RMSE and high R2 values can be used to determine the
accuracy of a model.

RMSE =

√
1
n

n

∑
i=1

(zi − z(x)i)
2, (4)
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R2 =

 ∑n
i=1(zi − zi)(z(x)i − z(x)i)√

∑n.
l=1

(zi − zi)
2Σn

i=1(zi − z(x)i)
2

2

, (5)

where n is the total number of data points, zi represents the observed value at i, z(x)i is
the predicted value at i, zi represents an average observed value, and z(x)i represents
an average predicted value.

2.5.2. Analysis of Variance (ANOVA)

We performed two-way ANOVA using the SPSS® Statistics 25 software platform (IBM,
New York, NY, USA) to determine whether any significant differences existed among the
site means of wheat genotypes based on VIs, 3D point cloud-derived crop height, biomass
yield (g/m2), and grain yield (g/m2) at the MS and HS sites. The testing of significant
differences between levels within each factor was performed using Fisher’s protected least
significant difference (LSD) test at the 5% significance level. The variables were treated as
nested effects, and replicates were fitted as a random effect.

2.5.3. Machine Learning

We used four multivariate supervised regression learning techniques in ML, i.e., MLR,
SVM, GPR, and ANN, to predict biomass yield and grain yield for both MS and HS sites
as a function of site-specific VIs and 3D point cloud-derived crop heights in MATLAB
R2020a environment (The Mathworks® Inc., Natick, MA, USA). These ML algorithms were
selected specifically, since previous studies on non-sodic soils (see Table 1) have identified
the diversified usefulness of these techniques in agricultural applications, including yield
prediction, and they can also be applied on small to moderate datasets, for example, at
a small field scale. A principal component analysis (PCA) was used for model feature
selection to understand explained data variance in the models before applying the ML
algorithms for prediction. The ML architecture employed in this study is illustrated in
Figure 6 with a stepwise process including the design of training and testing datasets,
feature selection, cross-validation, model performance evaluation, and decision making.

Multitarget Linear Regression

We used and compared linear, robust linear, and stepwise algorithms under this
category. In general, a multi-robust linear regression algorithm is less sensitive to outliers
and also provides flexibility in fitting [72]. The stepwise regression uses variables (VIs,
crop height, biomass yield, and grain yield) at each step and removes variables that are not
significant (p > 0.05) for the prediction [73].

Support Vector Machine Regression

We used and compared different kernel functions in SVM, such as linear, Gaussian,
cubic, and quadratic for their ability to accurately predict the outcomes. The SVM is
considered a reliable supervised learning technique that is used for classification, pattern
recognition, regression, and prediction [74]. The linear kernel is used for a linearly separable
dataset [75], whereas the Gaussian SVM is used for complex relationships [76]. Quadratic
and cubic functions can provide flexibility in fitting [72].

Gaussian Process Regression

The GPR can predict the outcomes accurately. However, it is often difficult to interpret
the outcomes. As recommended by The MathWorks Inc. [72], the preset flexibility in model
type gallery was maintained in the MATLAB R2020a environment to avoid overfitting and
to produce a small error in training. The kernel functions, such as exponential, squared
exponential, matern 5/2, and rational quadratic were used and compared in their ability to
predict the outcomes.
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Artificial Neural Network

A multilayer perceptron model (MLP) is the most used network model in ANN. The
backpropagation algorithm of MLP is used to search for the lowest error function in the
weight space using gradient-based methods [77]. To avoid overfitting in the MLP result, it
is important to train the network model with an appropriate number of hidden layers and
neurons [78]. In this network model, a sum of inputs and bias passes through a transfer
function is used to deliver the output to the activation point. The perceptron network is
composed of artificial nodes or neurons. These nodes or neurons are the units, which can
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process information in layers and are connected by synaptic weights. They can transfer
information in a supervised way for building a prediction model after the classification of
data. The classified data are stored in a memory. Typically, the model is interconnected
by the nodes or neurons in a three-layer network structure (input, hidden, and output
layer). Each node or neuron of a layer is linked to the next layer. The input data carry
information on the network structure, which is multiplied by weights while entering the
hidden layer. Furthermore, the hidden layer processes this information, and the output
layer classifies and predicts an outcome. The weights are the preassigned numbers, which
are in the form of an argument that is passed to a nonlinear mathematical function and
an activation function to return numbers between 0 and 1 [79].

