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Abstract 

This paper presents a new method that can locate and quantify damage in Euler-Bernoulli beams from changes 

in static deflection. Using the principle of Virtual Work, for the first time, the deflection change (DC) parameter 

is formulated as a function of both the damage location and damage severity. Through this, the study shows 

that the changes in static deflection follow certain patterns that clearly reveal the damage location. Therefore, 

by observing a plot of the measured DC, the damage locations can be identified conveniently. Once the damage 

is located, its severity is estimated directly from the measured relative deflection change through a new concept 

named damage severity consistency (DSC) function. A constant or nearly constant DSC function indicates a 

high precision of the damage detection results and reflects a good quality of the measurement data. Numerical 

and laboratory investigations demonstrate that the method accurately locates and quantifies the damage under 

various scenarios in statically determinate beams. The proposed damage detection method has a clear 

theoretical base, does not rely on an optimization algorithm, and can be extended to other beam-type structures 

including statically indeterminate beams. 

 

Keywords: Structural health monitoring, static damage detection, static deflection, static relative deflection, 

damage locating, damage quantification, structural damage 

 

1. Introduction 

Unexpected changes in operational conditions can cause cumulative damage in civil structures such as 

buildings, bridges and dams. If an initial damage in these structures is not detected timely, it can lead to 

increased damage and even catastrophic failure. The need to monitor structural performance and detect the 

onset of damage are thus evident. Structural Health Monitoring (SHM) has emerged as a feasible technique 

for this purpose by using on-structure, non-destructive sensing systems [1]. Within the SHM context, damage 

can be defined as changes introduced into a system (cracks, corrosions, bolt loosening, etc.), either intentional 

or unintentional, which adversely affect the current or future performance of that system [2]. Over the past few 

decades, the research on damage detection (DD) methods has received considerable attention. The fundamental 

idea of the methods is that damage in a structure, when significant enough, can cause detectable changes in the 

structural responses. Therefore, by measuring these changes, one can assess the damage with respect to its 

presence, location and severity. The effects of damage on a structure can be classified as linear or nonlinear. 

A linear damage situation is defined as the case when the initially linear-elastic structure remains linear-elastic 

after damage [2]. As evidenced from the literature, this assumption has been widely used in the majority of 

current DD methods. 

The existing DD methods can also be classified into three major categories, i.e., the dynamic DD methods 

using measured vibration characteristics, the static DD methods using static measurement data, and the static-

dynamic DD methods utilising both static and dynamic parameters. The dynamic DD techniques have been 

more fully developed compared to the static counterpart, and the corresponding literature is quite extensive as 

evidenced from the reviews of Doebling et al. [2], Sohn et al. [3], and Fan and Qiao [4]. Although many 

dynamic DD methods have shown to be promising, there are still a number of inherent difficulties that need to 

be overcome in practical applications. First, vibration characteristics are functions of the structural stiffness, 

mass and damping. Although structural damage can cause an increase or a decrease in modal damping and the 

removal or loosening of structural components can change mass distribution [5], most of the current modal-

based DD algorithms need to ignore the variations of mass and damping for simplicity. Another difficulty is 

that many mode shape-based DD methods need accurate mode shape estimation, which can be very 

challenging in real structures. In addition, a number of vibration-based DD methods require high-order modal 

data and this is another common practical difficulty. 
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The static responses, on the other hand, are solely related to the structural stiffness as evidenced from the static 

equilibrium equations. The use of static parameters in damage detection context is therefore straightforward 

considering stiffness reduction is the main source of structural damage in civil structures. In fact, static 

deflection has been a fundamental parameter in the SHM of many important structures including bridges. 

Although measuring vertical deflection in bridges using traditional contacting sensors has long been considered 

as a challenging task, various alternative non-contact techniques including the emerging vision-based optical 

techniques have been developed and applied to bridge deflection measurement with promising outcomes for 

periodic, continuous or even real-time measurement [6-8]. Another advantage of using static deflections is that 

the sparsity of displacement sensor can be overcome by applying Maxwell’s reciprocity theorem [9]. In 

addition, the static deflections can be measured directly through applying loads on the structures, or estimated 

indirectly from modal flexibility matrices constructed from dynamic tests [10, 11]. Owing these advantages, 

the static DD methods have attracted more attention in the SHM field in recent years. Sanayei and Onipede 

[12] proposed an iterative optimization-based algorithm to identify the structural element stiffness by 

evaluating the difference between the analytical and the measured static displacements under known static 

loads. Banan et al. [13], Banan et al. [14] estimated the member constitutive properties by using constrained 

least-square minimization method in an iterative manner to minimize the discrepancy between the measured 

displacement and that from finite element model (FEM). Based on this research, Hjelmstad and Shin [15] 

proposed an adaptive parameter grouping scheme to locate damage from sparse and noise measurements. 

Sanayei et al. [16] presented an adaptive algorithm of the parameter grouping to detect and assess the damage 

from experimental static displacement and static strain responses. Wang et al. [17] utilized both static testing 

data and natural frequencies to identify the damage. The damage severity was then estimated using an iterative 

quadratic programming technique. Bakhtiari-Nejad et al. [18] applied an optimization criterion to detect 

damage in linear elastic structures from static noisy measurement by minimizing the difference between the 

load vectors before and after the damage. Chen et al. [19] used the grey relation coefficient of displacement 

curvature to locate the damage before using an iterative estimation scheme to estimate the damage extend on 

cantilever beams. Yang and Sun [20] proposed a static-based damage locating and quantification method using 

the flexibility disassembly technique and the concept of damage localization vector derived from the static 

response equation. However, the method requires a refined FEM representing for the undamaged state. 

Kourehli et al. [21] applied the simulated annealing algorithms to solve the objective functions formulated 

from modal data and static displacement. They were able to locate and quantify damage in beam and frame 

structures.  

All of the above methods used the iterative optimization-based technique and/or require a refined FEM to 

compute the damage parameters. It is apparent that for high noisy data and/or for multiple damage cases, the 

iterative algorithms involve multiple iterations in order to provide a precise damage detection results, and this 

could lead to very high computational cost. In addition, the discrepancy between real structures and the FEM 

can cause significant errors on the damage detection results. Without the aid of these techniques, some methods 

can only succeed in locating the damage. Choi et al. [9] developed an elastic damage load theorem which is 

the ratio of bending moment to the flexural rigidity to locate the damage in simply supported beams. However, 

the method was limited to statically determinate beams, and only single damage cases were discussed. Abdo 

[22] used the changes in the displacement curvature derived from measured static response and the grey 

relation coefficient concept to locate damage in beams. As this coefficient does not contain a physical relation 

to the damage severity, the method cannot directly quantify the damage. Seyedpoor and Yazdanpanah [23] 

proposed a damage locating concept based on changes in static strain energy of a structure subjected to static 

load cases. The efforts to locate and quantify damage without relying on the optimization algorithms and a 

FEM have gained some successes. Grandić and Grandić [24] utilised the grey relation coefficient to identify 

the damage location, then proposed a damage quantification method from curvature of displacement influence 

line in simply supported beams. In the field of static-dynamic combination approach, Koo et al. [25] and Sung 

et al. [11] successfully located and quantified damage in shear buildings from damage-induced deflection 

obtained from modal flexibility. However, the techniques are limited to shear buildings and they can be 

erroneous when applied to bending dominant structures. 

