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Abstract
Forecast models of solar radiation incorporating cloud effects are useful tools to evaluate the impact of stochastic

behaviour of cloud movement, real-time integration of photovoltaic energy in power grids, skin cancer and eye disease risk

minimisation through solar ultraviolet (UV) index prediction and bio-photosynthetic processes through the modelling of

solar photosynthetic photon flux density (PPFD). This research has developed deep learning hybrid model (i.e., CNN-

LSTM) to factor in role of cloud effects integrating the merits of convolutional neural networks with long short-term

memory networks to forecast near real-time (i.e., 5-min) PPFD in a sub-tropical region Queensland, Australia. The

prescribed CLSTM model is trained with real-time sky images that depict stochastic cloud movements captured through a

total sky imager (TSI-440) utilising advanced sky image segmentation to reveal cloud chromatic features into their

statistical values, and to purposely factor in the cloud variation to optimise the CLSTM model. The model, with its

competing algorithms (i.e., CNN, LSTM, deep neural network, extreme learning machine and multivariate adaptive

regression spline), are trained with 17 distinct cloud cover inputs considering the chromaticity of red, blue, thin, and

opaque cloud statistics, supplemented by solar zenith angle (SZA) to predict short-term PPFD. The models developed with

cloud inputs yield accurate results, outperforming the SZA-based models while the best testing performance is recorded by

the objective method (i.e., CLSTM) tested over a 7-day measurement period. Specifically, CLSTM yields a testing

performance with correlation coefficient r = 0.92, root mean square error RMSE = 210.31 l mol of photons m-2 s-1, mean

absolute error MAE = 150.24 l mol of photons m-2 s-1, including a relative error of RRMSE = 24.92% MAPE = 38.01%,

and Nash Sutcliffe’s coefficient ENS = 0.85, and Legate and McCabe’s Index LM = 0.68 using cloud cover in addition to

the SZA as an input. The study shows the importance of cloud inclusion in forecasting solar radiation and evaluating the

risk with practical implications in monitoring solar energy, greenhouses and high-value agricultural operations affected by

stochastic behaviour of clouds. Additional methodological refinements such as retraining the CLSTM model for hourly and

seasonal time scales may aid in the promotion of agricultural crop farming and environmental risk evaluation applications

such as predicting the solar UV index and direct normal solar irradiance for renewable energy monitoring systems.

Keywords Photosynthetic radiation � Deep learning � Stochastic cloud effects � Solar radiation modelling �
Photosynthetic photon flux density � Risk evaluation

1 Introduction

The global solar radiation used by plants in photosynthesis

spans about 400–700 nm wavelength, which is a relatively

narrow part of the entire solar spectrum, but one containing

only about half the solar energy. Within this limits can be

defined both the energy available for photosynthesis, the

photosynthetically active radiation (PAR, Wm-2) or alter-

natively, the photosynthetic photon flux density (PPFD; l
mol of photons m-2 s-1) (McCree 1973) that will now be

the subject of this paper. Lipid proteins, forming the

building block of terrestrial and marine food webs, con-

tribute to global biomass derived from agricultural animal

and plant products that continue to be a growing source ofExtended author information available on the last page of the article
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worldwide energy production. Currently, green biofuels

account for 11% of the world’s total energy supply

(Proskurina et al. 2019) coming from primary plant and

vegetable oil crops, secondary lignocellulosic by-products

(Ramanna et al. 2017; Vuppaladadiyam et al. 2018), and

third generation, enriched lipid microalgae bioproducts.

Significant research has focused on the optimisation of

biofuel production particularly through the efficient pro-

duction of microalgae photo-bioreactors (PBR) that can

optimise the light, temperature, nutrient loads, and conti-

nuity of microalgae species (Chen et al. 2011; Slade and

Bauen 2013; Holdmann et al. 2019). Recent research works

concentrated on the genetic modification of microalgae

species for optimal acclimation to the environment. These

are aimed at enhancing the overall output efficiency of the

targeted microalgae products (Kumar et al. 2018; Park

et al. 2019; Zhang et al. 2020). Alternative energy

resources for PBR have also been investigated by including

artificial light or organic fluorescent dyes to maximise solar

conversion into optimal photosynthetic radiation bands

(Ramanna et al. 2017). Costs of artificial light sources have

to date restricted the development of PBRs that do not

retain enough access to reliable sources of photosynthetic-

active solar radiation. Importantly, the availability of open-

air setups utilising natural sunlight continues to be the most

economically viable solution to farm microalgae and

develop sustainable bio-products. These systems are by far

the most prevalent, roughly occupying 90% of all third-

generation commercial biofuel production facilities (Pru-

vost et al. 2016). They are however dependent on both long

and short-term fluctuations in localized-scale solar radia-

tion where production can be improved by monitoring

farms with robust forecasting efforts especially in real-time

scales.

Solar radiation, affected by season, latitude and tem-

poral variations in cloud cover, ozone, and atmospheric

aerosols, influences the optimal utilisation of light at any

given biomass production system, including its effect on

plant growth or overall health. Typically, tropical envi-

ronments that produce consistently high levels of solar

insolation at the earth’s surface are ideal (Siqueira et al.

2020). However tropical climates are frequently affected

by strong seasonal precipitation patterns resulting in fluc-

tuations in solar light intensity. Cloud cover alone can drop

the available Photosynthetic Photon Flux density (PPFD),

which can reach 2000 lmol of photons m-2 s-1 at noon,

by as much as 80% (Grant and Heisler 1997; Holdmann

et al. 2019). Broken cloud can bring about short-term cloud

enhancement of solar radiation (up to * 20%) and such

conditions can bring about rapid fluctuation of solar radi-

ation both above and below the clear sky values. Yet,

ideally, efficient biomass production requires a steady and

reliable supply and monitoring of PPFD (Patil et al. 2017).

As net primary productivity is strongly influenced by

climatic factors, much effort has been expended on mea-

suring (and subsequently monitoring) the PPFD. A review

of literature shows some limitations in terms of current

predictive approaches where most methods have used

monitoring rather than real-time forecasting approaches.

Remote sensing platforms have been used to determine

vegetation net production efficiency (Hanan et al. 1995)

and as a result can be used to determine the best locations

for establishing farms, greenhouses or other high value

agricultural hubs (Zheng et al. 2016a, b; Gumma et al.

2020; Siqueira et al. 2020). Satellite remote sensing

methods inherently must approximate the geometric

absorption, scattering and transmission of clouds from

relatively low resolution single-direction reflectance (Batey

and Green 2000). The most important environmental pre-

dictors to determine the global PPFD on the earth’s surface

are the annual precipitation, monthly cloud fraction, bio-

climate layer information and month (Chen et al. 2008;

Tang et al. 2017; Hengl et al. 2018; Lozano 2021; Rocha

2021).

Having identified the best location for crops, the next

step would be to forecast solar radiation conditions so that

crops are protected and their growth is optimised. The

seasonal and climatic factors which can be readily sourced

from public datasets have been employed in previous AI-

based approaches too, particularly to accurately predict

agricultural crop yield, drought indices and rainfall in

Pakistan (Ali et al. 2018a, b), China (Han et al. 2020), USA

(Crane-Droesch 2018) and Australia (Cai et al. 2019; Feng

et al. 2019; Kamir et al. 2020). Such AI-based approaches

are becoming useful tools to derive agricultural and bio-

mass product efficiency mapping on a much broader scale

where accurate surface instrumentation and local climate

records are not available. Hemispherical photographs have

been used to estimate PPFD with limited success (Wagner

1995). Another approach has been artificial neural network

(ANN) models that map out the available global surface

PPFD using remote satellite products as predictor vari-

ables. This model, however, is based on an ANN approach

that requires environmental predictors to produce an

accurate forecast system (Ryu et al. 2018).

Biomass productivity is not only dependent on total

PPFD but also the diffuse fraction of PPFD (Gu et al.

2002). Methods for retrospective PPFD estimation employ

a mixture of remote satellite products, global reanalysis of

climate information (Jiang et al. 2020) and local surface

instrumentation (Deo et al. 2019) to model both direct and

diffuse photosynthetic-active radiation and output biomass

for a range of ecological and agricultural applications have

also been developed (Hengl et al. 2018).

In respect to solar energy, monitoring or integration into

electricity grids, intermittencies in power production are
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highly driven by cloud variations (Zhen et al. 2017a).

However, the ability to develop reliable models to predict

short-term (e.g., 5–10 min) solar radiation can provide a

future solar system real-time monitoring capability to

resolve clean energy challenges by better capturing cloud

cover, lifetime, spread or stochastic movements. Also, the

option to capture cloud cover variations in a solar ultravi-

olet index (UV Index) model such as the one developed

previously by Deo et al. (2017) can help in skin cancer and

eye disease risk mitigation. Developing a PPFD prediction

model trained with cloud images may provide useful

insights into UV index, solar power production or energy

demand monitoring.

In a previous study, the near real-time PPFD prediction

model of Deo et al. (2019) was based on an adaptive neuro-

fuzzy inference system to predictPPFD over 5-min horizons

in Queensland (Australia), using time lagged SZA data under

cloud-free conditions. Utilising the local solar zenith angle

(SZA) as the only input variable, they demonstrated good

accuracy in predicting the real-time PPFD with changes in

SZA for 5 min and hourly forecasts. Such studies that model

real-time solar photosynthetic energy can play a pivotal role

in helping explore regional development of the agricultural

sector. However, the inclusion of cloud cover (which is vital

for the control of plant growth, was not considered in pre-

vious studies). The development of an AI-based model to

predict the influence of cloud variations at near real-time,

and how the cloud properties (derived from image chromic

information) might control the amount of ground-based

photosynthetic-active radiation is yet to be explored.

