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Abstract— In this paper, we present a new technique, called
Stream Projected Ouliter deTector (SPOT), to deal with outlier
detection problem in high-dimensional data streams. SPOT is
unique in a number of aspects. First, SPOT employs a novel
window-based time model and decaying cell summaries to cap-
ture statistics from the data stream. Second, Sparse Subspace
Template (SST), a set of top sparse subspaces obtained by
unsupervised and/or supervised learning processes, is constructed
in SPOT to detect projected outliers effectively. Multi-Objective
Genetic Algorithm (MOGA) is employed as an effective search
method in unsupervised learning for finding outlying subspaces
from training data. Finally, SST is able to carry out online self-
evolution to cope with dynamics of data streams. This paper
provides details on the motivation and technical challenges of
detecting outliers from high-dimensional data streams, present an
overview of SPOT, and give the plans for system demonstration
of SPOT.

I. I NTRODUCTION

Outlier detection is an important research problem in data
mining that aims to find objects that are considerably dissim-
ilar, exceptional and inconsistent with respect to the majority
data in an input database [4]. In recent years, we have wit-
nessed a tremendous research interest sparked by the explosion
of data collected and transferred in the format of streams.
The research advancements in outlier detection in data streams
can contribute to a wide range of applications in analysis and
monitoring of network traffic data, web log, sensor networks
and financial transactions, etc. In these applications, we may
deal with data streams that contain dozens of, even hundred
of, attributes, thus a technique for supporting outlier detection
in high-dimensional data streams are desired to develop.

We observe that the overwhelmingly majority of outliers
existing in high-dimensional data streams are embedded in
relatively low-dimensional subspaces (spaces consistingof
a subset of attributes). These outliers are termedprojected
outliers in the high-dimensional space context. This is because
that, as dimensionality of data goes up, data tend to be
equally distant from each other. As a result, the differenceof
data points’ outlier-ness will become increasingly weak and

thus undistinguishable. Only in moderate or low dimensional
subspaces can significant outlier-ness of data be observed.

Formally, the problem of detecting projected outliers from
high-dimensional data streams can be formulated as fol-
lows: given a data streamD with a potentially unbounded
size of ϕ-dimensional data points, each data pointpi =
{pi1, pi2, . . . , piϕ} in D will be labeled as either a projected
outlier or a regular data point. Ifpi is a projected outlier,
its associated outlying subspace(s) will be given as well. The
results to be returned will be a set of projected outliers and
their associated outlying subspace(s) to indicate the context
where these projected outliers exist.

Technically speaking, detecting projected outliers in high-
dimensional data streams is a nontrivial problem. The chal-
lenges mainly come from two aspects. First, finding outlying
subspace of the data is a NP problem, and the exhaustively
search (brute force) of the space lattice is rather computation-
ally demanding and totally infeasible when the dimensionality
of data is high. Another aspect of the challenge originates
from the characteristics of streaming data themselves. Outlier
detection algorithms are constrained to take only one pass
to process the streaming data with the conditions of space
limitation and time criticality.

Recently, there are some emerging work in dealing with out-
lier detection either in high-dimensional data or data streams.
However, there have not been any reported research work
so far for exploring the intersection of these two research
fields. For those methods in projected outlier detection in
high-dimensional space [1][3][9][6][7][8], their measurements
used for evaluating points’ outlier-ness are not incrementally
updatable and many of the methods involve multiple scans of
data, making them incapable of handling fast data streams.
For instance, [3][9] use the Spasity Coefficient to measure
data sparsity. Spasity Coefficient is based on an equi-depth
data partition that has to be updated frequently in data stream.
This will be expensive and such updates will require multiple
scan of data. [6][7][8] use data sparsity metrics that are based
on distance involving the concept ofkNN. This is not suitable



Fig. 1. An overview of SPOT

for data streams as one scan of data is not sufficient for
retainingkNN information of data points. The techniques for
tackling outlier detection in data streams [2][5] rely on full
data space to detect outliers and thus projected outliers cannot
be discovered by these techniques.

II. A N OVERVIEW OF SPOT

In this section, an overview of SPOT will be presented.
We will focus on discussing the time model, data synapses,
learning processes employed in SPOT. The system architecture
diagram of SPOT is given in Figure 1.

A. Time Model

We use a novel window-based time model, called(ω, ǫ)-
model, in SPOT for discriminating data arriving at different
times in the stream. Each data in the window will be assigned
a weight, indicating its importance or influence to the data
synapses at the current time. The basic idea of(ω, ǫ)-model
is that, for the points that has slided out of the slide window
with a size ofω, the sum of their weights will not exceed
ǫ. (ω, ǫ)-model is an approximation of conventional window-
based model of a window sizeω with an approximation factor
of ǫ. Unlike the conventional window-based model,(ω, ǫ)-
model does not need to keep trace of detailed data in the
window. Moreover, instead of maintaining a large number
of historical snapshots of data synapses as in the tilted time
models, only the latest snapshot needs to be kept in(ω, ǫ)-
model.