Motivated from recent advances in deflection measurement technology, a new static DD method that does not 

rely on an optimization algorithm or a FEM is proposed in this study for locating and quantifying damage in 

Euler-Bernoulli beams from static deflection changes. This method aims to address damage in its early sates 

and therefore falls into the linear damage category in which the structure is assumed linear in the pre- and post-

damaged states. For the damage locating concept, the deflection change (DC) parameter is formulated as a 

function of damage characteristics using the principle of Virtual Work. From this, a plot of the measured DC 
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can be observed to identify the damage locations. For the first time, the ability of the DC parameter in locating 

damage is supported by closed-form mathematical functions, which contain both damage location and damage 

severity information. From these formulas, the damage severity is estimated conveniently without the aids of 

a FEM or optimization algorithms. The rest of this article is organised as follows. First, the construction of the 

DC functions with respect to the damage characteristics are established, from which the damage locating 

concept is presented. Next, the relative deflection change as a function of damage severity is derived, from 

where the damage quantification concept is introduced. Numerical and laboratory investigations are then 

presented to demonstrate the effectiveness of the proposed method. Finally, the paper discusses practical 

application aspects, before concluding with some final remarks. 

2. Theory 

This paper focuses on simply supported (SS) and cantilever Euler-Bernoulli beams. However, the concept can 

be extended to other beam-type structures including statically determinate and indeterminate beams. As the 

formulas developed for cantilever beams differ slightly from the SS beams, they are presented separately in 

the Appendix for brevity. Throughout this paper, damage is assessed in beam segmental level due to the fact 

that damage occurring at one position will definitely cause stiffness reduction in the surrounding area [26]. 

The static DD concepts presented herein is not limited to one particular static load case. However, the unit 

point loads acting at the mid-span of SS beams, or at the free end of cantilever beams are selected for simplicity, 

and for the fact that they cause maximum deflections compared to other positions, which in turn can minimize 

the effects of measurement noise. 

2.1. Damage detection in simply supported beams with single damage 

 Damage locating concept for SS beam from static deflection change 

Consider a SS beam with constant bending stiffness (EI)x = EI (Fig. 1a). Under the mid-span unit point load, 

the undamaged deflection of the beam (uh) at the beam location x can be formulated from the principle of 

Virtual Work method [27] by:  

𝑢ℎ(𝑥) = ∫
𝑀(𝑥1).𝑚(𝑥1)

(𝐸𝐼)𝑥
𝑑𝑥1

𝐿

0

= ∫
𝑀(𝑥1).𝑚(𝑥1)

𝐸𝐼
𝑑𝑥1

𝐿

0

  (1) 

where, M(x1) is the bending moment of the beam due to the real unit point load (Fig. 1b), m(x1) is the bending 

moment due to a virtual unit point load acting at x (Fig. 1c). After substituting the moment functions and 

expanding the integration, the undamaged deformation of the beam is given by Eq. (2). 

𝑢ℎ(𝑥) =
1

12𝐸𝐼
𝑢0(𝑥)  (2) 

𝑢0(𝑥) = 2 〈𝑥 −
𝐿

2
〉3 + 𝑥 (

3

4
𝐿2 − 𝑥2) (3) 

where, u0(x) is a geometric function containing the inspection coordinate (x) and the beam length (L); the 

Macaulay bracket   should be replaced by ordinary parentheses ( ) when x  L/2, and by zero when x < L/2.  

In the damaged state, assuming the beam gets damaged in a single segment a ≤ x ≤ a + b (Fig. 1d), with the 

corresponding bending stiffness of (1 - )EI, where 0 ≤  1 is the damage severity coefficient. As the 

moments in statically determinate beams are independent from member stiffness changes, the deflection of the 

beam (ud) under the same unit point load can be formulated from the Virtual Work method by: 

𝑢𝑑(𝑥) =

= ∫
𝑀(𝑥1).𝑚(𝑥1)

𝐸𝐼
𝑑𝑥1 +∫

𝑀(𝑥1).𝑚(𝑥1)

(1 − )𝐸𝐼
𝑑𝑥1 +∫

𝑀(𝑥1).𝑚(𝑥1)

𝐸𝐼
𝑑𝑥1

𝐿

𝑎+𝑏

𝑎+𝑏

𝑎

𝑎

0

                           

= 𝑢ℎ(𝑥) + ∫ (
1

1 − 
− 1)

𝑀(𝑥1).𝑚(𝑥1)

𝐸𝐼
𝑑𝑥1

𝑎+𝑏

𝑎

= 𝑢ℎ(𝑥) + 𝛽∫
𝑀(𝑥1).𝑚(𝑥1)

𝐸𝐼
𝑑𝑥1

𝑎+𝑏

𝑎

 

(4) 

where, β is a damage severity derivative defined by Eq. (5). 

𝛽 =


1 − 
 (5) 



4 

 

After expanding the last integration in Eq. (4), the deflection change (DC) of the beam is given by: 

𝐷𝐶(𝑥) = 𝑢𝑑(𝑥) − 𝑢ℎ(𝑥) = {


1

12𝐸𝐼
𝐵1𝑥            ,                  𝑥 ≤ 𝑎


1

12𝐸𝐼
𝐵2(𝐿 − 𝑥) , 𝑎 + 𝑏 ≤ 𝑥 ≤ 𝐿

 
(6a) 

(6b) 

where, the scalar functions B1, B2 are defined as follows depending on the relative position of the damage 

compared to the load point: 

𝑎 + 𝑏 ≤
𝐿

2
:   𝐵1 =

𝑏

𝐿
[(2𝑎 + 𝑏)(3𝐿 − 2𝑎 − 2𝑏) − 2𝑎2]; 𝐵2 =

2

𝐿
[(𝑎 + 𝑏)3 − 𝑎3] 

 
(7a) 

𝑎 ≤
𝐿

2
< 𝑎 + 𝑏:  𝐵1 =

1

𝐿
[
3

4
𝐿3 − 3𝐿𝑎2 + 2𝑎3 − 2(𝐿 − 𝑎 − 𝑏)3] ; 