A multilayer feedforward network model was performed in this study for prediction
of biomass and for prediction of grain yield (Figure 7). Each multilayer feedforward
network model consisted of a number of input, hidden, and output layers. The network
model was selected by optimizing hidden layers, neurons, and functions using multiple
runs and cross-validated by assigning 70% of the dataset to training, 15% to testing, and
the remaining 15% to model validation. The network was trained using a Levenberg-
Marquardt backpropagation algorithm. This algorithm is known to be used for its quick
convergence in backpropagation [80,81]. The perceptron determines the prediction outputs
by evaluating the input weights.
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Figure 7. The optimized ANN architecture in MATLAB 2020a environment used in this study for
prediction of biomass yield and grain yield at both MS and HS site. The input layer (4) (VIs and
3D point cloud-derived crop height), hidden layer with 10 neurons (w = weight, b = bias), and the
output layer (biomass yield and/or grain yield) are depicted in the network structure.

The performance of the MLs was evaluated by measuring RMSE (Equation (4)), R2

(Equation (5)), mean squared error (MSE) (Equation (6)), and mean absolute error (MAE)
(Equation (7)) in the cross-validation. As mentioned earlier in Section 2.5.1, a small RMSE,
MSE, and MAE for biomass and grain yield prediction was used to determine the optimum
performance of the ML models.

MSE =
1
n

n

∑
i=1

(zi − z(x)i)
2, (6)

MAE =
1
n

n

∑
i=1
|zi − z(x)i|, (7)

where n is the total number of data points, zi represents the observed value at i, z(x)i is
the predicted value at i, zi represents an average observed value, and z(x)i represents
an average predicted value.

3. Results
3.1. Soil Constraints and Agro-Climatic Conditions

The depth-wise distribution of soil physicochemical properties (Figure 2) showed
that both sites have very similar clay contents (41–58%) (Figure 2e) and, thus, are likely
to have a similar water holding capacity. Both sites also have a higher ESP in the subsoil
(18.2% for the MS and 24% for the HS site, at 100–150 cm) than the surface soil (2.7% for
the MS and 14% for the HS site, at 0–10 cm) (Figure 2d). In addition, both sites have high
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Cl concentrations in the subsoil at 100–150 cm, with the HS site (>2300 mg/kg) having
substantially higher Cl than the MS site (700–750 mg/kg) (Figure 2b).

Initial (prior to sowing) volumetric soil moisture data (Figure 2f) showed that both
the sites had adequate and mostly similar soil moisture content stored at 0–150 cm depth
(a mean of ~36.6% for the MS and ~38.8% for the HS site), which helped in the germination
of crops despite low in-crop rainfall during sowing to emergence (~10 mm for both MS
and HS sites) (Figure 1). Agro-climatic conditions at both sites were similar (p > 0.01) from
May to October 2018 (Figure 1), suggesting that crops at both sites received similar rainfall
during the growing season.

3.2. Sensor Performances

3.2.1. GreenSeeker® NDVI

Crop stagewise in situ monitoring from the measurement of GreenSeeker® NDVI
during crop development indicated that maximum canopy development occurred at
approximately 110–112 DAS (just before flowering) at both sites (Supplementary Figure S4).
At this time, the NDVI for healthy cultivars reached a peak of ~0.74 for the MS and ~0.53
for the HS site; thus, this was identified as a suitable time to differentiate between cultivars.
Higher NDVI values at the MS site also indicated more favorable crop growth and canopy
greenness compared to the HS site (Supplementary Figure S4). Previous studies reported
that, in non-constrained soils, the NDVI values for healthy vegetation gradually increase
from the beginning of the crop season and reach a peak at the middle of the season
or before flowering [82,83]. The data from this study also suggest that plants growing
on a constrained soil follow a similar pattern of development, with close to flowering
(110–112 DAS) being the most suitable time for obtaining remote sensing data of crops
to evaluate and differentiate crop conditions for forecasting biomass and grain yields.
Furthermore, biomass and grain yield were both significantly and positively correlated
with GreenSeeker® NDVI near flowering at both sites (Table 3).

Table 3. Cross-validation of parameters for biomass yield and grain yield as a function of
GreenSeeker®-measured NDVI near flowering on a moderately sodic (MS) and a highly sodic
(HS) site. Coefficient of determination (R2) values are presented with different asterisks to depict
probabilities of a significant difference from ‘0’ with a significant level of p < 0.05 *, p < 0.001 **, and
p < 0.0001 ***; n = 72.