This paper develops an artificial intelligence (AI)-ap-

proach that considers the total sky conditions, addressing the

role of cloud cover variations to accurately model PPFD at

5-min time scales. The contribution and novelty are to build a

first deep learning AI method for real-time PPFD forecast-

ing, capturing the influence of cloud properties on measured

photosynthetic-active radiation. A deep learning-based

methodology utilising whole sky image characteristics of

both the cloud and cloud-free conditions typical to local

farming environments incorporates data features from high

temporal resolution images such as those captured by total

sky imager (TSI) or geo-stationary satellites e.g., Himawari 8

or 9 providing inter-minute level sky images. The objectives

are as follows. (1) To process TSI-based cloud images cor-

responding to PPFD measured at 5-min intervals through a

custom-built cloud segmentation algorithm (Igoe et al. 2019)

applied to each image, and produce descriptive statistics

based on the blue, red, thin and opaque cloud chromatic

features (i.e., means, standard deviations, differences,

ratios). These are then used to build an optimal set of model

inputs (i.e., cloud image properties) against a target (i.e.,

PPFD). (2) To develop deep learning-based convolutional

neural network and long short-term memory network

(CLSTM) model following our earlier study (Ghimire

2019a), implemented for near real-time PPFD forecasting.

(3) To benchmark the CLSTM model w.r.t conventional

machine learning (MARS, ELM) and deep learning LSTM,

CNN and DNN methods tested on the same training/vali-

dation (i.e., 01-March-2013 to 24-March-2013) and testing

(25-March-2013 to 31-March-2013) subsets. To pursue the

objectives, the present study has utilised data from a local

TSI as a proof of concept. The parameters employed are

cloud fraction, cloud type and the red–green–blue cloud

chromatic properties derived from segmented sky images,

with respect to simultaneous PPFD measurement at the

subtropical location of Toowoomba (27.6�S),Australia. This
site was also used to develop a wavelet CLSTM hybrid

model for multi-step prediction of cloud-affected solar UV

radiation (Prasad et al. 2022).

2 Theoretical overview

The theoretical details of deep learning (i.e., CNN, LSTM,

DNN) and conventional machine learning (ELM and

MARS) methods are described elsewhere (Al-Musaylh et al.

2018a, b, 2020; Chen et al. 2018; Ghimire 2019a;Wang et al.

2019). The CLSTMmodel, constructed by integrating CNN

and LSTM, had been used elsewhere in natural language

processing where emotions were analysed with text inputs

(Wang et al. 2016), in speech processing where voice search

tasks were performed using CLDNN combining CNN,

LSTM and DNN (Sainath et al. 2015), in video processing

with CNN and Bi-directional LSTM models built to recog-

nize human actions in video sequences (Ullah et al. 2017), in

the medical area where the CNN-LSTM method was

developed to detect arrhythmias in electrocardiograms (Oh

et al. 2018) and in industrial areas where a convolutional bi-

directional LSTM model was designed to predict tool

wearing (Zhao et al. 2017). Other studies with CLSTM are

evident, for example, time series application for prediction of

residential energy consumption (Kim and Cho 2019; Ullah

et al. 2019), solar radiation prediction (Lee et al. 2018;

Wang, et al. 2018; Ghimire 2019a; Gao et al. 2020) and wind

speed prediction (Hong and Satriani 2020; Jaseena and

Kovoor 2021; Meka et al. 2021) as well as stock market

applications in the prediction of share prices (Vidal and

Kristjanpoller 2020; Yadav et al. 2020). In the solar radiation

forecasting area, the study of Ghimire et al. (2019a) has

developed a CLSTM model and compared its performance

against the CNN, LSTM and DNN-based models, showing

that the CLSTMmodel outperformed the standalone version

of both CNN and LSTM models.

Following earlier implementations (Ghimire 2019a), in

this study we integrate CNN and LSTM to produce a

hybrid system that ensures most prevalent data features are
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extracted using CNN prior to the sequential modelling of

real-time photosynthetic radiation at 5-min intervals. This

objective model is depicted by a simplified schematic

architecture in Fig. 1. Generally, a CNN system is known

to extract local trends or other features as well as common

features recurring in time series at different intervals (Kuo

2016) and then used to serve as further inputs to LSTM

model’s architecture. LSTM is able to capture both the

short- and the long-term dependencies in data patterns

(e.g., linking PPFD variability against time-based cloud

movements) to learn the time sequential relationships

among predictors and a target (Chimmula and Zhang 2020;

Song 2020). First introduced for object recognition in

image processing (LeCun et al. 2015), the CNN model has

a prominent structure composed of many convolution

layers, pooling layers and one or more fully connected

layer (Vidal and Kristjanpoller 2020). The primary build-

ing block applies a convolution filter (i.e., a kernel func-

tion) for input data to generate a feature mapping

scheme (Li et al. 2020a). Using different filters, many sets

of convolutions are performed in order to create different

feature maps (Xie et al. 2020). These are eventually com-

bined to produce the convolution layer’s final output. In the

pooling layer, each feature map’s dimension is reduced

through down-sampling thereby mitigating the risks of

model overfitting and reducing the model’s training time

(Ma and Tian 2020). The fully-connected layer at the end

of the CNN is replaced with LSTM via the flattening layer

to produce the hybrid CLSTM predictive model (Barzegar

et al. 2020).

Other than the CLSTM model, the present study has

utilised a standalone LSTM as a variation on recurrent

neural network (RNN) composed of memory cells coupled

through layers, rather than the neurons in a conventional

ANN-type model (Zang et al. 2020). The RNN is generally

considered to be somewhat incompetent in describing long-

term dependences due to the gradient vanishing phe-

nomenon (Bengio et al. 1994). Because of this, LSTM was

developed by Hochreiter and Schmidhuber in 1997

(Hochreiter and Schmidhuber 1997) and enhanced by

Graves in 2013 (Graves 2013). In contrast to the classic

RNN where gradients back-propagate exponentially, the

LSTM model allows for gradients to flow unchanged by

employing a cell memory. By using input gate, a forget

gate, and an output gate, the LSTM unit can decide what to

remember and what to forget and is therefore capable of

addressing long-term dependencies. (Wu and Lin 2019). In

general, an LSTM block is made of the sigmoid (r) and
hyperbolic tangent (tanh) layers, and two operations

including pointwise summation (�) and multiplication ( �)

operations, as shown schematically in Fig. 1. Mathemati-

cally, these processes can be defined by Eqs. 1–6 (Ghimire

2019a).

Input gate it:

it ¼ r wixt þ Riht�1 þ bið Þ ð1Þ

Forget gate ft:

ft ¼ r wf xt þ Rf ht�1 þ bf

� �
ð2Þ

Output gate yt:

Fig. 1 Schematic illustration of convolutional neural network-long

short-term memory network (CLSTM) predictive framework. CNN

used for feature extraction from solar zenith angle (SZA) and cloud

chromatic properties from total sky imager (TSI) and LSTM is used

for time sequential modelling of the photosynthetic-active radiation

(represented as photosynthetic photon flux density, PPFD)
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yt ¼ r wyxt þ Ryht�1 þ by

� �
ð3Þ

Cell ct:

ct ¼ ftct�1 þ itct ð4Þ
ct ¼ r wcxt þ Rcht�1 þ bcð Þ ð5Þ
Output vector ht : ht ¼ ytr ctð Þ ð6Þ

where, r and tanh are activation functions in the range

[0,1] and [1, 1] respectively,

Sigmoid function : r cð Þ ¼ 1

1þ e�c
ð7Þ

Hyperbolic � tangent function : r cð Þ ¼ ec � e�c

ec þ e�c
: ð8Þ

bi, bf, by denote the input, forget, and output gate bias

vectors, respectively; ct-1 and ht-1 are the previous cell and

its output vector; ht is the output vector; xt denotes the

input vector; wi, wf, and wy are the matrix of weights from

the input, forget, and output gates to the input, respectively;

and Ri, Rf, and Ry define the matrix of weights from the

input, forget, and output gates to the input, respectively.

3 Materials and methods

3.1 Experimental apparatus and data acquisition
system

The measurements were conducted using an experimental

apparatus that has been reported elsewhere (e.g., Prasad et al.

2022). Photosynthetic photon flux density, PPFD, was

measured with corresponding cloud cover images at the

Toowoomba Campus of The University of Southern

Queensland 120 km west of Brisbane, Australia. Figure 2a

shows the geographic location of the study site. At the

University’s Atmospheric and Solar Ultraviolet Radiation

Laboratory, a quality-controlled monitoring station mea-

sured PPFD and weather conditions since 2011 (Fig. 2b).

Located at an elevation of 690 m ASL, Toowoomba is a

regional city with a high solar energy potential and is also

classified as a regional centre for agricultural activities that

makes the PPFD forecast models an advantageous tool for

practical applications in agricultural sectors. The specific

study site also has a relatively large number of full sunshine

days and a clear hemispheric view of the solar horizon

(Sabburg 2000) that also makes it an ideal site to implement

the CLSTM model for real-time forecasting of photosyn-

thetic-active radiation.

To build the proposed CLSTM predictive model, high-

quality, yet cloud-influenced measurements of PPFD were

acquired over the austral summer solstice period (01–31Mar

2013). The data were collected using a Quantum sensor (LI-

190R; LI-COR, Lincoln, USA) connected to a CR100

Campbell Scientific data logger (Logan, USA) (Fig. 2). The

LI-190R automated systemwas installed on an unobstructed

rooftop site to continuously monitor the photosynthetic-ac-

tive radiation at 5-min intervals over a 24-h period.

