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Abstract—The aim of this paper is to develop a new two 
dimensional time accurate Euler solver for shock tube applications. 
The solver was developed to study the performance of a newly built 
short-duration hypersonic test facility at Universiti Tenaga Nasional 
“UNITEN” in Malaysia. The facility has been designed, built, and 
commissioned for different values of diaphragm pressure ratios in 
order to get wide range of Mach number. The developed solver uses 
second order accurate cell-vertex finite volume spatial discretization 
and forth order accurate Runge-Kutta temporal integration and it is 
designed to simulate the flow process for similar driver/driven gases 
(e.g. air-air as working fluids). The solver is validated against 
analytical solution and experimental measurements in the high speed 
flow test facility. Further investigations were made on the flow 
process inside the shock tube by using the solver. The shock wave 
motion, reflection and interaction were investigated and their 
influence on the performance of the shock tube was determined. The 
results provide very good estimates for both shock speed and shock 
pressure obtained after diaphragm rupture. Also detailed information 
on the gasdynamic processes over the full length of the facility is 
available. The agreements obtained have been reasonable.  
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I. INTRODUCTION  

HIS paper describes the procedure for performance 
evaluation of a short-duration hypersonic test facility that 
build at the College of Engineering, Universiti Tenaga 

Nasional “UNITEN” in Malaysia.  The facility is designed so 
that it can be used as a shock tube, free piston compressor, 
shock tunnel and gun tunnel. The facility has been designed, 
constructed and commisioned for a wide range of diaphragm 
pressure ratios and different driver/driven working gases to 
get Mach number up to 6. The facility will allow various 
researches to be done in the field of high speed supersonic 
and hypersonic flows. The important application would be in 
power plants where the working fluid is always in a very high 
speed with high gas effects. 

 To verify and supplement some of the theoretical results, a 
hypersonic test facility of a somewhat unconventional design 
has been built. The bulk of the experimental investigations 
undertaken to date have dealt with pressure studies using high 
precision pressure transducers and an in house made fast 
response thermocouple were used to predict the pressure 
history and subsequently the shock wave strength P2/P1 and 
the surface temperature change profile during the facility 
operation. Using two pressure transducers the shock wave 
speed is measured experimentally for different driver/driven 
gas combinations.  
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A two-dimensional time-accurate time-marching Navier-
Stokes solver for shock wave applications is described. It uses 
the second-order accurate cell-vertex finite-volume spatial 
discretization and fourth order accurate Runge-Kutta temporal 
integration. Three simulations of particular conditions for a 
short duration high speed flow test facility are then presented 
and compared with experimental measurements. The 
simulations provide very good estimates for both the shock 
speed and shock strength obtained after diaphragm rapture 
and also provides detailed information on the gas dynamic 
processes over the full length of the facility. This detailed 
information may be used to identify some of the causes for 
observed variations in pressure and temperature. The 
agreements obtained have been reasonable.  

Construction of this facility is fundamentally important for 
the development of advanced instrumentation (in this case, 
fiber optic pressure sensors and fast response thermocouples), 
and heat transfer/fluid mechanics studies that are relevant to 
turbine investigations. The wind tunnel provides a convenient 
and low cost experimental facility that can produce the flow 
conditions (matched Mach and Reynolds numbers, 
temperature ratios etc) necessary for experimental simulation 
of turbulent flows. The advantage of developing 
instrumentation and investigating relevant flow fields in the 
wind tunnel environment is derived from the fact that the flow 
duration is very short (less than 1 second). This is sufficient 
time to establish the required flow fields and obtain the 
required measurements, but the energy requirements 
associated with operating the facility are relatively low. 
Hence, the facility is a very cost effective way to 
experimentally investigate critical heat and fluid flow 
processes associated with turbine power plants. 
 

II. PHYSICAL DESCRIPTION OF THE FACILTY 
 

The detail components of the facility are described briefly and 
shown in Figure 1. This project is a collaboration project 
between the University of Southern Queensland (USQ) in 
Australia and Universiti Tenaga Nasional (UNITEN) in 
Malaysia to design and construct a 10 m short duration 
hypersonic test facility. The facility consists of the following 
significant items:  
 
1. Driver section: a high-pressure section (driver), which will 
contain the high pressure driver gas.  
2. Discharge valve: to discharge the driver section after each 
run.  
3. Pressure gauge: to read the pressure inside the driver 
section, this section is also provided with a static pressure 
transducer to record the exact value of the driver pressure P4 
at which the diaphragm ruptures.  

