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Abstract 

Around a third of the stars in our Galaxy are binary or multiple systems, with 

triples possibly accounting for up to a tenth. While planets have been found in S-

type orbits around the single or binary components of triples, only two P-type 

orbits have been found, both being circumbinary. A planet in a circumtriple orbit 

has not yet been found. The anticipated discovery of such exoplanet orbits 

motivated this study.  

Hierarchical triple systems that are compact enough to possibly harbour 

exoplanets in P-type orbits form a small minority of hierarchical triples, with 

only 7 of the catalogued 724 systems being suitable. From these we selected and 

analysed the recently-discovered HD 181068 or Trinity system, using N-body 

simulations to analyse the stability of the stellar system and possible planetary 

orbits around it.  

Mercury6 was selected as the orbital integration package; it was tested on simple 

systems and used to replicate a previously published study on HW Virginis, 

where it performed well. We then generated a stability map for the stellar system, 

which showed a stability zone for the outer body which differed from the 

published orbital parameters, suggesting an eccentricity much higher than zero.  

Using this geometry we then calculated the limits of the habitability zone and 

extracted the probable parameters for planetary systems from various exoplanet 

databases. A comprehensive search using 33 810 test particles failed to find any 

stable orbits. Simplifying the model by consolidating the central binary into a 

single body resulted in stable but highly eccentric orbits.  

We concluded that Mercury6, which was originally designed for configurations 

comprising one central dominant body, probably became inappropriate when 

adding more bodies to a compact triple system of stars of almost equal mass, 

possibly in the coordinate system used for its test particlesparticles, i.e. in the 

splitting of the Hamiltonian. 

Key words: methods: planets and satellites: dynamical evolution and stability – 

N-body simulations – celestial mechanics – triples: close – planetary systems.  
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For there is a single general space, a single vast immensity which we may 

freely call Void; in it are innumerable globes like this one on which we 

live and grow... In it are an infinity of worlds of the same kind as our own. 

Giordano Bruno, On the Infinite Universe and Worlds (1584) 
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1. Introduction 

1.1 Stellar multiplicity 

It has been variously estimated that 12% - 40% of the stars in our Galaxy are binary or 

multiple systems, that multiplicities of three and higher can occur in 2% - 25% of all 

stellar systems and that many, if not most, close binaries have distant tertiary 

components (Alexander 2012; Kane & Hinkel 2012; Tokovinin 2004). Binary frequency 

appears to correlate well with stellar ages, with low-mass pre-main sequence stars 

having very high binary frequencies of 80% - 100%.  

Similarly, a study that considered stellar systems with multiplicities ranging 

from one to seven in the set of stars with combined magnitude brighter than 6.00 on the 

Hipparcos scale (which was effectively limited to systems with mass above about 1Ms, 

since very few systems of lower mass are included among the bright stars) identified  

4 558 such bright systems, of which 60% were single stars, 32% binaries and 6% 

triples, with an observed average multiplicity of 1.53 (Eggleton & Tokovinin 2008). 

Although reasonably representative of stars more massive than the Sun, the Eggleton 

study is unlikely to be representative of the Galaxy as a whole because of its magnitude 

constraint. 

Multiplicity data is also obtainable from the Multiple Star Catalogue (MSC), 

available at vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+AS/124/75 (Tokovinin 

1997-1999), which is complete to a distance of around 10 pc. 

1.2 Exoplanet multiplicity 

A recent study (Roell et al. 2012) of 477 stellar systems identified 57 multiple systems 

(47 double and 10 triple systems) with at least one exoplanet. Some data from this study 

is shown in Table 1. The resulting multiplicity rate of about 12% is lower than 

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+AS/124/75
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previously published values. A suggested reason is the increasing number of transiting 

exoplanets in recent years, which were excluded by previous studies. 

 

Table 1. Multiplicities of solar-like and exoplanet host stars. 

The multiplicity for exoplanet host stars of 12% is also approximately a quarter of the 

multiplicity of solar-like stars. To date, no S-type (see following section) planet has 

been found in a binary with a (projected) separation of under 10 AU and (S-type) multi-

planet systems have only been found in stellar systems with (projected) separations 

larger than 100 AU. 

Combining the Eggleton and Roell data results in the average frequencies shown 

in Table 2. These are approximate because of the different binnings of the data. 

 

Table 2. Frequencies of multiplicities. (References are those in Table 1). 