Employed in several other research works (Johnson et al.

2015;Gill et al. 2017;Deo et al. 2019), the LI-190R system is

mainly designed for long-term, outdoor usage with a man-

ufacturer-stated uncertainty of ± 5% traceable to the US

National Institute of Standards and Technology. In this

paper, the PPFD time series for the daytime period 07.00

AM–05.00PMwere used, considering that solar irradiance is

mainly intercepted by plants during daytime, and that the

night level of photosynthetic energy is practically zero.

Figure 3a shows the temporal patterns in measured

PPFD time series sampled at 5-min intervals, ranging from

0 to 2300 l mol of photons m-2 s-1 but this variation over

entire diurnal cycles is different for different days or times.

This is perhaps due to cloud cover or atmospheric condi-

tions (e.g., ozone, aerosols, water vapor). Figure 3b shows

a sample of five cloud images with their respective PPFD

and solar zenith angle. It is noticeable that even for a

similar value of SZA (28–29�) at 10.55 AM (10 Mar) and

12.55 PM (15 Mar), the value of PPFD varies by almost

28%. Similar observation can be made for the data on 01

March (06.55 AM) and 30 March (16.55 PM) measuring

the PPFD values of 54 l mol of photons m-2 s-1 and 333

l mol of photons m-2 s-1. Meanwhile here is rather sim-

ilar PPFD for March 30th and March 5th even though SZA

changes considerably. This illustrates how cloud fraction is

an important modulator of SZA-controlled photosynthetic-

active radiation, including cloud height and depth that are

not considered in this analysis.

3.2 Sky image processing and cloud
segmentation

A quick and efficient self-adaptive Python-based tool

called the TSI Analyser developed in earlier work (Igoe

et al. 2019) is employed for sky image segmentation and

extraction of cloud chromatic properties from images

obtained by total sky imager (TSI) instrument (serial

number: 175). Details of the TSI Analyser algorithm are

described elsewhere (Igoe et al. 2019) but in principle, it is

able to produce cloud cover-based statistical properties for

every image that is associated with a measured PPFD

value. This aims to capture the overall sky conditions,

particularly, to include the contributory role of cloud cover

variations in training the proposed CLSTM predictive

model. To do this, we refer to comparisons between red

and blue intensities in clouds, red-blue ratios, and red-blue

difference. We also segmented each image into the nor-

malized red-blue-ratio that was undertaken in our earlier
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paper (Deo et al. 2019) based on the commonly used red-

blue ratio (Ghonima et al. 2012) such that the TSI440-based

pixel values of each of the red and blue channels were

determined. It is noteworthy that the normalized ratios are

consistent with conventional cloud detection methods with

practical importance in cloud segmentation (Dev et al.

2016). It is also important to note that the red (R) to the

blue (B) ratio maintains a higher relative resolution despite

the down sampling that occurs when the images are saved

in. jpeg format. To acquire images, the TSI440 enables a

user defined threshold for opaque and thin clouds (Sabburg

and Wong 1999) with the latter cloud type presenting a

difficulty in cloud segmentation especially when aerosols

are present (Li et al. 2011), which is not further considered

in this study, assuming everything captured by the user

threshold to be thin cloud.

The TSI Analyser was applied to a 1-month dataset with

5-min interval cloud images considering over 200,000 ima-

ges collected at a 480 9 320 spatial resolution. Thesewhole-

sky images have been captured using TSI440 (Sabburg and

Long 2004; Jebar et al. 2020; Liu et al. 2021) used in previous

research (e.g., Sabburg and Wong 1999; Parisi et al. 2004;

Deo et al. 2017). The TSI440 instrument consists of a

reflective dome with a camera suspended above it (Slater

et al. 2001; Long et al. 2006) pointing downwards to generate

a. jpeg format colour image of the whole sky. A non-cor-

rupted sky image array is then read using commands from the

NumPy (van derWalt et al. 2011) the OpenCV (van derWalt

et al. 2014) libraries in Python. This is converted from

OpenCV’s blue-green–red (BGR) to red–green–blue (RGB)

format for further image processing.

To account for any errors propagated in the proposed

CLSTM model we note that by using a set threshold, as

explained in the paper to be 0.56, and based on a test sample

of data used in an earlier work (Igoe et al. 2019), the fol-

lowing was found about the % difference between TSI

Analyser determined values and the TSI values (i.e., from

observations): (i) A Pearson correlation = 0.93, (ii) about

85% of calculated values were within 10% of TSI observed

values, (iii) the mean difference was 0.09% with standard

Fig. 2 a Geographic location of the measurement facility in

Queensland, Australia where CLSTM model is implemented.

b Roof-top mounted LI-COR sensor connected to the Campbell data

logger for 5-min PPFD (l mol of photons m-2 s-1) measurement.

c Co-located 501 broadband UVR Biometer. d Synchronous Total

Sky Imager, TSI440 set-up to capture sky images and record solar

zenith angle (SZA). Note that the LI-COR is connected to CR100

Campbell data logger at University of Southern Queensland Solar

Research Laboratory. The experimental set-up are also reported

elsewhere (see Prasad et al. 2022)
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deviation difference of 9.29%, and (iv) furthermore, the

median difference was 0.74% and the interquartile rangewas

between 2 and 3% either side of themedian. The earlier work

(Igoe et al. 2019) also stated limitations that must be con-

sidered in using this segmentation method and using these,

one can determine the impact on errors that will likely be

propagated in the hybrid model.

Table 1 summarises the data for cloud chromatic prop-

erties derived from segmented images including the

descriptive statistics (i.e., mean, standard deviation, dif-

ference, and ratio) based on the blue, red, thin, and opaque

cloud (pixelized) features per image. The segmentation

algorithm produced the average of the whole sky blue

(Bav), whole sky red (Rav), as well as the statistical features

based on standard deviation, ratios, or differences of the

blue (B) and red (R) pixel values for clouds that represent

the estimated proportion of pixelized cloud features likely

to be a function of the photosynthetic-active radiation

received at a measuring sensor. To analyse the degree of

associations between cloud movement and an instantly

measured PPFD value, a cross correlation analysis is

performed to determine the covariance measured by rcross
prior to developing the proposed CLSTM model. Table 1

includes the rcross used to determine the order of our model

input combinations, presented in Table 2. It is evident that

the average of whole sky-blue pixel in a total sky image

appears to generate the largest value of rcross * - 0.747,

followed by the standard deviation of the blue cloud pixel

(rcross * 0.640). This exceeds an rcross value of - 0.631

computed for solar zenith angle that is traditionally used as

the only predictor variable of photosynthetic-active radia-

tion as per other studies (e.g., Deo et al. 2019). This

analysis also shows that the covariance of the whole sky-

blue average and the standard deviation of the blue cloud

pixels are more strongly correlated with PPFD compared

with the SZA dataset.

To corroborate the findings in Table 1 we now inspect

visually the covariance in cloud chromatic properties

against measured photosynthetic-active radiation. Figure 4

displays a scatterplot of the cloud cover statistics as well as

SZA data that are regressed against the measured PPFD in

the model training phase (i.e., 01-March-2013 to

17-March-2013). The whole sky-blue average is seen to

attain the highest coefficient of determination (r2 = 0.549)

with respect to the PPFD values. The other significant

predictor variables are found to be the blue cloud pixel

standard deviation (r2 = 0.403), solar zenith angle

(r2 = 0.403) and the standard deviation of the whole sky-

blue (r2 = 0.365). It is especially notable that the ratio of

red to blue sky and the difference between the blue and red

pixels in a whole sky image appears to be weakly corre-

lated with PPFD data series, and therefore, may not con-

tribute significantly towards improving the proposed

CLSTM model. Taken together, the present analyses

clearly ascertain that at least two of the cloud chromatic

properties (i.e., whole sky blue & blue cloud pixel averages

associated with measured PPFD) are more strongly cor-

related with PPFD, compared with the solar zenith angle

used in earlier studies. This deduction confirms that the

inclusion of cloud cover properties may be a crucial task

used to improve earlier models for photosynthetic-active

radiation (e.g., Deo et al. 2019).

A comparison of the PPFD data series within the first

7 days (01-March-2013 to 07-March-2013) of model

training data is made against cloud-image derived predictor

series in Fig. 5. Note that here, the first 847 points are

employed to demonstrate the association of PPFD and

cloud property before developing the proposed CLSTM

predictive model. While the changes in PPFD are not well-

represented by SZA due to the solar zenith angle presenting

a much smoother variation over any given diurnal cycle,

there is a clear temporal correspondance between the

magnitude of PPFD with many of the cloud-image statis-

tical features. This correspondance is especially pro-

nounced on the x-axis scale from the datum point 363–847

for image pixels representing the whole sky blue average

and its standard deviation, and the standard deviation of the

blue cloud pixels. Interestingly, for the whole sky red

average pixels, the standard deviation of the red cloud

pixels, the average of blue cloud pixels, the whole sky red-

blue ratio, the standard deviation of the whole sky red and

the difference of red-blue pixels are also demonstrating a

good degree of harmony in terms of their temporal varia-

tion against the PPFD timeseries. While the direct asso-

ciation between some of the cloud chromatic properties is

not so clear, as expected, there does appear to be a mod-

erating effect in terms of the jumps in PPFD against any

cloud property. This indicates that the subtle, yet non-linear

effects of cloud movements on photosynthetic-active

radiation should be captured in a PPDF forecast model.