                              𝐵2 =
1

𝐿
[(𝑎 + 𝑏)2(3𝐿 − 2𝑎 − 2𝑏) −

𝐿3

4
− 2𝑎3] 

 

(7b) 

𝑎 >
𝐿

2
:  𝐵1 = −

2

𝐿
[(𝐿 − 𝑎 − 𝑏)3 − (𝐿 − 𝑎)3]; 𝐵2 =

𝑏

𝐿
[(2𝑎 + 𝑏)(3𝐿 − 2𝑎 − 2𝑏) − 2𝑎2] 

 
(7c) 

 

Fig. 1. Damage locating concept of SS beam under single damage: a) Undamaged SS beam configuration; b) and c) 

Bending moments under real and virtual unit loads; d) Damaged beam configuration; e) Deflection change plot 

It should be noted that a third order function of DC in the damaged region (a ≤ x ≤ a + b) is omitted in Eq. (6) 

for simplicity. By plotting Eq. (6) to Fig. 1e, it is evident that the DC encompasses two linear portions starting 

from the supports towards the damaged element, and hence reaches its maximum values within the damaged 

region. Therefore, the damaged element can be located based on two indicators, viz. (i) at the “peak” region 

of the DC plot, and (ii) between the two linear portions. As will be illustrated in the numerical and experimental 

validations, both the indicators can be satisfied in most of the cases, while in some situations the linearity can 

be less obvious due to measurement noise. In the latter situations, a clear peak region on the DC plot can be 

sufficient to locate the damage. 

It should be emphasized that the ability of the static DC in locating damage in SS beams has been reported in 

the literature, such as in Choi et al. [9]. However, they used an elastic damage load theorem to explain the DC 

pattern and the method was not able to quantify the damage. In fact, for the first time in this paper, the DC is 

formulated in a mathematical form, which contains both the information of damage location and damage 

severity, and hence provides a clear theoretical base for the DC damage locating concept. More importantly, 

the formulated DC will lead to a new damage quantification method presented in the next section. 

 Damage quantification for SS beams from relative static deflection change 

After the damage is located at segment (a, a + b) in previous step, its severity information is essential to enable 

higher levels of a damage identification process. Eq. (6) characterizes the DC of SS beams with respect to a 

damage severity derivative (). However, it also contains the stiffness quantity EI, which is unknown or not 

always accurately obtained in practice. In this paper, the stiffness quantity is eliminated by relating the DC 
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function from Eq. (6) to the undamaged deflection function from Eq. (2), yielding the relative deflection change 

(RDC) as follows: 

𝑅𝐷𝐶(𝑥) =
𝐷𝐶(𝑥)

𝑢ℎ(𝑥)
=   𝑅𝐷𝐶50%(𝑥) (8) 

where,  

𝑅𝐷𝐶50%(𝑥) =  {
𝐵1𝑥/𝑢0(𝑥)         ,                        𝑥 ≤ 𝑎

𝐵2(𝐿 − 𝑥) 𝑢0(𝑥)⁄    , 𝑎 + 𝑏 ≤ 𝑥 ≤ 𝐿
 (9) 

From Eq. (8), it is evident that the scalar function RDC50%
 is physically the measured RDC of the beam in a 

special damaged state that causes  = 1 (or  = 50%) at the same damaged element. This explains the notation 

RDC50%
 and its superscription 50%. The RDC50% function contains only the geometrical entries and is 

independent from the damage severity. It is calculated exclusively from the knowledge of the previously 

identified damage location (a, b), in addition to the beam length (L) and the coordinate of the inspection points 

(x). This implies that each beam element provides a unique RDC50% function, which can be calculated after the 

damaged element is identified. It is also evident from Eq. (8) that the measured RDC differs from the calculated 

RDC50% by the scalar  at every inspection points. Therefore, the RDC50% can be considered as a baseline for 

the measured RDC in quantifying the damage. 

If the deflections are measured with negligible noise and the damaged element is correctly located, the ratio 

between RDC and RDC50% at different measurement points should derive the same value, viz. . In practice, 

however, as a certain amount of measurement noise is unavoidable, a variation of the RDC/RDC50%
 ratio among 

the inspection locations can be expected. This leads to a new damage quantification concept designated in this 

paper as the damage severity consistency function, denoted as DSC(x), and defined by:  

𝐷𝑆𝐶(𝑥) =
𝑅𝐷𝐶(𝑥)

𝑅𝐷𝐶50%(𝑥)
 ,       𝑥(𝑎, 𝑎 + 𝑏) (10) 

A good consistency, i.e. a constant or nearly constant DSC(x) function, implies that the damage is correctly 

detected from less noisy measured deflections (e.g. Fig. 5c). By contrast, a significant variation of the DSC(x) 

function (e.g. Fig. 14a) suggests that the deflections were subjected to high measurement noise. From (8) and 

(10), the damage severity derivative  can be obtained by averaging the DSC(x) as follows: 

𝛽 = 𝐷𝑆𝐶(𝑥)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ,       𝑥(𝑎, 𝑎 + 𝑏) (11) 

Finally, from (5) the damage severity at the located damaged element is calculated by: 

 =
𝛽

1 + 𝛽
 (12) 

From Eqs. (10) to (12), it is evidenced that the damage severity can be calculated directly from the measured 

RDC parameter without the need of an optimization algorithm.  

2.2. Simply supported beams with double damage locations 

Fig. 2a depicts the beam configuration with two damaged elements and the corresponding stiffness reduction 

coefficients i (i = 1, 2). The DC function under the mid-span unit point load can be constructed from the 

principle of Virtual Work method following an analogous procedure, or by superposition method based on the 

two separated single damage cases, as follows:  

𝐷𝐶(𝑥) = {
(1/12𝐸𝐼)(𝐵111 + 𝐵122)𝑥            ,                  𝑥 ≤ 𝑎1

(1/12𝐸𝐼)(𝐵211 + 𝐵222)(𝐿 − 𝑥) , 𝑥 ≥ 𝑎2 + 𝑏2
 

(13a) 

(13b) 

where, the scalars B1i, B2i are defined from (7) for the ith damage location. It should be noted that another linear 

function of DC in the region a1 + b1 < x < a2, and two third-order functions in the damaged regions are omitted 

from (13) for simplicity. Fig. 2b depicts the damage locating concept for the double damage case based on a 

measured DC plot, in which the left and the right portions correspond to Eq. (13a) and (13b), respectively. It 

is evident that the damage locations can be detected at the two abrupt changes between the three linear portions.  