Variables

GreenSeeker® NDVI (110–112 DAS)

MS HS

RMSE (g/m2) R2 RMSE (g/m2) R2

Biomass yield (110–112 DAS) 66.35 0.54 *** 56.86 0.33 *

Grain yield (152 DAS) 27.66 0.38 ** 30.75 0.31 *

3.2.2. UAV Multispectral Imaging

The VIs derived from UAV multispectral data were also significantly and positively
correlated with biomass and grain yield at both sites (Figure 8). When comparing the UAV
multispectral VIs, the EVI was more closely associated with biomass yield at both sites
(R2 = 0.82; RMSE = 41.6 g/m2 for the MS and R2 = 0.67; RMSE = 40.0 g/m2 for the HS site)
compared to the OSAVI and NDVI (Figure 8 and Table 4), whereas the NDVI was more
closely correlated with grain yield at both sites (R2 = 0.75; RMSE = 17.7 g/m2 for the MS
and R2 = 0.53, RMSE = 25.4 g/m2 for the HS site) compared to the EVI and OSAVI (Figure 8
and Table 4).

3.2.3. Proximal Hyperspectral Sensing

Non-imaging and ground-based proximal hyperspectral sensing-derived VIs showed
a significant positive association with biomass and grain yield at both sites (Figure 9).
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Similar to the UAV multispectral VIs, the hyperspectral data-derived EVI was more closely
associated with biomass yield at both sites (R2 = 0.56; RMSE = 65.4 g/m2 for the MS and
R2 = 0.42; RMSE = 53.3 g/m2 for the HS site) compared to the OSAVI and NDVI (Figure 9
and Table 4), whereas the NDVI had a closer agreement with grain yield at both sites
(R2 = 0.48; RMSE = 25.5 g/m2 for the MS and R2 = 0.37; RMSE = 29.2 g/m2 for the HS site)
than the EVI and OSAVI (Figure 9 and Table 4).
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The VIs derived from handheld, proximal hyperspectral sensing exhibited a range of
generally higher values compared to UAV multispectral VIs, indicating a slightly greater
variability in handheld hyperspectral data within a site compared to those using UAV. For
example, the maximum peak of the proximal hyperspectral NDVI value reached ~0.92
and ~0.71 at the MS and HS site, while the UAV-derived multispectral NDVI reached the
maximum peak of ~0.72 and ~0.49 at the MS and HS site (110–112 DAS). This might be
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due to the changes in prevailing environmental conditions in the field during a longer
period of survey using a handheld, proximal sensor that might have caused larger data
variability compared to the rapid and automated UAV-based sensing [84,85]. Furthermore,
UAV multispectral VIs were more closely associated with both biomass and grain yield
than ground-based proximal GreenSeeker® NDVI or ASD FieldSpec hyperspectral VIs, as
indicated by the R2 values.
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Table 4. Cross-validation of root-mean-square error (RMSE) of biomass yield and grain yield as
a function of individual VIs, derived from both UAV multispectral and ground-based proximal
hyperspectral data at a moderately sodic (MS) and a highly sodic soil site; n = 72.

Variables

NDVI OSAVI EVI

RMSE (g/m2)

MS HS MS HS MS HS

UAV multispectral

Biomass yield (110–112 DAS) 57.0 47.2 49.8 42.9 41.6 40.0

Grain yield (152 DAS) 17.7 25.4 21.9 27.0 20.0 26.5

Proximal hyperspectral

Biomass yield (110–112 DAS) 68.2 57.5 70.1 54.7 65.4 53.3

Grain yield (152 DAS) 25.5 29.2 27.1 31.8 26.1 30.9

3.2.4. UAV RGB Sensor-Based 3D Point Cloud Techniques

Biomass and grain yield were significantly and positively correlated with 3D point
cloud-derived crop height, which explained 71% and 50% of the variability of biomass yield
for the MS and HS site and 56% and 39% of the variability in grain yield for the MS and HS
sites, respectively (Table 5), which was a slightly better association compared to manual,
ground-based measurements of crop height at both sites (Table 5). On the other hand,
a significant association (p < 0.01) was observed between ground-measured crop height
and 3D point cloud crop height for both sites (R2 = 0.53 and 0.44 for the MS and HS site,
respectively) (Supplementary Figure S5); a lower association between ground-measured
crop height and biomass and/or grain yield suggests a larger data variability in ground-
measured crop height compared to 3D point cloud crop height. This is sensible, since
ground-measured crop height using a ruler relies on manual eye estimation of the field
observer, whereas high-throughput UAV measurements, automated data processing, and
extraction of crop height using software algorithms might have improved data quality and
precision. This suggests that there may be a reduced need for extensive, labor-intensive,
and manual measurements of crop height in the field. There is little or no suggestion that,
for indicating biomass and yield potential, manual height measurements are superior to
data obtained by UAV.

