
Incorporating Programming Strategies Explicitly into Curricula

Michael de Raadt, Mark Toleman

School of Information Systems

Faculty of Business
University of Southern Queensland

Toowoomba, Queensland, 4350, Australia

{deraadt,markt}@usq.edu.au

Richard Watson

Department of Mathematics and Computing

Faculty of Sciences
University of Southern Queensland

Toowoomba, Queensland, 4350, Australia

rwatson@usq.edu.au

Abstract

An experiment was conducted to test a curriculum that

explicitly incorporated programming strategies in

lectures, written course materials, exercises and

assessment. A control curriculum was also established to

allow for comparison and isolation of effects. The two
curricula were delivered to two groups of volunteer

students who had no previous programming experience.

The experimental group showed understanding and

application of programming strategies, used the

vocabulary plans in interviews and showed greater

confidence in their solutions to problems. This suggested

that explicit incorporation of programming strategies into

an introductory programming curriculum has the potential

to improve outcomes for novice programmers..

Keywords: Introductory programming, curriculum,

programming strategies.

1 Introduction

An important dimension identified in literature by
Robins, Rountree, & Rountree (2003) is the knowledge-

strategy dimension. Knowledge involves the declarative

nature of a programming language while strategies

describe how programming knowledge is applied

(Davies, 1993). Programming strategies are made up of

plans (Soloway, 1985) (or schema or patterns) and the

associated means of incorporating these into a single

solution. Soloway (1986) suggests:

…language constructs do not pose major

stumbling blocks for novices... rather, the

real problems novices have lie in “putting

the pieces together,” composing and

coordinating components of a program. (p.
850)

Soloway then suggests teaching should reach beyond a

focus on syntax (as programming knowledge) and focus

on programming strategies. Recent studies (Lister et al.,

2004; Whalley et al., 2006) have suggested novice

programming knowledge can be fragile, so it is important
to focus on both programming knowledge and strategy in

Copyright © 2008, Australian Computer Society, Inc. This

paper appeared at the Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007), Koli
National Park, Finland, November 15-18, 2007. Conferences in
Research and Practice in Information Technology, Vol. 88.
Raymond Lister and Simon, Eds. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

curricula. See de Raadt (2007b) for an overview of recent

experiments in this area.

de Raadt, Tolman and Watson (2006) place problems
faced by programmers on a scale as follows.

 System Level Problems

Problems at this level are large in scale and

usually unique. An example of a problem at

this level might be designing an accounting

system for a large corporation. Students

generally study problem solving at this level in

a systems analysis course.

 Algorithmic Level Problems

Problems at this level are identifiable parts of a

greater problem. (In an academic setting they

may be addressed independently.) For such

problems a solution is usually achieved by

adopting well refined algorithms, widely used

in the programming community. A novice may

be able to start using such strategies at the end

of an initial course in programming and may
use them in greater depth in a second or third

course in programming.

 Sub-algorithmic Level Problems

Problems at this level are at their most basic.

Attempting to decompose and describe a
problem below this scale will lead to

syntactical definitions. Examples of problems

at this scale are avoiding division-by-zero,

achieving repetition until a sentinel is found,

and so on. This level of problem solving is

particularly relevant to novices in their initial

exposure to programming. This level is perhaps

the least recognised yet most fundamental to

good programming problem solving.

Another important dimension relevant to this experiment

defines how instruction is delivered, which can be

described as being implicit, explicit, or a combination of
these. Explicit instruction involves the instructor openly

describing, usually in some documented form, what the

student is to learn and how to go about that learning.

Implicit instruction creates a scenario where a student is

expected to undertake new learning, or extend previous

learning, without being given a full context for what they

are to learn or how. From the results of an experiment

conducted by Biederman and Shiffrar (1987), Baddeley

(1997) suggested a short period of explicit instruction can

be more effective than months of implicit learning.

Experiments by Reber (1993) showed students can learn

through implicit-only means, but this leads to a poor

understanding of the underlying systems involved.

Traditional curricula tend to rely on novices acquiring

programming strategies implicitly.

A previous study (de Raadt, Toleman, & Watson, 2004)

investigated an introductory programming course where
novices were expected to learn programming strategies

implicitly. Novices who participated in the study were

asked to create a solution to a simple averaging problem.

Solutions were scrutinised under Goal/Plan Analysis

(Soloway, 1986) to measure application of strategies.

Only one of 42 novices demonstrated application of all

expected strategies. Students’’ solutions showed flaws in

initialising variables, using a correct repetition strategy,

guarding against events such as division by zero, and

merging strategies that should be achieved together.

These flaws implied weaknesses in the curriculum being

delivered to the students at the time.

A second study (de Raadt, Toleman, & Watson, 2006)
uncovered a model of expert programming strategies at a

sub-algorithmic level based on plans described by

Soloway (1986). These strategies can be explicitly

expressed. This study suggested that the explicit inclusion

of programming strategies should be attempted as it may:

 improve outcomes for students,

 establish a vocabulary for programming strategy

dissemination, and

 allow students’ programming strategy skills to

be assessed.

This current experiment was conducted to discover if

programming strategy instruction can be explicitly
incorporated into an introductory programming

curriculum, and if this is possible, what effects can be

observed. Two curricula were designed to allow

comparison and isolation of effects. One curriculum

included explicit programming strategies while the

second relied on implicit learning of programming

strategies. Each of these curricula was delivered over a

single weekend and followed by a series of one-on-one

interviews with participants. No credit was awarded to

participants; participants gained the experience of

learning programming.

1.1 Research Questions

This experiment was motivated by the following
interrelated questions (answered in section 5).

 Can programming strategies be explicitly

incorporated into an introductory programming

curriculum?

 What is the significance of the time consumed

by this additional instruction?

 Can programming strategies explicitly taught in

an introductory programming course be

assessed?

 What impact does explicit strategy instruction

have on students and their problem solving

ability when compared to an implicit-only

approach?