3.3 Predictive model design

To develop the objective hybrid model (i.e., CLSTM) and

benchmark (or comparative) models using deep learning

(LSTM, CNN, DNN) and machine learning (ELM &

MARS) algorithms, both the python (Konasani and Kadre

2021) and the MATLAB-based (Moler 2000) scripts were

implemented on Intel i7 computer with 3.40 GHz proces-

sor running on 32 GB memory. Figure 6 illustrates the

model development stage and Table 2 lists the input

combinations used in all designated models together with

the details of data partitioned in the training (53.3%,

01-March 2013 to 17-March-2013), validation (23.3%,

18-March-2013 to 24-March-2013), and testing (23.3%,

25-March-2013 to 31-March-2013) subsets.
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To build an accurate CLSTM model that can consider

the role of cloud cover variations, particularly by using

cloud chromatic properties to generate near real-time

photosynthetic-active radiation forecasts, an optimal

arrangement of the model’s inputs is firstly deduced. A

sequential ordering approach (e.g., Deo et al. 2016) is

adopted where ranked cross-correlation coefficients rcross
deduced from the respective predictor variable as illus-

trated Table 1 [i.e., cloud-based time series, or solar zenith

angle derived from an empirical method (Michalsky

1988)]. This proposed method led to the first predictive

model (M1) being constructed using the average of whole

sky blue (Bav) pixels, followed by the second model (M2)

with both the Bav and the standard deviation of blue cloud

pixels (BCsd) pixels and the third model (M3) having Bav,

BCsd and solar zenith angle (SZA) as enunciated by

Table 2.

By inclusion of cloud properties, this study advances

earlier work (Deo et al. 2017, 2019) where SZA was the

only predictor used to forecast PPFD and solar UV index

ignoring cloud variations. This study advances the standard

approaches (Deo et al. 2017, 2019) that utilize only SZA

neglecting the role of clouds in modulating PPFD. It is

noteworthy that successive addition of series based on rcross
concurs with earlier prediction problems (Deo et al. 2016)

aimed at evaluating potential improvements in CLSTM

model. To evaluate the utility of a cloud-free model, a

standard approach used in photosynthetic-active radiation

(Deo et al. 2019), solar UV index (Deo et al. 2017) and

global solar models (Deo et al. 2016), a CLSTM model

designated as M18, with only the SZA, was constructed as a

reference model without any inclusion of cloud cover

properties. Overall, the model design process resulted in 18

distinct predictive models, as stated Table 2.

As this study’s intent is to build a forecast model that

can accurately predict the photosynthetic-active radiation

at a future timescale over near real-time (5-min) intervals,

we have further explored the cross correlation between

cloud chromatic properties and photosynthetic-active

radiation (or PPFD) using a time-lagged correlogram.

Figure 7 identifies the covariance between PPDF (i.e.,

target) and SZA, along with all of the other cloud-image

derived predictor variable data in the model training phase.

Evidently, the lagged series show a strong (±) serial cor-

relation exceeding the statistically significant region at the

95% confidence which is indicated by a blue line. Inter-

estingly, the correlation coefficient in terms of the time-

shifted cloud properties for non-zero lag (i.e., occurring for

an input that was regressed on a target at a different

timescale) is also prominent for some of the inputs (e.g.,

thick clouds, average of red pixel values in the cloud cover,

difference between whole sky red and the blue pixels, and

the ratio of red to the blue pixel values in the clouds). This

indicates a strong non-linear association between cloud

chromatic properties and photosynthetic-active radiation,

potentially indicating the need for a non-linear modelling

approach to forecast photosynthetic-active radiation. To

construct the proposed CLSTM model, all of the cloud

chromatic properties and the SZA measured over a time lag

of 5 min is used:

PAR t þ 1ð Þ ¼ f X tð Þf g ð9Þ

where PAR (t ? 1) denotes the photosynthetic photon flux

density (PPFD, lmol of photons m-1 s-1) at a next time

interval of 5-min time horizon, X (t) is the relevant input

and t is the time scale. Prior to the modelling process, all

inputs and the target were scaled to be between [0, 1]

where:

XN ¼ X � X
_

X
_

� X
^

ð10Þ

where

XN = Normalized values of a variableX,

X = Actual value of a variable X,

X
_

= Maximumvalue of a variableX,

X
^

¼ Minimum value of a variableX

To identify the contributory effects of cloud variations

in forecasting 5-min photosynthetic-active radiation, this

study firstly develops a 3-layered convolutional neural

network (CNN) and long short term memory network

(LSTM) with a 4-layered deep neural network (DNN), and

multivariate regression spline (MARS) and extreme

learning machine (ELM) models. Following the benchmark

methods, CNN and LSTM algorithms were integrated in

accordance with earlier study (Ghimire 2019a) to generate

a 4-layered objective model (denoted as hybrid CLSTM).

For model development parameters, see Appendix

(Tables 5, 6, 7). In general, for the CLSTM architecture,

the first half comprised of the CNN used for feature

extraction whereas the second half comprised of the LSTM

algorithm used to forecast PPFD by incorporating these

CNN-grained input features.

bFig. 3 a Temporal variations in photosynthetic photon flux density

(PPFD, l mol of photons m-2 s-1) over a 30-day period (01–31 Mar

2013) measured at every 5-min intervals 07.00 AM to 05.00 PM. Note

that the stochastic variations in PPDF occur in response to the subtle

or rapid pertubations in cloud cover conditions that are not captured

by a clear sky model. b Sample images obtained by total sky imager

(TSI) capturing cloud cover conditions associated with simultane-

ously measured PPFD, solar zenith angle (SZA) and the time of the

day
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3.3.1 Common hyperparameters for deep learning (DL)
models

Open-source DL Python libraries, Scikit-Learn (Pedregosa

et al. 2011) and Keras (Ketkar 2017; Chollet 2018) were

used to implement CNN, LSTM and DNN algorithms.

Hyperparameters of all benchmark models were deduced

through grid search. In this study, the DL models share the

following four common hyperparameters.

• Activation functions: Except for the output layer, all of

the network layers relied on the same activation

function, which accords to the other studies (Nwankpa

et al. 2018; Hohman et al. 2019) so we have used the

rectified linear unit (ReLU) (Agarap 2018).

• Dropout: This is considered as a potential regularization

to minimize overfitting issues in order to improve the

training performance (Garbin et al. 2020). The dropout

aims to select a fraction of the neurons (defined as a real

hyperparameter over the range 0–1) at each model

iteration and prevent them from retraining (Lambert

et al. 2018; Zhang et al. 2018a; Cai et al. 2019). For this

study, this fraction of neurons was maintained to be 0.1.

• Two statistic regularization. This included L1 (i.e., least

absolute deviation) and L2 (i.e., least square error)

applied together with the dropout. It is imperative to

mention that the role of L1 and L2 penalization type

parameters is to minimize the sum of the absolute

differences and the sum of the square of the differences

between the forecasted and target PPFD values,

respectively (Ayinde and Zurada 2017; Sato et al.

2018; Antczak 2019). Also, the addition of a regular-

ization to the loss is to encourage smooth network

mapping in the DL network, particularly by penalizing

the large parameters values to reduce the level of

nonlinearity in the network models (Jaiswal et al. 2018;

Byrd and Lipton 2019).

• Early stopping: The issue of overfitting can be further

addressed by introducing an early stopping (ES) phase

in Kera (Chollet 2017, 2018) so that the mode is set to a

minimum while the patience is set to 30 (Byrd and

Lipton 2019; Li et al. 2020b; Rice et al. 2020). This is

done to also ensure that the training process will

terminate when the decrease in the validation loss has

stopped for a number of patience-specified epochs

(Dodge et al. 2002; Mahsereci et al. 2017; Zhang et al.

2018b).

3.3.2 CNN hyperparameters and hybrid CNN-LSTM model
development

The CNN model’s hyperparameters were also optimised

that included the following options.

• Filter size: The size of the convolution operation filter

was optimised.

• Number of convolutions: The number of convolutional

layers in each CNN was optimised.

• Padding: This study has utilized the same padding in

order to ensure that the input feature map and output

feature map dimensions were identical (Zhang et al.

2016).

• Pool-size: A pooling layer was used between each

convolution layer to avoid further overfitting. This

pooling layer also helps decrease the number of

parameters and network complexity (Swietojanski

et al. 2014). In this study, we have utilized a pool-

size of 2 between the layer 1 and 2 of the CNN model.

Finally, the hybrid CNN-LSTM model comprised of 3

convolutional layers, with pooling operations where a

selection of the convolutional layer channels was based on

grid search process. In the model’s architecture, the outputs

of flattening layer served as the inputs of LSTM recurrent

layer while the LSTM recurrent layer was directly linked to

the final output.

3.4 Non-deep learning benchmark models

This study develops ELM and MARS models (as bench-

mark methods) considering their relative success in solar

predictive problems (Deo et al. 2017). The ELM archi-

tecture composes of a single hidden layer system with 17

input neurons (to enable cloud cover and SZA-based inputs

to be fed in) (Table 3), a maximum of 1000 hidden neurons

and 1 output neuron allocated to the forecasted PPFD. To

optimise the ELM model, this study tests several activation

functions (i.e., sine, hard limit, radial basis, triangular

basis, logarithmic sigmoid & tangent sigmoid equations)

following earlier approach (Deo et al. 2017) with an opti-

mal model achieved using logarithmic sigmoid equation

indicated in Table 3. To identify an optimal ELM archi-

tecture, the hidden neuron was varied from 1 to 1000 with

each architecture then evaluated on a validation dataset

(25% in this study) to identify the optimal architecture. As

ELM requires random initialization of hidden layer

parameters, the model was run 1000 times with the lowest

root mean square error (RMSE) over all hidden nodes used

to select the optimal ELM model. The optimal ELM was

denoted as 10–23–1 (input–hidden–output) which included

10 predictor variables and 23 hidden neurons to attain the

most accurate forecasts of PPFD data.