T 
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Fig. 1 schematic diagram of UNITEN’s test facility 

 
4. Vacuum pump: when the driver gas is not air (eg. Helium 
or Hydrogen) then the driver section should be evacuated and 
filled with the required driver gas. 
5. The primary diaphragm: this is a thin aluminum membrane 
to isolate the low-pressure test gas from the high-pressure 
driver gas until the compression process is initiated.  
6. Piston compression section: A piston is placed in the barrel 
(driven tube) adjacent to the primary diaphragm so that when 
the diaphragm ruptures, the piston is propelled through the 
driven tube, compressing the gas ahead of it. This piston used 
with gun tunnel tests only.  
7. Discharge valve: to discharge the driven section after each 
run. 
8. Vacuum gauge: to set the pressure inside the barrel section 
to low values (vacuum values) less than atmospheric value. 
9. Barrel section: a shock tube section (smooth bore), to be 
filled with the required test gas (air, nitrogen or carbon 
dioxide). 
10. Barrel extension: the last half meter of the barrel on which 
the pressure transducers and thermocouples are to be attached 
(see details “A”). 
11. The secondary diaphragm: it is a light plastic diaphragm 
to separate the low pressure test gas inside the barrel from the 
test section and dump tank which are initially at a vacuum 
prior to the run. 
12. Test section: this section will expands the high 
temperature test gas through a nozzle to the correct high 
enthalpy conditions needed to simulate hypersonic flow. A 
range of Mach numbers is available by changing the diameter 
of the throat insert. 
13. Vacuum vessel (dump tank): to be evacuated to about 0.1 
mm Hg pressure before running. Prior to a run, the barrel, test 
section, and dump tank are to be evacuated to a low-pressure 
value.  

It is intended that this CFD solver be a useful tool in the 
design process of the test facility. The simulation will 
complement the experimental data. That is any experimental 
data which could be achieved from the facility need to be 
verified using a numerical tool.   
 

III. MATHEMATICAL MODEL 
In this Section, the fluid flow governing equations are 

presented in concert with the numerical scheme used to 
compute the compressible flow within the shock tube. 
 

A.  Euler Equation 

The two-dimensional continuity, x- and y-momentum and 
energy equations describing the turbulent flow of a 
compressible fluid expressed in strong conservation form in 
the x-, y-Cartesian co-ordinate system may be written as 
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where w represents the conserved variables and F  and G  
are the overall fluxes in x-, y-directions respectively.  
w can be expressed as:  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

0e
v
u

w

ρ
ρ
ρ
ρ 

     (2)  

F can be expressed as: 

,

0

2

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
=

uh
uv

Pu

u

F

ρ
ρ
ρ

ρ 

    (3) 

 
and G can be expressed as: 
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e
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 and h

o
 are the specific total internal energy and specific 

total enthalpy of the fluid respectively. In the usual notations: 
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The body force J is zero vector since effect of gravity is 
negligible for high speed flow. 
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IV. NUMERICAL SCHEMES 

 
The numerical scheme was based on an earlier work by 

Zamri [21], [22]. The earlier solver was developed for two-
dimensional transient flow of two-phase condensing steam in 
low pressure turbine. Viscous effect was not taken into 
account in the earlier program. In the current work 
modifications were made so that the program can be applied 
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for high speed flow in shock tube. The following sections will 
discuss the numerical formulation of the modified flow 
solver.   
 
 A.    Cell-Vertex Finite-Volume Spatial Discretization 

The flow domain is replaced by a finite number of control 
volumes, which are generated algebraically by the current 
solver.  The mesh system is commonly known as H-mesh and 
divides the physical domain into a set of discrete rectangular 
control volumes. An example of H-mesh is shown in Figure 2. 