B. Data Synapses

In SPOT, we employBase Cell Summary(BCS) andPro-
jected Cell Summary(PCS), two compact structures that are
able to capture the major underlying characteristics of thedata
stream for detecting outliers. Quantitization of BCS and PCS
entails an equi-width partition of domain space. Abase cellis
a cell in hypercube with the finest granularity with dimensions

of ϕ, while aprojected cellis a cell that exists in a particular
subspaces.
Definition 1. Base Cell Summary(BCS): The Base Cell
summary of a base cellc in the hypercube is a triplet defined

as BCS(c) = {Dc,
→

LSc,
→

SSc), whereDc,
→

LSc and
→

SSc are
the number of points inc, the sum and squared sum of each

single dimension of points inc, respectively, i.e.
→

LS=
∑ →

p i

and
→

SS=
∑ →

p
2

i , for pi located inc, 1 ≤ i ≤ ϕ, nc is a scalar
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Definition 2. Projected Cell Summary(PCS): The Projected
Cell Summary of a cellc in a subspaces is a pair of
scalars defined asPCS(c, s) = (RD, IRSD), whereRD and
IRSD are the Relative Density and Inverse Relative Standard
Deviation of data points inc of s.

The advantages of BCS and PCS lie in that they can both
be computed and maintained incrementally thanks to their
additive and incremental properties, which enables SPOT to
deal with fast data streams.

C. Stages of SPOT

SPOT can be divided into two stages: learning and detection
stages. In learning stage, Sparse Subspace Template (SST)
is constructed by supervised and/or unsupervised learning
process. SST casts light on where projected outliers are likely
to be found in the high-dimensional space. Based upon SST,
SPOT screens projected outliers from constantly arriving data
in the detection stage.

1) Learning Stage:Since the number of subspaces grows
exponentially with regard to dimensions of the data set,
evaluating each streaming data point in each possible subspace
thus becomes prohibitively expensive. As such, we only alter-
natively check each point in a few subspaces, calledSparse
Subspace Template(SST), in the space lattice in an effort to
render this problem tractable. SST consists of a few subsetsof
subspaces generated by different underlying rationales. These



subspace subsets supplement each other in terms of towards
capturing the right subspaces where projected outliers are
hidden. This helps enable SPOT to detect projected outliers
more effectively. Specifically, SST contains the followingthree
subspace subsets,Fixed SST Subspaces (FS), Clustering-based
SST Subspaces (CS)and Outlier-driven SST Subspaces (OS),
respectively.

• Fixed SST Subspaces (FS)
Fixed SST Subspaces (FS) contains all the subspaces in the

full lattice whose maximum dimension isMaxDimention,
whereMaxDimention is a user-specified parameter. In other
words, FS contains all the subspaces with dimensions of 1, 2,
· · · , MaxDimention.

• Clustering-based SST Subspaces (CS)
Clustering-based SST Subspaces (CS) consists of the sparse

subspaces of the top training data that have the highest overall
outlying degree. The selected training data are more likelyto
be considered as outliers that can be potentially used to detect
more subsequent outliers in the stream. The overall outlying
degree of training data is computed by employing clustering
method.

• Outlier-driven SST Subspaces (OS)
A few outlier examples may be provided by domain experts.

MOGA is applied on each of these outliers to find their
top sparse subspaces. There subspaces are called Outlier-
driven SST Subspaces (OS). Based on OS, exampled-based
outlier detection can be performed that effectively detects more
outliers that are similar to these outlier examples.

SST is obtained by offline learning processes using a batch
of training data. A salient feature of SPOT is that it provides
flexibility to allow for both unsupervisedand supervised
learning. Since the construction of FS does not require any
learning process, thus the major task of learning stage is to
generate CS and OS.

Unsupervised learning
In unsupervised learning, SPOT takes in unlabeled training

data from the data stream andautomaticallyfind the set of
subspaces in which data exhibit a high level of overall sparsity,
indicated by PCS with small RD and IRSD. Intuitively, these
subspaces are where projected outliers are likely to exist.We
assume that a set of historical data is available for unsupervised
learning at the beginning of SPOT. The training dataset should
fit into main memory for minimizing possible I/O overhead.
Multi-objective Genetic Algorithm (MOGA) is employed to
search space lattice to find those top subspaces in which
training data exhibit highest sparsity. The general steps of
unsupervised learning are as follows. First, we perform MOGA
on the whole training data to find their top sparse subspaces.
Then, we cluster training data using lead clustering method
under different data order based upon. Finally, the outlying
degree of all the training data are computed and MOGA is
applied again on the top training data to find their top sparse
subspaces, which will become the CS of SST.

Supervised Learning

Supervised learning in SPOT attempts to incorporate the
prior domain knowledge, if any, into SPOT to assist SST
construction. The knowledge that will help in the learning
includes, but not necessarily restricted to, the relevancyof
attributes with respect to the outlier detection task under
study and the identified/labeled projected outliers provided
by domain experts, as did in [9]. The former can contribute
to removal of irrelevant attributes to speed up the learning
process, while the later will be applied MOGA whose top
sparse subspaces will become OS.