For the MARS model, an ARESLab-based MATLAB

toolbox (ver. 1.13.0) (Jekabsons 2013) is adopted. Out of

the two basis functions (i.e., cubic and linear) within its

piecewise equation, the cubic form is adopted (Kooperberg

and Clarkson 1997) given its capacity to handle multiple
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predictors. The generalized recursive partitioning regres-

sion (RPR) is also employed as an adaptive algorithm for

function approximation (Zareipour et al. 2006) with the

process including a forward and backward deletion process

to reach the optimal MARS equation. In the forward phase,

a ‘naı̈ve’ model with just the intercept term is used with

iterative addition of the reflected pair(s) of basis functions

to generate the maximum decrease in the model training

error based on RMSE. the model with the lowest Gener-

alized Cross-Validation statistic was selected. Table 3 also

lists the optimal MARS model equation. For greater details

about ELM and MARS, readers can consult earlier Refer-

ences (Deo et al. 2017).

To further validate the hybrid CLSTM model, we adopt

the skill score metric (RMSEss) utilizing a persistence

model (RMSEP) in respect to the measured PPFD data as a

reference comparison. The RMSEss is defined as follows:

RMSEss ¼ 1� RMSECLSTM

RMSEpersis tan ce
ð11Þ

where RMSECLSTM is the refers the error obtained by the

objective model and RMSEpersistence is the error of the

persistence model where immediate antecedent (past) value

is used to estimate the current PPFD value. To interpret

metric, we consider that an RMSECLSTM close to 0 will

indicate that the performance of the hybrid model is similar

to that of the persistence model. By contrast, if this metric

is a positive value, our method is likely to outperform the

persistence model (which is the baseline) whereas if the

RMSEss attains a negative value, then the persistence

model is likely to be better than the proposed hybrid model.

Table 4 shows that the RMSESS for the hybrid CLSTM

attains a positive skill score (showing an edge over the

persistence model) whereas the CLSTM model without

cloud inputs (but using solar zenith angle) is quite poor as it

attains negative skill score metric.

3.5 Predictive model performance evaluation

The study adopts the model performance metrics recom-

mended by American Society for Civil Engineers

(ASCETC 1993) to evaluate the hybrid CLSTM (and all

the other benchmark) models. By appraising the degree of

agreement between PPFDfor and PPFDobs the computed

metrics include correlation coefficient (r), mean absolute

error (MAE, mmol m-2 s-1), root mean square error

(RMSE, mmol m-2 s-1), including the relative % magni-

tudes of RMSE and MAE, Legate and McCabe’s (LM) and

the Nash Sutcliffe’s coefficient (ENS). Mathematically,

these are as follows (Ghimire et al. 2018, 2019; Ghimire

2019a, b):

r ¼

PN
i¼1 PPFDfor;i � PPFD

obs;i

� �
PPFDfor;i � PPFD

obs;i

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 PPFDfor;i � PPFD
obs;i

� �2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 PPFDfor;i � PPFD

obs;i

� �2
s

0

BBBB@

1

CCCCA

ð12Þ

MAE ¼ 1

N

XN

i¼1

PPFDfor;i � PPFDobs;i

� ��� �� ð13Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

PPFDfor;i � PPFDobs;i

� �2

vuut ð14Þ

MAPE ¼ 1

N

XN

i¼1

PPFDfor;i � PPFDobs;i

� �

PPFDobs;i

����

����� 100 ð15Þ

RRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 PPFDfor;i � PPFDobs;i

� �2
q

1
N

PN
i¼1 PPFDobs;i

� � � 100

ð16Þ

LM ¼ 1�
PN

i¼1 PPFDobs;i � PPFDfor;i

�� ��

PN
i¼1 PPFDobs;i � PPFD

obs;i

����

����

2

664

3

775; 0� LM � 1

ð17Þ

ENS ¼ 1

�
PN

i¼1 PPFDobs;i � PPFDfor;i

� �2

PN
i¼1 PPFDobs;i � PPFD

obs;i

� �2

2

6664

3

7775
; �1�ENS � 1

ð18Þ

where PPFDobs and PPFDfor are the observed and fore-

casted ith value in test period, PPFD
obs

and PPFD
for

are the

observed and forecasted means and N is the number of

datum points within a test set.

The present study adopts several performance measures

for a robust evaluation of the forecast models specially to

overcome the constraints of any single metric. Diagnostic

tools and graphical representations utilising scatterplots

and error distribution are used in conjunction with statis-

tical indices to test the versatility of 5-min forecasts

models.

bFig. 4 Scatterplot-based correlation analysis with their respective

histograms of each variable distribution showing the 5-min PPFD
(i.e., the objective variable) in respect to the 16 cloud-image derived

predictor variables used in training the proposed CSLTM model.

Least square regression lines with the coefficient of determination (r2)
is included for each sub-panel with the definition of each cloud-image

derived predictor variable as per in Table 1
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4 Results and discussion

In this section the results generated by the hybrid CLSTM

predictive model, including the other deep learning-based

(LSTM, CNN, DNN) and machine learning-based (ELM,

MARS) models are appraised by checking the degree of

congruence between measured and forecasted photosyn-

thetic-active radiation at a 5-min temporal scale. A careful

evaluation of the results emanating from the cloud cover-

based models using various input combinations (i.e.,

Table 2) and a reference model utilising only the solar

zenith angle is also made, to identify the contributory role

of cloud variations in modelling photosynthetic photon flux

density (PPFD). Figure 8 shows a scatterplot of the tested

data where the performance of CLSTM (and comparative

models) is evaluated in terms of the degree of agreement

between observed and forecasted PPFD. Also included are

the results of deep learning-based LSTM, CNN and DNN,

as well as the other machine learning-based (MARS &

ELM) model. Note that in here, only the optimally trained

model (out of the 17 designated input combinations,

Table 2) considering the influence of cloud variations on

5-min PPFD, are shown.

While the performance of the newly proposed CLSTM

model seems to exceed that of the other predictive models,

as evidenced by the largest r2 (* 0.846), the gradient

(representing the forecasted and observed PPFD) closest to

unity, and the smallest bias constant, it also had a capped

maximum forecasted PPFD. (Fig. 8a), the most accurate

prediction differs significantly for the different model types

and their input combinations. For example, the best per-

formance of the CLSTM model (Fig. 8a) is attained

Fig. 4 continued
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Fig. 5 Comparison of the 5-min PPFD (left axis) plotted for the first 7 days within the CLSTM model’s training phase in respect to the 17 cloud-

image derived predictor variables. Definition of each predictor (right axis) is as per Table 1
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through M8: PAR ¼ f Bav;BCsd; SZA;Bsd;OC;f
Rav;RCsd;BCavg. This means that the CLSTM model

requires cloud segmented properties based on the whole

sky blue average, standard deviation of the blue pixels,

blue cloud average pixels, standard deviation of the blue

cloud pixels, opaque cloud pixels, standard deviation of the

red cloud pixels, whole sky red average pixels, and the SZA

time series yielded the most accurate performance. For the

case of the LSTM model (Fig. 8b), the best performance is

attained through M13:

PAR ¼ f Bav;BCsd; SZA;Bsd;OC;Rav;RCsd;BCav;
Rav

Bav
;Rsd;RBCdiff ;BRCdiff ; TC

� 	

with this model using the eight input variables that are

already used in CLSTM as well as the time series of
Rav

Bav
;Rsd;RBCdiff ;BRCdiff andTC to generate the best per-

formance. A similar deduction is made for CNN, ELM and

MARS models where the designated model M11, M10 and

M12 is seen to generate the highest coefficient of determi-

nation compared with a lower r2 value for the other input

combinations specified in Table 2. When the best input

Fig. 5 continued

Fig. 6 Schematic diagram of the relevant steps in designing the CLSTM predictive model
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Fig. 7 Correlograms plotted to

identify the degree of

covariance between PPFD (i.e.,

the objective variable) and the

17 different cloud-image

derived predictor variables

within the CLSTM model’s

training phase. The y-axis shows
cross-correlation coefficient,

rcross with blue line representing

the level at the 95% confidence

interval
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combination for the DNN model is deduced by progres-

sively adding the cloud cover properties one by one, the

model M5 generates the best performance (r2 = 0.810) with

an input combination PAR ¼ f Bav;BCsd; SZA;Bsd;OCf g.
Note that in this case, only five input series (i.e., whole sky-

blue average and standard deviation of whole sky blue

including the standard deviation of blue cloud pixels, solar

zenith angle, and opaque clouds) are required. However, it

is also noteworthy that the performance of the DNN model

is relatively lower than CLSTM model (i.e., r2 = 0.810 vs.

0.846). The analysis reveals that, while the hybrid CLSTM

model integrating the LSTM and CNN methods used to

emulate 5-min PPFD far exceeds the performance of all

other comparative models, their inputs combinations

(based on cloud properties and SZA) appear to be unique

indicating the different capabilities for feature extraction

required to accurately predict the photosynthetic-active

radiation.

In congruence with previous results shown in Fig. 8, the

frequency of the absolute value of predicted error distri-

bution in the testing phase generated by the optimal

CLSTM and the optimal benchmark models, are shown in

Fig. 9. It is notable the newly proposed CLSTM model

(i.e., M8) generated almost 75% of all predictive errors

within the smallest error bracket i.e., ± 200 l mol of

photons m-2 s-1 band compared with LSTM, M13

(* 72%), DNN, M5 (* 69%), CNN, M11 (* 69%), ELM,

M10 (* 71%) and MARS, M12 (* 63%). The largest

frequency of predictive errors within the smallest error

bracket no doubt concurs with a smaller frequency of

redistributed forecast errors, albeit within a larger error

band exceeding ± 200 l mol m-1 s-1. For example, we

note that * 17% of all predictive errors attained by

CLSTM are located within the ± (200–400) l mol of

photons m-2 s-1 whereas those for LSTM, DNN, CNN,

ELM and MARS are seen to record * 21, 22, 21, 20 and

27% of all predictive errors, respectively.

