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Abstract

In the present paper, we develop a generalised finite difference approach
based on compact integrated radial basis function (CIRBF) stencils for solv-
ing highly nonlinear Richards equation governing fluid movement in hetero-
geneous soils. The proposed CIRBF scheme enjoys a high level of accuracy
and a fast convergence rate with grid refinement owing to the combination
of the integrated RBF approximation and compact approximation where
the spatial derivatives are discretised in terms of the information of neigh-
bouring nodes in a stencil. The CIRBF method is first verified through
the solution of ordinary differential equations, 2–D Poisson equations and a
Taylor-Green vortex. Numerical comparisons show that the CIRBF method
outperforms some other methods in the literature. The CIRBF method in
conjunction with a rational function transformation method and an adaptive
time-stepping scheme is then applied to simulate 1–D and 2–D soil infiltra-
tions effectively. The proposed solutions are more accurate and converge
faster than those of the finite different method employed with a second-order
central difference scheme. Additionally, the present scheme also takes less
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time to achieve target accuracy in comparison with the 1D-IRBF and HOC
schemes.

Keywords: subsurface flow; heterogeneous soil; Richards equation; radial
basis functions; compact approximation; numerical method

1. Introduction

The fluid movement in unsaturated soils has been widely modelled by the
nonlinear Richards equation. This nonlinear equation can be linearised by
using either Picard or Newton iterative schemes. Celia et al. [1] proposed a
modified Picard approximation based on the mixed form of Richards equa-
tion to obtain an accurate solution with improved mass balance. However,
the method requires large computational time when solving problems with
very dry initial conditions [2]. To overcome this issue, Kirkland et al. [2]
developed a transformed Richards equation where a new variable ϕ is de-
fined as a linear function of pressure head h in saturated or near saturated
soils and a linear function of water content θ in unsaturated soils. Pan
and Wierenga [3, 4] proposed another transformation method, namely ra-
tional function transformation (RFT) method, for simulating 1–D and 2–D
infiltration into very dry heterogeneous soils. The spatial discretisation for
Richards equation has been carried out using several techniques, such as the
finite different method [1], finite element method [1, 5], and finite volume
method [6, 7, 8]. Caviedes-Voullième et al. [8] investigated the performance
of finite volume schemes in simulating 1–D flows in porous media. Like Celia
et al. [1], they also found that the schemes based on the mixed form are
accurate and conservative while the ones based on the pressure form are
inaccurate and non-conservative.

In recent decades, some mesh-free and radial basis function (RBF)-based
methods have been developed for solving partial differential equations (PDEs).
The RBF-based methods are capable of universal approximation and those
based on mutiquadric (MQ) and Gaussian functions can offer an exponen-
tial rate of convergence [9]. Kansa [10] first introduced a collocation method
based on MQ-RBFs to solve partial differential equations (PDEs) and showed
that the MQ scheme yields an excellent interpolation for different functions
over both gridded and scattered data. As an alternative to the conventional
differentiated radial basis function network (DRBFN) method [10], Mai-Duy
and Tran-Cong [11] proposed an integrated RBFN method (IRBFN) for the
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solution of PDEs. Instead of conventional differentiation, they used inte-
gration to construct the RBF approximations which significantly improved
the stability and accuracy of the numerical solution. Mai-Duy and Tan-
ner [12] presented a one-dimensional integrated radial basis function network
(1D-IRBFN) collocation method for the solution of second- and fourth-order
PDEs. In this method, IRBFNs are employed to obtain the expressions for
the field variable and its relevant derivatives along a grid line. Cartesian
grids were used to represent both rectangular and non-rectangular problem
domains, resulting in significant efficiency as the computational cost almost
negligible in comparison with that required for a body-fitted mesh.

However, global RBF-based methods are not suitable for solving large-
scale problems because they produce very dense system matrices [13]. Some
researchers have proposed local and compact local RBF-based methods in
both the differentiation (e.g. [14, 15, 16, 17, 18, 19, 20, 21, 22]) and integra-
tion (e.g. [23, 24, 25, 26, 27, 28, 29]) formulations to overcome this drawback.
In the IRBF-based methods, the integration process generates some unknown
integration constants. This provides effective ways to add some extra infor-
mation through the process of converting the RBF weights into the function
values to improve the solution accuracy. For example, through integration
constants, one can impose derivative boundary conditions at the two end
points of a grid line in an exact manner. Mai-Duy and Tran-Cong [28] pro-
posed a compact five-point stencil based on IRBF networks for solving 2D
second-order differential problems. In this compact IRBF stencil, not only
the nodal function values but also the nodal derivative values are incorpo-
rated into the IRBF approximations.

The rational function transformation (RFT) method was proposed by
Pan and Wierenga [3, 4] in combination with FDM to solve the Richards
equation. Their numerical results showed that the RFT method with a
modified Picard method are more efficient than the h-based modified Pi-
card method [1] and the ϕ-based transformation method [2] in handling the
nonlinearity of the Richards equation. In the present paper, we develop a
numerical procedure based on the compact integrated radial basis function
(CIRBF) scheme (instead of the conventional FDM) for the spatial discreti-
sation in combination with the RFT method to accurately simulate moisture
motion in heterogeneous soils. The present approach is a generalised fi-
nite difference (GDF) scheme since the spatial derivatives are discretised in
terms of the information of neighbouring nodes and then substituted into
the strong form of the governing equations to obtain a system of algebraic
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equations [15, 16, 17, 18, 19]. Before solving the soil problems, we verify the
CIRBF scheme by solving some 2–D Poisson equations and a nonlinear fluid
flow problem (i.e., Taylor-Green vortex).

The paper is organised as follows. Section 2 presents the CIRBF scheme,
followed by a discussion of the governing equations for moisture motion in
soils in Section 3. In Section 4 the CIRBF scheme is verified. The proposed
method is then applied to solve 1–D and 2–D soil infiltration problems in
Section 5. Section 6 concludes the paper.