2) Detection Stage:The detection stage performs outlier
detection for incoming stream data. As streaming data arrive
continuously, data synapses (BCS and PCS) are first updated
dynamically in order to capture new information of arrived
data. Then, we retrieve PCS of the projected cell to which
each data belongs in subspace of SST, and label the point
as a projected outlier if PCS of the cell it belongs to in one
or more subspaces fall under certain pre-specified thresholds.
Due to the speed of data streams and time criticality posed
to the detection process, it is crucial that the abovementioned
steps can be performed quickly. BCS and PCS can be updated
incrementally and thus will be very quickly. Also, the outlier-
ness check of each data in the stream is also very efficient. It
only involves mapping the data point into an appropriate cell
and retrieving PCS of this cell for outlier-ness checking.

In addition to performing fast online detection, SPOT is
also equipped with the ability to cope with dynamics of data
streams and respond to the possible concept drift, which are
presented as follows.

First, both BCSs of populated base cells and PCSs of pop-
ulated projected cells in subspaces of SST will be efficiently
maintained as data flow in. This ensures SST to be able
to capture the latest data characteristics of the stream and
response quickly to data changes;

Second, any outliers detected will be stored. Their top sparse
subspaces produced by MOGA will be added into OS of SST
to detect outliers from streaming data arriving later. As a
consequence, the detecting ability of SST will be enhanced
constantly as an increasing number of outliers are detected
along the detection process;

Finally, CS in SST is equipped with an unique ability of
online self-evolution(referred to as the online learning in
Figure 1). The basic idea of self-evolution of CS in SST
is that, as the detection stage proceeds, a number of new
subspaces are periodically generated online by crossovering
and mutating the top subspaces in the current CS. These newly
generated subspaces represent the new evolution of CS. Once
the new subspaces join SST, the whole CS, including the new
subspaces, will be re-ranked and the new top sparse subspaces
will be chosen to create a new CS.

III. I NNOVATIVE FEATURES AND CONTRIBUTIONS OF

SPOT

Based on the descriptions of SPOT presented in section 2,
we can now summarize the innovative features and contribu-
tions of SPOT as follows:



• In SPOT, we employ a new window-based time model
and decaying cell summaries to capture statistics from the
data streams for outlier detection. The time model is able
to approximate the conventional window-based model
without maintaining the detailed data in the window
or keeping multiple snapshots of data synapses. The
decaying cell summaries can be efficiently computed and
incrementally maintained, enabling SPOT to handle fast
data streams;

• SPOT constructs Sparse Subspace Template (SST) to
detect projected outliers. SST consists of a number of
mutually supplemented subspace subsets that contribute
collectively to an effective detection of projected outliers.
SPOT is able to perform supervised and/or unsupervised
learning to construct SST, providing a maximum level
of flexibility to users. A number of strategies, such as
self-evolution of SST and concept drift detection, have
also been incorporated into SPOT to greatly enhance its
adaptability to dynamics of data streams;

• Unlike most of other outlier detection methods that mea-
sure outlier-ness of data points based on a single criterion,
SPOT adopts a more flexible framework of using multiple
measurements for this purpose. SPOT utilizes the Multi-
Objective Genetic algorithm (MOGA) as an effective
search method to find subspaces that are able to optimize
all the criteria;

• Last but not the least, we show that SPOT outperforms
the existing method in terms of efficiency and effective-
ness through experiments on both synthetic and real-life
streaming data sets.

IV. M AIN FEATURES OFDEMONSTRATION

Our demonstration of SPOT will consist of the following
four parts:

• First, we introduce the problem of projected outlier
detection in high-dimensional data streams. To better
illustrate the motivation of this research, we pictorially
show the distribution of outliers and the existence of
projected outliers in high-dimensional data streams. We
also show to the audience some real-life applications to
which SPOT can be potentially applied. These examples
provide the audience with insight into the interesting
notion of projected outliers in high-dimensional space
context, the valuable abnormality patterns that can be
explored from them and finally the inherent technical
challenges associated with this problem.

• Second, we showcase the system architecture of SPOT.
Emphasis of architecture demonstration will be the learn-
ing and detection process of SPOT. The major modules
in SPOT such asOffline unsupervised/supervised learn-
ing, online detection, Multi-Objective Genetic Algorithm
(MOGA), andconcept drift detection, etc, will be shown
to audience by means of the System Diagram.

• Third, by using synthetic and real-life data sets, we
illustrate to the audience the experimental evaluation of
SPOT and the comparative study between SPOT and the

latest stream outlier/anomaly detection method, in terms
of efficiency and effectiveness under a wide spectrum of
settings.

• Finally, we showcase the prototype of SPOT and the
audience will be encouraged the play the demo interac-
tively themselves. We will provide on-site assistance to
the audience to use the prototype upon request.
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