Next, we investigate the overall statistical score metrics

computed over the last 7 days of tested data (i.e., 24-03-

2013 to 31-03-2013) using 5-min PPFD. Table 3 presents

both the optimal model developed using various input

combinations (M1–M17), as well as the reference model

(M18) developed using traditional approach (i.e., solar

zenith angle only) as per earlier studies (Deo et al. 2019).

Interestingly, the best performance among all tested models

is attained by different input combinations that use both the

cloud cover properties and the solar zenith angle as an

input variable. However, for the predictive models

Fig. 7 continued
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developed with only the solar zenith angle as an input, the

performance of all the deep learning (CLSTM, CNN,

DNN, LSTM) and machine learning (ELM, MARS) mod-

els appear to be significantly inferior to those that utilise

cloud cover properties and SZA. In fact, the SZA-based

models produce the smallest magnitude of r (between

0.796 and 0.623), and the largest RMSE / MAE between

412.77 and 438.99/354.29 and 368.09 l mol of photons

m-2 s-1 within the testing phase. This contrasts the values

r (0.894–0.920) and between 210.31 and 241.26 l mol of

photons m-2 s-1 for RMSE and 150.24–183.11 l mol of

photons m-2 s-1 for MAE for the models that incorporate

cloud cover variations. This result indicates the important

contributory role played by cloud cover variations in

modulating the photosynthetic-active radiation and partic-

ularly, in improving the forecasting performance of the

hybrid CLSTM and all of the other comparative models.

In Table 3, we also present several metrics for models

developed using cloud cover as well as the SZA data where

the normalised performance metrics based on the relative

percentage error, Nash Sutcliffe coefficient, and the

Legates and McCabe’s Index is incorporated. It is note-

worthy that the inclusion of cloud cover properties is seen

to lead to an improved performance of the hybrid CLSTM,

and all the other predictive models. That is, we note the

smaller error values ranging between 24.92–28.79%

(RRMSE) and 38.01–56.21% (RMAE) for models utilising

cloud cover properties, whereas the errors based on SZA as

the only input variable are relatively larger, between

49.15–51.98% (RRMSE) and 128.39–176.72% (RMAE). It

is therefore deducible that appropriate factoring of the role

of cloud cover variations to predict 5-min PPFD can help

reduce the forecasted errors very significantly. This

deduction also concurs with a much higher value of the

Nash–Sutcliffe and the Legate’s and McCabe’s Index

obtained for all models that are trained with cloud cover

properties. If the performance of only the hybrid CLSTM

model is evaluated against all the comparative models;

after factoring the cloud cover properties, we register the

values of ENS and LM to be 0.846 and 0.679 compared with

0.796–0.829, and 0.607–0.660 for the case of ELM, LSTM,

CNN, DNN and MARS models. Again, these metrics

ascertain the influence of cloud cover on ground level

photosynthetic-active radiation, and the superiority of the

newly proposed CLSTM model.

Figure 10 is a Taylor diagram that evaluates all pre-

dictive models, including those with cloud cover properties

and SZA-only as inputs. In this figure the most optimal

model based on the best input combinations are compared

to provide a visual framework for the forecasted PPFD

against a reference (observed PPFD) data point. The per-

tinent statistics in Taylor diagram show the weighted

centred pattern correlations and the ratio of the normalized

root-mean-square (RMS) difference between the ’tested’

data (i.e., CLSTM, CNN, LSTM, DNN, ELM & MARS)

and the ’reference’ (observed) data. Two important

deductions are made: firstly, it is clear that all of the SZA-

based reference models are clustered much further away

from the axis representing the observed PPFD whose RMS-

centred difference certainly separates them away from the

cloud cover-based models, and secondly, the CLSTM

model utilising cloud properties (indicated in red) is at a

closest location to the observed PPFD, and also attains the

highest correlation among all tested predictive models. It is

also observable that all the cloud cover-based models are

within a smaller cluster (and hence, demonstrate compa-

rable performance) whereas those utilising SZA only are

more scattered. This suggests that the inclusion of cloud

cover is necessary to optimise all the DL and ML models,

but among all these models, the CLSTM remains the

superior choice to forecast the 5-min PPDF dataset.

In Fig. 11, we investigate the nature of the predictive

error generated by the objective model (i.e., CLSTM) and

the counterpart models while also evaluating the role of

cloud cover variations using the modelled PPDF from the

SZA only, and the cloud cover-based predictive models.

Here, the forecast error FEj j ¼ jPPFDfor
i � PPFDobs

i j is

illustrated as a boxplot for both the cloud property-based

and the SZA-based model. There is a clear consensus that

the best model out of the ones designated as M1–M17

utilising cloud features as inputs are able to attain a sig-

nificantly lower error distribution compared to the refer-

ence model M18 where SZA is the only predictor variable.

For all predictive models trained with the SZA input data,

the maximum error value is many fold higher, and so is the

upper quartile, median and the lower quartile of |FE|. This

means that when cloud feature is excluded from a predic-

tive model the ability to forecast PPFD values is much

less, and this can result in a wider distribution of the errors

for the SZA-based model. A comparison of all models

developed using cloud cover properties, including the SZA,

certainly shows a much smaller lower quartile, upper

quartile, maximum and median values of the forecasted

error. When all models trained with cloud features are

investigated, the boxplots show the smallest value of 5-

number summary, with the minimum, maximum, lower

quartile, upper quartile and medians occupying smaller

magnitudes for the case of CLM compared with CNN,

LSTM, DNN, MARS and ELM. This is congruent with

earlier results (Figs. 8, 9, 10) to demonstrate the CLSTM

model as being the optimal choice to emulate the near real-

time photosynthetic active radiation over a 5-min scale.

To further establish the veracity of the hybrid CLSTM

model Fig. 12 shows the empirical cumulative distribution

function (ECDF) of the error encountered in forecasting
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the photosynthetic-active radiation in the testing phase.

The ECDF clearly demarcates the important role of cloud

cover variations against the standard approach utilising

SZA as the only input variable. A clear separation point is

noted throughout the ECDF such that all models trained

with cloud cover inputs attain a much smaller forecasted

error with a steeper rising curve in contrast to the slower

growth in ECDF within larger error values. In fact, the

cloud-property based models reach an asymptotic state

around an |FE| value of 600 l mol of photons m-2 s-1

whereas the SZA-based models continue to accumulate

error values until |FE| values of 900 l mol of photons

m-2 s-1. Comparing the ECDFs of the hybrid CLSTM

model against the other DL and ML models trained with

cloud features, this result clearly concurs with Fig. 9 where

the growth in predictive errors is smaller for the CLSTM

compared with the CNN, LSTM, DNN, ELM and MARS

models. This establishes the efficacy of the newly

developed CLSTM model trained with cloud cover features

to generate the most accurate performance in terms of

forecasting the 5-min PPFD dataset.

We further explore the influence of cloud cover varia-

tions on the prescribed objective model (i.e., CLSTM) in

Fig. 13 where the 5-min forecasted PPDF valued averaged

over the entire test dataset is shown with and without cloud

input features. Note that these errors, showing both the

percentage and absolute error values, are deduced from the

forecasted and observed photosynthetic-active radiation

measured from 07.00 AM to 05.00 PM, over the test period

of 25-March-2013 to 31-March-2013. It is obvious that the

hybrid CLSTM model utilising cloud cover-based input

features yields the smallest mean error over the whole

diurnal cycle, but this occurs with some degree of dis-

crepancy. The CLSTM error follow a temporal pattern

where the models register relatively larger percentage

errors (see second panel), which occurs in early morning

(* 07.00 AM to 09.00 AM) and late afternoon (* 04.00

PM to 05.00 PM) compared with the rest of the day. Pos-

sible causes for this error is that the CLSTM model did not

isolate variability with solar zenith of clear sky aerosol

optical thickness and cloud chromic properties associated

with forward and backscattering at the cloud edges or

aerosol (Liou 1976; Aida 1977; Robinson 1977; Segal and

Davis 1992; González and Calbó 2002). It is also possible

that the CLSTM model is unable to capture enough fea-

tures to predict the relatively smaller PPFD values in the

Table 3 Statistical performance of models in testing phase utilising correlation coefficient (r), Nash–Sutcliffe efficiency (ENS), root-mean square

error (RMSE), mean absolute error (MAE), including relative RMSE and MAE, and Legates and McCabes Index (LM)

Predictive model Model

number

r RMSE (lmol

m-2 s-1)

MAE (lmol

m-2 s-1)

RRMSE
(%)

MAPE
(%)

ENS LM

Cloud properties-based models

Objective model CLSTM M8 0.920 210.308 150.241 24.918 38.009 0.846 0.678

Benchmark

models

ELM M10 0.912 220.830 158.475 26.296 58.536 0.829 0.660

LSTM M13 0.912 221.358 159.942 26.227 45.719 0.829 0.657

CNN M11 0.898 236.714 168.593 28.046 38.365 0.804 0.639

DNN M5 0.900 233.498 171.089 27.805 61.498 0.809 0.632

MARS M12 0.894 241.255 183.109 28.729 56.207 0.796 0.607

SZA-based models

Objective Model CLSTM M18 0.796 420.762 364.866 50.071 150.075 0.380 0.216

Benchmark

models

ELM 0.795 438.990 360.877 51.984 176.717 0.369 0.227

LSTM 0.794 428.180 366.961 50.704 156.829 0.360 0.214

CNN 0.792 424.102 368.095 50.221 153.104 0.377 0.212

DNN 0.623 418.370 355.870 49.819 134.277 0.386 0.236

MARS 0.634 412.771 354.294 49.153 128.395 0.402 0.239

The test scenarios include: (i) the best model trained with cloud chromatic properties deduced from M1 to M17, and (ii) the baseline model using