46% 54% 34% 9% 1

44% 56% 38% 4% 2

22.90% 77.10% 19.80% 3.10% 3

17.20% 82.80% 14.80% 2.40% 4

11.95% 88.05% 9.85% 2.10% 5

1: Raghavan et al. (2010),   2: Duquennoy & Mayor (1991)

3: Raghavan et al. (2006),   4: Mugrauer & Neuhauser (2009)

5: Roell et al. (2012)

Solar-like stars

Exoplanet host stars

Ref.

1 2 3+ 4+

1 54 34 9

2 56 38 4

3 77.1 19.8 3.1

4 82.8 14.8 2.4

5 88.05 9.85 2.10

Eggleton
1

59.61 31.53 6.30 2.60

Average 69.59 24.66 4.48 2.60
1
 Excluding the Sun

Multiplicity
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Eggleton found that the frequencies of various multiplicities follow a power law up to 

septuple multiplicity. 

Turning to extrasolar planets, at October 2013 the total number of extrasolar 

planets had grown to 954 confirmed exoplanets with 162 multiple planet systems. 

Putting together all the results of planet frequency studies, it appears that, on average, 

every star should harbour at least one planet. Our Galaxy has at least 100 billion stars, 

implying approximately the same number of planets. 

From 2009 to June 2013, NASA's Kepler spacecraft continuously monitored 

over 160 000 stars for transiting exoplanets. By June 2013, 3 216 planet candidates had 

been found (nearly quadrupling the sample of previously known planets) of which 132 

planets in 69 stellar systems have been confirmed. Of the planet candidates, only 

5% - 10% are likely to be false positive detections. In addition, Kepler identified 2 165 

eclipsing binary stars.  

1.3 Exoplanet orbit types 

Initial discoveries were of planets orbiting single stars. Later, stellar companions were 

discovered around several dozen exoplanet host stars formerly believed to be single. 

The existence of circumbinary planets had been suspected and Kepler provided the first 

confirmed identification of transiting circumbinary planets. Most of these exoplanet 

candidates are orbiting one stellar component of a binary. This is denoted an S-type 

orbit configuration, while the circumbinary orbit of a planet around both binary stars of 

a binary or multiple star system is called a P-type orbit.  

A summary of exoplanet nomenclature, which is particularly important 

regarding circumbinary planets, is provided in Appendix A. 



9 

 

Kepler recently discovered planets in P-type circumbinary orbits around both 

wide binaries (e.g. NN Ser (AB) c, d, DP Leo b, HU Aqr (AB) c and UZ For (ab) d) and 

close binaries (e.g. HWVir (AB) b, Kepler-16 (AB) b, dubbed the first “Tatooine” 

planet, Kepler-34 (AB) b, Kepler-35 (AB) b Kepler-38 (AB) b, and Kepler-47 (AB) b, 

c, which are all Neptune or Jupiter-like planets) and it began to find planets in triple star 

systems (e.g. 16 Cygni B b). The Kepler team estimates that about 1% of binary stars of 

close separations have giant planets in a nearly coplanar P-type orbit. 

A planet (Kepler-64b) has already been discovered in a quadruple star system, 

orbiting outside a 20-day period eclipsing binary, with another visual binary orbiting 

~1 000 AU away (Schwamb, Orosz et al, 2012). 

Many possible combinations of planets orbiting triples can be listed (Verrier & 

Evans 2007). The current number of discovered planets by configuration of star system 

and hence orbit type, as compiled from various sources, is shown in Table 3. 

Table 3. Frequency of exoplanets by type of orbit.  

The exoplanet data was extracted from the Open Exoplanet Catalogue (OEC) (Rein 

2012) and the NASA Exoplanet Archive database (Akeson et al. 2013); the procedure 

used for the latter is presented in Appendix B. The planet orbit code we created in Table 

Stellar Name Stellar Relative

multiplicity frequency code type name number frequency number frequency frequency
1

(%) (%) (%)

1 Singles 69.6 1,1 P Circumstellar 834 92.1 1456 91.6 0.8

2 Binaries 24.7 65 7.2 127 8.0 3.1

2,1 S Circumbinary 51 5.6 107 6.7

2,2 P 14 1.5 20 1.3

3 Triples 4.5 7 0.8 7 0.4 10.2

3,1 S Circumtrinary/ 6 0.7 6 0.4

3,2 P circumtriple 1 0.1 1 0.1

3,3 P - -

4+ Higher 2.6 4,2 P 1 0.1 1 0.1 41.3

Total 101 906 100 1590 100
1
 Stellar frequency to exoplanet frequency. Note some rounding has occurred.

