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Abstract: Due to the numerous side effects of synthetic pesticides, including environmental pollution,
threats to human health, harmful effects on non-target organisms and pest resistance, the use of
alternative healthy, available and efficient agents in pest management strategies is necessary. In this
paper, the susceptibility of the cosmopolitan, polyphagous, stored-product pest Tribolium castaneum
(red flour beetle) to the fumigation of the essential oils of two important medicinal and food additive
plants, Satureja hortensis and S. intermedia, was investigated. The insecticidal properties of the essential
oils were modeled and optimized using response surface methodology. It was found that a maximum
significant mortality of 94.72% and 92.97% could be achieved within 72 h with the applications of
55.15 µL/L of S. hortensis (with the linear model) and 58.82 µL/L of S. intermedia (with the quadratic
model), respectively. There were insecticidal terpenes and phenylpropanoids in both essential oils,
including thymol (50.8%), carvacrol (11.2%) and p-cymene (13.4%), in the S. intermedia and estragole
(68.0%) and methyl eugenol (5.6%) in the S. hortensis. It was suggested that the essential oils of S.
hortensis and S. intermedia could be offered as promising pesticidal agents against T. castaneum for
further studies in the management of such pests instead of detrimental synthetic pesticides.

Keywords: biorational pesticides; chemical profile; fumigant toxicity; modeling; optimization;
S. hortensis; S. intermedia

1. Introduction

The globally distributed insect pest, the red flour beetle Tribolium castaneum Herbst
(Coleoptera: Tenebrionidae), attacks several stored grain products such as beans, cereals,
chocolate, flour, meal, nuts, seeds and spices [1]. The adults of T. castaneum are long-lived;
they can live for up to three years [2]. In addition to qualitative nutritional damage, con-
taminated products also have reduced quality due to the creation of an unpleasant odor by
the secretion of benzoquinone compounds from abdominal glands and remains of various
molting stages and cadavers [3]. Furthermore, T. castaneum can transmit phytopathogenic
microbial agents such as Aspergillus, Pseudomonas and Staphylococcus to infested storage
products [4,5]. Bosly and Kawanna [6] demonstrated that T. castaneum can actually carry
and distribute some Aspergillus species, particularly A. flavus, the main producer of carcino-
genic aflatoxins in agricultural products [7], in stored flour.

Although the use of synthetic pesticides is the principal approach in pest management,
the widespread use of these compounds has resulted in numerous side effects, such as
environmental contaminations, the accumulation of hazardous residues in food and high
toxicity to non-target organisms [8–10]. In addition, the resistance of pests to frequently
used chemical pesticides is increasing. For example, the resistance of T. castaneum to
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phosphine, as one of the commonly used fumigants against stored grain insect pests, was
reported [11–13]. Therefore, the introduction of low-risk, available and effective pesticides
is essential to alternate with synthetic chemicals in the management of such pests.

The effectiveness of plant-derived essential oils in insect pest control has been demon-
strated in numerous studies in recent years [14,15]. Along with the prospective insecticidal
effects of essential oils on insect pests from various species, genera, families and orders,
their biodegradable nature, safety compared to synthetic chemicals and multiple modes
of action in targeted pests indicate that they can be suitable alternatives to detrimental
chemical pesticides [16,17]. In fact, the volatile oils obtained from different species of
the Satureja genus were enriched with terpenes such as 1,8-cineole, γ-terpinene, thymol
and β-caryophyllene, which were grouped into four primary classifications: monoterpene
hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons and oxygenated
sesquiterpenes [18–20]. Promising insecticidal effects of Satureja essential oils against insect
pests of storage products were also reported. These included, for example, insecticidal
activities of S. bachtiarica Bung and S. khuzestanica Jamzad essential oils against T. casta-
neum [21], S. hortensis L. essential oil against the bean weevil (Bruchus dentipes (Baudi)) [19]
and the cowpea weevil (Callosobruchus maculatus (Fabricius)) [22] and S. spicigera Boiss
essential oil against the granary weevil (Sitophilus granarius (L.)) [23] and the maize weevil
(Sitophilus zeamais Motschulsky) [24].