Table 5. Cross-validation of model parameters for biomass yield and grain yield as a function of crop
heights at a moderately sodic (MS) and a highly sodic (HS) site. Coefficient of determination (R2)
values with different asterisks indicate different probabilities that the correlation differed from ‘0’
with a significant level of p < 0.05 *, p < 0.001 **, and p < 0.0001 ***; n = 72.

Variables

MS HS

3D Point Cloud-Derived Crop Height (110–112 DAS)

RMSE (g/m2) R2 RMSE (g/m2) R2

Biomass yield (110–112 DAS) 53 0.71 *** 48.9 0.50 ***

Grain yield (152 DAS) 23.3 0.56 *** 28.7 0.39 **

Ground-Measured Crop Height (110–112 DAS)

Biomass yield (110–112 DAS) 74 0.44 ** 58.2 0.31 *

Grain yield (152 DAS) 29.3 0.31 * 31.9 0.25 *

3.3. Comparing ML Algorithms for Prediction of Biomass and Grain Yield on Rain-Fed Sodic Soil

We compared different ML algorithms and different kernel functions integrated with
UAV multispectral VIs and 3D point cloud crop height to test if these improve the estimation
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of biomass and grain yield of wheat on rain-fed sodic soil. The smallest prediction error
likely suggests the best-performing model.

Under multitarget regression, the stepwise kernel was found to be effective in the
prediction of both biomass and grain yield and have the lowest error estimates compared
to the multiple linear and/or multi-robust linear kernels (Tables 6 and 7). In SVM, the
linear kernel function achieved superior prediction accuracy (lowest error) in comparison
to quadratic, cubic, and Gaussian kernel functions at both MS and HS sites (Tables 6 and 7).
In GPR, the squared sequential, matern 5/2, and rational quadratic functions predicted
biomass yield with slightly less error than an exponential function. However, the exponen-
tial kernel achieved superior accuracy in grain yield prediction in comparison to the other
GPR kernels (Tables 5 and 6). Overall, the MLP kernel in ANN achieved greatest estimated
accuracy in the prediction of both biomass and grain yields at the two sites compared to
all ML algorithms and kernels used in this study. The VIs and crop height combinedly
explained 89% and 82% of the variability of biomass yield at the MS and HS site and 88%
and 74% of the variability of grain yield at the MS and HS site using an MLP kernel in
ANN (Tables 6 and 7). The best-fitted models using ANN are illustrated in Supplementary
Figures S6 and S7. The results suggest that canopy spectral information and crop height are
useful indicators of aboveground biomass and/or grain yield of wheat on rain-fed sodic
soil, and they can improve our understanding and ability to forecast biomass yield and
grain yield variability in-field.

Table 6. Performance evaluation between ML algorithms and kernels based on biomass yield prediction as a function of
combined UAV multispectral VIs and 3D point cloud crop height on sodic soil; n = 72.

Biomass Yield (g/m2)

MS HS

Model feature
selection

PCA explained a total of 95% of variance.
After training, 3 components were kept.

Explained variance per component (in order):
86.9%, 6.8%, 3.4%

PCA explained a total of 95% of variance.
After training, 3 components were kept. Explained

variance per component (in order):
76.4%, 12.6%, 6.6%

Multitarget Regression

Kernels RMSE R2 MSE MAE RMSE R2 MSE MAE

Multiple linear 43.9 0.80 1932.4 35.2 33.4 0.78 1122 26.7

Multi-robust linear 40.4 0.83 1638.8 31.4 32.9 0.78 1088.7 26.6

Stepwise 39.9 0.84 1592 31.3 32.7 0.79 1072.6 26.5

Support Vector Machine

Linear 37.2 0.86 1385.5 29.8 31.2 0.81 975.2 25.0

Quadratic 44.7 0.79 2002.1 34.9 32.7 0.79 1073.6 26.4

Cubic 55.0 0.69 3029 44.3 34.8 0.76 1213.8 27.4

Coarse Gaussian 44.2 0.80 1956.3 37.7 39.7 0.69 1583.6 33.1

Medium Gaussian 50.6 0.74 2565.2 42.2 42.0 0.65 1771.5 33.3

Gaussian Process Regression

Squared
Exponential 38.3 0.85 1468.1 30.2 31.9 0.80 1021.4 25.6

Matern 5/2 38.3 0.85 1468.7 30.2 32.0 0.80 1025.9 25.7

Rational quadratic 38.3 0.85 1468.1 30.2 31.9 0.80 1021.4 25.6

Exponential 42.3 0.82 1791.7 34.7 34.1 0.77 1168.2 27.7

Artificial Neural Network

MLP 34.82 0.89 1356.4 28.9 26.4 0.82 1004.5 20.3
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Table 7. Performance evaluation between ML algorithms and kernels based on grain yield prediction as a function of
combined UAV multispectral VIs and 3D point cloud crop height on sodic soil; n = 72.