2. Compact integrated radial basis function technique

In this section, we use the notation

• [̄ ] for a vector/matrix [ ] that is associated with a CIRBF stencil;

• [̂ ] for a vector/matrix [ ] that is associated with a grid line;

• [ ](η,θ) to denote selected rows η and columns θ of the matrix [ ];

• [ ](η) to denote selected components η of the vector [ ];

• [ ](:,θ) to denote all rows and selected columns θ of the matrix [ ]; and

• [ ](η,:) to denote all columns and selected rows η of the matrix [ ].

Consider a CIRBF stencil associated with three nodal points {i−1, i, i+1}
on an x–grid line with n nodal points as shown in Fig. 1. An approximation
of the field variable u at a nodal point xi is sought in the form

∂2u(x)

∂x2
=

k=i+1∑

k=i−1

w(k)G(k)(x), (2.1)

∂u(x)

∂x
=

k=i+1∑

k=i−1

w(k)H
(k)
[1] (x) + c1, (2.2)

u(x) =

k=i+1∑

k=i−1

w(k)H
(k)
[0] (x) + c1x+ c2, (2.3)

where
{
w(k)

}k=i+1

k=i−1
are RBF weights to be determined; G(k)(x) known RBFs;

H[1](x) =
∫
G(x)dx; H[0](x) =

∫
H[1](x)dx; and c1 and c2 integration con-

stants which are also unknown. An example of RBF, used in this work, is the
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multiquadrics G(k)(x) =
√

(x− x(k))2 + a(k)2, where a(k) is the RBF width
determined presently as a(k) = β ′g, in which β ′ is a positive factor, and g
the grid size. The large values of β ′ lead to RBFs with a flat shape that
yield more accurate results but also produce an ill-conditioned interpolation
matrix. Therefore, it is important to find the appropriate values of β ′. So
far the RBF width has been chosen either by empirical approaches or by
optimization techniques [30, 31].

For the compact IRBF approximation of the first- and second-order deriva-
tives, the nodal function values and extra information are included to es-
tablish the stencil approximation. In the CIRBF scheme presented in [32],
nodal first-derivatives are chosen as extra information in the compact ap-
proximation of first derivatives while nodal second-derivatives are used in
the compact approximation of second derivatives. In the present CIRBF
scheme, the information of nodal second derivatives are employed in both
the compact approximations of first and second derivatives as described in
the following sub-sections. The performance of both methods are compared
through a numerical example in Section 4.3. The nodal function values and
the nodal second derivatives (extra information) are used to establish the
relation between the physical space and the RBF weight space. Application
of (2.3) at three nodal points {i − 1, i, i + 1} and (2.1) at two nodal points
{i− 1, i+ 1} results in




ū
∂2u(i−1)

∂x2

∂2u(i+1)

∂x2


 =




H
(i−1)
[0] (xi−1) H

(i)
[0] (xi−1) H

(i+1)
[0] (xi−1) xi−1 1

H
(i−1)
[0] (xi) H

(i)
[0] (xi) H

(i+1)
[0] (xi) xi 1

H
(i−1)
[0] (xi+1) H

(i)
[0] (xi+1) H

(i)
[0] (xi+1) xi+1 1

G(i−1)(xi−1) G(i)(xi−1) G(i+1)(xi−1) 0 0
G(i−1)(xi+1) G(i)(xi+1) G(i)(xi+1) 0 0




︸ ︷︷ ︸
C

(
w̄
c̄

)

(2.4)
or (

w̄
c̄

)
= C−1

(
ū ∂2u(i−1)

∂x2
∂2u(i+1)

∂x2

)T

(2.5)

in which ū =
(
u(i−1) u(i) u(i+1)

)T
; w̄ =

(
w(i−1) w(i) w(i+1)

)T
; and

c̄ =
(
c1 c2

)T
. In the following sub-sections, the relation (2.5) is used

in combination with Eqs. (2.1) and (2.2) to find the expression of first and
second derivatives of the field variable u in the physical space.
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2.1. CIRBF approximation of second derivative

The second derivative of the field variable u at a nodal point xi is calcu-
lated based on Eq. (2.1) as

∂2u(i)

∂x2
= G(i−1)(xi)w

(i−1) +G(i)(xi)w
(i) +G(i+1)(xi)w

(i+1) (2.6)

or

∂2u(i)

∂x2
=

[
G(i−1)(xi) G(i)(xi) G(i+1)(xi) 0 0

] (
w(i−1) w(i) w(i+1) c1 c2

)T

(2.7)
or

∂2u(i)

∂x2
= G(xi)

(
w̄ c̄

)T
. (2.8)

Substituting (2.5) into (2.8) results in

∂2u(i)

∂x2
= G(xi)C

−1

︸ ︷︷ ︸
R2

(
ū ∂2u(i−1)

∂x2
∂2u(i+1)

∂x2

)T

(2.9)

or
∂2u(i)

∂x2
= R2aū+R2b

(
∂2u(i−1)

∂x2
∂2u(i+1)

∂x2

)T

(2.10)

where G(xi) is a known matrix of dimension 1 × 5; R2a = R2(1 : 3) and
R2b = R2(4 : 5). Eq. (2.10) can be expressed as

L
∂2ū

∂x2
= R2aū (2.11)

in which L is a known matrix of dimension 1× 3.
To calculate function derivatives at the boundary nodes 1 and n, we use

CIRBF stencils consisting of four nodes as shown in Fig. 1b. We use the same
approach as presented in [29, 32] for boundary condition treatments. Note
that the boundary stencils have more nodes than the interior stencils and
according to numerical experiments this treatment yields the most accurate
solution. Application of (2.3) at four nodal points {1, 2, 3, 4} and (2.1) at the
nodal point 2 results in
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u(1)

u(2)

u(3)

u(4)

∂2u(2)

∂x2




=




H
(1)
[0] (x1) H

(2)
[0] (x1) H

(3)
[0] (x1) H

(4)
[0] (x1) x1 1

H
(1)
[0] (x2) H

(2)
[0] (x2) H

(3)
[0] (x2) H

(4)
[0] (x2) x2 1

H
(1)
[0] (x3) H

(2)
[0] (x3) H

(3)
[0] (x3) H

(4)
[0] (x3) x3 1

H
(1)
[0] (x4) H

(2)
[0] (x4) H

(3)
[0] (x4) H

(4)
[0] (x4) x4 1

G(1)(x2) G(2)(x2) G(3)(x2) G(4)(x2) 0 0




︸ ︷︷ ︸
C′




w(1)

w(2)

w(3)

w(4)

c̄




(2.12)
or

(
w(1) w(2) w(3) w(4) c̄

)T
= C′−1

(
u(1) u(2) u(3) u(4) ∂

2u(2)

∂x2

)T

, (2.13)

in which the matrix C′ is underdetermined and its inverse can be found using
the singular value decomposition technique.