ExoplanetOrbit
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3 represents [(number of stars in system),(number of stars orbited)]. 

Note that exoplanet host star multiplicity suffers from strong observational bias 

and selection effects produced by the original planet search programmes. For example, 

the Kepler input catalog was selected for certain stellar spectral types and radii. 

Comparing the stellar multiplicity frequencies with those for the exoplanets is 

interesting. While approximately 70% of stellar systems are single, over 90% of 

exoplanet discoveries have been of this type. Conversely, while triple systems comprise 

over 5% of stellar systems, the frequency of exoplanet discoveries in these has been 

only 0.4%. The ratios of these frequencies suggest that, on the assumption that the true 

occurrence of exoplanets is not skewed as acutely as this, a huge potential exists for 

future discoveries in binary and higher multiple systems, with this potential increasing 

with multiplicity. 

To support this assumption, comparing the exoplanet orbit type frequencies with 

the planet number frequencies shows that they are quite similar for single and binary 

stars. It has been found that the frequency of planets in binaries is not statistically 

different from planets orbiting single stars and that it cannot be lower by more than a 

factor of three compared to planets orbiting single stars. For moderately wide binaries, 

the frequency of planets is independent of separation and the wide companion plays 

only a marginal role in the formation and evolution of giant planets (Bonavita & 

Desidera 2007). It has also been reported that the presence of distant companions 

(separation >300 AU – 500 AU) does not significantly affect the process of planet 

formation, as the mass and period distribution of planets in such wide binaries are 

similar to those of planets orbiting single stars (Desidera & Barbieri 2007). 

However, comparing the frequency of S-type orbits with P-type orbits in 

binaries shows that the former are almost four times more common. (A further type of 
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orbit, the L-type, where the planet co-orbits with one of the stars, i.e. librates about the 

triangular Lagrangian points like the Trojan asteroids in the Solar System, is ignored in 

this study.) 

The exoplanet frequencies for triples and higher (hidden by rounding) are 

approximately half those for the orbit frequencies, implying that there are fewer planets 

in these systems. However, one must once again be beware of the small sample size and 

selection effects. 

Most binary and multiple stellar systems found to be harbouring planets are 

wide, with separations larger than 100 AU (Eggenberger, Udry & Mayor 2004), and 

nearly half of the exoplanets found are in very wide binaries with average stellar 

separations greater than 1 000 AU (Roell et al. 2012). However, several systems with 

separations as low as ∼20 AU, such as HD 196885, have been shown to contain giant 

planets. Close binaries have a tendency to be found in higher-multiplicity systems, 

showing that close and wide binarity is statistically related (Tokovinin 2001). 

Most multiple star systems are triple (also called trinary or ternary), with 

systems of four or more components less likely to occur. Some researchers expect that 

there will be more cases discovered of planets orbiting outside compact binaries than 

inside wide binaries, and this may also hold for triples. It appears that most triples are 

hierarchical, consisting of a close binary with the third star in a wide orbit, e.g. 16 Cyg 

Bb, which orbits a single star of its triple system.  

Systems with multiplicities of three or higher containing planets are shown in 

Table 4, extracted from the OEC. 
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Table 4. Exoplanets discovered in stellar systems of multiplicity three and higher. 

Only two P-type orbits have been found to date, and both are circumbinary. 

PH-1 is a multiple star system of at least four stellar components, which hosts at 

least one planet, PH-1 (AaAb) b, which was found by amateurs at 

www.planethunters.org. It is in a circumbinary orbit around a binary that in turn is being 

orbited by a second binary approximately 1 000 AU away. 

HW Virginis is a multiple star system of at least three stellar components, which 

hosts at least one planet, HW Vir (AB) b, detected by eclipse timing variations. An 

additional object orbits the binary every 16 yr - 55 yr. At around 20 - 65 Jupiter masses 

it is classified a brown dwarf.  

A planet in a circumtriple orbit of a triple system has not yet been found. 

However, it appears inevitable that this configuration will eventually be discovered. 

The object of this study was to identify a compact triple that is also likely to 

harbour planets, establish the orbital stability landscape around the system and see 

where this lies relative to the habitable zone. 