 Are there any other observable effects or

contrasts between students of a traditional

curriculum and one with added explicit

programming strategy instruction?

In section 2, details of the experimental curriculum are
described. Section 3 describes how the experiment was

undertaken. Results of the experiment are displayed and

discussed in section 4. Section 5 answers the research

questions and concludes with implications and future

work.

2 Description of Curricula

A base curriculum was created that contained
programming strategy instruction explicitly. This

curriculum is described further in this section and is

included in full in a working paper (de Raadt, 2007a).

From this, a second curriculum was created by

identifying and removing programming strategy

instruction components.

2.1 Incorporating Explicit Programming

Strategies

In this experiment Solway’s plans were chosen over
patterns, even though patterns have become more

widespread in recent years. Patterns are bound to the

Object paradigm and require a pattern language for

application. Plans can be used in multiple paradigms,

including the Object paradigm. Plans can be expressed

simply, particularly at a sub-algorithmic level. In saying

this, the focus of this research is not on the type of

strategies that are taught but on how they are taught, and

outcomes for students from that. It is likely that patterns

could be used to achieve the same programming strategy
understanding for students as plans. From this point on

the term plan is used is used to represent a specific form

of strategy and the term strategy is used in its more

generic sense.

Programming strategies are explicitly incorporated into
the curriculum in a number of ways. These are described

in subsections 2.1.1 to 2.1.3.

2.1.1 Identifying Strategies in the Curriculum

A book of written study materials was created and
hardcopies were given to participants. Lecture slides were

created based on the content of the written study

materials. The lecture slides were used during lectures. In

these written materials and lectures the strategies

incorporated in the curriculum were named, their benefits

were explained, and examples of their application were

shown. Figure 2.1 shows a section of the written

materials provided to students. In this example the

Guarded Division Plan is identified. An explanation is

given for why this plan is used, including a reference to

an earlier mention of the consequences of dividing by
zero. The description tells how the strategy is

implemented and an example coded implementation of

this strategy is shown. As well as introducing strategies,

the descriptions also covered the means of integrating

these strategies through abutment, merging and nesting

(Soloway, 1986, p. 856).

2.1.2 Paper Exercises and Practical Computing

Tasks

At the end of each module students were asked to
complete paper exercises and computer based tasks that

reinforced the content delivered in lectures and allowed

students to experience the practical implementation of the

strategies covered. Instructions for these exercises and

tasks were set out in the written materials, such as

Exercise 10.5 shown in Figure 2.1. The exercise shown
prompts users to explore Guarding Division. In other

exercises students are prompted to experiment with the

outcome achieved when the strategy is not applied or

poorly applied. During the course, as with any normal

introductory programming class, the instructor was on

hand to answer questions and guide students. In most

cases the exercises and tasks given were common to both

curricula. In the curriculum without explicit programming

strategies students were expected to learn the required

programming strategies implicitly.

2.1.3 Assessment of Programming Strategies

At the end of the course, students were asked to complete
the same three programming tasks that were given to

experts in the previous study with experts (de Raadt,

Toleman, & Watson, 2006). These tasks were used as a

formal assessment at the end of the course under exam

conditions. As well as testing participants’ abilities, this

was done to explore the potential to assess programming

strategies as part of a course. The strategies necessary to

solve the final assessment problems had been shown as

examples and in exercises and programming tasks.

2.2 Format of the Curriculum

The curriculum is based on a traditional curriculum that

reveals parts of a given language in a sequence, with new
knowledge of language concepts being dependent on

previously covered knowledge. In this format, explicitly

incorporating programming strategies depends upon

certain underlying knowledge being taught beforehand.

For instance, for the Guarded Division plan to be

introduced, knowledge of variables, operators and

selection must be covered first. Looking at the titles of

the modules of the course shown in Table 2.1 gives little

clue that explicit programming strategies are involved.

Basing the experimental curriculum on a traditional

curriculum allowed the creation of a second curriculum
without explicit programming strategies. In a non-

experimental setting, the format of the curriculum could

change. For instance, the structure of the course could be

governed by the strategies themselves instead of the

underlying language; in this case strategies could be

introduced then underlying language knowledge could be

taught. If an objects-first approach is taken, strategies

could be used at other stages.

10.5 Guarding Division
One application of an if statement is to prevent code which could result in unpredictable behaviour or

cause the program to crash while being executed. Previously we saw how dividing by zero can produce

an unusable result. In some programming languages the effects can be even more severe. It is
recommended that you always test the divisor (the second, right-hand operand) before a division

operation takes place. If the divisor is zero, division should be avoided.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

<html>

 <head>

 <script type="text/javascript">

 var number = 0;

 number = parseInt(prompt("Enter a number for division"));

 if(number != 0) {

 alert(100 / number);

 }

 else {

 alert("Dividing by zero causes problems");

 }

 </script>

 </head>

 <body>

 Guarding division example

 </body>

</html>

Code Example 10.5: The numerator of a division should always be tested before the division

E
xe

rc
is

e
10

.5
 Using your template, create a program that will prompt the user to enter a pre-calculated sum

of numbers and pre-calculated count of numbers. Calculate the average (the sum divided by

the count). How should your program behave if the user enters zero for the count of

numbers?

Figure 2.1. An extract from the written course materials showing explicit incorporation of a

problem solving strategy instruction

2.3 Philosophy behind the Experimental

Curriculum

The curriculum was designed to be short and to allow
students to reach programming strategies as soon as

possible. The curriculum would not be effective in

teaching longer courses, although the ideas used in the

explicit incorporation of programming strategies could be

applied to longer curricula.

The curriculum focused on programming strategies, with
only a minimal covering of the knowledge components

on which the covered strategies are dependent.

Knowledge content was included if it was fundamentally

important for learning the later programming strategies.