Substituting (2.13) into (2.1) and applying at a nodal point 1 result in

∂2u(1)

∂x2
= G(x1)C

′−1

︸ ︷︷ ︸
R′

2

(
u(1) u(2) u(3) u(4) ∂

2u(2)

∂x2

)T

(2.14)

or
∂2u(1)

∂x2
= R′

2a

(
u(1) u(2) u(3) u(4)

)T
+R′

2b

(
∂2u(2)

∂x2

)
(2.15)

where G(x1) is a known matrix of dimension 1 × 6; R′
2a = R′

2(1 : 4) and
R′

2b = R′
2(5). Eq. (2.15) can be expressed as

L′

(
∂2u(1)

∂x2

∂2u(2)

∂x2

)T

= R′
2a

(
u(1) u(2) u(3) u(4)

)T
(2.16)

in which L′ is a known matrix of dimension 1 × 2. Similarly, the CIRBF
stencil associated with the boundary node n is constructed as

L′′

(
∂2u(n−1)

∂x2

∂2u(n)

∂x2

)T

= R′′
2a

(
u(n−3) u(n−2) u(n−1) u(n)

)T
(2.17)

in which L′′ and R′′
2a are known matrices of dimensions 1 × 2 and 1 × 4,

respectively.
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From Eqs. (2.11), (2.16) and (2.17), the value of second-derivative of u
w.r.t. x at nodal points on the x− grid line is given by

L̂
∂2û

∂x2
= R̂2aû (2.18)

or
∂2û

∂x2
= D̂2xû (2.19)

where û = {u(1) u(2) ... u(n)}T ; L̂ and R̂2a are known matrices of dimensions
n×n (n is defined earlier in the text just above Eq. (2.1) and in Fig. 1); and
D̂2x = L̂−1R̂2a.

2.2. CIRBF approximation of first derivative

The first derivative of the field variable u at a nodal point xi is calculated
based on Eq. (2.2) as

∂u(i)

∂x
= H

(i−1)
[1] (xi)w

(i−1) +H
(i)
[1] (xi)w

(i) +H
(i+1)
[1] (xi)w

(i+1) + c1 (2.20)

or

∂u(i)

∂x
=

[
H

(i−1)
[1] (xi) H

(i)
[1] (xi) H

(i+1)
[1] (xi) 1 0

] (
w(i−1) w(i) w(i+1) c1 c2

)T

(2.21)
or

∂u(i)

∂x
= H[1](xi)

(
w̄ c̄

)T
. (2.22)

Substituting (2.5) into (2.22) results in

∂u(i)

∂x
= H[1](xi)C

−1

︸ ︷︷ ︸
R1

(
ū ∂2u(i−1)

∂x2
∂2u(i+1)

∂x2

)T

(2.23)

or
∂u(i)

∂x
= R1aū+R1b

(
∂2u(i−1)

∂x2
∂2u(i+1)

∂x2

)T

(2.24)

where H[1](xi) is a known matrix of dimension 1 × 5; R1a = R1(1 : 3) and
R1b = R1(4 : 5). Making use of (2.19), Eq. (2.24) becomes

∂u(i)

∂x
= R1aū+R1bD̂2x(idi

′, :)û (2.25)
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where idi′ is the index vector mapping the location of nodes {i− 1, i+1} to
that in the x− grid line.

For the boundary node 1, substituting (2.13) into (2.2) and applying at
the nodal points 1 result in

∂u(1)

∂x
= H[1](x1)C

′−1

︸ ︷︷ ︸
R′

1

(
u(1) u(2) u(3) u(4) ∂

2u(2)

∂x2

)T

(2.26)

or
∂u(1)

∂x
= R′

1a

(
u(1) u(2) u(3) u(4)

)T
+R′

1b

(
∂2u(2)

∂x2

)
(2.27)

where H[1](x1) is a known matrix of dimension 1 × 6; R′
1a = R′

1(1 : 4) and
R′

1b = R′
1(5). Making use of (2.19), Eq. (2.27) becomes

∂u(1)

∂x
= R′

1a

(
u(1) u(2) u(3) u(4)

)T
+R′

1bD̂2x(2, :)û. (2.28)

The value of the first-order derivative of u w.r.t. x at the nodal point n is
determined in the similar manner as

∂u(n)

∂x
= R′′

1a

(
u(n−3) u(n−2) u(n−1) u(n)

)T
+R′′

1bD̂2x(n− 1, :)û (2.29)

where R′′
1a and R′′

1b are known matrices of dimensions 1 × 4 and 1 × 1,
respectively.

From Eqs. (2.25), (2.28) and (2.29), the value of first-derivative of u w.r.t.
x at nodal points on the x− grid line is given by

∂û

∂x
= D̂1xû (2.30)

in which D̂1x is a known matrix of dimension n× n.
Similarly, the values of the second-order and first-order derivatives of u

w.r.t. y at nodal points on a y− grid line is given by

∂2û

∂y2
= D̂2yû, (2.31)

∂û

∂y
= D̂1yû. (2.32)
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For both rectangular and non-rectangular domain problems, the bound-
ary conditions can be imposed in a straightforward manner via a boundary
stencil such as one described by Eq. (2.12). Additionally, problems having
strong boundary layer effects, e.g. lid-driven cavity flows and natural con-
vection flows, can be solved at a high level of accuracy owing to the use of
the IRBFs to construct the local approximations as reported in the previous
published works by Mai-Duy and Tran-Cong [28], Thai-Quang et al. [29] and
Ngo-Cong et al. [33].