From (13) and (2), the RDC function is derived as:  
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𝑅𝐷𝐶(𝑥) = {
1𝑅𝐷𝐶1

50%(𝑥) + 2𝑅𝐷𝐶2
50%(𝑥) ,                  𝑥 ≤ 𝑎1

1𝑅𝐷𝐶1
50%(𝑥) + 2𝑅𝐷𝐶2

50%(𝑥) , 𝑥 ≥ 𝑎2 + 𝑏2
 (14) 

where, the RDCi
50% is the baseline RDC function calculated for the ith damaged element by (i= 1, 2): 

𝑅𝐷𝐶𝑖
50%(𝑥) =  {

𝐵1𝑖𝑥/𝑢0(𝑥)               ,                 𝑥 ≤ 𝑎𝑖
𝐵2𝑖(𝐿 − 𝑥) 𝑢0(𝑥)⁄   , 𝑎𝑖 + 𝑏𝑖 ≤ 𝑥 ≤ 𝐿 

 (15) 

Similar to the single damage case, the damage severity consistency functions for the two damaged elements 

can be given by: 

𝐷𝑆𝐶𝑖(𝑥) =
𝑅𝐷𝐶(𝑥)

𝑅𝐷𝐶𝑖
50%(𝑥)

 ,       𝑥(𝑎𝑖, 𝑎𝑖 + 𝑏𝑖), 𝑖 = 1,2 (16) 

Eq. (14) is therefore can be rewritten as: 

{
(1 𝐷𝑆𝐶11⁄ )1 + (1 𝐷𝑆𝐶12⁄ )2 = 1  ,                  𝑥 ≤ 𝑎1
(1 𝐷𝑆𝐶21⁄ )1 + (1 𝐷𝑆𝐶22⁄ )2 = 1 , 𝑥 ≥ 𝑎2 + 𝑏2

 (17) 

where,  

{
𝐷𝑆𝐶1𝑖 = 𝐷𝑆𝐶̅̅ ̅̅ ̅̅

1i(𝑥) = 𝑅𝐷𝐶(𝑥) 𝑅𝐷𝐶i
50%(𝑥)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   ,                  0 < 𝑥 ≤ 𝑎1, 𝑖 = 1,2

𝐷𝑆𝐶2𝑖 = 𝐷𝑆𝐶̅̅ ̅̅ ̅̅
2i(𝑥) = 𝑅𝐷𝐶(𝑥) 𝑅𝐷𝐶i

50%(𝑥)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑎2 + 𝑏2 ≤ 𝑥 < 𝐿, 𝑖 = 1,2
 (18) 

The damage severity derivative i can be obtained easily by solving (17). Finally, the damage severity 

coefficients i are calculated from Eq. (12) for each of the two damage locations. 

 

Fig. 2. Damage locating concept of SS beam under double damages: 

a) Undeformed SS beam, b) Deflection change plot 

2.3. Procedure for locating and quantifying damage in SS beams using DC and RDC 

The procedure for locating and quantifying elemental damage in SS beams using DC and RDC obtained from 

static tests can be summarised as follows: 

1. Scale the measured deflections in the undamaged and suspected states to be under the unit point load 

2. Calculate the DC and RDC vectors  

3. Plot the DC curve and locate the damage following the proposed damage locating concept 

4. Based on the obtained damage location identifiers (a, b) in previous step, calculate the RDC50% function 

from (9) for single damage, or from (15) if two damages are identified 

5. Calculate the DSC(x) function from (10) for single damage, or (16) for double damage case 

6. Calculate β from (11) or (17) depending on the number of damage location 

7. Obtain the damage severity coefficient α from (12). 
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3. Case study 1 - Numerical investigation for SS beam 

3.1. Numerical model 

A 24 m simply supported reinforced concrete beam is modelled using the finite element (FE) software package 

SAP2000 (Fig. 3). The Young’s modulus, Poisson’s ratio and mass density for the material are 35 GPa, 0.2 

and 2500 kg/m3, respectively. The second moment of area of the cross-section is 0.5 m4. Four damage scenarios 

are simulated by reducing the material Young’s modulus, in which the first three scenarios are single damage 

cases at the same element but with increasing damage severities, and the last is a double damage case (Table 

1). This modelling technique can represent for general damage related to flexural stiffness reductions. 

 

Fig. 3. FE model of the beam 

The deflections of the beam in the healthy and damaged states under the same unit point load (1 kN) acting at 

the mid-span are plotted in Fig. 4. The increasing trend in the deflections suggests the presence of cumulative 

damage. However, this does not provide enough information to locate and quantify the damage. Further 

investigation is therefore needed.  

Table 1. Damage scenario definition for Case study 1 

Damage case D1.1 D1.2 D1.3 D1.4 

Damaged element(s) 6 6 6 6 9 

Simulated damage severity 

(flexural stiffness reduction) 
10% 20% 30% 30% 30% 

 

 

Fig. 4. Deflections of the beam under the mid-span unit point load 

3.2. Damage detection result for single damage cases 

Fig. 5 illustrates the damage detection results for the three single damage cases. Fig. 5a plots the DC vectors 

obtained from the measured deflections before and after damage. As expected, the DC plots encompass two 

linear portions and a “peak” region at element No.6 in all three damage scenarios. This element is therefore 

identified as the damaged element according to the theory section. It is evident from Fig. 5a that the intensity 

of the DC plots are proportional to the damage severities, i.e., highest for D1.3, and lowest for D1.1. This 

accurately reflects the theoretical relationship between DC and the damage severity coefficient developed in 

Eq. (6). The damage location identifiers are then determined as a = 10 m and b = 2 m, and the corresponding 

scalars Bi are calculated from (7a) as B1 = 71.33 and B2 = 60.67, which are independent from the damage 

severity. 

To estimate the damage severity, the baseline RDC50% vector is calculated from (9) and plotted as in Fig. 5b, 

together with the measured RDCs. It is evident that the measured RDCs are proportional to the baseline 

RDC50%, and that the intensity of the RDC plots is proportional to the damage severity, i.e., highest at RDC50% 

(severity = 50%), then D1.3 (30%), D1.2 (20%), and lowest at D1.1 (10%). The corresponding damage severity 

consistency functions DSC(x) are calculated as the ratio of the measured RDCs to the baseline RDC50% 

following (10). Fig. 5c indicates that DSC(x) is a constant for each of the damage scenarios, viz. 0.1108, 0.2496 

and 0.4268 for D1.1, D1.2 and D1.3, respectively. This is expected because the measured deflections are noise-

free and the damage was correctly located. Finally, from (11) and (12), the damage severity coefficients are 



8 

 

accurately calculated as 9.97% for D1.1, 19.9% for D1.2 and 29.91% for D1.3 (Fig. 5d), with minor errors 

compared to the simulated severities (Table 1). 