Response surface methodology (RSM) is a set of mathematical and statistical tools
for the optimization of independent factors and modeling of dependent factors [25]. The
optimization of agricultural and chemical processes requires the simultaneous optimization
of several objective functions [26]. Therefore, RSM has been used in numerous agricultural
and pharmacological fields [27–30]. For example, RSM was used to find mathematical
models and optimized conditions for the toxicity of Eucalyptus globulus Labill and Teucrium
polium L. essential oils against T. castaneum [31,32].

Given the importance of using natural and low-risk compounds in pest management,
the main purpose of the present study is to investigate the possibility of using S. intermedia
C. A. Mey and S. hortensis L. essential oils in the control of T. castaneum. The insecticidal
properties of essential oils are modeled and optimized using response surface methodology.
Due to changes in essential oil composition under different environmental and geographical
conditions [18], the chemical profiles of the S. intermedia and S. hortensis essential oils were
also assessed.

2. Materials and Methods
2.1. Plant Materials and Extraction of the Essential Oils

S. intermedia was gathered from its wild populations in the Heiran regions in Ardebil
Province, Iran (38◦230′ N, 48◦350′ E and an elevation of 910 m). S. hortensis was collected
from Parsabad, Ardebil Province, Iran (39◦38′ N, 47◦52′ E and an elevation of 52 m). The
Satureja species were identified based on the work of Jamzad [33]. The fresh leaves and
flowers of S. intermedia and S. hortensis were used for essential oil extraction. All specimens
were allowed to dry in the shade over a 10-day period. For each plant sample, 100 g of
plant material was added to a 2-L flask of the Clevenger apparatus and subjected to 3 h
hydrodistillation. The extracted essential oils were then individually poured into glass vials,
covered with aluminum foil, dried over anhydrous Na2SO4 and kept in the refrigerator at
4 ◦C until use.

2.2. Chemical Profiles of the Essential Oils

The Satureja essential oils were analyzed by gas chromatography–mass spectrometry
using an Agilent 7890B GC with an Agilent 5977A mass selective detector (MSD), operated in
the EI mode (electron energy = 70 eV, scan range = 50–550 amu and scan rate = 3.99 scans/s).
The GC column was an HP-5ms fused silica capillary column (30 m in length, 0.25 mm inter-
nal diameter, (5% phenyl)-polymethylsiloxane stationary phase and 0.25 µm film thickness).
Helium was the carrier gas, with a 52.8 kPa column head pressure and 1.0 mL/min flow
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rate. The inlet temperature was 200 ◦C, and the interface temperature was 280 ◦C. The GC
oven temperature was programed to hold for 1 min at 50 ◦C and then increase at a rate
of 6 ◦C/min to a final temperature of 290 ◦C, with a total run time of 50 min. A 10% w/v
solution of the sample in methanol was prepared, and 1 µL was injected using a 100:1 split
ratio. Identification of the oil components was based on their retention indices, determined
by reference to a homologous series of n-alkanes and by comparison of their mass spectral
fragmentation patterns with those reported in the databases [34–36].

2.3. Insect Rearing

Adult T. castaneum specimens were collected from contaminated wheat grains in
warehouses in Parsabad, Ardabil Province, Iran (39◦38′ N, 47◦52′ E and an elevation of
52 m). The adults were reared on wheat grains in cylindrical glass containers (720 mL)
covered by a fine mesh cloth for ventilation. Contaminated grains were kept in the incubator
at 27 ± 2 ◦C and 60 ± 5% RH in the dark. Newly emerged adult insects 1–10 days old were
selected for the bioassays.

2.4. Fumigant Toxicity

A series of concentrations from 20.59 to 58.82 µL/L and from 21.00 to 55.15 µL/L
was selected to assess the fumigant toxicity of S. intermedia and S. hortensis essential
oils, respectively. Filter papers (Whatman No. 1; 2 × 2 cm) separately treated with the
concentrations of the essential oils were glued to the inner surface of the screw caps of
fumigant glass containers (340 mL). Twenty unsexed adults (1–10 days old) were transferred
to containers before screwing their caps. Then, the caps were sealed to be impermeable
to air with parafilm. The bioassay was repeated four times, and in the control groups,
all steps were performed except for adding essential oils. The fumigant containers were
kept in an incubator with 27 ± 2 ◦C and 60 ± 5% RH, and insect mortality was recorded
after 24, 48 and 72 h of exposure. The mortality in the control groups was corrected by the
following formula: Pt = [(Po− Pc)/(100− Pc)]× 100, in which Pt is the corrected mortality
percentage, Po is the mortality of the insects treated by essential oil concentrations and Pc
is the mortality of the insects in the control groups [37].