A cell-vertex formulation is used in which the flow 
variables are stored at cell vertices A, B, C and D as has been 
shown in Figure 2. Cell-vertex formulation offers some 
advantages over the cell-centered one in which cell-vertex 
method offers higher accuracy on irregular grid. 

(i+1, j)
(i+1, j+1)

(i, j+1)(i, j)

Cell (i, j)

Boundary S
Fixed Area

D C

B
A

 
Fig. 2 An illustration of a typical 2D H-mesh. 

For a uniform mesh, there would be no difference between the 
cell-centered and cell-vertex schemes; however, cell-vertex 
scheme does not require extrapolation to the solid boundary to 
obtain the wall static pressure, which is necessary in solving 
the momentum equations for cells adjacent to the solid 
boundary. 

Starting from known values of primitive variables from the 
previous time-step, the values of F  and G  are determined at 
each node. Then the line integration is performed for each 
control volume in turn for the four conserved variables. 

Integrating Equation (1) with respect to volume 

∫ ∫∫ =++ 0)()( dVGdVFdV
t
w

CC 
 
∂
∂

 (8) 

   
Using Gauss divergence theorem the whole equation can be 
reduced to  
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Applying the above equation to a typical control volume and 
defining Ri, j as the residual for the cell, the same discritized 
equation for the cell is: 
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where ( )wRij  represents the residual for each cell and 
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. 
The calculated residuals apply to the values of properties 
within the cell, whereas, the variables are actually stored at 
the nodes. Consequently, they have to be redistributed to the 
four surrounding nodes. This is done by sharing the changes 
equally between the four nodes as shown in Figure 3, as 
suggested in the second-order central differencing scheme. 
Thus:  
 

( ) )(25.0 ,11,1,1, jijijijiA RRRRwR −−−− +++=  (12) 

(i, j)
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0.25R(i-1, j)
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0.25R(i, j-1) 0.25R(i, j)

 
Fig. 3 Distribution of cell residual to nodes. 

For nodes at the wall, since two cells share a single node, the 
residual obtained from Equation (12) is doubled. For the 
nodes at the corners, since only one cell share the node, the 
residual obtained is quadrupled. Thus, the equivalent 
discretized equation for node (i, j) will be:  
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B. Treatment of the Inviscid Fluxes 
  
All the inviscid fluxes are calculated by using central 

differencing scheme, therefore the differencing scheme is 
second order accurate, from equation (11); 

)( ,,,,,,

→→
Δ−Δ=∑ xGyFR jiCjiCjiC  

 
Applying to control volume shown in Figure 1 
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C.    Artificial Dissipations 

 
All second-order central-differencing schemes, even with a 

stable time-step, suffer from certain tendencies to instability 
due to the odd-even decoupling near a discontinuity. The 
scheme can be stabilized by introducing a small amount of 
artificial viscosity is suggested by Jameson et al. [11].  
This artificial viscosity formulation is a blend of second and 
fourth-order terms with a pressure switch to detect changes in 
pressure gradient. The fourth-order terms, for any conserved 
variables, w  is: 
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where: 
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The second-order dissipation terms are defined as:  
)()()( 222 wDwDwD yijxijij +=   (16)           

where:  
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2 2 4 4,   ,   and   in the above equations are 

coefficients, which are functions of the local pressure gradient 
to be defined later. 

The fourth-order terms will not affect the global accuracy 
of the second-order scheme, but they eliminate the 
background oscillations caused by the central-differencing 
scheme, which is second-order accurate. However, near a 
discontinuity, e.g. around a shockwave, they lead to 
occurrence of oscillations and appearance of overshoots. On 
the other hand, second-order terms are very dissipative and 
can eliminate high oscillations near a discontinuity but 
produce too much background oscillations. Following 
Jameson et al. [11], the fourth-order terms are turned off near 
discontinuities, by means of a pressure sensor, and only 
second-order terms will be in operation in these regions. A 

pressure sensor introduced to detect the steepness of the 
pressure gradient and has the form: 
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SF2X and SF2Y are second-order dissipation coefficients with 
typical values of 0.10-0.50. 

The pressure switch defined to turn off the fourth-order 
and turn on the second-order terms near a discontinuity takes 
the forms:  

γ
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SF4X and SF4Y are fourth-order dissipation coefficients with 
typical values of 0.005-0.01.  