3. Governing equation for moisture motion in soil

Moisture motion in soils obeys the Richards equation which can be written
in three forms as follows [1].

• The “h-based” form

C(h)
∂h

∂t
−∇ (K(h)∇h)−

∂K

∂z
= 0 (3.33)

• The “θ-based” form

∂θ

∂t
−∇ (D(θ)∇θ)−

∂K

∂z
= 0 (3.34)

• The “mixed form”

∂θ

∂t
−∇ (K(h)∇h)−

∂K

∂z
= 0 (3.35)

where h is pressure head measured in the length unit [L] ; θ the moisture
content [L3/L3]; C(h) = dθ/dh the specific moisture capacity function [1/L];
K(h) is the unsaturated hydraulic conductivity [L/T ]; D(θ) = K(θ)/C(θ)
the unsaturated diffusivity [L2/T ], z denotes the vertical dimension [L], as-
sumed positive upward.

As discussed in Celia et al. [1], numerical solutions based on the stan-
dard h-based form generally yield poor results due to large mass balance
errors. In contrast, numerical solutions based on the mixed form possess the
conservative property, resulting in mass conservation and more accurate nu-
merical solution. The “mixed” form (3.35) was discretised by Celia et al. [1]
as follows.

C(nt+1,m)

∆t
δm −∇ ·

(
K(nt+1,m)∇δm

)
=

∇ ·
(
K(nt+1,m)∇h(nt+1,m)

)
+ ∂K(nt+1,m)

∂z
+ θ(nt)−θ(nt+1,m)

∆t
,

(3.36)
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or

C(nt+1,m)

∆t
δ − ∂

∂x

(
K(nt+1,m) ∂δ

∂x

)
− ∂

∂z

(
K(nt+1,m) ∂δ

∂z

)
=

∂
∂x

(
K(nt+1,m) ∂h(nt+1,n)

∂x

)
+ ∂

∂z

(
K(nt+1,m) ∂h(nt+1,n)

∂z

)
+ ∂K(nt+1)

∂z
+ θ(nt)−θ(nt+1,m)

∆t

(3.37)
where δm = h(nt+1,m+1)−h(nt+1,m); the superscript (nt) refers to a time level;
and (m) a pseudo-time level (Picard iterations).

In the present study we discretise the “mixed” form based on the rational
function transformation (RFT) method proposed by Pan and Wierenga [3].
In the RFT method, a transform function f is designed as follows.

f =

{
h

1+βh
if h < 0

h if h ≥ 0
(3.38)

or

h =

{ f
1−βf

if h < 0

f if h ≥ 0
(3.39)

⇒
∂h

∂f
=

{
(1 + βh)2 if h < 0
1 if h ≥ 0

(3.40)

where β is a transform constant. Making use of (3.39) and (3.40), (3.35)
becomes

∂θ

∂t
−∇ (K∗∇f)−

∂K

∂z
= 0 (3.41)

The time discretisation for (3.41) is also carried out using the modified Picard
method of Celia et al. [1] as follows.

C∗δf
∆t

− ∂
∂x

(
K∗ ∂δf

∂x

)
− ∂

∂z

(
K∗ ∂δf

∂z

)
=

−∂q
(nt+1,m)
x

∂x
− ∂q

(nt+1,m)
z

∂z
+ θ(nt)−θ(nt+1,m)

∆t

(3.42)

where δfm = f (nt+1,m+1) − f (nt+1,m); qx = −K∗∂f/∂x, qz = −K∗∂f/∂z −
K, C∗ = C∂h/∂f and K∗ = K∂h/∂f . In each physical time step, the
convergence is achieved during the modified Picard iterations if the values of
f satisfy the following convergence criterion.

√
N∑
i=1

(
f
(m+1)
i − f

(m)
i

)2

√
N∑
i=1

(
f
(m+1)
i

)2

< TOL, (3.43)
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where TOL is a given tolerance and presently set to be 10−5.
Pan and Wierenga [3] suggested to choose the value of β as big as possible

as long as the K∗ versus f curves are still monotonic and recommended
β = −0.04cm−1 as the universal value. In the present study, we use this
value of β. The spatial discretisation for (3.42) is carried out by using the
CIRBF scheme by replacing the function u in Section 2 by the functions f
and δf .

4. Verification of the CIRBF scheme

Before applying the present CIRBF scheme to simulate flow motion in
soils, we verify the method through the solution of a 2–D Poisson equation
and a Taylor-Green vortex. We evaluate the performance of the present
scheme based on the root mean square error (RMS), the relative L2 error
(Ne) and the convergence rate (O(gα

′

)).

RMS =

√∑N
i=1 (ui − ui)

2

N
, (4.44)

RMS(g) ≈ γ′gα
′

= O(gα
′

), (4.45)

Ne =

√∑N
i=1 (ui − ui)

2

∑N
i=1 u

2
i

, (4.46)

Ne(g) ≈ γ′gα
′

= O(gα
′

), (4.47)

where ui and ui are the numerical and exact solutions at the i-th node,
respectively; and N the number of nodes over the whole domain; and γ′ and
α′ are exponential model’s parameters. For the purpose of computational
cost comparisons, all related computations are carried out on a Dell computer
with an Intel Core (TM) i7-3770, 3.40 GHz processor, 8 GB RAM and 64-bit
operating system.

4.1. Ordinary differential equations (ODEs)

In this sub-section, we study the performance of the present approach
over uniform and non-uniform distributions of collocation points through
the solution of two ODEs. The first one (ODE-1) is

d2u

dx2
= −16π2 sin (4πx) , 0 ≤ x ≤ 1 (4.48)
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subject to the Dirichlet boundary condition derived from the exact solution
ū = 3 + sin (4πx). The second one (ODE-2) has a more complicated form,

d2u

dx2
− 3

du

dx
+ 2u = exp (4x) , −1 ≤ x ≤ 1 (4.49)

subject to the Dirichlet boundary condition derived from the exact solution
ū = 2 exp (x) + exp (2x) + (1/6) exp (4x).