2.5. Modeling and Optimization by RSM

Using RSM under the historical data design by the statistical software Design Expert
8.0.6 (Stat-Ease, Inc., Minneapolis, MN, USA), various concentrations of essential oils were
analyzed in five levels, with the exposure times in three levels as the independent variables
and with the mortality of T. castaneum as the dependent variable.

Multiple linear regression analysis for the interactions of the independent and depen-
dent variables was used to achieve the statistically appropriate mathematical model in the
following second-order polynomial equation [38]:

y = βo +
k

∑
i=1

βiXi +
k

∑
i=1

β jXj +
k

∑
i=1

k

∑
j=1

βijXiXj +
k

∑
i=1

β jjX2
j (1)

where y is the mortality of T. castaneum (dependent variable), Xi and Xj are the exposure
times and essential oil concentrations, respectively (independent variables), k is a number
of independent variables (2), βo is the intercept of the model, βi and β j are the coefficients
of the linear parameters and βij specifies the quadratic parameter coefficient. The statistical
relationship between the independent and dependent variables was evaluated by the
correlation coefficient of determination (R2), adjusted R2 and predicted R2. Optimization of
the insect pest mortality caused by the fumigation of S. intermedia and S. hortensis essential
oils was performed to the maximum desirability using Design Expert software with RSM.
The statistical significance of the independent variables on the response variables was
examined at a 95% confidence level (p < 0.05), and only the variables with a significant
effect on the response variable were used in the proposed regression equation.
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3. Results

The results of the GC-MS analyses of the essential oils of S. intermedia and S. hortensis
are presented in Table 1. It can be seen that the essential oil of S. intermedia was rich in the
phenolic monoterpenes thymol (50.8%) and carvacrol (11.2%) along with monoterpenes
p-cymene (13.4%) and 1,8-cineole (4.3%). The essential oil of S. hortensis, on the other
hand, was dominated by phenylpropanoids, especially estragole (68.0%) as well as methyl
eugenol (5.6%) and (E)-p-methoxycinnamaldehyde (4.4%) (Table 1 and Figure 1).

Table 1. Chemical profiles of the essential oils isolated from the aerial parts of S. intermedia and S. hortensis.