Later exercises focused on the application of
programming strategies. For those who had not been

explicitly instructed in programming strategies, this was

their opportunity to implicitly learn the needed strategies

Table 2.1. Comparison of the two curricula tested (items with strike through

were absent in control curriculum)

Module Section Curriculum A (with Explicit PSS) Curriculum B (without Explicit PSS)

1 First JavaScript Program First JavaScript Program
 1.1. Hello World! Hello World!
 1.2. JavaScript and HTML JavaScript and HTML
 1.3. Statements Statements

2 Calling Functions Calling Functions
 2.1. alert() alert()

3 Values Values
 3.1. Numbers Numbers
 3.2. Strings Strings
 3.3. Booleans Booleans

4 Variables Variables
 4.1. What are Variables What are Variables
 4.2. Identifier Rules Identifier Rules
 4.3. Declaring Variables with var Declaring Variables with var
 4.4. Undefined Undefined

5 Assigning Values Assigning Values
 5.1. Dynamic Typing Dynamic Typing
 5.2. typeof typeof
 5.3. Initialising Variables Initialising Variables

6 Operations Operations
 6.1. Arithmetic Operators Arithmetic Operators
 6.2. Division by Zero – infinity Division by Zero – infinity
 6.3. Postfix Operators Postfix Operators
 6.4. Relational Operators (incl. Equality) Relational Operators (incl. Equality)
 6.5. Logical Operators Logical Operators
 6.6. String Operators String Operators

7 Abutment Abutment

8 Debugging Debugging
 Exercise 8.3

9 Functions that Return Values Functions that Return Values
 9.1. prompt() prompt()
 9.2. parseInt() and parseFloat() parseInt() and parseFloat()

10 Selection Selection
 10.1. The if Statement The if Statement
 10.2. The if-else Statement The if-else Statement
 10.3. Indenting and Formatting Indenting and Formatting
 10.4. “Dangling else” “Dangling else”
 10.5. Guarding Division Guarding Division

11 Repetition (Loops) Repetition (Loops
 11.1. while Loop while Loop
 11.2. Sentinel Controlled Loops Sentinel Controlled Loops
 11.3. for Loop for Loop
 11.4. Counter Controlled Loops Counter Controlled Loops
 11.5. Finding the Maximum/Minimum Finding the Maximum/Minimum
 11.6. Nesting and Merging Nesting and Merging

12 Arrays Arrays
 12.1. Declaring Arrays Declaring Arrays
 12.2. Accessing Array Elements Accessing Array Elements
 12.3. Initialising Arrays Initialising Arrays
 12.4. Arrays for Values Arrays for Values
 12.5. Arrays for Categories Arrays for Categories
 12.6. Counting Values in a Set Counting Values in a Set

through practical exercises. The assessment at the end of

both forms of the course focused on the analysis of

programming strategy skills developed through the

course. In a non-experimental course the focus of

exercises and the weighting of examination questions

would be more balanced between knowledge components
and programming strategies.

2.4 Language Used with Experimental

Curriculum

JavaScript was used as the language to support the
instruction of the curriculum. In their essential form,

programming strategies are language independent and

examples could be given in almost any language.

Soloway and his colleagues used Pascal and Lisp to

illustrate programming strategies. The authors have used

C/C++ to exemplify programming strategies in other

work.

JavaScript was chosen for this experiment for the

following reasons:

 potential to reach important concepts rapidly;

 simpler to practice than a compiled language;

 attractive to volunteers;

 allows expression of programming strategies

with a programming language not previously

used for this purpose.

3 Methodology

The method of experimentation began with preliminary

demographic, experience and confidence measurements.

An examination of programming strategies was
conducted at the end of each weekend. In the weeks that

followed the two weekend sessions participants were

invited to an interview in which they were asked

questions about their solutions to gauge their

understanding of the strategies that were being tested.

3.1 Volunteer Participants

Participants were volunteers from the student body at the

University of Southern Queensland, and were recruited

by posters hung around the university campus and by
emails sent to former students of two computing concepts

courses for non-computing students.

Participants were asked to undertake an initial survey that
gathered demographic data, computing experience, past

programming experience and a measure of computing

confidence.

This initial data was used to filter students who had

previous programming experience. Students with no

previous programming experience were sought in order to

set a baseline for all participants. Volunteers with

previous programming experience were asked to

withdraw.

A number of the volunteers withdrew from the weekend
courses, mostly due to personal reasons, giving notice

before the start of the experiment. A number of other

volunteers failed to attend the course, which was

unexpected, and reduced the group of volunteers to eight

in two groups of four, divided on a self-selecting basis.

One of the participants who attended the first weekend

had completed a previous course in computer

programming and arrived after being asked by email not

to attend. Results were collected from this participant but

are not aggregated with other participants in this

experiment.

3.2 Setting

The two weekend courses were conducted in a computing
lab. This room included facilities for lecturing, computers

for students to undertake practical exercises, and desk

space between computers for students to complete paper-

based exercises.

The two curricula were delivered on consecutive

weekends. The curriculum without explicit programming

content was delivered first and this was followed the next
weekend by the curriculum with explicit programming

strategies. The ordering of the two curricula was

arbitrary.

The two days of each weekend were divided into
sessions; with each session covering one to four modules

of the course (see the schedule in section 3.4). Each

session consisted of an initial lecture with questions

encouraged from students. This was followed by paper

tasks and practical programming tasks. Later in the

course, tasks that involved programming strategies were

used. Students were given breaks between sessions.

3.3 Demographic, Experience and Confidence

Measures

A number of demographic, experience and confidence

measures were conducted via a web survey presented to

students when they volunteered. Participants were asked

questions about:

 gender;

 age;

 computing experience;

 previous programming experience; and

 computing confidence.

Details of specific questions are given in de Raadt
(2007a). Computing confidence was captured using a test

created by Cretchley (2006), which has proven to be a

reliable predictor of computing confidence in the past.

3.4 Schedule of Course Delivery

The schedule for both weekends was identical except
where programming strategy content was covered. In

Table 3.1, content covering programming strategies is

highlighted and was covered only in the course with

explicit instruction of programming strategies.