1.4 Computational approaches 

A computational approach was used. Numerical stability studies are a powerful tool to 

guide the search for new exoplanets, or additional exoplanets in known planetary 

  Planet name Discovery 

year

Mass Radius Semimajor 

axis

Eccentricity Number of 

stars in 

system

Orbit 

type

Number 

of planets 

in system

Distance 

 [MJup]  [RJup]  [AU] [pc]

PH-1 (AaAb) b 2012 - 0.563 0.634 0.0539 4 P 1 1500

HW Vir (AB) b 2008 14.3 - 4.69 0.4 3 P 1 181

16 Cygni B b 1996 1.68 - 1.68 0.689 3 S 1 21.4

91 Aquarii A b 2003 3.2 - 0.7 0.03±0.03 3 S 1 45.9±0.6

HD 178911 B b 2001 6.29 - 0.32 0.1243 3 S 1 46.7

HD 196050 A b 2002 2.83 - 2.47 0.21 3 S 1 46.9

HD 40979 A b 2002 3.28 - 0.83 0.25 3 S 1 33.3

HD 41004 A b 2004 2.54 - 1.7 0.74 3 S 1 43

http://www.planethunters.org/
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systems. 

For example, over the last decade a number of studies have shown that, for 

systems that contain more than one planetary body, the orbits proposed initially are 

simply not dynamically feasible, “illustrating the critical importance of performing 

dynamical analyses as a part of the discovery process for multiple-planet exoplanetary 

systems.” (Horner et al. 2012). 

Also in recent years, numerous numerical investigations have estimated stability 

zones in known systems that might harbour undiscovered planets. However, none of 

these were compact triple systems. 

As an example of this type of approach, Verrier and Evans investigated the 

stability zones for planets and asteroids in the  Cephei system using the Bulirsch-Stoer 

algorithm in John Chambers’s Mercury6 program. This is a binary system with a stable 

giant planet orbiting the larger star at about a tenth of the binary’s separation (Verrier & 

Evans 2006).  

They subsequently examined orbits around each of the stars in hierarchical triple 

systems (Verrier & Evans 2007). They extended Chambers’s symplectic integrator 

algorithm (Quintana et al. 2002) to this triple system by defining a coordinate system 

where the positions of the stars are followed in hierarchical Jacobi coordinates while the 

planets are referenced only to their primary, then deriving the split Hamiltonian required 

in each hierarchical case. They applied only one case, to a circumbinary situation, to 

determine the extent of the stable zone that can support long-lived planetary orbits, and 

provided fits to the inner and the outer edges. An important finding was that the 

addition of a stable third star does not distort the original binary stability boundaries and 

that the binary stability criteria can be used to quite accurately predict the stability zones 

in any hierarchical stellar system, irrespective of the number of stars. They also 
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concluded that circumbinary planets are unlikely to exist in at least 50% of observable 

systems. However, they did not apply their analysis to P-type circumtriple orbits. 

They also found that in the dynamics of planetesimals in the quadruple star 

system HD 98800, there were significant numbers of stable particles in circumbinary 

polar orbits about the inner binary pair, which are apparently able to evade the Kozai 

instability1(Verrier & Evans 2009). In 2009 they analysed and confirmed this situation, 

concluding that high mutual planet-star inclinations are very likely, and that if there are 

regions of stability, then the outlook for planetary systems in these environments is 

more promising than previously thought. 

The numerical results of Verrier and Evans were later explained purely 

analytically (Farago & Laskar 2010) and other researchers in turn expanded on this 

work numerically, investigating the dynamics and stability of orbits in three-

dimensional circumbinary phase space as a function of binary eccentricity and mass 

fraction. They found that these orbits are surprisingly stable. In the words of one team 

of researchers, “circumbinary phase space is rich and dynamic, full of remarkable and 

stable orbits which do not behave simply. We should not presume any given binary 

system to lack a circumbinary component unless otherwise demonstrated.” (Doolin & 

Blundell 2011). 

A further development has been an analytical theory to model the motion of the 

recently discovered circumbinary planets Kepler-16 b, Kepler-34 b and Kepler-35 b 

(Leung & Lee 2013). Their orbits are significantly non-Keplerian due to the large 

                                                 

1 The Kozai mechanism often destabilizes high-inclination orbits. It couples changes in the 

eccentricity and inclination, and drives high-inclination circular orbits to low-inclination 

eccentric orbits. 
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secondary-to-primary mass ratio and orbital eccentricity of the binaries as well as the 

proximity of the planets to the binaries. 

However, it appears that orbit stability analyses have not yet been applied to 

actual circumtriple systems. The anticipated discovery of exoplanets in triple systems 

and the fact that a meaningful proportion of stars in the Galaxy are such systems, 

makes this a worthwhile field of investigation.  