It can be seen that near a discontinuity, q and γ 2 are of 
order 1 and the second-order becomes the dominant 
dissipative term. In the remainder of the domain the 
background dissipation is provided by the fourth-order terms. 
SF4X and SF4Y must not be too large since they will create 
too much numerical viscosity in the flow domain and thereby 
mask the physics of the flow. 

The total dissipation will be:  
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After the addition of the dissipation terms the descritized 
equation for node A becomes:  
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The dissipation term ( )D wA , is only evaluated in the first 
stage and frozen for the next three stages of the Runge-Kutta 
time stepping scheme, as follows. 
 

D. The Multi-stage Runge-Kutta Time Stepping Scheme 
 

Equation (22) is integrated with respect to time by means 
of a four-stage Runge-Kutta time stepping scheme, as 
proposed by Jameson et al. [11]: 
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03 DRtww +Δ+= α  

( ),03
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04 DRtww +Δ+= α  
41 ww n =+

     (23) 
where the superscripts, n and n+1 refer to the time intervals in 
the main integration sequence, 1, 2, 3, 4 refer to the 
intermediate time-steps in the Runge-Kutta scheme. The 
coefficients α α α α1 2 3 4, , , are 0.250, 0.333, 0.500 and 
1.000 respectively. 
  

V.   BOUNDARY CONDITIONS 
 
A. Solid Boundary 

 
Only the solid boundary condition is considered in the 

current work since the flow is confined within the tube. At the 
wall, no-slip boundary condition is imposed for the 
momentum equations to enforce no mass fluxes can penetrate 
through the solid boundary. For the energy equation, adiabatic 
condition is assumed. Solid boundary nodes only have 
contributions from two cells. However, the control volumes 
associated with the solid boundary nodes are only half of that 
for the internal nodes. So, prior to the temporal integration the 
residuals are doubled. 

At the solid boundary, it has been shown by Hirsch [23], 
that for Euler equations only one characteristic enters the flow 
domain and only a single physical boundary condition is to be 
imposed. This condition is expressed by the vanishing normal 
velocity:- 
   Vnormal = 0  

As a consequence, all convective flux components through 
the solid boundary will vanish. This means that in the 
expression for the flux through a cell face on a solid 
boundary, only the pressure remains, i.e.:- 
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The pressure on the solid boundary face can be calculated 
directly by taking the average values of the nodes at both ends 
of the cell face. When the flow is assumed to be inviscid, the 
velocity at the solid boundary is non-zero. 
 

B.  Treatment of Dissipation Terms near the Boundaries 
 

To evaluate the dissipation terms, variables at two 
neighbouring nodes on either side of the calculating points are 
required. At the boundary, only variables on one side of the 
node are known. The other two variables need to be 
determined by extrapolation. Consistent with Gustafsson and 
Sundstrom’s [24] recommendations, at the inlet and exit 
boundaries, the extra variables are calculated by first-order 
extrapolation. Only one extra variable is required as the 
variables at the inlet and exit boundaries are fixed by the inlet 
and exit boundary conditions respectively. For example, the 

extra variable required to calculate the dissipative term at j = 
2 is calculated by:- 

 w w wi i i0 1 22= −     (25) 
It has been observed by Pulliam [25], Swanson and Turkel 

[26] and Caughey and Turkel [27] that the treatment of 
dissipation terms, especially at the solid boundaries, can have 
a strong effect on the accuracy and convergence rate of a 
viscous or even inviscid flow computation. An important 
conclusion that can be drawn from these studies is the 
necessity to reduce the second-order dissipation terms at the 
solid boundaries. The treatment used is that recommended by 
Pulliam [25] and used by Bamkole [28] and Zamri [21,22].  