Participants undertaking the course without explicit

programming strategy content were intended to be

attempting practical exercises during these times. One of

the aims of the experiment was to determine if this

additional content would impact on the balance of time

allowed for lecture instruction versus exercises and
practice. For this reason the schedule was followed as

closely as possible on both weekends.

3.5 Administering the Final Assessment

After lunch on the Sunday of each weekend course,
participants were asked to complete the three

programming tasks previously given to experts (de Raadt,

Toleman, & Watson, 2006). Each problem was presented

on a single sheet of paper with lines below to complete

the solutions to the problems (solution sheets are shown

in de Raadt (2007a)). Participants were able to use as

much time as was needed to complete problems.

Problem 1

Read in 10 positive integers from a user. Assume the user

will enter valid positive integers only. Determine the

maximum.

Problem 2
Read in any number of integers until the value 99999 is

encountered. Assume the user will enter valid integers

only. Output the average.

Problem 3
Input any number of integers between 0 and 9. Assume

the user will enter valid integers only. Stop when a value

outside this range is encountered. After input is

concluded, output the occurrence of each of the values 0

to 9.

The solutions produced were examined using Goal/Plan

Analysis to test for the presence or absence of expected

plans. This was conducted in the same manner as the

earlier experiment with experts. The expected strategies

and means of integration are given with results.

3.6 Post-Experiment Interviews with

Participants

In the 23-day period after teaching, six participants gave

verbal, one-on-one interviews. Students’ solution sheets

were used as a basis for discussion. Interviews were

structured, with set questions as listed in de Raadt

(2007a). The questions were used as a script, but were
intended to encourage discussion that was allowed to

continue as long as necessary. The questions used were

designed not to be leading. Questions were aimed at

discovering participants’ interpretations of the problem

statements, the strategies understood by participants, the

articulation of their solutions and their confidence in their

solutions.

4 Results

A number of results were gained from this experiment.
First, data gathered during registration are shown. During

the experiment both curricula were delivered to students.

The potential to succeed in this delivery was judged by

the time used to deliver the more extensive curriculum

that explicitly incorporated programming strategies

within the schedule. At the end of each of these sessions

participants were asked to complete a set of problems

that were examined under Goal/Plan Analysis. Finally an

inspection of post-course interviews provides deeper

insights into the programming strategy potential of the

participants after the course.

4.1 Data Collected at Registration

The data gathered when participants volunteered for the
course are shown in Table 4.1. These data show that the

two groups were roughly balanced in gender, age and

computing confidence. The two groups differed in

responses to computing and web experience self-

assessment questions. Experimental group participants

showed varying responses to these experience questions.

One of the participants indicated they had no previous use

of a web browser, even though they used a computer
daily. This may have been an error.

Table 3.1. Schedule for Weekend Courses

Session Saturday Content

10:00 – 11:15

Introductions
1 First JS Program

1.1 Hello World
1.2 JavaScript and HTML

2 Calling Functions
2.1 alert()

11:30 – 13:00

3 Values
3.1 Numbers
3.2 Strings
3.3 Booleans
3.4 Undefined

4 Variables
4.1 What are Variables
4.2 Identifier Rules
4.3 Creating variables with var

5 Assigning Values
5.1 Dynamic typing
5.2 typeof
5.3 Initialising Variables

13:30 – 14:45

6 Operations
6.1 Arithmetic Operators
6.2 Division by Zero - Infinity
6.3 Postfix Operators
6.4 Relational Operators (incl. Equality)
6.5 Logical Operators
6.6 String Operators

7 Abutment
8 Debugging
9 Functions that Return Values

9.1 prompt()
9.2 parseInt()

15:00 – 16:00

10 Selection
10.1 The if Statement
10.2 The if-else Statement
10.3 Indenting and Formatting
10.4 “Dangling else”
10.5 Guarding Division

 Sunday Content

10:00 – 11:15

11 Loops
11.1 while Loop
11.2 Sentinel Controlled Loops
11.3 for Loop
11.4 Counter Controlled Loops
11.5 Finding the Maximum
11.6 Nesting and Merging

11:30 – 13:00

12 Arrays
12.1 Arrays for Values
12.2 Arrays for Categories
12.3 Counting Values in a Set

13:30 – 14:45 Testing

Table 4.1. Demographic, experience and confidence data gathered on registration

Group Participant Gender Age Group
Computing
Experience

Web Experience
Previous

Programming

Computing
Confidence

1=low to
5=high

Experimental
Group

12 male Less than 25 Daily use No use Never 3.0

21 male 26 – 35 Daily use Daily use
Some self-

taught
4.6

29 male 26 – 35 Weekly use Every few days Never 3.2

30 female Less than 25 Daily use Daily use Never 4.4

Average 3.8

Control
Group

1 male Less than 25 Daily use Daily use Never 3.6

6 female Less than 25 Daily use Daily use Never 3.5

13 male 26 – 35 Daily use Daily use Never 3.8

Average 3.6

Table 4.2: Presence of plans and integration for Problem 1

Plan
Participant Exp.

Group
Average

Participant Control
Group

Average
All

12 21 29 30 1 6 13

Max Initialised 0% 0% 0%

Counter Controlled Loop Y Y Y 75% Y Y 67% 71%

Input Plan Y Y 50% Y Y Y 100% 71%

Maximum Plan Y 25% 0% 14%

Output Plan Y Y 50% Y 33% 43%

Input Nested in Counter Controlled Loop Y Y 50% Y 33% 43%

Max Plan Nested in Counter Controlled Loop Y 25% 0% 14%

Abutment Correct Y Y Y 75% Y Y 67% 71%
Overall 88% 63% 25% 0% 44% 50% 25% 38% 28% 41%

Table 4.3: Presence of plans and integration for Problem 2

Plan
Participant Exp.