 

Fig. 5. Damage detection results - Case D1.1-D1.3:  (a) Locating damage from the DC plots, (b) Relative deflection 

change, (c) Damage severity consistency functions, (d) Estimated damage severities 

 

Fig. 6. Damage detection result – Case D1.4: (a) Locating damage from the DC plot, (b) Relative deflection change, (c) 

Consistency functions, (d) Estimated damage severities 

3.3. Damage detection results for the double damage case 

Compared to the preceded single damage cases, the damage quantification process in this double case requires 

some differences in the last steps. After the damaged elements are identified at the abrupt changes of the DC 

plot (Fig. 6a), the scalars B1i and B2i, and the two scalar functions 𝑅𝐷𝐶𝑖
50% (i = 1, 2) are calculated following 

Eqs. (7) and (15). Fig. 6b illustrates the baseline 𝑅𝐷𝐶𝑖
50% and the measured RDC plots for D1.4. It is apparent 

that the measured RDC is proportional to the baseline 𝑅𝐷𝐶𝑖
50% in the regions x ≤ 10 m and x ≥ 18 m. This 

resulted in the corresponding consistency functions DSCij(x) calculated from (16) and plotted in Fig. 6c. On 
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the substitution of the average DSC values (DSC11 = 0.5740, DSC12 = 1.660, DSC21 = 0.8438, DSC22 = 0.8627), 

Eqs. (17) turn to: 

{
(1 0.5740⁄ )1 + (1 1.660⁄ )2 = 1  ,         𝑥 ≤ 10

(1 0.8438⁄ )1 + (1 0.8627⁄ )2 = 1 , 𝑥 ≥ 18
  

The solution of the equations yields 1 = 0.4265, 2 = 0.4267. Finally, the damage severities are calculated as 

1 = 29.90% and 2 = 29.91%, with minimal errors compared to the simulated severities (Fig. 6d). 

4. Case study 2 - Experimental verification for SS beam 

4.1. Test descriptions and damage scenarios 

The laboratory test used in this study was conducted in the Structural Laboratory at Queensland University of 

Technology with support from the university Design and Manufacturing Centre. The testing model consists of 

an AS/NZS grade C450 cold formed Duragal 75×40×4 CC beam channel section, which was supported by a 

pinned and a roller supports to simulate the structural behaviours of simply supported beams (Fig. 7). For 

experimental verification, the beam was tested under static point loads acting at the mid-span in order to capture 

its deflections in the healthy and various damaged states (Fig. 8). The supports were designed so that they carry 

the beam at the neutral axes of the cross-section. Damage was simulated by cutting the two flanges by 1.5 mm 

width cuts, with varying depths in an incremental manner (Fig. 9). The actual dimensions of the beam’s cross-

section are illustrated in Fig. 9. 

 

Fig. 7. The laboratory simply supported beam model 

 

Fig. 8. Schematic diagram of the test model in baseline and damaged states (length in mm) 

Prior to the static testing, the data acquisition system was established, which included seven strain gauge-type 

displacement transducers (DTs) positioned to measure the beam vertical displacements. The data acquisition 

system including a NI cDAQ 9172 chassis, two NI 9237 bridge input modules, and eight NI 9949 terminal 

blocks to form eight measurement channels. In addition, an in-house LabVIEW professional app was used to 

read and log the data in a fully synchronized and automated acquisition manner. The transducers were sampled 
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under the rate of  2000 Hz as the minimum allowable sampling rate of the NI 9237 modules is 1613 Hz [28]. 

The static test was conducted in the undamaged state of the beam (D2.0), which is considered as baseline 

structure. Then five static tests numbered from D2.1 to D2.5 were carried out in the damaged states. Each of 

the tests was conducted repeatedly for 25 measurements under the same 2.1 kgf point load at the mid-span, 

and then the average results were used. Each measurement lasted for 60 seconds, of which the first 20 seconds 

were without loads, the next 20 second were for loading time, and the last 20 seconds were in the loaded 

condition. The difference between the averaged displacement of the last 20 seconds and that of the first 20 

seconds provides the beam deflection.  

Free vibration test was also conducted during the static test without added mass in order to capture free 

vibration characteristics of the beam. These parameters were used to verify the beam properties. Only 

frequency results from the vibration test in the undamaged state are presented herein (Table 6) as the focus of 

this paper pertains to damage detection using static deflection changes. 

Damage case 
Damage 1 Damage 2 

x1 (mm) hc (mm) x2 (mm) hc (mm) 

D2.1 1175 8.5 

  D2.2 1175 12.5 

D2.3 1175 18 

D2.4 Same as D2.3 1737.5 12 

D2.5 Same as D2.3 1737.5 18 
 

 

Fig. 9. Damage scenario definition (length in mm; to be seen with Fig. 8) 

4.2. Test results 

The beam was also tested under different loading magnitudes and the deflections were correlated with very 

good linearity. This allows one to scale the measured deflections under the tested load (2.1 kgf) to an equivalent 

unit point load of 1 N (step 1 of the proposed DD procedure, section 2.3). The scaled deflections are listed in 

Table 2. Again, these deflections are the average values from 25 measurements conducted in each state. The 

corresponding deflection curves are plotted in Fig. 10, which show a clearly accumulated trend. The state of 

damage is therefore discernible. However, this does not yet provide any indication of the damage location and 

the damage severity. Therefore, more advanced damage assessment is required. 

Table 2. Deflection of the beam under an equivalent 1 N mid-span load (×10-3 mm) 

Sensor No. X (mm) D2.0 D2.1 D2.2 D2.3 D2.4 D2.5 

DT-01 0 0.166 0.179 0.181 0.167 0.215 0.189 

DT-02 487.5 9.850 9.924 10.129 10.603 10.609 10.828 

DT-03 987.5 16.117 16.422 16.787 17.568 17.739 17.982 

DT-04 1175 16.897 17.260 17.758 18.593 18.792 19.111 

DT-05 1487.5 16.090 16.301 16.731 17.459 17.563 18.093 

DT-06 1987.5 9.475 9.576 9.717 10.133 10.223 10.647 

DT-07 2475 0.014 0.004 0.028 0.026 0.065 0.029 

The coefficient of variation (CV) of the 25 measurement are presented in Table 3, which indicates a good level 

of repeatability (CV<1%). To further aid numerical study, the measurement noise of the test in the undamaged 

state is calculated for each sensor location as follows:  

 𝑖 =
𝑚𝑎𝑥
𝑗
|𝑋𝑖𝑗 − 𝑋̅𝑖|

𝑋̅𝑖
100% (19) 

where,  is the measurement noise level, Xij is the deflection at the ith sensor in the jth measurement (j = 1 to 

25), 𝑋̅𝑖 is the mean deflections value at the ith sensor. Table 3 summarises the results of measurement noise at 

each sensor locations, except for the sensors on the supports. Therefore, a 3.5% noise level can be adopted to 

represent for the measurement noise of the test. This will be used later in Case study 3 to generate laboratory-
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like data from numerical deflections.  