Over 0 ≤ x ≤ 1 we determine the distribution of collocation points
x = {xi}

N
i=1 through the relation

xi+1 = xi + gi, 1 ≤ i ≤ N − 1, (4.50)

where x1 = 0, gi = g0/ρi, g0 = 1/ (N − 1) and ρ is a density function which
is presently chosen as

ρ (i) = exp

(
aρ

i

N

)
, i = 1, 2, ..., N, (4.51)

in which aρ is positive and the larger the value of aρ the more non-uniform the
distribution of collocation point will be. The distribution is then normalised
so that 0 ≤ x ≤ 1. We take a mirror image for −1 ≤ x ≤ 0.

The ODEs are solved on a set of uniform (aρ = 0) and non-uniform
(aρ = {0.5, 1.0, 1.5}) grids with different sizes N = {101, 201, ..., 1001}. For
ODE-1, its solution accuracy (Ne) against the RBF width (β ′) is presented
in Fig. 2 (for N = 501) while the behaviour of Ne against the number of grid
nodes is presented in Fig. 3 (for β ′ = 50). The corresponding results for ODE-
2 are given in Figs. 4 and 5. The four figures show that the present approach
yields greater accuracy for uniform grids (aρ = 0) and the accuracy increases
as aρ is reduced. We will use uniform grids for the following computations.

4.2. Poisson equation

4.2.1. Poisson equation in a square domain:

In order to study the spatial accuracy of the present CIRBF approxima-
tion scheme, we consider the following Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= −18π2 sin(3πx) sin(3πy), (4.52)

subject to the Dirichlet boundary condition derived from the following exact
solution

u = sin(3πx) sin(3πy) (4.53)
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in which 0 ≤ x, y ≤ 1. The calculations are carried out on a set of uniform
grids of {21× 21, 31× 31, ..., 71× 71}. Table 1 gives comparison of numeri-
cal solutions showing that the proposed scheme outperforms the higher order
compact finite difference (HOC) scheme [34], 1D-IRBF [12] and finite differ-
ence method with central-difference (FDM) scheme. The convergence rate is
O(g2.036) for the FDM scheme, O(g3.052) for the 1D-IRBF scheme, O(g4.837)
for the HOC scheme, and O(g4.847) for the present scheme.

To compare the computational cost of the CIRBF, 1D-IRBF and HOC
schemes, we let the grid size increase as {21× 21, 22× 22, ...} until the so-
lution accuracy achieves a target RMS level of 10−5. Fig. 6 shows that the
present scheme takes much less time to reach the target accuracy than the
1D-IRBF and the HOC. It is noted that the final grid size used to achieve
the target accuracy is 81 × 81 for the 1D-IRBF, 45 × 45 for the HOC, and
44 × 44 for the present CIRBF. Fig. 7 presents the RMS of the approxi-
mate solution u against the RBF width parameter β ′ for three different grids
(31× 31, 51× 51 and 71× 71). The solution accuracy becomes better as β ′

increases to a certain value (β ′ = 10 for the 31 × 31 grid, β ′ = 20 for the
51× 51 grid, and β ′ = 30 for the 71× 71 grid) and beyond that the accuracy
is almost unchanged.

4.2.2. Poisson equation in a square domain with a circular hole:

The present method is also verified through the solution of the following
2D Poisson equation

∂2u

∂x2
+

∂2u

∂y2
= −8π2 sin(2πx) sin(2πy), (4.54)

defined on a non-rectangular domain as shown in Fig. 8 and subject to Dirich-
let boundary conditions. The problem has the following exact solution

u = sin(2πx) sin(2πy), (4.55)

from which the boundary values of u can be derived.
Fig. 9 presents the grid convergence study for the present CIRBF method

in comparison with that of the 1D-IRBF and MLS-1D-IRBF methods [26].
The numerical results show that the present method yields more accurate
solutions than its counterparts and has a higher convergence rate (error norm
of O(g4.12)) than the 1D-IRBF (error norm of O(g3.00)) and the MLS-1D-
IRBF (error norm of O(g3.70)). Fig. 10 presents the relative L2 errors (Ne)
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of the approximate solution u against the RBF width parameter β ′ for three
different grids. It can be seen that the optimal value of β ′ varies with different
grids (i.e., β ′ = 3 for the 25×25 grid, β ′ = 6 for the 49×49 grid, and β ′ = 10
for the 73 × 73 grid). And, for a given grid size, the solution accuracy is
almost unchanged with large values of β ′. When solving arbitrary problems
which do not have analytical solutions, it could be difficult to determine the
optimal RBF width. In those problems, we suggest to choose β ′ large enough
(e.g., β ′ = 15) to obtain stable and accurate numerical results.

4.3. Taylor-Green vortex

The Taylor-Green vortex is modelled by the incompressible transient
Navier-Stokes equations written in the dimensionless non-conservative forms
as

∂u

∂x
+

∂v

∂y
= 0, (4.56)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (4.57)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (4.58)

where u, v and p are velocity components in x-, y-direction and static pres-
sure, respectively; Re = Ul/ν the Reynolds number, in which ν, l and U are
the kinematic viscosity, characteristic length and characteristic speed of the
flow, respectively. Consider Eqs. (4.56)–(4.58) with the initial condition

u(x, y) = − cos(κx) sin(κy), (4.59)

v(x, y) = sin(κx) cos(κy), (4.60)

where 0 ≤ x, y ≤ 2π and κ = 2. The analytic solution for this problem is

u(x, y, t) = − cos(κx) sin(κy) exp(−2κ2t/Re), (4.61)

v(x, y, t) = sin(κx) cos(κy) exp(−2κ2t/Re), (4.62)

p(x, y, t) = −1/4 {cos(2κx) + cos(2κy)} exp(−4κ2t/Re). (4.63)