Group
Average

Participant Control
Group

Average
All

12 21 29 30 1 6 13

Sum Initialised Y

Le
ft

 E
ar

ly

 33% Y Y 67% 50%

Count Initialised Y 33% Y 33% 33%

Sentinel Controlled Input Y Y 67% 0% 33%

Sentinel Controlled Count Y 33% Y 33% 33%

Sentinel Controlled Sum Y 33% Y 33% 33%

Guarded Division 0% 33% 0%

Output Plan Y Y 67% Y Y Y 0% 83%

Loop Plans Merged Y 33% Y 100% 33%

Inputs Nested in Sentinel Controlled Loop Y Y 67% 33% 33%

Output Nested in Guarded Division 0% 0% 0%

Abutment Correct Y Y 67% Y Y 67% 67%
Overall 82% 36% 0% 39% 45% 36% 18% 33% 36%

Table 4.4: Presence of plans and integration for Problem 3

Plan
Participant Exp.

Group
Average

Participant Control
Group

Average
All

12 21 29 30 1 6 13

Counter Controlled Loop (for Initialisation) Y

Le
ft

 E
ar

ly

Y 67% 0% 33%

Array Initialisation Y Y Y 100% 0% 50%

Sentinel Controlled Input Y 33% 0% 17%

Count Set Plan Y Y 67% 0% 33%

Counter Controlled Loop (for Output) Y 33% Y Y 67% 50%

Output Plan Y Y 67% 0% 33%

Initialisation nested in Counter Controlled Loop Y Y 67% 0% 33%

Inputs nested in Sentinel Controlled Loop Y Y 67% 0% 33%

Count Set nested in Sentinel Controlled Loop Y 33% 0% 17%

Output Nested in Counter Controlled Loop 0% 0% 0%

Abutment Correct Y Y Y 100% Y Y Y 100% 100%
Overall 82% 36% 55% 58% 18% 18% 9% 15% 36%

One of the intentions in gathering this data was to exclude
volunteers who had completed previous formal study in

programming. A number of people signed up for the

experiment and were rejected because they had studied

programming previously. One participant, identified as

Participant 14, who was asked not to attend, came along
anyway. The results of this participant are not presented

here, but their solutions and transcript are presented in

de Raadt (2007a) as some of this participant’s responses

to interview questions were still of interest. One other

participant (21) indicated they had some self-taught

programming experience. After discussion with the

participant this experience was shown to be a limited

amount of HTML writing, which was not seen as

significant in this experiment.

4.2 Time Load of Explicit Programming

Strategy Instruction

During teaching of the curriculum that incorporated
explicit programming strategies, added content required

additional time to teach, increasing the length of lecture

sessions and reducing the time allowed for students to

undertake practical work. However, participants

undertaking the curriculum with explicit programming

strategies were still able to complete the set exercises
during the time allocated in the schedule. It was possible

for the schedule to be followed in both instances of the

curriculum.

4.2.1 Goal/Plan Analysis of Participant

Solutions

Tables 4.2 to 4.4 show results of the Goal/Plan Analysis

for each problem. Several of the solutions presented by
novice participants in this experiment contained English

language text that described the code the participant

would like to have written in their solution when they

were not sure how to implement these ideas. Where this

was the case, if the text sufficiently described a plan, it

was accepted as being present even if it was not described

in code. The participants who used text in their code did

not create complete or near complete solutions.

Table 4.2 shows the plans present in each participant’s

solution to Problem 1. The correctness of the integration

of the strategies is also recorded and this included
correctness of abutment. Unlike experts studied earlier

(de Raadt, Toleman, & Watson, 2006), participants in this

experiment did not always apply these integration aspects

correctly.

The best problem 1 solution was created by Participant 12
from the experimental group who, despite never

previously undertaking programming study, was able to

produce a well coded solution that was nearly completely

correct. This solution, together with those presented by

Participant 21, pushed the overall average correctness

level for the experimental group above that of the control

group despite the abandoned attempt and non-attempt of
their group-mates.

One noticeable aspect was the absence of the initialisation
of the maximum variable, which was crucial to the

Maximum Plan and is required when using JavaScript.

Initialisation was explicitly covered in the curriculum that

explicitly included programming strategies. Students

undertaking the other curriculum were presented with the

opportunity to discover this aspect implicitly.

Initialisation was important to the later problems and was

applied by a number of participants for those problems. It
is not clear why it is absent here.

Table 4.3 shows the strategy correctness of participants’
solutions to Problem 2. Participant 29 left after

abandoning an attempt at Problem 1, so this participant’s

solutions were not included in results for this and the next

problem.

In this problem again, an outstanding solution was

presented by Participant 12 who correctly solved the

problem, with the exception of the Guarded Division

plan. No participant in either group applied a Guarded

Division plan. This suggests that even when it is

explicitly incorporated into an introductory programming
curriculum, and the consequences of failing to apply the

plan are discussed, it is still possible for novice

programmers to neglect this particular plan.

This problem was a modified version of the problem
given to students in the earlier study (de Raadt, Toleman,

& Watson, 2004). Students in the earlier study had

completed a semester of instruction under a traditional

implicit-only model and achieved an average overall

correctness of 57.1% compared to the participants of this

experiment who achieved 36%. In the problem statements

for Problem 1 and both other problems, students were
told they could assume inputs would be valid.

Table 4.4 shows the plan application for the final
problem, Problem 3. Again an outstanding solution was

presented by Participant 12, who correctly initialised and

filled an array to tally user inputs, but failed to output the

content of the array using a loop. Participant 30, who did

not attempt Problem 1 and presented a confused solution

to Problem 2, managed to apply a number of plans for

this problem. Participants from the control group showed

little ability to demonstrate any of the plans that were

needed to solve this problem. This problem is arguably

the most complex and, it would appear from these results,
it is difficult to implicitly learn the necessary plans

required to solve it.

One aspect that was absent in all solutions was the use of
a Counter Controlled Loop plan to output the occurrences

of numbers. This is not truly surprising as most of the

solutions for this problem were incomplete and the only

near-complete solution did not apply this particular

strategy. Each of the participants from the experimental

group applied a counter controlled loop to initialise the

array used for tallying.

