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Abstract— In this paper, we present a new technique, called thus undistinguishable. Only in moderate or low dimendiona
Stream Projected Ouliter deTector (SPOT), to deal with outlier  sybspaces can significant outlier-ness of data be observed.
detection problem in high-dimensional data streams. SPOTSsi Formally, the problem of detecting projected outliers from

unique in a number of aspects. First, SPOT employs a novel high-dimensional data streams can be formulated as fol-
window-based time model and decaying cell summaries to cap- 9

ture statistics from the data stream. Second, Sparse Subspa |OWS: given a data strear® with a potentially unbounded
Template (SST), a set of top sparse subspaces obtained bysize of p-dimensional data points, each data pojpt =
unsupervised and/or supervised learning processes, is ainicted {pi1,pi2, ..., pip} in D will be labeled as either a projected
in SPOT to detect projected outliers effectively. Multi-Objective outlier or a regular data point. If; is a projected outlier,

Genetic Algorithm (MOGA) is employed as an effective search . . . . .

method in unsupervised learning for finding outlying subspaes its associated outlying Sl_JbSpace(s) will be_glven as Wdﬂe T
from training data. Finally, SST is able to carry out online self- results to be returned will be a set of projected outliers and
evolution to cope with dynamics of data streams. This paper their associated outlying subspace(s) to indicate theesbnt
provides details on the motivation and technical challenge of \where these projected outliers exist.

detecting outliers from high-dimensional data streams, pesent an ; ; ; ; ; ik
overvieV\? of SPOT, and give the plans for system de’mpgnstratm _Techplcally speaking, dejtectmg prqjgcted outliers inhhig
of SPOT. dimensional data streams is a nontrivial problem. The chal-
lenges mainly come from two aspects. First, finding outlying
subspace of the data is a NP problem, and the exhaustively
search (brute force) of the space lattice is rather comipatat

Outlier detection is an important research problem in dagly demanding and totally infeasible when the dimensiiyal
mining that aims to find objects that are considerably dissirof data is high. Another aspect of the challenge originates
ilar, exceptional and inconsistent with respect to the migjo from the characteristics of streaming data themselvediedut
data in an input database [4]. In recent years, we have wiletection algorithms are constrained to take only one pass
nessed a tremendous research interest sparked by theierpla® process the streaming data with the conditions of space
of data collected and transferred in the format of stream#nitation and time criticality.
The research advancements in outlier detection in datamstte  Recently, there are some emerging work in dealing with out-
can contribute to a wide range of applications in analysi afier detection either in high-dimensional data or datasstrs.
monitoring of network traffic data, web log, sensor networkdowever, there have not been any reported research work
and financial transactions, etc. In these applications, &g mso far for exploring the intersection of these two research
deal with data streams that contain dozens of, even hundfiedds. For those methods in projected outlier detection in
of, attributes, thus a technique for supporting outlieedgbn high-dimensional space [1][3][9][6][7][8], their measments
in high-dimensional data streams are desired to develop. used for evaluating points’ outlier-ness are not incremignt

We observe that the overwhelmingly majority of outliersipdatable and many of the methods involve multiple scans of
existing in high-dimensional data streams are embeddeddata, making them incapable of handling fast data streams.
relatively low-dimensional subspaces (spaces consisbihg For instance, [3][9] use the Spasity Coefficient to measure
a subset of attributes). These outliers are termpegjected data sparsity. Spasity Coefficient is based on an equi-depth
outliersin the high-dimensional space context. This is becaudata partition that has to be updated frequently in datastre
that, as dimensionality of data goes up, data tend to B&is will be expensive and such updates will require mutipl
equally distant from each other. As a result, the differenfce scan of data. [6][7][8] use data sparsity metrics that aseba
data points’ outlier-ness will become increasingly weakl aron distance involving the concept BNN. This is not suitable

I. INTRODUCTION
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Fig. 1. An overview of SPOT

for data streams as one scan of data is not sufficient fofr, while aprojected cellis a cell that exists in a particular
retaining kNN information of data points. The techniques fosubspaces.

tackling outlier detection in data streams [2][5] rely onl fu Definition 1. Base Cell Summar¥BCS): The Base Cell

data space to detect outliers and thus projected outliensota summary of a base ced:l in the hypercube i is a trlplet defined

be discovered by these techniques. as BCS(c) = {DC,LSC, SS ), whereD,., LS and SS are

Il AN OVERVIEW OF SPOT the number of points ir, the sum and squared sum of each
smgle dimension of points in, respectively, i. eLS > pZ
In this section, an overview of SPOT will be presented.
We will focus on discussing the time model, data synapsé@dss: Zfi' for p; located inc, 1 <4 < ¢, n is a scalar
learning processes employed in SPOT. The system architectwhile both LS. and SS. are p-dimensional vectors.

diagram of SPOT is given in Figure 1. Definition 2. Projected Cell SummaryPCS): The Projected
. Cell Summary of a cellc in a subspaces is a pair of
A. Time Model scalars defined aBC'S(c, s) = (RD, IRSD), whereRD and