 

Fig. 10. Deflections of the beam in different damaged states under an equivalent 1 N load 

Table 3. Coefficient of variation (CV) and noise level () of the deflection measurements 

Sensor name DT-02 DT-03 DT-04 DT-05 DT-06 

CV (%) 0.69 0.74 0.79 0.76 0.84 

 (%)  2.83 2.93 2.90 3.06 3.59 

4.3. Finite element model validation 

In this laboratory test, damage was created by cutting the beam at a sectional manner rather than for a beam 

element. Hence, the actual elemental damage severity is not known in advance. To verify the accuracy of the 

experimental results, a finite element model (FEM) of the beam representing for the undamaged state will be 

validated based on the testing data, then used to simulate the damage in the same way as the test. Damage 

detection results from the validated FEM (similar to the case study 1) will be used as a reference for those 

obtained from the laboratory testing. The FEM is developed using the solid elements in the SAP2000 software 

package (Fig. 11). 

 

Fig. 11. Finite element model of the experimental beam (dimensions in mm) 

As static deflections solely depends on stiffness parameters, the FEM can be simply updated with regard to the 

beam and the support stiffness. From the basic knowledge of Static Structural Analysis, these stiffness 

parameters can be conveniently estimated from the measured static deflections as illustrates in Fig. 12. The 

updating results are shown in Table 4. It is evident that the updated material Young’s modulus is in the normal 

range of cold-formed steel channel sections. In addition, the pin support was more flexible in vertical direction 

than the roller support. 

Table 4. Beam stiffness updating results 

Parameter E (kN/mm2) k1 (N/mm) k2 (N/mm) 

Updated value 216 3015 35957 

Table 5 and Fig. 13 compare the deflection of the beam from the updated FEM and that obtained from the test 

in the undamaged state. To be comparable, the experimental deflection was interpolated using the shape 

preserving piecewise cubic interpolation method available in the Matlab software. Table 5 shows that the 

difference between the experimental and FEM deflections is less than 3.5%, except for x = 237.5 mm where 

the error is 6.8%, which demonstrates a very good correlation of the results. Vibration characteristics were also 

compared with good agreement of less than  5% difference as shown in Table 6. It is therefore can be 

concluded that the updated FEM is a good representative for the laboratory model, and the damage detection 
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conducted in the FEM can be used as a reference for those obtained from the experimental results. 

 

Fig. 12. Schematic of the stiffness updating from measured deflection 

Table 5. Deflection of the beam under 1 N mid-span load: FEM verses experiment (deflection in 10-3 mm) 

X (mm) 0 237.5 487.5 737.5 987.5 1237.5 1487.5 1737.5 1987.5 2237.5 2475 

Experiment (*) 0.166 5.376 9.850 13.583 16.117 16.854 16.090 13.510 9.475 5.031 0.014 

FEM 0.166 5.010 9.713 13.571 16.165 17.108 16.105 13.452 9.564 4.859 0.014 

Error (%) -0.1 -6.8 -1.4 -0.1 0.3 1.5 0.1 -0.4 0.9 -3.4 1.7 

(*) Interpolated from Table 2 (D2.0) 

 

Fig. 13. Deflection of the beam under 1 N mid-span load: FEM verses Test 

Table 6. Natural frequencies of the beam: FEM verse experiment 

Mode 1 2 3 4 

Experiment (Hz) 16.56 62.54 146.31 247.82 

FEM (Hz) 16.58 65.13 142.86 241.59 

Error (%) 0.12 4.14 -2.36 -2.51 

4.4. Damage detection results 

Due to the use of small number of displacement transducers, the measured deflections are interpolated into 21 

nodes at a spacing of 125 mm, which are the same as those from the FEM.  

The damage detection results for the first three single damage cases are shown in Fig. 14. For convenience, 

results from the validated FEM are plotted together with those from the experiment. The RDC and RDC50% 

plots are omitted in the subsequent figures for brevity. For the FEM results, in all cases, changes in the 

deflection (DC subplots) clearly indicate a “peak” over the 125 mm long beam element No.10. This element 

is therefore suspected as the damaged element according to the proposed damage-locating concept. In addition, 

all the three DC plots illustrate linear portions on both sides of the “peak” as expected. This has resulted in the 

constant values of the DSC functions for each of the damage scenarios as shown in the blue bar charts in the 

second row of the figure. Based on the average values of the DSC functions, the damage severities are estimated 
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at 10.41%, 20.71% and 39.96% for D2.1, D2.2 and D2.3, respectively. These results will be regarded as an 

approximate reference for the laboratory test. 

Regarding the laboratory test, for the two less significant damage cases D2.1 and D2.2 (Fig. 14a, b), 

unavoidable measurement noise (Table 3) seems to cause noticeable non-linearity of the DC plots compared 

to the FEM results. Nevertheless, the experimental DC plots clearly depict a peak region at the beam element 

No.10. According to the proposed damage locating concept, this element is correctly detected as the damaged 

element. Although the non-linearity of the DC plots resulted in the fluctuation of the subsequent DSC plots, 

using the proposed technique presented in Eqs. (10) to (12), the damage extents were reasonably estimated, 

with less than  2% differences compared to the numerical references.  

For the third damage case D2.3 (Fig. 14c), the testing results show satisfactory linearity on the DC plots, in 

addition to a clear peak at the beam element No.10. This can be explained by the fact that the damage-induced 

DC in this case is significant enough that can outweigh the deflection variations due to measurement noise. 

Consequently, the method accurately locates the damage and quantifies its severity of 41.51%, with minimal 

difference compared to the FEM result. It also can be observed from Fig. 14 that cumulative DC and DSC 

magnitudes from D2.1 to D2.3 clearly indicates the ability of the proposed method in capturing the growth of 

damage. 