Modifications are only needed for the pitchwise 
components, ( )D wyij . At i = 1, the fourth-order components 
are replaced by the second-order one by using one-sided 
difference, while the second-order terms are set to zero. So,  

       

[ ]D w w w wy j y j j j j1
4

1
4

1 2 32( ) = − − +γ   (26) 

At i = 2, the extra variable needed for the fourth-order 
terms is calculated by means of a first-order extrapolation. 
With reference to Figure (2), the resultant term will become: - 
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4

2
4

1 2 3 42 5 4( ) = − − + − +γ   (27) 

 
VI. INITIAL CONDITIONS 

 
To start the iterations, initial flow field variables must be 

specified at all calculating points. In the current work, the 
pressure values are specified at both the driver and driven 
sections, in accordance with the desired pressure ratio. The 
flow is assumed to be in stagnant condition initially.  
 

VII. STABILITY CRITERIA 
 

Generally, explicit time-marching schemes suffer from 
instability problem, particularly when the time step is larger 
than that from the Courant Friedrichs Lewy (CFL) criterion. 
In order to ensure numerical stability, the maximum allowable 
time-step which can be used in the calculation is limited by:  

( )aV
xCFLt
+
Δ

≤Δ .     (28) 

where    
 CFL  =  CFL number, 
 Δx = incremental distance, 
 V  = speed, 
 a = speed of sound =(γRT)0.5  . 

For the four-stage Runge-Kutta scheme applied in a 1D 
problem to be specific, CFL = 2 2 . However, this number 
may be lower due to the non-linearity and multi-
dimensionality of the flow problem considered in the current 
work. In most cases, strict convergence cannot be obtained 
unless the time step is sufficiently small. Here, a time step 
size ranging from 1.0 to 5.0 μs is used, without any stability 
problem. 
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VIII SOLUTION PROCEDURE 
 

The solution procedure of the solver can be summarized as 
follows:- 
Step 1: Generate the structured H-mesh. The details of the 

mesh system will be explained in the following 
sections. 

Step 2:  Initialise the flow variables at time = 0s.  
Step 3: Initiate the 4-stage Runge-Kutta (RK) time integration 

scheme. Here, the spatial integration of the governing 
equations to determine the residual in Equation 11 is 
calculated for the first RK stage. The cell residuals are 
then redistributed back to the neighbouring vertices 
using Equation 12. The solution vector is then time 
marched (see Equation  23) using the residuals for 
each vertex and the corresponding stage coefficient 
(α).The flow variables are then updated accordingly. 

Step 4: Step 3 is repeated until the maximum Runge-Kutta 
stage (in this case is 4) is reached.  

Step 5: Save the pressure value at the first station (refer to 
Figure 4). Update the time level (tn+1=tn+Δt). Go to 
Step 3 until the desired time level is reached. 

 
Fig. 4 Location of station 1 and 2 

 
IX. VALIDATION OF THE CFD CODE 

 
To ensure the validity of the CFD code, in terms of the 

ability to capture shocks and contact discontinuity and to 
produce the correct pressure, density and speed profiles, the 
code has been validated against an exact solution for Inviscid 
Flow in Shock Tube. The situation considered is basically that 
in a shock tube with a pressure difference applied across the 
diaphragm. The initial conditions are shown in Figure 5. 

 

100 kPa1000 kPa

0.5 m0.5 m

Solution domain

Diaphragm
x

Fig. 5 Solution domain 
 

The direction x is chosen in the direction shown in Figure  
6 because the air flow that develops after the diaphragm 
ruptures will be from the high pressure section towards the 
low pressure section, i.e. x is chosen to be in the direction of 
the induced flow. 

The Sod problem [29] is an essentially one-dimensional 
flow discontinuity problem which provides a good test of a 
compressible code's ability to capture shocks and contact 
discontinuities with a small number of zones and to produce 
the correct density profile in a rarefaction.  

The problem spatial domain is 0 ≤ x ≤ 1. The initial 
solution of the problem consists of two uniform states, termed 
as left and right states, separated by a discontinuity at the 
origin, xo = 0.5. The fluid is initially at rest on either side of 
the interface, and the density and pressure jumps are chosen 
so that all three types of flow discontinuity (shock, contact, 
and rarefaction) develop. To the ``left'' and ``right'' of the 
interface we have,  
ρL = 1     ρR = 0.125 
PL = 1     PR = 0.1 
uL = 0    uR = 0 
The ratio of specific heats γ is chosen to be 1.4 on both sides 
of the interface. 