The boundary conditions for u, v and p can be derived from (4.61)–(4.63).
The CIRBF scheme which is incorporated into the fully coupled approach

where velocities and pressure are concurrently solved [32, 35, 36], called as
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CIRBF-Fully Coupled, is applied to solve this problem at Re = 100. A time
step is taken to be ∆t = 0.002. The present numerical results are compared
with those obtained by Tian et al. [34] who used the upwind HOC scheme
based on a fractional step approach and a staggered grid system (HOC-
Fractional). For the purpose of comparison, we also implement the HOC
scheme [34] into the present fully coupled fluid solver, named as HOC-Fully
Coupled. Table 2 shows the accuracy comparison between the CIRBF-Fully
Coupled, HOC-Fully Coupled and HOC-Fractional at time t = 2 for differ-
ent grid sizes. It is seen that CIRBF-Fully Coupled approach yields much
better accuracy and better convergence rates than the HOC-Fractional [34],
and also performs better than the HOC-Fully Coupled. To investigate the
computational efficiency of the CIRBF and HOC schemes when solving the
time-dependent problem, we increase the grid size as {11× 11, 13× 13, ...}
until the solution accuracy of the u-velocity achieves a target RMS level of
10−3. Fig. 11 shows that the present-CIRBF scheme reaches the target accu-
racy faster than the HOC approach. It is noted that the final grid size used
to achieve the target accuracy is 29×29 for the HOC, 29×29 for the previous
CIRBF, and 27 × 27 for the present CIRBF. We also compare the present
CIRBF results with those of the previous CIRBF scheme presented by Tien
et al. [32]. The numerical results show that the present scheme performs
better than the previous scheme as shown in Fig. 11.

5. Numerical results and discussion

In this section, we apply the proposed numerical approach based on the
CIRBF scheme and the rational function transformation (RFT) method to
simulate 1–D moisture motions in homogeneous and layered soils and 2–D
moisture motions in heterogeneous soils.

5.1. One-dimensional flow in a homogeneous soil

The performance of the proposed numerical approach is investigated through
three different sets of soil properties as follows.

• Set 1: The soil property is modelled as [37]

θ(h) =
α̂ (θs − θr)

α̂ + |h|β̂
+ θr, (5.64)

K(h) = Ks
A

A + |h|γ
, (5.65)
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where α̂ = 1.611 × 106, θs = 0.287, θr = 0.075, β̂ = 3.96, Ks =
0.00944cm/s, A = 1.175 × 106 and γ = 4.74. Initial and boundary
conditions are h(z, t = 0) = −61.5cm, htop = h(40cm, t) = −20.7cm,
and hbottom = h(0, t) = −61.5cm (Fig. 12).

• Set 2: The soil property is modelled as [1]

θ(h) =
θs − θr

[1 + (α |h|)η]
µ + θr, (5.66)

K(h) = Ks

{
1− (α |h|)η−1 [1 + (α |h|)η]

−µ}2

[1 + (α |h|)η]
µ/2

, (5.67)

where α = 0.0335, θs = 0.368, θr = 0.102, η = 2, µ = 0.5, Ks =
0.00922cm/s. Initial and boundary conditions are h(z, t = 0) = −1000cm,
htop = h(100cm, t) = −75cm, and hbottom = h(0, t) = −1000cm.

• Set 3: The Mualen-van Genuchten (MG) model is used as [38, 8]

θ =

{ θs−θr
[1+(α|h|)η ]µ

+ θr if h ≤ 0

θs if h > 0
(5.68)

K =





KsS
L̂
e

[
1−

(
1− S

1
µ

e

)µ]2
if h ≤ 0

Ks if h > 0

(5.69)

C =

{
−µηαη θs−θr

[1+(α|h|)η ]µ+1 |h|
η h−1 if h ≤ 0

0 if h > 0
(5.70)

where Se = (θ − θr)/(θs − θr), µ = 1 − 1/η, and L̂ = 0.5. The soil
parameters for the MG model are θs = 0.363, θr = 0.186, α =
0.01cm−1, η = 1.53, and Ks = 0.0001cm/s. Initial and boundary
conditions are h(z, t = 0) = −800cm, htop = h(100cm, t) = 0cm, and
hbottom = h(0, t) = −800cm.

Fig. 13 presents results of the pressure head profile with different grid
resolutions for Set 1 using the present numerical approach in comparison with
the FDM solution obtained by Celia’s h-based method at a dense grid [1].
It can be seen that the numerical results almost coincide as the grid density
increases. A similar behaviour is also obtained for the other soil properties
associated with Sets 2 and 3 as shown in Figs. 14 and 15, respectively. The
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solutions obtained by the CIRBF method are in good agreement with the
numerical result of Celia et al. [1] and the analytical result of Warrick et
al. [38]. We investigate the effect of time step (∆t) on the solutions of the
present method and compare the results with those presented by Celia et
al. [1] for Set 2. The grid size is taken to be ∆z = 2.5cm. The time step is
chosen as ∆t = 60.0, 12.0 and 2.4 minutes. Fig. 16 shows that the present
results converge to the dense grid result of Celia et al. faster than those of
the FDM when the time step reduces.

5.2. One-dimensional flow in a layered soil

The proposed method is applied to simulate flow in a layered soil for
several cases with different values of initial pressure (h0) and vertical flux at
the top of the soil column (qA) as shown in Table 3. These cases are the same
as the ones in the published works [2, 3, 6]. The soil profile has Soil 1 (Berino
loamy fine sand) from 0 to 50cm and 90 to 100cm, and Soil 2 (Glendale clay
loam) from 50 to 90cm. The hydraulic parameters of these soils based on
the van Genuchten model are presented in Table 4. The simulation time step
(∆t) is determined based on an adaptive time-stepping scheme [39, 2] for
efficiency and robustness. The time step is increased by 10% if the number
of Picard iterations for the previous time step is less than 4 and decreased by
10% if the number of iterations is greater than 8. Fig. 17 presents results of
pressure head and volumetric water content with different grid resolutions for
Case 1.1 using the FDM and CIRBF scheme. It can be seen that the CIRBF
solution converges faster than that of the FDM. The obtained numerical
results for all cases at a grid of 101 are in good agreement with those of the
FDM and the FVM [6] as shown in Fig. 18.