We use a novel window-based time model, callede)- IRSD are the Relative Density and Inverse Relative Standard
model, in SPOT for discriminating data arriving at differenDeviation of data points i of s.
times in the stream. Each data in the window will be assignedThe advantages of BCS and PCS lie in that they can both
a weight, indicating its importance or influence to the daf¥€ computed and maintained incrementally thanks to their
synapses at the current time. The basic ideduok)-model additive and incremental properties, which enables SPOT to
is that, for the points that has slided out of the slide windo@eal with fast data streams.
with a size ofw, the sum of their weights will not exceed
e. (w,¢)-model is an approximation of conventional windowS: Stages of SPOT
based model of a window size with an approximation factor ~ SPOT can be divided into two stages: learning and detection
of e. Unlike the conventional window-based modél;, e¢)- stages. In learning stage, Sparse Subspace Template (SST)
model does not need to keep trace of detailed data in tiseconstructed by supervised and/or unsupervised learning
window. Moreover, instead of maintaining a large numbgrocess. SST casts light on where projected outliers agdylik
of historical snapshots of data synapses as in the tilted timo be found in the high-dimensional space. Based upon SST,
models, only the latest snapshot needs to be kefir)- SPOT screens projected outliers from constantly arriviagd
model. in the detection stage.

1) Learning Stage:Since the number of subspaces grows
exponentially with regard to dimensions of the data set,

In SPOT, we employBase Cell Summar{BCS) andPro- evaluating each streaming data point in each possible aubsp
jected Cell SummargPCS), two compact structures that ar¢hus becomes prohibitively expensive. As such, we only-alte
able to capture the major underlying characteristics ofdta natively check each point in a few subspaces, caSedrse
stream for detecting outliers. Quantitization of BCS andSPCSubspace Templa{&ST), in the space lattice in an effort to
entails an equi-width partition of domain spacebase cellis render this problem tractable. SST consists of a few sulo$ets
a cell in hypercube with the finest granularity with dimemsio subspaces generated by different underlying rationalessd

B. Data Synapses



subspace subsets supplement each other in terms of towardsupervised learning in SPOT attempts to incorporate the
capturing the right subspaces where projected outliers gméor domain knowledge, if any, into SPOT to assist SST
hidden. This helps enable SPOT to detect projected outli@snstruction. The knowledge that will help in the learning
more effectively. Specifically, SST contains the followihgee includes, but not necessarily restricted to, the relevasicy
subspace subset@xed SST Subspaces (FS), Clustering-basaidtributes with respect to the outlier detection task under
SST Subspaces (C&)pd Outlier-driven SST Subspaces (QS)ktudy and the identified/labeled projected outliers presid
respectively. by domain experts, as did in [9]. The former can contribute

- to removal of irrelevant attributes to speed up the learning
* Fixed SST Subspaces (FS) RFQeess, while the later will be applied MOGA whose top
sparse subspaces will become OS.
2) Detection StageThe detection stage performs outlier
tection for incoming stream data. As streaming data arriv
continuously, data synapses (BCS and PCS) are first updated
dynamically in order to capture new information of arrived
e Clustering-based SST Subspaces (CS) data. Then, we retrieve PCS of the projected cell to which

Clustering-based SST Subspaces (CS) consists of the spaigéh data belongs in subspace of SST, and label the point
subspaces of the top training data that have the highesalbvess a projected outlier if PCS of the cell it belongs to in one
outlying degree. The selected training data are more likely or more subspaces fall under certain pre-specified thréshol
be considered as outliers that can be potentially used &xtleipye to the speed of data streams and time criticality posed
more subsequent outliers in the stream. The overall owflyify the detection process, it is crucial that the abovemeatio
degree of training data is computed by employing clusterirgeps can be performed quickly. BCS and PCS can be updated
method. incrementally and thus will be very quickly. Also, the oatli
e Outlier-driven SST Subspaces (OS) ness check of each data in the stream is also very efficient. It

A few outlier examples may be provided by domain expert8nly involves mapping the data point into an appropriaté cel
MOGA is applied on each of these outliers to find theipnd retrieving PCS of this cell for outlier-ness checking.
top sparse subspaces. There subspaces are called OutlidR? addition to performing fast online detection, SPOT is
driven SST Subspaces (OS). Based on OS, exampled-badleg equipped with the ability to cope with dynamics of data
outlier detection can be performed that effectively detenpre Streams and respond to the possible concept drift, which are
outliers that are similar to these outlier examples. presented as follows.