RIcalc RIdb Compound Percent Composition
S. intermedia S. hortensis

933 933 α-Pinene 1.3 1.3
978 982 1-Octen-3-ol 0.9 —

1005 999 3-Octanol 0.4 —
1025 1024 Limonene — 0.9
1027 1025 p-Cymene 13.4 —
1031 1032 1,8-Cineole 4.3 —
1031 1032 (Z)-β-Ocimene — 1.2
1048 1044 (E)-β-Ocimene — 0.9
1054 1057 γ-Terpinene 1.0 —
1097 1091 Rosefuran — 0.2
1101 1101 Linalool 0.2 0.2
1105 1102 6-Methylhepta-3,5-dien-2-one — 0.2
1129 1127 allo-Ocimene — 1.3
1137 1138 cis-p-Mentha-2,8-dien-1-ol — 0.2
1143 1142 (E)-Myroxide — 0.2
1149 1145 trans-Verbenol — 0.1
1174 1171 p-Mentha-1,5-dien-8-ol — 0.2
1174 1173 Borneol 0.2 0.1
1181 1180 Terpinen-4-ol 0.7 0.1
1203 1201 Estragole (=Methyl chavicol) — 68.0
1211 1211 β-Cyclocitral — 0.4
1223 1223 trans-Carveol — 0.1
1237 1239 Thymyl methyl ether 1.8 —
1248 1244 Carvacryl methy ether 3.1 —
1256 1252 Chavicol — 0.2
1259 1257 p-Anisaldehyde — 0.5
1288 1289 Thymol 50.8 0.3
1296 1298 Carvacrol 11.2 0.8
1361 1356 Eugenol — 0.1
1362 1365 Carvacryl acetate 0.1 —
1407 1405 Methyl eugenol — 5.6
1424 1424 (E)-β-Caryophyllene 1.1 —
1478 1478 γ-Muurolene 0.2 —
1490 1490 (E)-β-Ionone — 0.3
1497 1491 Viridiflorene 0.4 —
1500 1500 α-Muurolene 0.1 —
1508 1508 β-Bisabolene 0.9 —
1516 1514 γ-Cadinene 0.2 —
1524 1518 δ-Cadinene 0.4 —
1540 1541 (E)-α-Bisabolene 0.1 —
1544 1544 α-Calacorene 0.1 —
1552 1554 Thymohydroquinone 0.4 —
1575 1567 (E)-p-Methoxycinnamaldehyde — 4.4
1576 1576 Spathulenol 1.0 0.5
1587 1583 allo-Spathulenol — 3.5
1589 1587 Caryophyllene oxide 0.8 0.8
1611 1614 1,10-di-epi-Cubenol — 0.4
1613 1613 Humulene epoxide II 0.1 —
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Table 1. Cont.

RIcalc RIdb Compound Percent Composition
S. intermedia S. hortensis

1629 1631 1-epi-Cubenol tr —
1635 1638 cis-Cadin-4-en-7-ol 0.1 —
1636 1629 iso-Spathulenol — 0.2
1639 1636 Caryophylla-4(12),8(13)-dien-5β-ol 0.1 —
1641 1640 τ-Cadinol 0.1 —
1646 1645 α-Muurolol (=δ-Cadinol) tr —
1655 1655 α-Cadinol 0.1 —
1658 1656 14-Hydroxy-9-epi-(Z)-caryophyllene 0.1 —
1667 1668 ar-Turmerone 0.5 0.2
1667 1668 β-Turmerone tr —
1672 1666 14-Hydroxy-9-epi-(E)-caryophyllene 0.2 —
1675 1677 Cadalene tr —
1681 1679 epi-α-Bisabolol tr —
1687 1683 Germacra-4(15),5,10(14)-trien-1α-ol tr —
1699 1701 Curlone 0.1 —
1841 1841 Phytone 0.1 0.4
1926 1925 Methyl palmitate — 0.2
2109 2109 Phytol — 1.2

Monoterpene hydrocarbons 15.7 5.7
Oxygenated monoterpenoids 72.8 2.8
Sesquiterpene hydrocarbons 3.5 0.0

Oxygenated sesquiterpenoids 3.1 5.6
Benzenoid aromatics 0.0 78.7

Others 1.4 2.3
Total identified 96.4 95.0

RIcalc = Retention index, determined with respect to a homologous series of n-alkanes on an HP-5 ms column; RIdb = Retention index
from the databases.
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Figure 1. The structures of the major components in the essential oils of Satureja intermedia and
S. hortensis.

Table 2 shows the results of the analysis of variance (ANOVA), which indicated that
the mortality of T. castaneum adults was significantly affected by A (exposure time) and
B (essential oil concentration) in the S. hortensis treatment and by A, B, and B2 in the S.
intermedia treatment (p < 0.01). The lack-of-fit test for both essential oils was non-significant,
demonstrating the validation of treatments (Table 2).

In Table 3, the fitting effect of different levels of the essential oil concentration and
exposure time on the mortality amount is presented. The model’s fitting was evaluated
on the basis of the coefficient of determination (R2), adjusted R2 and prediction R2 as well
as the coefficient of variation (CV). It can be seen that all the R2 values were high (>0.94),
meaning that the response surface methodology models were suitable. Furthermore, the
coefficient of variation for almost all parameters was below 8.4%. This means that the
results demonstrated good accuracy and precision with the reliability of experiments. As
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is shown in Table 3, it was found that the linear effects of the dependent variables on the
mortality amount were significant (p < 0.05) under the essential oil of S. hortensis. The effect
on the mortality value under the essential oil of S. intermedia was significant according to
the quadratic equation (p < 0.05). The mortality was strongly influenced by the essential oil
concentrations, based on the higher coefficient for B in the equation of Table 3.