5.3. Two-dimensional flow in a heterogeneous soil

We simulate the moisture motion in heterogeneous porous media in two
dimensions as described in [2]. The computational domain and boundary
conditions are illustrated in Fig. 19. All boundaries are non-flow (q = 0) ex-
cept the segment of 100cm wide at the top where the vertical flux of 5cm/day
is applied. The computational region is divided into 9 alternating blocks of
Sand and Clay. Sand and Clay are Berino loamy fine sand and Glendale clay
loam, respectively.

We apply the proposed numerical approach to solve this problem. Fig. 20
gives the vertical and horizontal fluxes at the cross sections x = 5cm and
z = 95cm, respectively for different grid sizes and the initial pressure h0 =
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−50 × 103cm. It is observed that the current numerical results converge
to the dense grid solution obtained by the FDM [4] when refining the grid
density. At the same grid size of 5cm, the present result is slightly more
accurate than that of the FDM.

The present method is applied to solve the 2–D soil problem for several
grid sizes of ∆x = ∆z = {5.0, 6.25, 10.0, 20.0, 25.0, 50.0} cm for the case of
h0 = −50×103cm to investigate how coarse the grid can be before the scheme
fails. It appears that the method can yield the solution until the grid size of
25.0cm (Figs. 21) and fails at the grid size of 50.0cm. Fig. 22 illustrates the
contours of pressure head at 12.5 days with different grid resolutions of 10.0,
6.25 and 5.0 cm. Figs. 23-25 show the contour of pressure head at several
time moments (t = 1.0, 6.0 and 12.5 days) for different initial pressure heads
h0 = −103cm,−15× 103cm and −50 × 103cm, respectively.

For the purpose of CPU time comparisons, we implement the FDM+RFT
method to solve the present 2-D soil problem and run all related computations
on the same computer. Table 5 shows the CPU time and total number
of Picard iterations required for the present CIRBF+RFT simulations in
comparison with those of the FDM+RFT simulations. It can be seen that the
FDM+RFT method requires less CPU times and number of Picard iterations
than the present method.

6. Conclusions

A generalised finite difference approach based on the CIRBF method
and the rational function transformation (RFT) method has been success-
fully developed for simulating the fluid movement in homogeneous and het-
erogeneous soils. The CIRBF method of a high level of accuracy and fast
convergence rate has been demonstrated through the solution of a Poisson
equation and a Taylor-Green vortex. When solving the Poisson equation in a
non-rectangular domain, the present method performs better than its coun-
terparts (1D-IRBF and MLS-1D-IRBF). The enhanced convergence rate of
the present scheme provides an ability to obtain prescribed accuracy faster
than the 1D-IRBF and HOC schemes. The numerical results for Poisson
equations indicate that the RBF-width parameter β ′ should be chosen large
enough to get high accurate solutions. The value of β ′ is taken to be 15.0
for solving Taylor-Green vortex and soil problems in the present study. For
soil problems, numerical results show that the CIRBF results are more ac-
curate than those of the FDM with second-order central-difference scheme.
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The CIRBF numerical results obtained for different initial and boundary
conditions are in good agreement with other published results in the liter-
ature. However, the CIRBF+RFT method consumes more CPU time than
the FDM+RFT method because it requires more CPU time for construct-
ing the CIRBF interpolation matrix. Therefore, further study is needed to
improve the present scheme in order to reduce the computational cost for
solving soil problems.
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Table 1: Poisson equation: grid convergence study of RMS for the present CIRBF method
(β′ = 25) in comparison with the FDM, 1D-IRBF and HOC methods.

Grid FDM 1D-IRBF HOC Present CIRBF
21 × 21 8.9109E-03 5.8623E-04 3.3579E-04 3.3220E-04
31 × 31 3.9994E-03 1.7845E-04 5.6856E-05 5.5507E-05
41 × 41 2.2630E-03 7.6214E-05 1.4589E-05 1.4036E-05
51 × 51 1.4540E-03 3.9174E-05 4.9330E-06 4.6891E-06
61 × 61 1.0125E-03 2.2653E-05 2.0151E-06 1.9215E-06
71 × 71 7.4536E-04 1.4215E-05 9.4467E-07 9.4341E-07
Convergence rate O(g2.036) O(g3.052) O(g4.837) O(g4.847)

Table 2: Taylor-Green vortex: grid convergence study of numerical results at t = 2.0 for
the present CIRBF-Fully Coupled (β′ = 15) in comparison with the HOC-Fully Coupled
and HOC-Fractional [34].

Present CIRBF-Fully Coupled
Grid u-error v-error p-error
11× 11 1.5214251E-01 1.5218216E-01 5.3403483E-01
21× 21 3.9925074E-03 3.9924747E-03 2.1199636E-02
31× 31 3.2600624E-04 3.2600469E-04 5.1768763E-03
41× 41 2.8866736E-05 2.8866407E-05 6.0032401E-04
51× 51 1.4292601E-05 1.4292574E-05 4.2213874E-04
Rate O(g5.96) O(g5.96) O(g4.56)

HOC-Fully Coupled
Grid u-error v-error p-error
11× 11 1.8156049E-01 1.8156049E-01 3.0412542E-01
21× 21 4.5719207E-03 4.5719207E-03 8.5425929E-03
31× 31 5.0521189E-04 5.0521191E-04 2.6558403E-03
41× 41 1.0478762E-04 1.0478758E-04 3.4579194E-04
51× 51 3.0814364E-05 3.0814437E-05 2.6395965E-04
Rate O(g5.39) O(g5.39) O(g4.47)

HOC-Fractional [34]
Grid u-error v-error p-error
11× 11 7.0070489E-02 7.0070489E-02 1.0764149E-01
21× 21 9.0692193E-03 9.0692193E-03 1.0567607E-02
31× 31 2.8851487E-03 2.8851487E-03 2.9103288E-03
41× 41 1.2238736E-03 1.2238736E-03 1.1356134E-03
51× 51 6.3063026E-04 6.3063026E-04 5.3933641E-04
Rate O(g2.92) O(g2.92) O(g3.28)
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Table 3: One-dimensional flow in a layered soil: initial and boundary conditions, elapsed
times. h0 is the initial pressure, and qA and qC denote for the vertical flux at the top and
bottom of the soil column, respectively.