SST is obtained by offline learning processes using a batch-irst, both BCSs of populated base cells and PCSs of pop-
of training data. A salient feature of SPOT is that it prosideulated projected cells in subspaces of SST will be efficientl
flexibility to allow for both unsupervisedand supervised maintained as data flow in. This ensures SST to be able
learning. Since the construction of FS does not require affy capture the latest data characteristics of the stream and

learning process, thus the major task of learning stage isr&sponse quickly to data changes;
generate CS and OS. Second, any outliers detected will be stored. Their topsspar

U ised | . subspaces produced by MOGA will be added into OS of SST
NSUpervised leaming .to detect outliers from streaming data arriving later. As a

q Itn Lflnsupt(:]rwsde(: Ieatrnlng, Sr;ﬁT taI;esllnfgr:jlatt:r)]eled :ra'fn”egnsequence, the detecting ability of SST will be enhanced
ata from the data stream amtitomatcaflylin € seto constantly as an increasing number of outliers are detected

gupspaces in which _data exhibit a high level of ov_e_rall spars along the detection process;
indicated by PCS with small RD and IRSD. Intuitively, these . : : . . . .

b h ected outli likely t i Finally, CS in SST is equipped with an unique ability of
subspaces are where projected outliers are ikely 1o EX6L -, ;o self-evolution(referred to as the online learning in

assume that a set of historical data is available for unsugest Figure 1). The basic idea of self-evolution of CS in SST

Iga_rmng at_the beginning Of.S.PQT.' The tra_|n|ng datasetlshoulls that, as the detection stage proceeds, a number of new
fit into main memory for minimizing possible 1/10 overhead.Subs aces are periodically aenerated online by crossmveri
Multi-objective Genetic Algorithm (MOGA) is employed to paces b Y gens y 5

h lattice to find th i b . hand mutating the top subspaces in the current CS. These newly
search space 1attice 1o fin ose€ lop subspaces in w C(g'nerated subspaces represent the new evolution of CS. Once
training data exhibit highest sparsity. The general stefpst

nsupervised learning are as follows. First. we perform MOG e new subspaces join SST, the whole CS, including the new
unsupervi ning IIOWS. FIrSt, We p subspaces, will be re-ranked and the new top sparse sulsspace
on the whole training data to find their top sparse subspaces

- . . | be chosen to create a new CS.

Then, we cluster training data using lead clustering metho
under different data order based upon. Finally, the oullyin [[l. | NNOVATIVE FEATURES AND CONTRIBUTIONS OF
degree of all the training data are computed and MOGA is SPOT
applied again on the top training data to find their top sparse,
subspaces, which will become the CS of SST.

Fixed SST Subspaces (FS) contains all the subspaces in
full lattice whose maximum dimension &/ axz Dimention,
where M ax Dimention is a user-specified parameter. In other
words, FS contains all the subspaces with dimensions of 1,
-+, MaxDimention.

Based on the descriptions of SPOT presented in section 2,
we can now summarize the innovative features and contribu-
Supervised Learning tions of SPOT as follows:



« In SPOT, we employ a new window-based time model
and decaying cell summaries to capture statistics from the
data streams for outlier detection. The time model is able

to approximate the conventional window-based model «

without maintaining the detailed data in the window
or keeping multiple snapshots of data synapses. The
decaying cell summaries can be efficiently computed and
incrementally maintained, enabling SPOT to handle fast
data streams;

latest stream outlier/anomaly detection method, in terms
of efficiency and effectiveness under a wide spectrum of
settings.

Finally, we showcase the prototype of SPOT and the
audience will be encouraged the play the demo interac-
tively themselves. We will provide on-site assistance to
the audience to use the prototype upon request.
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collectively to an effective detection of projected outie
SPOT is able to perform supervised and/or unsupervised
learning to construct SST, providing a maximum levell]
of flexibility to users. A number of strategies, such asp
self-evolution of SST and concept drift detection, have
also been incorporated into SPOT to greatly enhance ite]
adaptability to dynamics of data streams; [4]
Unlike most of other outlier detection methods that mea-
sure outlier-ness of data points based on a single criteriof!
SPOT adopts a more flexible framework of using multiple
measurements for this purpose. SPOT utilizes the Multifs]
Objective Genetic algorithm (MOGA) as an effective
search method to find subspaces that are able to optimigg
all the criteria;

Last but not the least, we show that SPOT outperform
the existing method in terms of efficiency and effective-
ness through experiments on both synthetic and real-life
streaming data sets.

IV. MAIN FEATURES OFDEMONSTRATION
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Our demonstration of SPOT will consist of the following
four parts:

o First, we introduce the problem of projected outlier

detection in high-dimensional data streams. To better
illustrate the motivation of this research, we pictorially
show the distribution of outliers and the existence of
projected outliers in high-dimensional data streams. We
also show to the audience some real-life applications to
which SPOT can be potentially applied. These examples
provide the audience with insight into the interesting
notion of projected outliers in high-dimensional space
context, the valuable abnormality patterns that can be
explored from them and finally the inherent technical
challenges associated with this problem.

Second, we showcase the system architecture of SPOT.
Emphasis of architecture demonstration will be the learn-
ing and detection process of SPOT. The major modules
in SPOT such a®ffline unsupervised/supervised learn-
ing, online detection Multi-Objective Genetic Algorithm
(MOGA), andconcept drift detectionetc, will be shown

to audience by means of the System Diagram.

Third, by using synthetic and real-life data sets, we
illustrate to the audience the experimental evaluation of
SPOT and the comparative study between SPOT and the