Table 2. Results of analysis of variance for prediction of the fumigant toxicity of S. intermedia and S. hortensis essential oils
against T. castaneum.

Essential Oil Source Sum of Squares df Mean Square F Value p-Value

S. intermedia

Model 21,460.07 3 7153.36 287.26 <0.0001
A 4305.62 1 4305.62 172.90 <0.0001
B 16,798.40 1 16,798.40 674.58 <0.0001
B2 518.89 1 518.89 20.84 <0.0001

Residual 1394.51 56 24.90
Lack of Fit 250.76 11 22.80 0.90 0.5504 NS
Pure Error 1143.75 45 25.42

Model 25,853.86 2 12,926.93 760.04 <0.0001

S. hortensis

A 4622.50 1 4622.50 271.78 <0.0001
B 21,231.36 1 21,231.36 1248.30 <0.0001

Residual 969.47 57 17.01
Lack of Fit 231.97 12 19.33 1.18 0.3262 NS
Pure Error 737.50 45 16.39
Cor Total 26,823.33 59

A: exposure time (h); B: essential oil concentrations (µL/L); NS: non-significant.

Table 3. RSM modeling results for predicting the mortality percentage under different concentrations of essential oils and
exposure times.

Essential Oil Equation R2 Value Adj R2 Pred R2 C.V. (%)

S. intermedia −34.33772 + 0.43229A + 2.77692B − 0.019410B2 0.9390 0.9357 0.9297 8.40
S. hortensis −23.11885 + 0.44792A + 1.55199B 0.9639 0.9626 0.9600 7.59

A: exposure time (h); B: essential oil concentrations (µL/L).

Figure 2 presents the effect of different concentrations of essential oils (in five levels)
and exposure times (in three intervals) on the mortality of T. castaneum adults. It can be
seen that the susceptibility or the mortality of the insect pest was increased by increasing
the concentrations of both the essential oils and the exposure times. According to the color
points in Figure 2, the mortality of T. castaneum was increased from 15% to 95% and from
20% to 100% by increasing the concentrations of the S. hortensis and S. intermedia essential
oils from 21.00 to 55.15 µL/L and from 20.59 to 58.82 µL/L, respectively, and the exposure
times from 24 to 72 h.

Plots of the residuals versus the predicted mortality of T. castaneum adults caused by
the fumigation of S. intermedia and S. hortensis essential oils are shown in Figure 3. It can be
seen that the introduced models for predicting T. castaneum mortality were accurate and
consistent with the variation hypothesis.

The optimized conditions for the significant maximum mortality of T. castaneum adults
treated by the essential oils of S. intermedia and S. hortensis after different exposure times
are shown in Table 4. After 72 h of exposure time, the maximum mortality of the pest
(92.973%) may be achieved with 58.820 µL/L of S. intermedia essential oil with a desirability
of 0.9121, while a concentration of 55.150 µL/L would be sufficient to attain the maximum
mortality (94.72%) with S. hortensis essential oil with desirability of 0.997%. This indicated
that the T. castaneum adults were more susceptible to the essential oil of S. hortensis than
the S. intermedia (Table 4).
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Table 4. Optimization of the mortality of T. castaneum caused by the fumigation of S. intermedia and
S. hortensis essential oils.

Essential Oil Mortality (%) * Time (h) Concentration (µL/L) Desirability

S. intermedia
50.000 31.569 33.127 1.000

92.973 * 72.000 58.820 0.912

S. hortensis
50.000 61.952 29.233 1.000

94.723 * 72.000 55.150 0.997
* The maximum significant mortality percentage based on high desirability, calculated by Design Expert software.