Grain Yield (g/m2)

MS HS

Model feature
selection

PCA explained a total of 95% of variance.
After training, 3 components were kept.

Explained variance per component (in order):
83.3%, 8.1%, 4.8%

PCA explained a total of 95% of variance.
After training, 3 components were kept. Explained

variance per component (in order):
70.1%, 16.5%, 7.7%

Multitarget Regression

Kernels RMSE R2 MSE MAE RMSE R2 MSE MAE

Multiple linear 17.9 0.74 320.9 13.9 24.3 0.57 592.3 19.5

Multi-robust linear 13.4 0.85 180.7 10.9 24.0 0.57 579.9 19.0

Stepwise 13.4 0.85 180.2 10.9 23.6 0.59 559.0 18.2

Support Vector Machine

Linear 13.4 0.85 181.4 10.9 20.9 0.68 440.2 17.0

Quadratic 14.0 0.84 197.5 11.5 22.9 0.61 526.3 17.0

Cubic 18.8 0.71 354.5 15.0 21.4 0.66 460.4 16.2

Coarse Gaussian 15.6 0.80 244.6 12.5 24.0 0.58 576.3 19.3

Medium Gaussian 15.9 0.79 255.7 12.5 22.6 0.62 513.3 16.9

Gaussian Process Regression

Squared
Exponential 12.9 0.86 167.1 10.7 23.6 0.59 559.1 17.9

Matern 5/2 12.9 0.86 167.5 10.9 21.3 0.67 455.7 16.9

Rational quadratic 13.2 0.86 176.6 11.1 21.0 0.67 444.3 16.5

Exponential 12.5 0.87 156.6 10.2 20.7 0.68 431.8 16.2

Artificial Neural Network

MLP 11.8 0.88 152.7 10.0 16.1 0.74 370.5 12.7

3.4. Comparing Crop Growth, Biomass, and Grain Yields on Sodic Soils

The ANOVA outcome showed that the VIs and 3D point cloud-derived crop height
was significantly different (p < 0.001) at MS and HS sites. The mean NDVI, OSAVI, EVI,
and crop height were significantly higher at the MS site than at the HS site (Figure 10). As
they are important indicators of growth and health of crops, significantly lower values at
the HS site suggest that crops grown at the HS site experienced more stress than at the
MS site. This stress was primarily due to sodic soil constraints rather than environmental
factors, as the in-season crop rainfall, air temperature, and initial moisture stored in the
soil profile were similar at both sites (Figures 1 and 2).

When comparing the performance of wheat genotype biomass yield between sites,
the current study indicated that most of the genotypes had significantly higher predicted
biomass (p < 0.05) at the MS site than the HS site close to flowering (Figure 11), whereas, at
maturity, genotypic grain yield performance was substantially lower (p < 0.01) at the HS
site compared to the MS site (Figure 12). The results suggest that crop stress most likely
increased with development and had a significant negative influence on grain yield at the
maturity stage, especially for the genotypes at the HS site.

When considering a single site, the discrimination between genotypes was more
prominent at the HS site than the MS site (Figure 12), suggesting variable effects of high
sodic soil constraints on tolerance and performance of wheat genotypes. This also indicates
that the techniques used in this study can be useful to differentiate between cultivars in
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more sodic soil conditions. The study identified that wheat genotypes Mitch, Corack, Mace,
Trojan, Lancer, and Bremer were more tolerant to sodic soil constraints than Emu Rock, Janz,
Flanker, and Gladius. However, seasonal changes and changes in soil constraint level may
have diversified influences over genotypic performance. Hence, implementation of these
strategies over different seasonal and sodic soil conditions, using various of crops and/or
cultivars, is recommended for future studies. Overall, the results support the suggestion
that integrated UAV optical remote sensing and ML techniques have the ability to improve
estimation of crop growth and yield on sodic soils that can be used to identify cultivars
tolerant to sodic soil environments.
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4. Discussion

The present study aimed to develop an integrated optical remote sensing and ML-
based framework to quantify wheat genotypic traits to assist the estimation of growth
and yield on sodic soils. We tested if integrated optical remote sensing and ML-based
techniques can accurately forecast yield and help to distinguish tolerant genotypes on sodic
soil, which can assist agronomists/researchers to select appropriate techniques/traits for
phenotyping on sodic soils by reducing the need for extensive, labor-intensive, and manual
methods of phenotyping to examine the traits and crop growth.