 

Fig. 14. Damage detection result for: (a) D2.1, (b) D2.2, (c) D2.3 

The next damage scenario D2.4 was created from the last single damage case D2.3 by adding another 12 mm 

cut at 3/4 region of the beam. This new cut is approximately the size of the cut in the second damage case 

D2.2. Fig. 15a indicates the damage detection results from the noise-free FEM deflection change. The two 

damaged elements are clearly located based on the proposed damage locating concept. As expected, the 

estimated damage severity at the first cut almost remains unchanged in comparison with the case D2.3 (39.31% 

compared to 39.96%), and the result for the second cut approximates that of the case D2.2 (20.56% compared 

to 20.71%). These results are regarded as the reference for the laboratory test. However, the experimental DC 

plot in Fig. 15b does not provide a clear enough peak at the second damage. Therefore, only the damage in the 

middle of the beam is detected with confidence. This can be explained by the fact that the sensors are located 

far away from the actual damage location (Fig. 8), and that it is a common problem in SHM when a small 

damage is more challenging to detect compared to a larger one. By accepting this damage locating result, the 

DSC function and the damage severity results are shown in the second and third sub-plot of Fig. 15b. It shows 

that since the second damage is missed, it causes an overestimated result for the first damage when a 43.90% 

is detected compared to the reference 39.31%. 

The damage detection results for the last damage scenario D2.5 are shown in Fig. 16. It is evident that the first 
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damage is clearly detected at element No.10 for both FE and experimental studies. The second damage is also 

clearly detected at the beam No.14 in FE study due to the dense grid of output points, while the testing result 

can only provide a relative damage position between sensors DT-05 and DT-06 because of the coarse sensor 

arrangement. The beam element No.15 is therefore selected as the second damage in the experimental study. 

This does not significantly reduce the accuracy of the damage locating result as the actual cut is positioned 

between beam No.14 and 15. In fact, the resultant DSC plot shows a good consistency among the nodes, and 

the damage severities are estimated with acceptable errors of less than  2% difference between FE and the 

test results (last row of Fig. 16). 

To conclude the laboratory case study, the proposed method has shown its robustness in locating and 

quantifying single damage cases. For the double damage cases, the method can predict the damage locations 

and estimate the damage extents with satisfactory accuracy when the two damages are equally significant. 

However, there is some difficulty in using the method when one of the damage is much smaller than the other. 

In this particular case, only the bigger damage was more clearly detected and its severity was somewhat 

overestimated.  

 

Fig. 15. Damage detection result for D2.4: (a) FEM, (b) Test 

5. Case study 3 - Numerical investigation of cantilever beam with noise effect 

This case study is conducted in a FE cantilever beam model, with artificial measurement noise added to the 

deflections. The beam model was developed in the SAP2000 software package using the same cross-section 

and material properties as those used for the SS beam model in case study 2. The beam cross-section is inverted 

so that the flanges are in tensile stress area under vertical loads (Fig. 17). The deflection of the beam under a 

unit point load acting at the tip is used as being representative of the undamaged state. Three damage scenarios 

are simulated by cutting the vertical flanges in different depths (Table 7), which are the same levels as those 

conducted for the single damage cases in the SS beam test (refer to Fig. 9). The position of the cuts is at 562.5 

mm from the fixed support. Similar to Case study 2, the damage in this section will be quantified for an 

equivalent stiffness reduction across a length of 125mm (Fig. 17) 

As the geometrical and material properties are exactly the same as those from the laboratory SS beam model, 

the 3.5% noise level calculated from section 4.2 can be used to generate virtual testing data without the need 

of conducting a similar experiment. The contaminated deflection is calculated in the present work as follow: 
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Fig. 16. Damage detection result for D2.5: (a) FEM, (b) Test 

𝑈̃ = 𝑈(1 +   ) (20) 

where, 𝑈̃ and U are the deflection at one node with and without noise, respectively;   is an independent random 

number in the range of [-1, 1] for that node;  is the noise level. In each state, a population of 25 data is 

generated randomly to simulate the actual test, and the averaged results are used. In order to evaluate the effect 

of the same noise level to the increasing damage severity, the same set of  is used for the three damage 

scenarios. It should be noted that the  set for the undamaged state is different from that for the damaged states. 

The deflection changes with and without noise are used to assess the damage using the proposed method for 

cantilever beams, which is presented in the Appendix. 

 

Fig. 17. FE model of the beam (dimensions in mm) 

Fig. 18 illustrates the damage detection results, and Table 7 summarises the estimated damage severities. 

Without noise effects, the DC plots increase linearly from the beam location x = 0.625 m towards the free end, 

which correctly reflects the established theoretical DC function. The damaged element is therefore located at 

the beam element No.5 (x = 0.5  0.625 m) according to the proposed damage locating concept. As expected, 

the resultant DSC(x) functions show constant values among the measurement points, viz, 0.115, 0.268, and 

0.681 for D3.1, D3.2 and D3.3, respectively (the blue DSC bar charts). This has led to the estimated damage 

severities of 10.28% (D3.1), 21.14% (D3.2) and 40.52% (D3.3). It is evident that these damage extents are 

almost the same as those estimated in case study 2 for the same saw cut sizes (refer to Fig. 14). Therefore, the 

method can accurately quantify the same damages regardless of the beam type.  

Table 7. Damage scenarios and damage detection results 
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Damage 

case 

Depth 

of the 

cut 

(mm) 

Estimated damage severity for cantilever beam (%) 

Noise-free 3.5% noise 7% noise 

7% noise using 

curve fitting 

technique 

D3.1 8.5 10.28 12.36 8.78 9.60 

D3.2 12.5 21.14 22.78 18.99 19.08 

D3.3 18 40.52 41.49 39.26 39.43 

For the results with noise effect, it is apparent that the DC plots cannot maintain its linearity. However, the 

noise only causes considerable fluctuations in the DC and DSC plots for the smallest damage case, D3.1. For 

the other more severe cases, D3.2 and D3.3, the noise has negligible effects on the damage locating results. 

These are similar to the DD results from the laboratory test in the case study 2. The subsequent damage severity 

estimations show very good results of less than  2.5% difference compared to the corresponding noise-free 

cases. 

 

Fig. 18. Damage detection result in noise-free and 3.5% noise level: (a) D3.1, (b) D3.2, (c) D3.3 

In an effort to examine the competency of the method under higher noisy condition, a 7% noise level is added 

to the FEM deflections. For comparison purposes, a simple linear polynomial curve fitting technique is used 

to fit the distorted DC plots in order to reduce the impact of noise before the fitted data is used for damage 

detection. Fig. 19 compares the DD results of the noise-free and the 7% noise with and without using the fitting 

technique. The corresponding damage quantification results are summarised in Table 7.  