A uniform grid spacing with the number N = 356 is used. 
The boundary conditions of the problem are held fixed as a 
short time span of the unsteady flow is considered. The wave 
pattern of this problem consists of a rightward moving shock 
wave, a leftward moving rarefaction wave and a contact 
discontinuity separating the shock and rarefaction waves and 
moving right rightward. Figure 6 shows comparisons between 
the present results for the pressure, density and Mach number 
at a time t = 0.2 ms and the exact solutions. It can be observed 
that the present work is capable of capturing the different 
types of discontinuities quite accurately. 
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Fig. 6 Results for the Sod’s shock tube problem at t = 0.2 

ms 
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The mesh size plays important role in determining the 
accuracy of the numerical solution. In order to understand this 
role the mesh size in x-direction has been investigated. Three 
different cases with different mesh size (N = 256, N = 356, 
and N = 456) and a diaphragm pressure ratio P4/P1 =10 have 
been used. Figure 7 shows the effect of using larger number 
of grid points in x-direction and how the solution is affected 
accordingly. From the Figure 8 it will be seen that the details 
of the shock wave are well captured when a larger number of 
grid points are used and the program becomes more stable and 
less oscillation is produced. Also the numerical and exact 
solutions are now very comparable when number of grid 
points N = 456 is used. Consequently, N = 456 have been 
used in all of the following runs.  
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Fig. 7 Pressure History at Different Mesh size in X-Direction at t = 

0.2 ms 
 

The x-t diagram is one of the important tools which 
give a good estimation for the maximum useful test time that 
can be obtained after removal of the diaphragm. Figures 8 and 
9 show the predicted x-t diagram for pressure and density 
profiles obtained for an air-air gas combination run. The 
diaphragm pressure ratio used for this simulation is (P4/P1) 
=10. Figure 8 represents the x-t diagram for the pressure 
history; the contact surface does not appear in this figure as it 
follows the shock wave continuously as it apparent in Figure 

6, however it is very clear in Figure 9 which shows the x-t 
history for the density profile.  
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Fig. 8 x-t diagram for pressure history 

 
Figure 9 represents the density history along the 

whole length of the test facility. Both of the shock wave and 
the contact surface are displayed in this figure. The shock 
wave is followed by the contact surface until the reflected 
shock wave interact with the contact surface and then the 
wave is further reflects. The expansion waves are displayed in 
the two figures and due to the sufficient length of the driver 
section the shock wave and contact surface are intersected 
before the reflected expansion waves reach the end of the 
driven section.  
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Fig. 9 x-t diagram for density history 

 
X. INVISCID TRANSIENT FLOW IN SHOCK TUBE 

 
In this study, a sensitivity study on the flow model used 

has been performed as well as the time-step size, towards the 
accuracy of the flow solution applied for a shot with similar 
gases allocated in both the driver and driven sections (air-air). 
CFD solution for inviscid simulation for a diaphragm pressure 
ratio P4/P1 of 10 will be discussed. The simulation has been 
conducted using the actual dimensions of the test facility 
shown in Figure 10.  

In order to validate the numerical formulation for the 
inviscid terms, solver was applied to transient shock wave 
motion in real shock tube.  In the actual shock tube, a bush 
was used at the primary diaphragm section adjacent to the 
diaphragm to facilitate rapture process. In order to represent 
the bush, in the solver, an artificial wedge was included as 
shown in Figure 10. The exact shape of the bush cannot be 
used in the solver since it can only handle H-type mesh and 
therefore could not handle abrupt change in geometry.  
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Fig. 10 Mesh spacing allocated for each section 

 
The pressure, temperature, density and Mach number of 

the flow were stored in two stations, the first station is at the x 
= 6183 mm from the left hand side end of the driver section, 
the second station is with an axial separation of 342 mm from 
the first station as shown in Figure 11.  