4.1. Traits and Sensor Performances

Fern et al. [86] reported that the OSAVI can better estimate green biomass and vegeta-
tive cover than NDVI in non-constrained semi-arid rangeland soil. Similarly, our study
indicated that both EVI and OSAVI are slightly better indicators of biomass yield than
NDVI in rain-fed sodic soil environment (Figures 8 and 9 and Table 4). However, a number
of studies reported that NDVI can be a useful indicator of grain yield performance on
non-sodic soils [35,87–89]. Likewise, the present research found that NDVI is a more useful
indicator of wheat grain yield than OSAVI and EVI in the presence of sodic soil constraints
(Figures 8 and 9 and Table 4). Crop rainfall and ambient air temperature can have a large
influence on canopy vigor and greenness, particularly in rain-fed conditions. Adequate
rainfall between late tillering and flowering crop growth stages (Figure 1) in the current
study could have allowed us to obtain sufficient canopy spectral cues that were closely
correlated with biomass and grain yield.

When comparing sensors, the high-resolution UAV RedEdge-M multispectral sensor
showed a slightly greater performance in estimating crop growth and yield than ground-
based proximal hyperspectral and GreenSeeker® sensors (Figures 8 and 9). A systematic
and rapid UAV flight plan and operation might have potentially helped to achieve a good
quality of imaging data with the multispectral sensor when compared to handheld proximal
sensors, as UAV multispectral imagery-derived traits were more closely associated with
both biomass and grain yields than either proximal GreenSeeker or ASD FieldSpec sensor-
derived VIs (Table 3 and Figures 8 and 9). Saura et al. [90] also reported that a high precision
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of UAV data can be achieved with a systematic flight plan in automatic mode, and they
demonstrated the potential benefits of using it for improved crop yield prediction.

The accuracy of the handheld spectroradiometer used to acquire the hyperspectral
data might have been reduced due to weather and prevailing environmental conditions. For
example, the longer time taken to obtain handheld measurements compared to the flight
time of the drone would have allowed the environment to change more during the period
of measurement. The spectral data combine a mixture of diffuse and specular reflectance
because of different particle sizes, scattering, and multicollinearity [91]. Variation in spectral
reflectance is often caused by differences in the size of particles in the object. This causes
a deviation of light at various angles as a function of the wavelengths and creates scattering
effects [84]. Ana Belén, Enoc, Víctor Marcelo, Marta, and José Ramón [84] also reported
that results did not satisfactorily improve even after normalization and preprocessing of
hyperspectral spectroradiometer data for a vineyard study. However, our study was unable
to pinpoint the exact reason for variations in the data. The problem might be overcome
by using UAV hyperspectral sensing with an automated flight plan, as UAV sensing can
capture information rapidly and, thus, reduce the influence of environmental variability.
Pádua et al. [85] observed that unmanned aerial systems (UAS) with specific imaging
sensors achieve better results than handheld devices.

Yang and Jinfei [92] estimated canopy height using UAV 3D point cloud data and
demonstrated the ease with which the technique can be used to obtain crop growth infor-
mation at the field level. A few studies reported that UAV-based crop height measurement
may be integrated with cropping traits to improve the estimation of the aboveground
biomass of barley and/or winter wheat on non-constrained soil [53,93,94]. Hence further
research is warranted to employ these integrated sensor-based techniques and traits to
improve estimation of biomass and/or yield on rain-fed sodic soils. UAV RGB 3D point
cloud techniques show promise for the extraction of crop height, which is closely related to
aboveground biomass and grain yield on sodic soils.