From Fig. 19 and Table 7, it is evidenced that the method retains its robustness in locating and quantifying the 

damage of larger than 20% severity (D3.2, D3.3), even without using the fitting technique. For the smallest 

damage case (D3.1), although the distorted DC plot cannot provide a clear pattern that matches the proposed 

damage locating concept, the fitted DC plot clearly indicates an increasing trend from x = 0.75 m towards the 

free end. The damage is therefore detected at the beam element No.6 compared to the simulated No.5, which 

is acceptable for this early damage state. In all cases, the errors of the estimation results compared to those of 

the noise-free cases are within  3% difference, which demonstrates a satisfactory accuracy.  
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Fig. 19. Damage detection results for 7% noise level: (a) D3.1, (b) D3.2, (c) D3.3 

6. Discussions on practical applications 

Following the successes of numerical and experimental investigations, future validations on large-scale and 

full-scale structures would be helpful to gain more understanding on the capabilities of the proposed method 

under different field conditions. Targeting applications on real bridges, the following practical aspects are 

worth discussing. 

This paper presents damage detection concepts using static deflections under a unit point load applied at a 

certain location of the beam. However, the method can be generalised to an arbitrary point load or a set of 

point loads with suitable modifications on the RDC50% function. In addition, in practice, the deflections can be 

measured directly or indirectly, with or without the need to apply a specific load on the structures. For example, 

deflections of a bridge can be measured directly by applying test trucks in non-traffic conditions, such as during 

the night time [8]. An indirect approach to obtain static deflections without the need of applying a specific load 

is through modal flexibility matrices constructed from dynamic tests [10, 11]. The former approach can be 

carried out periodically or after extreme events such as earthquakes and hurricanes when the safety of a bridge 

is concerned, while the latter approach is applicable for continuous monitoring. 

Temperature, as the main environmental factor, can cause difficulties in identifying structural damage, 

especially in its early states. The need to distinguish between changes resulting from damage and those changes 

resulting from temperature variations is apparent for any damage detection method [2, 29]. Various techniques 

have been proposed by researchers to address this problem. The fundamental idea of the techniques is based 

on the fact that temperature generally produces global increases or decreases in structural responses that can 

be linearly correlated, while structural damages can cause abrupt variations near the damage locations that can 

be localised by suitable damage features [30-32]. It is therefore essential for the damage features to have clear 

damage-driven change patterns to distinguish them from those induced by temperature. The mathematical DC 

and RDC patterns developed in this paper can be very helpful in this situation. 

In the conducted experimental validation, seven DTs were used to validate the theoretical DC formulas. In 

practice, due to economic reasons, there is a real need to keep the number of sensors at minimum. An approach 

that can be very useful in this circumstance is to apply Maxwell’s reciprocity theorem. According to Choi et 

al. [9], using only one DT and a test-truck gradually moving and standing at the sensor-missing points will 

make it possible to measure the deflection of the whole bridge for damage detection purpose. 
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7. Conclusions 

A new damage detection method was developed and presented in this paper. The method utilizes the changes 

in static deflections to locate and quantify the damage in Euler-Bernoulli beams through a range of the 

developed deflection change (DC) and relative deflection change (RDC) functions with respect to both damage 

location and damage severity. From the established theoretical DC patterns, the damage can be identified and 

located conveniently from a measured DC plot. Based on the knowledge of the damage location, the damage 

severity is calculated directly from the measured RDC through a closed-form function and the damage-

severity-consistency concept. The advantages of the proposed method include: (1) it does not require an 

optimization algorithm or a refined FEM to locate and quantify the damage; (2) the method has a clear 

theoretical and physical base; and (3) the method uses the static deflection, which is one of the most reliable 

structural responses in structural assessment and health monitoring, especially with the recent advances in 

digital measurement technologies. 

The feasibility and practicality of the proposed method have been verified by both numerical and experimental 

studies. Results from various numerical investigations showed that the proposed static damage detection 

method could accurately locate and quantify the damage in all single and multiple damage cases. For the 

experimental and the noise-added data sets, the method retains its robustness in single damage cases, and 

provides satisfactory results in double damage cases when the two damages are of the same extent. The 

proposed method can satisfactorily identify and quantify damage as minor as 10% of member stiffness 

reduction in noisy test environment of approximate 3.5% noise level, or even 7% noise in simulated condition.  

The damage locating and quantification concepts developed and presented herein can be extended to other 

structures including statically determinate and indeterminate beam-type structures, and tested under real 

application conditions as discussed in Section 6. Research on these topics is currently underway and will be 

reported in future works of the present authors. 
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 Appendix 

An analogous procedure as presented for SS beam in the theory section can be adopted for cantilever beams 

under a unit point load acting at the tip. The damage locating concept is illustrated in Fig. A-1a. It shows that 

the damage causes no changes in the beam deflection in the undamaged region from the fixed end to x=a. 

From this point onward, the DC increases by a third-order function with respect to x in the damaged region a< 

x ≤ a + b before linearly increases in the undamaged region x>a+b. The damage is therefore identified at the 

abrupt change between the two linear portions of the measured DC plot. This damage locating concept is 

supported from the following theoretical DC functions:  

𝐷𝐶(𝑥) =

{
 
 

 
 
0                                             ,                 𝑥 ≤ 𝑎


(𝑥 − 𝑎)2

6𝐸𝐼
(3𝐿 − 2𝑎 − 𝑥),    𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏


1

6𝐸𝐼
(𝐴 + 𝐵(𝑥 − 𝑎 − 𝑏)) , 𝑎 + 𝑏 ≤ 𝑥 ≤ 𝐿

 (A-1) 

where, the damage severity derivative  is defined as in Eq. (5), while the scalars A and B are defined as: 

𝐴 = 𝑏2(3𝐿 − 3𝑎 − 𝑏);         𝐵 = 3𝑏(2𝐿 − 2𝑎 − 𝑏)  (A-2) 

To quantify the located damage, the DSC function is calculated from (10) for x>a+b, with a notice that the 

referenced RDC50% function is given by Eq. (A-3). Finally, the damage severity is estimated following Eqs. 

http://www.ni.com/pdf/manuals/374186a_02.pdf
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(11) and (12). 

𝑅𝐷𝐶50%(𝑥) =

{
 
 

 
 
0                                           ,                 𝑥 ≤ 𝑎
(𝑥 − 𝑎)2(3𝐿 − 2𝑎 − 𝑥)

𝑥2(3𝐿 − 𝑥)
,    𝑎 ≤ 𝑥 ≤ 𝑎 + 𝑏

𝐴 + 𝐵(𝑥 − 𝑎 − 𝑏)

𝑥2(3𝐿 − 𝑥)
 ,             𝑎 + 𝑏 ≤ 𝑥 ≤ 𝐿

 (A-3) 

For the double damage cases, the damage locating concept is illustrated in Fig. A-1b, and the damage severities 

can be estimated in an analogous procedure as presented for SS beam. 

 

Fig. A-1. Damage locating concept of cantilever beams from DC plots: (a) Single damage, (b) Double damage 