SZA as an input only (i.e., M18)

Deo et al. (2019)

Table 4 Skill score metric, RMSESS for hybrid CLSTM with, versus

hybrid CLSTM without cloud cover inputs based on only the SZA as

an input variable

Model name Skill score metric, RMSESS

CLSTM with cloud cover features [M8] 0.230

CLSTM without cloud features [M18] - 0.540
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morning and afternoon where the aerosol optical thickness

is similar to the cloud scattering. In terms of the discrep-

ancy in how the CLSTM model with, and the CLSTM

model without cloud features performs, we note that there

are instances where CLSTM without cloud cover performs

better than with cloud cover (e.g., most of the timestamps

from 84 to 108) corresponding to * 2–4 pm. While the

exact cause of this is not clear yet, it is possible that our

segmentation process of sky images does not capture all of

the dynamic cloud features that has a strong spatial and

temporal signature, particularly if clouds are enhanced

much later in the day for a location. Chen and Houze (Chen

and Houze 1997) reports that the maximum occurrence of

cold clouds in the afternoon follows a diurnal solar heating

of the ocean surface and atmospheric boundary layer,

whereas Theeuwes et al. (2019) provided observational

evidence of a systematic enhancement of cloud cover in the

afternoon and evening. They showed that initially, the day
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Fig. 8 Scatterplots of forecasted against observed PPFD values (l
mol of photons m-2 s-1) emulated by the CLSTM model in the

testing phase, compared with benchmark models. Only the optimal

results (out of all designated models, M1 to M17) for each predictive

algorithm based on best input combinations utilising cloud chromatic

statistics and SZA as predictors, as per Table 2, are shown
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is generally clear with a north-westerly flow so the cumulus

clouds form during the morning and remain in afternoon,

but the cloud-base height is higher during the day. Our

cloud cover segmentation aimed to derive the overall R-B-

G statistics, but it is unable to precisely consider cloud

dynamics. When these cloud cover statistics (Tables 1, 2)

are used in CLSTM model which are largely pixel-based

representations rather than cloud height and topography,

the model is perhaps unable to predict PPFD accurately, as

the inputs could be redundant relative to the dynamic

features of clouds not captured by our method. To address

this issue, future studies on more accurate segmentation of

sky images to derive features related to aerosols, water

vapour, ozone, as well as considering cloud height,

topography, optical depth etc. should be conducted where

the proposed technique could be improved to better capture

dynamical nature of cloud movements throughout the day.

Nonetheless, the present analysis provides sufficient evi-

dence of the important role of cloud cover conditions in

modelling solar radiation and shows an important

advancement in photosynthetic-active radiation prediction

compared to earlier studies using the traditional (SZA)

method.

Fig. 9 The percentage frequency of the forecasted error generated by

the CLSTM model against the deep learning (i.e., LSTM, CNN,

DNN) and machine learning (ELM, MARS)-based models developed

using best input combinations utilising cloud chromatic statistics and

SZA as the predictors, in accordance with Table 2
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5 Further discussion

The results generated by the proposed CLSTM model have

established relationships between photosynthetic-active

radiation and cloud cover conditions necessary to model

near real-time 5-min PPFD with this objective model

exhibiting the best performance against several other

competing (i.e., deep learning and machine learning-based)

approaches. An incremental inclusion of cloud cover fea-

tures based on time series of segmented cloud properties

also captured a different, yet a significant contributory

influence, further improving the testing performance of

CLSTM model. However, improvements to the CLSTM

model can be made with further development and refine-

ment of the cloud segmentation tool itself.

The major contributions have led to significantly

improved modelling approaches relative to earlier studies

(Lopez et al. 2001; Pankaew et al. 2014; Yu and Guo 2016;

Deo et al. 2018) where artificial intelligence models have

utilised only the solar zenith angle, and failed to consider

the effect of cloud cover conditions on photosynthetic-ac-

tive radiation. Such methods used the more conventional

modelling approaches (i.e., single hidden layer neuronal

architecture) without any deep mining of the predictive

features as undertaken by the proposed CLSTM method in

this paper. Given that the movement of clouds is highly

variable depending on altitude and wind, cloud shape and

thickness commonly vary on timescales of much less than

30 min, our study has captured such influences on the

ground-based photosynthetic active radiation at * 5-min.
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Fig. 10 Taylor diagram with a concise statistical summary of how

well the simulations from the CLSTM predictive model match with

the other models in terms of their correlations between observed and

forecasted PPFD, root-mean-square difference and the ratio of the

variance in testing phase. Only the most optimal model with cloud

cover properties (i.e., M8, M13, M12, M5, M11 and M10) and without

cloud properties (i.e., M18 trained with SZA as input variable) are

shown
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The modelling of photosynthetic radiation at this time

interval is also of practical relevance in the monitoring and

the supply of enough sunlight for solar energy generation

or biofuels exploration, monitoring the healthy growth of

plants, monitoring day light integral or available photo-

synthetic energy for plant functions.

This pilot study has demonstrated how the CLSTM

model utilising statistical input features from cloud images

can become a sophisticated deep learning system for the

future development of solar energy monitoring devices

(Wang et al. 2016). One such technology that can be par-

ticularly useful in the agricultural sector (i.e., an automated

monitoring and control system for algae photobioreactors)

has practical relevance. For specific applications, CLSTM

model can be incorporated into a smart environment

monitoring system, 24 9 7, by adopting internet of things

(IoT) and wireless sensor networks, WSN (Ullo and Sinha

2020) in a monitoring systems to ensure sustained health of

crops and particularly considering how cloud conditions

can affect their growth. The light available for microalgal

photosynthesis remains a function of the surface solar

irradiance over day-night cycles with environmental fac-

tors such as light, temperature, and nutrient status not only

affecting photosynthesis and productivity of algae but also

influencing the pattern, pathway and activities of cell

metabolism or composition. Therefore, the efficacy of

CLSTM model to forecast photosynthetic-active radiation

at high temporal resolutions of 5-min that also matches a

near real-time scale, can be trained on live cloud cover data

or other atmospheric conditions. This application of the

proposed deep learning system can help in regular pre-

diction of the availability of sunlight in real time including

its role in modelling temperature, water salinity, or nutrient

status within an algae pond. The CLSTM model can also

be employed in biophysical model platforms to improve

the robustness of plant-growth models particularly, pro-

viding accurate estimations of photosynthetic photon flux

density due to the scarcity of their ground-based mea-

surements (Garcı́a-Rodrı́guez et al. 2020). As the cost of

total sky imagers (TSIs) can be insurmountable for most

solar energy or biofuel generation farm locations, geo-

stationary satellites such as Himawari 8 or 9, operating at

roughly 10-min interval and relatively high spatial resolu-

tions may become good suppliers of sky images to be used

as inputs for the CLSTM model to generate predicted
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forecasted error in PPFD:

FEj j ¼ jPPFDfor
i � PPFDobs

i j
within the testing phase using

the cloud cover-based and the

SZA only reference models.
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PPFD or other components of solar radiation at appropriate

temporal resolutions.

Other than agricultural applications, our CLSTM model

incorporating cloud conditions also has potential use in

public health and energy sectors. In an earlier study, Deo

et al. (2017) developed a very short-term reactive system

for solar ultraviolet (UV) prediction, albeit using a single

hidden layer extreme learning machine (ELM) model and

without any consideration to cloud cover conditions. Such

a UV forecasting system can be a useful avenue for real-

time prediction of UV radiation, a component of the solar

spectrum known to cause melanoma and eye disease.

However, as neither that study, nor any other prior or

following study has incorporated the role of cloud cover

conditions into a solar UV forecasting system, the proposed

CLSTM system built on deep learning technology might be

a viable tool to test the role of cloud conditions on UV

prediction. One may therefore develop a CLSTM system

for short-term (e.g., 5-min) reactive forecasting of UV

index to help in public health risk mitigation. In terms of its

application in energy industries, the CLSTM model can

become a viable tool for real-time management of solar

energy in a photovoltaic system by responding through a

cloud image-based forecast system for solar power pre-

diction, and particularly utilising cloud movements, cloud

forms or its relative position-based features. Such a sky

image-based solar power forecasting system utilising deep

data mining can be of great value to the solar energy

industry (Zhen et al. 2017b).

6 Conclusions

The industrial-scale production of solar power, biofuels and

agriculture including food and health supplements from

micro-algae farming, require reliably predicted solar radia-

tion over short, long, and medium-term periods. This study

has established the feasibility of predicting very short-term,

5-min interval photosynthetic-active radiation using seg-

mented cloud cover properties and solar zenith angle in a

sub-tropical region in Toowoomba, Australia. A total of 17

different segmented cloud cover properties based on the

mean, standard deviation, differences, and ratios of blue and

red pixel values in clouds, including opaque and thin clouds

(applied through thresholds on the total sky imager), were

acquired as part of the University of Southern Queensland

Solar Radiation Monitoring Program running for more than

15 years. Together with the solar zenith angle, the cloud

cover properties based on segmented image inputs were

applied to develop the hybrid deep learning (i.e., CLSTM)

model based on an integration of convolutional neural net-

works (to map out the cloud and SZA-based input features)

and the long short-term memory network (to generate the

near real-time forecasts of 5-min photosynthetic photon flux

C
loud 

properties-based 
m
odels

SZA
-based 

m
odels

Fig. 12 Empirical cumulative

distribution function (ECDF) of
the PPFD forecasting error |FE|

in the testing phase
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density, PPFD). The CLSTM, verified to be highly superior

in predicting 5-min PPFD through 17 different predictor

variable (or input) combinations, was benchmarked against

three deep learning methods (i.e., LSTM, CNN, DNN) and

two machine learning (i.e., ELM & MARS) methods. All

these predictive models were evaluated using statistical

score metrics and diagnostic plots visualising the degree of

agreement between forecasted and observed photosynthetic

photon flux density in an independent test dataset where the

CLSTM model was applied.