4.2. Yield Prediction on Rain-Fed Sodic Soils Using ML

We compared four ML algorithms (MLR, SVM, GPR, and ANN) for crop growth
and yield prediction on sodic soils and observed that the ANN predicted aboveground
biomass and grain yield with slightly less error than the others. The results suggest that
the ANN has superior ability to account for site-specific complexities of agricultural traits
that can be used to improve estimation of growth and yield, particularly on sodic soils.
Recently, ANN has become popular for different applications in agriculture, including
crop yield prediction. For example, Safa et al. [95] reported a better ability of an ANN
model relative to MLR for estimating wheat yield using a heterogenous dataset in multiple
arable farms on non-sodic soils in New Zealand. Mokarram and Bijanzadeh [96] also
reported a better prediction accuracy using the MLP (ANN) network model in comparison
to MLR for barley biomass yield (R2 = 0.89) and grain yield (R2 = 0.92) on non-constrained
soils. Recently, Dhakal, Gautam, and Bhattarai [76] reported that an ANN model with
10 neurons in the hidden layer performed comparatively better in training with R2 = 0.84
and RMSE = 1.5 MJ·m−2·day−1 when estimating global solar radiation. Furthermore, their
study also found that the stepwise kernel has good potential for estimation with less error
(R2 = 0.88 and RMSE = 1.5 MJ·m−2·day−1). Ekici et al. [97] reported that the Matern 5/2
kernel in GPR produced better results in comparison to other supervised ML algorithms
and kernels for a hybrid power system study. However, there are a limited number of
studies on agricultural biomass and grain yield prediction using UAV- and ground-based
optical sensor-derived VIs, using crop height as input crop parameters with comprehen-
sive ML approaches, particularly on sodic soil. The performance of the models can be
influenced by sample size, site characteristics, areal coverage, and the traits used for the
growth and yield prediction study. On sodic soils, the main challenge lies in accurate
plant sampling and extraction of useful cropping traits due to larger spatial variability and
incomplete crop cover caused by soil constraints compared to non-constrained soils [48].
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Hence, the appropriate selection of traits and the accurate extraction of crop information
using high-throughput sensing and techniques were essential to feed the ML models for im-
proved prediction accuracy. It was also necessary to test and compare model performance
individually at the MS and HS site with varying levels of soil constraints to investigate
the performance of complex traits for evaluating crop growth and yield variation. Crop
production on sodic soil has previously been reported to be negatively affected due to
high Cl concentration in subsoil, which decreased water and nutrient uptake by root [5,98].
However, those were labor-intensive and time-consuming techniques to determine the
relative performance of crops/cultivars and tolerance to soil constraints [5,98]. Hence, the
present study demonstrated the efficacy of optical remote sensing and statistical modeling
approaches to help identify appropriate traits. Overall, our results support the suggestion
that integrated optical UAV remote sensing and ML techniques have the potential to im-
prove estimation of crop growth and yield on sodic soils. This information can also be
important in the discrimination between the performance of cultivars/genotypes.

4.3. Crop Growth and Yield Vary with Changes in Sodic Soil Constraints

Recent studies have suggested that constraints in sodic soil can increase crop water
stress and negatively affect the physiological performance of wheat [15,48]. A study
reported that the UAV thermal imaging-derived crop water stress index had a close negative
agreement with wheat growth and yield at critical crop development stages, such as close
to flowering and maturity on rain-fed sodic soils [48], suggesting that wheat grown on
sodic soils appears water-stressed. In this study, we also observed a significant variation in
spectral indices and crop growth close to flowering across different sodic soil conditions
(Figure 10) and the variation was most likely due to water limitations. High subsoil ESP
and Cl concentrations have a strong potential to restrict root water and nutrient uptake
from the soil and reduce rooting depth [98,99]. Thus, in both soils, crops would be expected
to be stressed and have reduced growth, with profound adverse impacts at the HS site,
which supports the suggestions made by an earlier study that high sodic soil constraints
can reduce wheat physiological growth [15]. Studies have also reported that canopy
temperature is an important trait to evaluate wheat physiological growth on sodic soils
under water-limited environments [15,48]. Results from the current study indicated that
optical remote sensing-based spectral VIs and crop height information are also strong
indicators of wheat biomass and grain yields on rain-fed sodic soils and can be used to
differentiate crop growth, stress, and yield performance between different levels of sodicity.
Overall, the results confirm the adverse impacts of soil constraints, which can have a large
influence on biomass and/or grain yield (Figures 11 and 12). Genotypic biomass and yield
performance variations/differences were observed within a site, and it was clearer between
the sites with the changes in soil constraint level. The results closely correspond to the
findings of a recently published study on sodic soil [48], where the authors demonstrated
that water stress can further increase with the seasonal development of wheat crop in highly
sodic soil environments compared to moderately sodic soils and can adversely affect wheat
yield at maturity. Overall, the results support the suggestion that wheat genotypic growth
and yield performance vary with sodic soil constraints, and that genotypic tolerance to
soil constraints can be determined using the appropriate selection of traits and integrated
high-throughput approaches, including UAV optical remote sensing and ML.