Table 4.5 shows a comparison of the overall correctness
for all problems achieved by each group. There is a

Table 4.5: Overall plan use by each group

 Overall Plan Use

Experimental Group 47%
Control Group 28%

All 38%

distinction in overall results for the two groups with the

experimental group, who were exposed to a curriculum

that incorporated programming strategies explicitly,

achieving a greater result.

Participant 12 produced outstanding solutions to each of

the problems. It may be that the incorporation of explicit
programming strategies suited this participant, who might

have performed better than he would have otherwise. One

must wonder if this participant would have done as well

in the control group and perhaps reversed the results of

the experiment.

With the small number of participants in this experiment
no statistically significant evidence can be inferred for the

superiority of one curriculum over another. These results

are useful as basis for the interviews that followed, which

allow a deeper and more personal exploration of the

participating students’ strategy understandings.

4.3 Interviews

Following the course, participants were asked to attend an
interview. Five of the seven participants and Participant

14 (who had previous programming instruction)

volunteered to attend interviews.

Each interview was recorded and transcribed. The

transcripts of these interviews are presented in de Raadt

(2007a).

From an analysis of the transcripts the following

observations are made.

4.3.1 Participants Misinterpreted the

Validation Simplification Made to Each

Problem

Each problem statement contained the text “Assume the
user will enter valid integers only.” This additional text

was introduced to clarify the problems so no attempt at

validation would be necessary. This change was made

when these problems were used with expert programmers

but for this experiment it may have confused participants

rather than simplifying the problems. In interviews

participants were asked what this sentence in the problem

meant. Three of the five participants misinterpreted this

simplification; some suggested validation was necessary

because of this statement. No participant attempted to

validate inputs.

Other parts of the problem statements seemed to be
comprehensible to each participant, even if they did not

know how to achieve a solution.

4.3.2 Participants Exhibited Understanding of

Plans

As well as demonstrating a higher use of plans in their

solutions to problems, experimental group participants
verbally described plans, for instance Participant 30

described their application of a Set Counting plan as

follows: “After you’ve put a number that isn’t in that

range it concludes the program and tells the person what

numbers you’ve put into your little boxes. It goes through

zero to nine and it tells you how many are in each box.”

Rist (1995) showed that novices can expound and apply
plans without explicit instruction of programming

strategies. Some control group participants did still learn

plans through implicit-only means. In an observable

instance Participant 6 stated the following, which could

be seen as a description of a Set Counting plan using an
array: “I’ve created an array, because I think that for the

program to calculate, between 0 and 9, how many times it

occurs, it has to have an array for, say if it’s zero, then

zero; for one it’s one, two three, four... So the array for

zero is, like, zero, because arrays start from zero, right?

Then, so in the box for zero, say the user enters three

times it will refer back to this array zero, it will keep

repeating itself in the loop, from then on how many times

it gets zero in that box it will get the output.”

4.3.3 Participants Failed to Learn Some Plans

It was clear that participants did not learn all the plans
they were expected to learn. This was true for participants

from the control group who were expected to learn

strategies implicitly, for example Participant 6 felt there

must be a formula that would take care of the task of

calculating maximums: “And probably some formula to

determine the highest number (which I don’t know

how).”

Experimental group participants also failed to learn some

plans, even though they had been explicitly exposed to

them. For example when Participant 30 was asked how a
maximum could be determined, responded, “Can you

make the program look at the digits I guess, so you could

determine the maximum. I don’t know.” When

Participant 21 was asked, “What does it mean by

determine the maximum?”, responded with, “Perhaps the

maximum sum. I’m not really sure.”

4.3.4 Experimental Group Participants Used

Plan Terminology and Ideas

On a number of occasions participants from the
experimental group (who were exposed to plans and

related terminology) referred to parts of their code using

the terms used to describe plans or attempted to use plan

terminology without specific names.

Participant 12, while discussing the integration of

counting with input in Problem 2, said “they have to

merge with the loop”.

Participant 21, discussing loops in Problem 2, could not

remember the terminology for a Sentinel Controlled Loop
but described it well: “…and then create a loop… get user

input outside and inside so that it’s, I can’t remember the

name.” Later Participant 21, while interpreting part of the

problem statement, recalled the correct terms and said

“Which I did recognise as a sentinel loop.”

The use of Goal/Plan terminology was not universal by
any means. Participants from the experimental group still

resorted to syntactical description when describing their

code and needed to be prompted further to elicit possible

strategy understandings. Participant 12, who delivered

perhaps the best result, stated the following syntactical
reading of code: “It’s a loop, for loop. For counter equals

zero. Start from zero again. And counter smaller than

numberNum. Counter++. And the message is

numArray[counter] equals zero.”

4.3.5 Experimental Group Participants showed

Confidence in Solutions

One clear finding was that experimental group
participants were confident in their solutions, or the

ability to correct their solutions if given the chance. This

is despite the fact that no participant created a fully

correct solution to any of the problems. Participant 21

was confident about all his solutions, even though they

were flawed. Participant 30 showed confidence in most of

her attempted solutions even though they were flawed;
when asked “Does your solution solve the problem?”,

replied, “…Well my solution in my head did, not like the

first one, so yes. I did understand this question so I could

go through the steps of doing it.”

Participant 12, who was the closest of all participants to
solving the problems correctly, was realistic about the

correctness of his solution. During discussion Participant

12 saw the flaws in two of his three solutions.

Interestingly this participant explains his confidence in

one of his problems as being the result of understanding

the required strategy: “I’m very confident in doing this
question because I know the right way to structure [it].”

4.3.6 Control Group Participants showed a

Lack of Confidence

When asked if they believed if their solutions correctly

solved each problem, members of the control group

almost universally showed a lack of confidence in the

solutions they had created.