Station 2Station 1

wall
endFlow direction

Barrel

40342

 
Fig. 11 The two stations at the end of shock tube 

 
The pressure history for the above mentioned shot is 

depicted in Figure 12 from which one can follow the physics 
of the flow inside the shock tube. The first jump represents 
the shock wave, for which the pressure inside the barrel 
increases from 100 kPa to around 220 kPa. As the shock wave 
proceeds to the end of the tube it will hits the wall and reflects 
moving in the opposite direction increasing the pressure to 
about 450 kPa. The shock wave will then interact with the 
contact surface which is following the shock wave, and due to 
this interaction between the shock wave and the contact 
surface the pressure will be increased until it reaches its peak 
pressure value of 530 kPa. 

.  

Time [sec]

P
r

e
s

s
u

r
e

[
P

a
]

0 0.005 0.01 0.015 0.02 0.025
1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

4.0E+05

4.5E+05

5.0E+05

5.5E+05

Station 1
Station 2

Shock wave

Reflected shock
wave

 
Fig. 12 Pressure history for inviscid flow (air-air, P4/P1=10)  

 
The shock wave speed can be determined from the CFD data 
obtained from this simulation. As the distance between the 
two stations is known (0.342 m) and the time of shock travels 
from station 1 to station 2 can be obtained from the pressure 
history graph, as show in Figure 13, the shock wave speed is 
determined for this shot is 518 m/s. comparing to the 
theoretical value for this pressure ratio (550 m/s) the 
percentage error is around 6% which is reasonable 
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Fig. 13 Shock wave speed (inviscid flow) 

 
Using the same procedure, the reflected shock wave speed can 
be determined as the wave reflects from the tube end and 
moves in the opposite direction (left direction), due to impact 
with the end wall the wave will lose some of its kinetic energy 
and consequently its speed decreases to about 342 m/s, as 
shown in Figure 14 which represents a close view for the 
reflection region in the pressure history graph. The time 
period from station 2 to station when is around 0.001 sec 
which is longer than the time period when the shock travels 
from station 1 to station 2 due to the energy lost after 
reflection.  
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Fig. 14 Reflected sock wave speed 

 
The same trend can be noted when the temperature 

history is investigated as shown in Figure 15. The first jump 
in the temperature profile represents the shock wave and the 
second jump is due to the reflected shock wave. The 
temperature is increased from the initial value 300 K to about 
380 K due to shock wave affect and when the shock reflects 
from the tube end the temperature rises to 475 and after 
interaction between reflected shock wave and the contact 
surface the flow temperature becomes about 490 K. 
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Fig. 15 Temperature history inside the shock tube (inviscid flow) 
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The x-t diagram is one of the important tools which 
give a good estimation for the maximum useful test time that 
can be obtained after removal of the diaphragm. Figures 16 
and 17 show the predicted x-t diagram for pressure and 
density profiles obtained for an air-air gas combination run. 
The diaphragm pressure ratio used for this simulation is 
(P4/P1) =10.  
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Fig. 17 x-t diagram for the pressure profile (inviscid flow) 

 
Figure 18 represents the density history along the 

whole length of the test facility. Both of the shock wave and 
the contact surface are displayed in this figure. The shock 
wave is followed by the contact surface until the reflected 
shock wave interact with the contact surface and then the 
wave is further reflects. The expansion waves are displayed in 
the two figures and due to the sufficient length of the driver 
section the shock wave and contact surface are intersected 
before the reflected expansion waves reach the end of the 
driven section.  

0

0.005

0.01

0.015

0.02

0.025

0.03

T
i

m
e

[
s

e
c

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Distance [m]
X

Y

Z

 
Fig. 18 x-t diagram for the density profile (inviscid flow) 

 
Finally, to investigate the flow properties in 2D scheme, 

the results of the numerical simulations have been displayed 
in contour plots. The contour plot of the pressure history 
along the facility is shown in Figure 19. Time step used in this 
simulation is 0.000005 sec and the total number of iterations 
is 6000. The solver is programmed so that it stores the output 
data after each one hundred iterations, subsequently there will 
be 60 output files. Each file represents the data after 0.0005 
sec. As shown in this Figure, driver pressure P4=100 kPa and 
pressure in the driven section P1 is 10 kPa. 

 

 
Fig. 19 Contour plot for pressure history at t = 0 

 
After diaphragm rupture, shock wave travels right through the 
barrel while the expansion wave travels left through the driver 
section. These two waves are captured after 0.005 sec and 
shown in Figure 20. 