5. Conclusions

This study successfully evaluated the potential of optical remote sensing and ML
algorithms to improve the estimation of growth and yield of wheat genotypes, which is
useful to differentiate genotypic tolerance to sodic soils. A range of approaches were tested
and proposed to demonstrate their application to crops grown in sodic soil. The potential
of a number of sensors and ML algorithms was assessed for their ability to accurately
forecast wheat biomass and grain yields for identifying constraint tolerant cultivars on
sodic soils.
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Different VIs derived from a UAV multispectral (RedEdge-M) sensor predicted biomass
yield and grain yield at least as well as, and possibly better than, the handheld proximal
hyperspectral spectroradiometer and/or GreenSeeker® sensors. Although hyperspectral
sensing was reported to be superior in previous studies conducted on non-constrained soils,
we could not achieve high accuracy using a handheld non-imaging hyperspectral sensor.
Crop height extracted from UAV RGB-based 3D point cloud was found to have a closer
association with both biomass and grain yield than ground-based manually measured
crop height, suggesting the adaptation of this technique on sodic soil. Furthermore, ML
algorithms integrated with optical remote sensing-derived traits were tested and compared
for their ability to improve forecasting of crop growth and yield on sodic conditions. Over-
all, the present study demonstrated the efficacy of optical remote sensing and ML-based
techniques in providing real-time and detailed information on appropriate trait selection
for evaluating crop growth and yield variation to identify constraint-tolerant cultivars in
a rain-fed sodic soil environment. Follow-up studies should focus on implementing these
techniques with a greater diversity of genotypes and at multiple sodic sites to compare
the results. This study can greatly assist agronomists/plant physiologists in the selection
of appropriate techniques/traits for phenotyping on sodic soils by reducing the need for
extensive, labor-intensive, and manual methods of phenotyping to examine the relative
performance of crop traits, growth, and yield. In addition, this may help guide decisions
by farmers and breeders in selecting tolerant varieties in sodic soil environments to sustain
agricultural production.

The key research findings are the following:

• High sodic soil constraints negatively affected crop growth and development and
reduced yield.

• A number of the methods were able to discriminate differences between sites and
some between genotypes within a site.

• The UAV multispectral (RedEdge-M) sensor performed with slightly less error than
the ground-based handheld proximal hyperspectral and/or GreenSeeker® sensors for
the measurements of crop traits.

• The UAV RGB-based 3D point cloud technique is promising for crop height mea-
surements and suggests there is a reduced need for the manual, labor-intensive, and
tedious process of crop height measurements in the field.

• The EVI was in more close association with biomass yield and the NDVI with grain
yield on sodic soils.

• Integrated VIs and crop height were useful indicators of biomass and grain yield
performance of wheat genotypes on rain-fed sodic soil.

• The ANN performed slightly better than multitarget regression, SVM, and GPR in
estimating biomass yield and grain yield on sodic soils.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13173482/s1, Figure S1: Drone image of a representative plot illustrating a typical destructive
biomass sampling area (‘yellow’ square box indicating 0.5× 3 middle rows area) and plant reflectance
measurements area using GreenSeeker and ASD FieldSpec (‘orange’ rectangular box including
3 middle rows) within the plot. One of the propeller markers for GPS location calibration is shown
in the lower left hand of the image, Figure S2: A representative site image showing classified
and separated soil and canopy pixels using Otsu’s algorithm, Figure S3: A representation of crop
height extraction method using RGB-3D point cloud techniques, (A) aerial view of the plot-wise 3D
point clouds, (B) triangulated irregular network (TIN), (C) cross-sectional profile of a single plot for
measurement of crop height, (D) crop volume measurement, Figure S4: Seasonal GreenSeeker NDVI
values of the moderately sodic (MS) and the highly sodic (HS) site, Figure S5: Correlation between
ground-measured crop height and 3D point cloud derived crop height; (a) moderately sodic site,
(b) highly sodic site; n = 72, Figure S6: Cross-validation of correlation between ground-measured
biomass yield and ANN predicted biomass yield as a function of UAV-multispectral VIs and 3D
point cloud crop height; (a) moderately sodic (MS) and (b) highly sodic site (HS); n = 72, Figure S7:
Cross-validation of correlation between ground-measured grain yield and ANN predicted grain

https://www.mdpi.com/article/10.3390/rs13173482/s1
https://www.mdpi.com/article/10.3390/rs13173482/s1
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yield as a function of UAV-multispectral VIs and 3D point cloud crop height; (a) moderately sodic
(MS) and (b) highly sodic site (HS); n = 72, Table S1: Wheat genotypes for 2018 experiment sites.
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