Participant 1 lacks confidence in all solutions except for
Problem 2 solution where he claims more time was

needed, even though time was not restricted during the

test. When this participant was asked, “Does your

solution solve the problem?”, answered, “Probably, if I

got time to add up more things.” This same participant

later describes a lack of confidence in their general

programming ability: “I’ll probably mess it up anyways,

because I’m still not sure how to...”, and later expresses a

typical gap between design and implementation where

plans can be applied: “I understand the question. I was
thinking through. I got everything right in my head. I just

can’t put it onto codes.”

The other control group participant interviewed,
Participant 6, showed some confidence in one solution,

believing, correctly, that the remaining solutions were

flawed.

5 Conclusions

The research questions posed earlier are answered by the

results of this experiment and the observations of the
experimenter/instructor in conducting the experiment.

5.1 Explicitly Incorporating Programming

Strategies

Can programming strategies be explicitly incorporated
into an introductory programming curriculum?

Programming strategies can be explicitly incorporated
into an introductory programming curriculum. The

curriculum used in this experiment is evidence that this

can be done.

5.2 Balance of Lectures and Practice

What is the significance of the time consumed by this

additional instruction?

As stated in section 4.2 the additional instruction in the
curriculum incorporating programming strategies

explicitly did require more time in lecture sessions, but

students were still able to complete set exercises by the

end of each session. It can therefore be asserted that this

additional instruction is balanced by an eased burden on

students in completing practical exercises.

This result is useful for our comparison of the curricula,

however in regular teaching, lectures and practicals are

usually conducted in disjoint time slots; so extending the

length of a lecture would not normally impact on practice
time.

Having more material in one curriculum over another
would increase the burden on student learning with more

content to process. This needs to be compared with the

effort a student would have to make to develop the

needed programming strategies in an implicit-only model.

5.3 Assessment of Programming Strategies

Can programming strategies explicitly taught in an

introductory programming course be assessed?

Goal/Plan Analysis of students’ solutions is far from new,
but it is novel as a means of assessment in a programming

course. This experiment showed that programming

strategies applied to create solutions can be assessed

using Goal/Plan Analysis. A limitation of using Goal/Plan

Analysis is that it requires students to generate code

before it can be assessed. In early stages, assessing

generated code might not be the best method of assessing

programming strategies.

5.4 Impact on Problem Solving Ability

What impact does explicit strategy instruction have on
students and their problem solving ability when

compared to an implicit-only approach?

Through the results shown from Goal/Plan Analysis of
participants’ solutions and through interviews it appeared

that students exposed to a curriculum that incorporated

programming strategies explicitly were more likely to

understand and apply those strategies than participants

who were expected to learn these strategies implicitly.

It was, by no means, guaranteed that participants
explicitly shown programming strategies would

understand and apply all of these strategies. It was also

demonstrated that participants exposed to an implicit-only

curriculum can learn programming strategies.

5.5 Other Observed Effects

Are there any other observable effects or contrasts
between students of a traditional curriculum and one with

added explicit programming strategy instruction?

Two other observations can be made from the results
shown. These are presented in the following subsections.

5.5.1 A Vocabulary for Programming

Strategies

Some participants in the experimental group, who were
exposed to plan terminology during their instruction,

went on to use this terminology during interviews. If this

were applied during an ordinary teaching period with

multiple weeks of instruction and assessment, it would be

beneficial to have students able use a common vocabulary

of terms. Instructors would be able to describe the

strategies they expect students to apply in tasks. It would

be possible to allocate marks for the application of

specified strategies. Students would have the potential to

describe and analyse code using such terminology.

5.5.2 Confidence in Solutions

A clear contrast is shown in the confidence participants
had in their solutions. Participants from the experimental

group, who had been exposed to programming strategies

explicitly, were confident about the solutions they

presented and the understanding of the strategies needed

to complete the solutions. Participants from the control

group were not so confident. It is not necessarily clear

why this is the case. Perhaps because experimental group

participants had been exposed to a higher level of
programming thought, they may feel that the underlying

syntactical implementation is less difficult to achieve.

Reber (1993) suggests that students exposed to implicit-

only instruction can gain aptitude but fail to gain

understanding of underlying systems. This seems to be

consistent with the experience of participants exposed to

implicit-only instruction of programming strategies in this

experiment who were, in some instances, able to produce

partial solutions, but appeared to have a general lack of

understanding for programming strategies and the

programming processes needed to solve the problems
presented.

5.6 Flaws in the Experimental Approach

A number of flaws in the experimental approach were
realised during and after the experiment.

5.6.1 Size of Groups

The size of the experimental and control groups was

sufficient to test the potential to incorporate explicit
programming strategy content into an introductory

programming curriculum and the timing of that

incorporation. It was sufficient to allow a small number

of participants to experience these curricula and be

interviewed on their understandings that may have

developed through this participation in interviews that

followed.

Although the Goal/Plan Analysis of participants’

solutions showed differences between the groups, the

number of participants was too low to statistically infer

the superiority of the experimental curriculum. It is not
clear that increasing the size of the participant population

would produce consistent reproducible results, which

appears to be the bane of many explorations in

educational settings (Hirsch, 2002).

5.6.2 Absorbing Concepts Rapidly

Participants in the study were diligent students. All

students were able to follow the course materials and

achieve results in paper exercises and practical computer

tasks. However, expecting completely correct solutions in
the final assessment, which involved generation of code

for novel problems, appears to have been more than could

be expected from students at the end of two days of

instruction. Although exercises were given to reinforce

the concepts covered, these may not have been as

effective as if they were completed days or weeks later.

The result of this experiment shows that the strategy

ability of participants exposed to the experimental

curriculum produced an average overall correctness of

39% for Problem 2 compared to students who had been

exposed to a semester long, traditional introductory

course in programming, who achieved an average overall
correctness of 57% on effectively the same problem.