 
Fig. 20 Shock and expansion waves 

 
These two waves continue their journey towards the tube 
ends, at time 0.0081 s the shock wave hits the barrel end on 
the right hand side while the expansion wave reaches the left 
hand side of the facility as shown in Figure 21. 

 
Fig. 21Shock and expansion waves at the facility ends 

  
The two waves then will reflect from the end of the tube as 
shown in Figure 23. 

 
Fig. 22 Shock and Expansion wave reflection 

 
The reflected shock wave now moves to the left towards the 
contact surface while the reflected expansion wave moves to 
the right towards the contact surface and shock wave as 
shown in Figure 23. 

 
Fig. 23 Reflected waves move towards the contact surface 
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The shock wave interacts with the discontinuity surface and 
reflects again. This process continues for several times until 
getting pressure balance along the whole facility as shown in 
Figure 24. 
 

 
Fig. 24 Interaction between shock wave and contact surface 

 
Figure 25 shows velocity contour at t= 0.0029 sec after 
diaphragm rapture, at this ime the shock did not reflects yet, 
consequently the flow is symmetry and uniform in y-
direction. 

 
Fig. 25 Velocity contour before shock reflection 

 
As the shock wave reflects from the tube end it will move to 
the left and interact with the discontinuity surface and the 
flow no longer symmetry as shown in Figure 26. 
 

 
Fig. 26 Velocity contour after shock reflection 

 
XI. CONCLUSIONS 

 
The paper described the formulation of the 2D-CFD solver 

designed for simulation of flow in shock tube. The program 
has been applied to a standard case of inviscid flow in shock 
tube. The agreement with the analyzed solution is very good 
which proved the validity of the basic numerical scheme 
developed.  

The present code showed good capability to provide the x-t 
diagram successfully. From this diagram one can determine 
the useful duration (for this case it is about 10 ms), which is 
quite comparable compared to other facilities. It can be 
concluded, based on the agreement with the analytical results, 
that the numerical formulation for the inviscid part of the 
solver is valid. 

The results presented in this paper show that two-
dimensional modeling of the hypersonic test facility is an 
effective way to obtain facility performance data. Although 
this paper focused on the HTF facility, the CFD code is 
generic and may be applied to other facilities. 

The code could be further improved if a cylindrical 
coordinate system is used for mesh generation instead of the 
Cartesian coordinate system currently used. The simulations 
had successfully indicated that the flow is symmetry before 
shock wave reflection off the tube end and the flow is 
disturbed after shock reflection and interaction with contact 
discontinuity.  
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NOMENCLATURE 
 
a  Speed of sound 
D  Artificial dissipation component 
e  Specific internal energy 
eo  Total internal energy 
F   Axial component of the inviscid flux vector 
FT  Time step factor 
G  Tangential component of the inviscid flux 

vector 
ho  Stagnation enthalpy 
h  Specific enthalpy 
P  Static pressure 
Po  Stagnation pressure 
Pb  Downstream static pressure 
R  Flux residual 
SF2X  Second order smoothing factor in axial 
direction 
SF2Y  Second order smoothing factor in tangential 
direction 
SF4X  Fourth order smoothing factor in axial 
direction 
SF24Y  Fourth order smoothing factor in tangential 
direction 
T  Temperature 
t  Time 
Δt  Time step for main calculation 
V  Overall velocity 
Vx  Velocity component in axial direction 
Vy  Velocity component in tangential direction 
w   Conserved variable vector 

x  Axial distance 
y  Tangential distance 
 
Greek Symbols 
α Integration constant in Runge-Kutta time 

stepping 
β Enthalpy damping coefficient or coefficient 

in scaling factor equation 
ε Pressure gradient sensor 
ρ Density 
θ  Implicit residual averaging coefficient 
Ω  Volume of element 
γ  Artificial dissipation coefficient component 
 
Subscript 
o  Stagnation condition 
x  Cartesian co-ordinates 
y  Cartesian co-ordinates 
1  Initial state in driven section 
2 Flow conditions between shock wave and 

contact surface 
3 Flow conditions between rarefaction wave 

and contact surface 
4  Initial state in driver section  
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