4. Discussion

In the S. intermedia essential oil, 95.1% of the identified compounds were terpenes,
in which oxygenated monoterpenoids such as thymol (50.8%) and carvacrol (11.2%) had
high concentrations. In contrast, the terpenes had only 14.1% of the total S. hortensis
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essential oil, and this essential oil was rich in benzenoid aromatics such as estragole
(68.0%), methyl eugenol (5.6%) and (E)-p-methoxycinnamaldehyde (4.4%). Therefore, the
essential oils studied in the present study were completely different in terms of chemical
components. It was reported that γ-terpinene (42.3%), carvacrol (32.8%), p-cymene (8.1%),
β-pinene (2.3%), β-caryophyllene (2.2%), α-thujene (1.9%) and α-pinene (1.5%) were the
main components of the essential oil isolated from the aerial parts of S. intermedia at
the flowering stage from Romania [39]. In the present study, only carvacrol (0.8%) and
α-pinene (1.3%) in low concentrations were found in S. hortensis at the pre-flowering
stage. In contrast, estragole and methyl eugenol, identified in high amounts in the present
study, were not detected in the essential oil investigated by Chambre et al. [39]. The
chemical composition of S. intermedia, as one of the Satureja species endemic to Iran, was
assessed [40], and γ-terpinene (37.1%), thymol (30.2%), p-cymene (16.2%), limonene (3.9%),
α-terpinene (3.3%) and β-myrcene (2.5%) were reported as the main components. In the
present study, γ-terpinene, thymol and p-cymene were also identified, but there were no
traces of limonene, α-terpinene or β-myrcene. Accordingly, differences in the chemical
compositions of essential oils may be related to the different species and stages of plants
as well as the temperature, humidity, height and other geographical conditions of the
cultivation locales [18,41].

The insecticidal effects of the essential oils extracted from S. hortensis and S. intermedia
against stored-product insect pests were also reported in some recent studies. The fumigant
toxicity of S. hortensis essential oil against C. maculatus, S. zeamais and the Mediterranean
flour moth (Ephestia kuehniella Zeller) was studied [22,24,42]. Additionally, the fumigant
toxicity of S. intermedia essential oils against the lesser grain borer (Rhyzopertha dominica
(Fabricius)) and the khapra beetle (Trogoderma granarium Everts) was observed in one of
our previous works [43]. These results are consistent with the current findings about the
insecticidal potential of essential oils of the S. hortensis and S. intermedia species. Overall,
the insecticidal effects of plant essential oils are related to their active compounds such
as terpenes and phenylpropanoids [44,45]. As is shown in Table 5, the strong insecticidal
effects of the components were identified in high percentages in the S. intermedia and S.
hortensis essential oils, including 1,8-cineole, carvacrol, estragole, methyl eugenol, p-cymene,
thymol and α-pinene (in both essential oils). The insecticidal activity of S. intermedia and S.
hortensis essential oils may be highly associated with these active compounds.

Table 5. Review of insecticidal effects for the main compounds identified in S. intermedia and S. hortensis essential oils.

Compound Reported Insecticidal Effects

p-Cymene Significant toxicity against the third and fourth instar larvae and pupae of mosquito Culex
quinquefasciatus Say [46].

1,8-Cineole

High contact toxicity to the third instar larvae of the diamondback moth (Plutella xylostella (L.)),
which was synergistically increased by terpene pulegone [47].

Significant fumigant toxicity against the adults of rice weevil (Sitophilus oryzae (L.)) and T.
castaneum [48].

Thymol
High contact toxicity to the third instar larvae of the diamondback moth, which was

synergistically increased by the terpene pulegone [47].
The 100% mortality of adults of S. granarius by the fumigation of 163.3 µL/L after 96 h [49].

Carvacrol The 100% mortality of adults of S. granarius by the fumigation of 166.7 µL/L after 96 h [49].
Significant toxicity against the third and fourth instar larvae and pupae of C. quinquefasciatus [46].

Estragole

Significant fumigant toxicity against the adults of T. castaneum after 24 h [44].
Significant fumigant toxicity and repellent action against the adults of S. zeamais after 168 and 1 h,

respectively [45].
Strong fumigant toxicity against S. zeamais [50].

Methyl eugenol Toxic to the third instar larvae of cigarette beetle (Lasioderma serricorne (F.)) in the feeding test after
168 h [51].