Case h0(cm) qA(cm/h) qC(cm/h) Elapsed time (h)
1.1 -200 0.3 0 4.0
1.2 -1000 0.3 0 8.0
1.3 -50000 0.3 0 12.0
2.1 -200 1.25 0 3.8
2.2 -1000 1.25 0 5.0
2.3 -50000 1.25 0 6.0

Table 4: Hydraulic parameters of Soils 1 and 2 in a layered soil.

Parameters Soil 1 Soil 2
θs 0.3658 0.4686
θr 0.0286 0.1060
α(cm−1) 0.0280 0.0104
η̂ 2.2390 1.3954
Ks(cm/h) 22.54 0.5458
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Table 5: 2-D soil problem: comparisons (between the present CIRBF+RFT and
FDM+RFT) of CPU time and total number of Picard iterations (Niteration) required
for simulations with different initial pressure heads (h0) and several grid sizes (∆x = ∆z).

h0(cm) Method Grid size (cm) CPU time (s) Niteration

-1000 FDM+RFT 20.00 17.2 1449
10.00 301.3 2362
6.25 2910.9 3845
5.00 8776.6 4876

CIRBF+RFT 20.00 68.1 2514
10.00 2296.0 5459
6.25 28481.1 10057
5.00 107098.0 13278

-15000 FDM+RFT 20.00 18.7 1497
10.00 290.6 2381
6.25 3389.7 4044
5.00 9235.0 4995

CIRBF+RFT 20.00 70.0 2595
10.00 2380.3 5584
6.25 32343.2 10333
5.00 110045.6 13520

-50000 FDM+RFT 20.00 17.5 1230
10.00 284.6 2571
6.25 3345.1 4130
5.00 7841.0 5110

CIRBF+RFT 20.00 79.7 2639
10.00 2100.5 5750
6.25 30612.9 9579
5.00 119663.7 13652
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Fig. 1: Schematic outline of (a) a 3-point CIRBF stencil for interior nodes and (b) 4-point
CIRBF stencils for two boundary nodes.
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Fig. 2: ODE-1: the solution accuracy (Ne) against the RBF width (β′) for four different
distributions of collocations points, N = 501.
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Fig. 3: ODE-1: the solution accuracy (Ne) against the number of grids (N) for four
different distributions of collocations points, β′ = 50.
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Fig. 4: ODE-2: the solution accuracy (Ne) against the RBF width (β′) for four different
distributions of collocations points, N = 501.
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Fig. 5: ODE-2: the solution accuracy (Ne) against the number of grids (N) for four
different distributions of collocations points, β′ = 50.
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Fig. 6: Poisson equation: comparison of computational cost of the present CIRBF, 1D-
IRBF and HOC schemes. The grid size increases as {21× 21, 22× 22, ...} until the solution
accuracy achieves a target RMS level of 10−5. The final grid sizes for the 1D-IRBF, HOC
and present CIRBF are, respectively, 81× 81, 45× 45 and 44× 44.
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three different grids.
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Fig. 9: Poisson in a square domain with a circular hole: grid convergence study for the
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Fig. 10: Poisson in a square domain with a circular hole: the solution accuracy (Ne)
against the RBF width (β′) for three different grids.
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Fig. 11: Taylor-Green vortex: comparison of computational cost of the present CIRBF and
HOC schemes. The grid size increases as {11× 11, 13× 13, ...} until the solution accuracy
of the u-velocity achieves a target RMS level of 10−3. The final grid sizes for the HOC,
previous CIRBF and present CIRBF are, respectively, 29× 29, 29× 29 and 27× 27.
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Fig. 12: 1-D soil problem: Geometry and boundary conditions.
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Fig. 13: 1-D soil problem (Set 1): results of pressure head at time t = 360s, using RFT
method in conjunction with CIRBF scheme, and ∆t = 1s.
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Fig. 14: 1-D soil problem (Set 2): results of pressure head at time t = 1day, using RFT
method in conjunction with CIRBF scheme, and ∆t = 1min.
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Fig. 15: 1-D soil problem (Set 3): results of pressure head at time t = 13h, using RFT
method in conjunction with CIRBF scheme, and ∆t = 0.5min.
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Fig. 16: 1-D soil problem (Set 2): results for different time steps, at time t = 1day, using
a grid size ∆z = 2.5cm, and (a) Celia et al.’s method, (b) CIRBF+RFT method.
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Fig. 17: 1-D flow in layered soil: results of pressure head h (left) and water content θ
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Fig. 19: 2-D soil problem: geometry and boundary conditions. The infiltration process
into a very dry region which is divided into 9 alternating blocks of sand and clay.
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Fig. 20: 2-D soil problem: results of vertical flux qz at x = 5cm (top) and horizontal
flux qx at y = 95cm (bottom) for several grid resolutions, at time t = 12.50 days, for
h0 = −50 × 103cm, q0z = 5cm/day, using the CIRBF scheme in conjunction with the
RFT method.
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Fig. 21: 2-D soil problem: contours of pressure head h(cm) at t = 12.50 days, using the
CIRBF scheme in conjunction with the RFT method, and different grid sizes ∆x = ∆z =
{25, 20, 10}cm, for h0 = −50× 103cm.
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Fig. 22: 2-D soil problem: contours of pressure head h(cm) at t = 12.50 days, using the
CIRBF scheme in conjunction with the RFT method, and different grid sizes ∆x = ∆z =
{10, 6.25, 5}cm, for different initial pressure heads.
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Fig. 23: 2-D soil problem: contours of pressure head h(cm) at different times t for h0 =
−103cm, q0z = 5cm/day, using the CIRBF scheme in conjunction with the RFT method,
and a grid size of 5cm.
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Fig. 24: 2-D soil problem: contours of pressure head h(cm) at different times t for h0 =
−15 × 103cm, q0z = 5cm/day, using the CIRBF scheme in conjunction with the RFT
method, and a grid size of 5cm.
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Fig. 25: 2-D soil problem: contours of pressure head h(cm) at different times t for h0 =
−50 × 103cm, q0z = 5cm/day, using the CIRBF scheme in conjunction with the RFT
method, and a grid size of 5cm.
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