5.6.3 Generation of Code can be a Poor

Measure

The final assessment asked students to generate code to

novel problems, the solutions to which should involve the

strategies they had learned in the preceding day and a
half. Most of the participants were unable to create

complete solutions to these problems. This may be

attributable to a lag between

1. exposure to a programming strategy,

2. the ability to comprehend that strategy, and

eventually
3. the ability to generate an implementation that

applies that strategy.

In this case asking participants to generate code at that

stage may have been less effective than gauging their

programming strategy skill levels by other means, such as

comprehension tests or cases involving errors.

5.7 Implications and Future Work

This experiment showed that it is possible to create a
curriculum that explicitly incorporates sub-algorithmic

programming strategies. The incorporation of such

additional instruction does not create an unfeasible

burden of time.

There were also noticeable effects on the students

participating in the experiment and exposed to this

additional instruction. Participants who covered the
experimental curriculum appeared more likely to

understand and apply the programming strategies they

had been exposed to. These students used terms from a

programming strategy vocabulary presented in the

curriculum, which could be useful in teaching and

assessment if applied to a full scale course. Participants

who covered the experimental curriculum claimed
confidence in the solutions they had created and their

understanding of the strategies used to create them, while

students not exposed to this curriculum doubted their

abilities.

Some instructors may see these outcomes as encouraging
enough to adopt teaching of programming strategies in an

explicit manner in full introductory programming

courses. An evaluation of a real course with explicitly

incorporated programming strategies is planned.

Goal/Plan Analysis is a basic tool for analysing student

code and detecting deficiencies in student understanding

and, in turn, possible weaknesses in curricula. It has been
used here to measure student solutions and as a basis for a

deeper exploration of novice understanding. But it

appears that its use in this experiment, and in the past, is

limited and would not be fully appropriate to assess

students at all stages of a full introductory programming

course. Multiple forms of assessment are needed to go

beyond Goal/Plan Analysis in order to accurately and

consistently measure a student’s strategy skill during and

at the conclusion of a course in introductory

programming. Assigning marks to use of strategies in

assessments will hopefully encourage students to value
this component of the curriculum, devoting study time to

programming strategies.

6 References

Cretchley, P. (2006): Does computer confidence relate to

levels of achievement in ICT-enriched learning

models? In Education and Information Technologies.

New York, USA: Springer.

Davies, S. P. (1993): Models and theories of
programming strategy. International Journal of Man-

Machine Studies, 39(2):237 - 267.

Incorporating Strategies Explicitly into Curricula
(Working Paper), de Raadt, M.

http://www.sci.usq.edu.au/research/workingpapers/sc-

mc-0705.ps. Accessed May 29 2007.

de Raadt, M. (2007b): A Review of Australasian
Investigations into Problem-Solving and the Novice

Programmer. Computer Science Education, 17(3):201

- 213.

de Raadt, M., Toleman, M., & Watson, R. (2004):
Training strategic problem solvers. ACM SIGCSE

Bulletin, 36(2):48 - 51.

de Raadt, M., Toleman, M., & Watson, R. (2006): Chick

Sexing and Novice Programmers: Explicit Instruction

of Problem Solving Strategies. Australian Computer
Science Communications, 28(5):55 - 62.

Hirsch, E. D., Jr. (2002): Classroom Research and Cargo

Cults. Policy Review, 115:51 - 69.

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., et al. (2004): A multi-national study

of reading and tracing skills in novice programmers.

ACM SIGCSE Bulletin, 36(4):119 - 150.

Reber, A. S. (1993): Implicit Learning and Tacit
Knowledge. New York, USA: Oxford University

Press.

Rist, R. S. (1995): Program Structure and Design.
Cognitive Science, 19:507 – 562.

Robins, A., Rountree, J., & Rountree, N. (2003):

Learning and Teaching Programming: A Review and

Discussion. Computer Science Education, 13(2):137 -

173.

Soloway, E. (1985): From problems to programs via
plans: The content and structure of knowledge for

introductory LISP programming. Journal of

Educational Computing Research, 1(2):157-172.

Soloway, E. (1986): Learning to program = learning to
construct mechanisms and explanations.

Communications of the ACM, 29(9):850 - 858.

Whalley, J. L., Lister, R., Thompson, E., Clear, T.,
Robins, P., Kumar, P. K. A., et al. (Year): An

Australasian Study of Reading and Comprehension

Skills in Novice Programmers, using the Bloom and

SOLO Taxonomies. Proc. Proceedings of the Eighth

Australasian Computing Education Conference

(ACE2006), Hobart, Australia 52:243 - 252.

	Incorporating Programming Strategies Explicitly into Curricula
	Introduction
	Research Questions

	Description of Curricula
	Incorporating Explicit Programming Strategies
	Identifying Strategies in the Curriculum
	Paper Exercises and Practical Computing Tasks
	Assessment of Programming Strategies

	Format of the Curriculum
	Philosophy behind the Experimental Curriculum
	Language Used with Experimental Curriculum

	Guarding Division
	Methodology
	Volunteer Participants
	Setting
	Demographic, Experience and Confidence Measures
	Schedule of Course Delivery
	Administering the Final Assessment
	Post-Experiment Interviews with Participants

	Results
	Data Collected at Registration
	Time Load of Explicit Programming Strategy Instruction
	Goal/Plan Analysis of Participant Solutions

	Interviews
	Participants Misinterpreted the Validation Simplification Made to Each Problem
	Participants Exhibited Understanding of Plans
	Participants Failed to Learn Some Plans
	Experimental Group Participants Used Plan Terminology and Ideas
	Experimental Group Participants showed Confidence in Solutions
	Control Group Participants showed a Lack of Confidence

	Conclusions
	Explicitly Incorporating Programming Strategies
	Balance of Lectures and Practice
	Assessment of Programming Strategies
	Impact on Problem Solving Ability
	Other Observed Effects
	A Vocabulary for Programming Strategies
	Confidence in Solutions

	Flaws in the Experimental Approach
	Size of Groups
	Absorbing Concepts Rapidly
	Generation of Code can be a Poor Measure

	Implications and Future Work

	References