α-Pinene (presence in both
essential oils)

The 100% mortality of adults of S. granarius by the fumigation of 72.5 µL/L after 96 h [49].
Significant toxicity against the third and fourth instar larvae and pupae of C. quinquefasciatus [46].



Processes 2021, 9, 1243 9 of 12

Furthermore, according to the study of Kim et al. [44], estragole had more fumigant
toxicity against S. zeamais (LC50 = 0.004 mg/cm3) and T. castaneum (LC50 = 0.013 mg/cm3)
adults than the terpenes limonene, linalool, β-myrcene, α-pinene and α-humulene. There-
fore, having a high percentage of estragole in S. hortensis essential oil can be the main
reason for its higher toxicity than S. intermedia. However, the synergistic and antagonis-
tic effects between all essential oil components should be considered. For example, the
toxicity of 1,8-cineole and thymol against the third instar larvae of diamondback moths
(Plutella xylostella (L.)) were synergistically enhanced in combination with another terpene,
pulegone, while the pulegone alone had no significant toxicity to the pest [47].

According to our recent studies, the T. castaneum adults were susceptible to the fumi-
gation of S. hortensis and S. intermedia essential oils [43,52]. However, the optimization and
modeling of the fumigant toxicity of these essential oils, through RSM, are reported for
the first time in the current study. The use of RSM in the optimization and modelling of
the insecticidal efficiency of essential oils can be found in a few other investigations. For
example, optimization of the fumigant toxicity of Thymus vulgaris L. essential oil indicated
that a concentration of 25.86 µL/L and a 59.00-h exposure time were sufficient to achieve
50% mortality of R. dominica adults [53]. In another work on the essential oil of Thymus
kotschyanus Boiss. & Hohen, the optimized condition for 50% mortality against R. dominica
adults was 24.62 µL/L and a 57.98-h exposure time [54]. Based on the above-mentioned
results, the essential oil of T. kotschyanus was more toxic than the T. vulgaris oil. Regarding
the toxicity of S. hortensis and S. intermedia essential oils against T. castaneum, 29.23 and
33.13 µL/L of essential oils after 61.95 and 31.57 h, respectively, can result in 50% mortality
of the pest. In one of our other studies, modeling and optimization of the fumigant toxicity
of Teucrium polium L. essential oil against T. castaneum adults was evaluated through RSM,
and it was found that 97.97% mortality of the insect pest could be attained by a 20 µL/L
essential oil concentration after 72 h with the model +0.71 − 0.047A − 8.84E − 3B + 3.89E
− 4AB + 3.27E − 3A2 + 8.38E − 5B2 (A and B are the time and essential oil concentration,
respectively) [31]. In comparison with these results, and after 72 h of exposure time, 55.15
and 58.82 µL/L of S. hortensis and S. intermedia essential oils could result in 94.72% and
92.97% mortality of T. castaneum, respectively. The differences may be associated with
different tested essential oils and subjected insect pests. In addition, the above-mentioned
and present findings indicated that RSM is a useful method for the optimization and
modeling of the insecticidal effects of essential oils.

The disadvantage of such essential oils (i.e., low persistence in environmental condi-
tions) can be improved by micro-and nano-encapsulation formulations based on controlled
release techniques [55,56].

5. Conclusions

The present study has shown that the essential oils isolated from the aerial parts of
S. intermedia and S. hortensis had strong fumigant toxicity against the adults of the red
flour beetle T. castaneum. GC-MS analyses indicated that there was a high percentage of
insecticidal components such as estragole and methyl eugenol in the S. hortensis essential oil
and thymol, carvacrol, p-cymene and 1,8-cineole in the S. intermedia essential oil. However,
additional studies are required to determine which components have efficient insecticidal
activity. Based on RSM, it was found that the best model for the prediction of mortality
was linear and the quadratic equation for the essential oil of S. hortensis and S. intermedia,
respectively. Up to 94.72% and 92.97% mortality of the insect pest, as the maximum
significant mortality, can be attained with 55.15 and 58.82 µL/L of S. hortensis and S.
intermedia essential oils, respectively, after 72 h. The essential oils of S. hortensis and S.
intermedia can be proposed for further research in the management of T. castaneum and
probably other stored-product insect pests.
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