The findings can be enumerated as follows.

(i) Among the objective (CLSTM) and five competing

models, the best performance (out of 17 distinct

input combinations of segmented cloud properties)

was attained by different combinations of cloud

features. For example, the best CLSTM model M8

utilised average of whole sky-blue pixels, standard

deviation of blue cloud pixels, SZA, standard

deviation of the whole sky blue pixels, opaque

clouds, averaged whole sky red pixels, standard

deviation of red cloud pixels and the average of

blue cloud pixels. By contrast, the second-best

model (i.e., ELM) used all the 8 inputs required by

CLSTM, including two additional inputs (i.e., ratio

of whole sky blue to whole sky red average cloud

pixels and whole sky red standard deviation) for its

optimal model M10. The third-best model, or LSTM

required three additional inputs compared with

ELM. The CNN model, which was the fourth-best

model developed to forecast 5-min PPFD used only

11 input variables, whereas the DNN model relied

on only 5 input variables. Despite different num-

bers of inputs used by the hybridised, deep learning

and machine learning models, the performance of

CLSTM remained superior.

(ii) In terms of comparing the SZA-only models, the

CLSTM without cloud registered twice the model

error (* 50.07%) compared to with cloud *

Fig. 13 The effect of cloud cover properties used as inputs for the CLSTM model with 5-min forecasted PPFD averaged over the entire testing

dataset from 07.00 AM to 05.00 PM
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24.92% in the testing phase. The other metrics for

SZAmodels only were also far less impressive for all

models then those where clouds were incorporated.

In terms of Taylor diagram comparing the different

models to a reference (i.e., observation) point, the

non-cloud cover-based models were certainly scat-

tered much further away from this reference point,

and their performances were quite disparate relative

to a comparable performance for cloud cover-based

models (Fig. 10). Likewise, the distribution of

forecast error was more widely spread, with signif-

icantly larger outliers, upper quartile, or extreme

error values for SZA-only models (Figs. 11, 12).

These finding ascertain the important role of consid-

ering cloud cover variations to accurately model

photosynthetic-active radiation.

Finally, this pilot study highlights the appropriateness of

using cloud cover features to develop a deep learningmethod

for very short-term, near real-time forecasting of photosyn-

thetic-active radiation. If cloud segmented image properties

from geo-stationary satellites images are available, the need

for ground-based inputs that are data expensive for many

regional locations can be eliminated. Furthermore, fish-eye

lens or adapters used in mobile phones may also be able to

supply the relevant images so the developed CLSTM model

can be tried with those inputs to make the predictive model

more accessible and applicable to all regions where the

segmentation software is made available. This newly pro-

posed method can offer major advantages in terms of the

model implementation in regions with limited access to data

such as agricultural farms. However, the present study only

considers cloud properties using local, two-dimensional

ground-based sky images so the inclusion of other atmo-

spheric attenuations imposed by water vapour and aerosol

should also be considered in the proposed CLSTM model

with performance tested in different climatic zones and

seasons. Improvements in CLSTM model’s practical via-

bility for other regions globally may also bemade through its

implementation on hourly, daily, and seasonal scales by

sourcing real-time satellite and other remote sensing prod-

ucts. One such data product is the Himawari 8 & 9 satellite

data that offers 10-min scan of the sky. Imagery from the

advanced Himawari imager (AHI) instrument has finer

spatial resolution (0.5–2 km, compared to 1–4 km for

MTSAT) and precision (12–14-bit images, vs 10-bit for

MTSAT). This satellite offers a higher temporal resolution

with images recorded more frequently with one ‘full disk’

scan of the observable area every ten minutes (compared to

hourly from MTSAT satellite). Our group at University of

Southern Queensland is currently investigating the use of

such data for real-time simulation of solar energy in Aus-

tralia with results expected to be reported in future. Such

testing of the proposed CLSTM predictive model, at high

temporal resolutions, in a wider range of climates or seasons,

in both remote and regional locations is a necessary step to

help in direct harnessing of solar energy, biofuels, agricul-

tural monitoring and supporting bio-physical sectors where

global solar radiation, direct normal irradiance, global hor-

izontal irradiance or photosynthetic-active radiation needs to

be monitored for production of solar energy.

Appendix

See Tables 5, 6 and 7.

Table 5 The parameter search space for the hybrid deep learning-

based (i.e., CLSTM) model architecture, including CNN, LSTM and

DNN models

Designated model Model

hyperparameters

Search space for grid

search

for hyper-parameter

optimization

Objective

model

CLSTM Filter1 [10, 20,50,100]

Filter 2 [40,50,60,70,80]

Filter 3 [20,10,30,5]

LSTM cell units [40,50,60,100]

Epochs [300,400,700]

Activation function [ReLU]

Optimizer [Adam]

Batch Size [1,5,10,20,50]

Benchmark

models

CNN Filter1 [20,50, 60,100]

Filter 2 [40,50,60,70]

Filter 3 [20,10,30,5]

Activation function [ReLU]

Optimizer [Adam]

Epochs [300,400,700]

Batch Size [1,5,10,20,50]

LSTM LSTM cell 1 [50, 60,100]

LSTM cell 2 [40,50,60,70]

LSTM cell 3 [20,10,30,5]

Epochs [300,400,700]

Activation function [ReLU]

Optimizer [Adam]

Drop rate [0.1,0.2]

Batch Size [1,5,10,20,50]

Hidden neuron 1 [100,200,300,400,50]

DNN Hidden neuron 2 [20,30,40,50,60,70]

Hidden neuron 3 [10,20,30,40,50]

Hidden neuron 4 [5,6,7,8,12,15,18]

Activation function [ReLU]

Optimizer [Adam]

Epochs [100,200,500]

Batch Size [1,5,10,20,50]

ReLU and Adam stands for rectified linear units and adaptive moment

estimation, respectively
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Table 6 The optimal architecture of the deep learning CNN, LSTM and DNN models where the hyperparameters were obtained through a grid

search procedure over all parameters specified in Table 5

Architecture of deep learning

Designated

model

Layer 1

(L1)

L1 activation

function

Dropout

percentage

Layer 2

(L2)

L2 activation

function

Layer 3

(L3)

Layer 4

(L4)

L4 activation

function

Batch

size

Epochs

LSTM 50 ReLU 0.1 40 ReLU 20 ReLU 5 300

DNN 100 ReLU 0.1 60 ReLU 30 10 ReLU 10 100

Convolution

layers 1 (C1)

Convolution

layers 2 (C2)

Convolutional

layers 3 (C3)

Activation

function

Pooling

size

Padding LSTM

layer

(L1)

L1

activation

function

Dropout

rate

batch

size

Epochs

CLSTM 100 60 30 ReLU 2 Same 25 ReLU 0.1 10 400

CNN 60 40 5 ReLU 2 Same 5 700

Architecture of backpropagation (BP) algorithm for deep learning

BP optimizers for deep learning model Alpha,

a
Epsilon, e Beta,

b1
Beta,

b2

Adaptive moment estimation, (Adam) 0.001 0.0000001 0.990 0.990

where

a = Learning rate, the proportion that weights are updated

e = Is a very small number to prevent any division by zero in the model

implementation

b1 = The exponential decay rate for the 1st moment estimates

Table 7 The optimal architecture of the ELM and MARS models

Designated

model

Dign parameters

ELM Number of layers 3

Input neurons Maximum value of 17 (i.e., for SZA, and cloud chromatic property-based inputs, as per Table 1)

Inputs (i.e., predictor variables) Cloud image statistical properties (associated with 5-min PPFD) and SZA as per Table 2

Bav;BCsd ; SZA;Bsd ;OC;Rav;RCsd ;BCav;
Rav

Bav
;Rsd ;RBCdiff ;BRCdiff ; TC;RCav;RBDdiff ;RBDdiff ;

RCav

BCav

Hidden neurons 10, 20, …, 1000

Output neurons 1 (PPFD) which is the measured photosynthetic radiation in lmol m-1 s-1

Activation functions Sigmoid, sine, hard limit, triangular basis, radial basis, tangent
sigmoid, logarithmic sigmoid was the optimal function

ELM architecture 10–23–1 (input-hidden-output) determined iteratively by trial and error [Model M10 (optimal)]

MARS Number of basis functions 18

Split threshold 0.05

Spline type ‘Cubic’

Generalized cross validation 1.7751

Optimal model equation y = - 1.01e ? 03 ? 0.0988 9 BF1 - 0.36 9 BF2 ? 0.653 9 BF3 ? 2.83 9 BF4

- 0.009 9 BF5 ? 0.552 9 BF6 - 0.0768 9 BF7 - 8.47 9 BF8 - 1.64 9 BF9 ? 1.25 9 BF10 ? 2.32

9 BF11 ? 0.000749 9 BF12 ? 0.0102 9 BF13 - 0.13 9 BF14 - 946 9 BF15 ? 943 9 BF16 ? 946 9 BF17’

[Model M11(optimal)]
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