We focused on systems that have not yet been studied in detail regarding their 

stable regions. 

The rest of this document is organized as follows:  

Section 2 deals with the preparations for the research, including a review of 

available integrators, the selection of the compact triple to be investigated, the choice of 

parameters for the planet search and an initial examination of the selected integrator by 

applying it to a simple binary model before using it to replicate some previous research 

results on HW Virginis. 

Section 3 comprises the major portion of the work, in which we investigate the 

stability of the stellar system, calculate the bounds of the habitable zone and then search 

for planetary orbits around the system. 

Section 4 consists of a discussion of these results and the conclusions that may 

be drawn from them, followed by Section 5 in which we suggest the direction of future 

work on this topic. 

2. Method 

2.1 Numerical methods 

The fastest algorithms that are reliable for long-term numerical orbit integrations are 
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symplectic integrators2. In particular, mixed-variable symplectic integrators exhibit 

substantially faster speed than conventional N-body algorithms. However, they become 

inaccurate whenever two bodies approach one another closely. This occurs because the 

potential energy term for the pair undergoing the encounter becomes comparable to the 

terms representing the unperturbed motion in the Hamiltonian. The problem can be 

overcome by using a hybrid method in which the close encounter term is integrated 

using a conventional integrator whilst the remaining terms are solved symplectically. 

One of the earliest symplectic integrators was developed by Wilson and Holman 

(Wisdom & Holman 1991).  

In 1993 Swift was created (Levison & Duncan 1994, 2013). Swift is designed to 

symplectically integrate the motion of massive bodies and test particles orbiting a more 

massive center, and is well suited for studying the dynamics of planetary systems. A 

later version for orbital simulation was SyMBA (Duncan, Levison & Lee 1998), an 

extension of Swift that uses a multiple time step technique and can symplectically 

integrate a full N-body system including close approaches between massive bodies. 

However, it fails in integrating close encounters with the central star.  

Hervé Beust has developed an add-on for Swift that is designed to handle the 

dynamics of hierarchical systems of any size and structure, provided this hierarchy is 

preserved (Beust 2003). It comes in the form of the HJS (Hierarchic Jacobi Symplectic) 

package, a set of routines that can be added to the Swift package and allow one to 

integrate the dynamics of multiple stellar system.  

                                                 

2 A symplectic integrator is a numerical integration scheme for a specific group of differential 

(in this case, Hamiltonian) equations, using classical mechanics and symplectic geometry. 
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The package probably most frequently used for problems involving a dominant 

central mass has been Mercury6 (Chambers 1999). However, dealing with planetary 

orbits in a binary system is problematical since the system no longer contains just one 

single dominant body. Fortunately, all long-lived planetary systems of binary and triple 

stars are likely to be hierarchical, i.e. they orbit one star with the second binary star 

orbiting a considerable distance away, or the planets orbit the centre of mass of a binary 

pair of small separation with the remaining star orbiting at a considerably larger 

distance. In this case one can modify symplectic schemes while still permitting close 

encounters. The original Mercury6 was later expanded to do this (Chambers et al. 

2002).  

A suite of N-body algorithms has also been developed by Sverre Aarseth, as 

described in his book (Aarseth 2003). While focused mainly on modelling clusters and 

galaxies, some programs (e.g. Triple) may be applied to planetary systems and small-N 

experiments.  

Another integrator, written by Piet Hut to investigate a planet bouncing between 

the two stars of a binary, was built on a fourth-order Hermite integrator; it is a robust 

and flexible integrator for small-N systems as it has no preferred dominant force or 

geometry (Moeckel & Veras 2012).  

Some of the more recent integrators have been designed for parallel or 

multicore/GPU implementation, such as QYMSYM (Moore & Quillen 2011) and 

GENGA (Elser, Grimm & Stadel 2013). The GENGA code is a hybrid symplectic 

integrator based on the Mercury6 code. At a low number of simulations (~ 30), the GPU 

overhead dominates and Mercury6 is faster. At a high number of simulations, GENGA 

begins to benefit from the large number of GPU cores, until at around 1 000 simulations 
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the GPU is fully occupied and the computation time begins to increase again. At 16 000 

simulations the GPU is about 40 times faster than one CPU.  

In 2007 Verrier & Evans developed a stand-alone program for triple systems, 

Moirai, based on the Chambers et al. (2002) algorithm, and tested it on the three main 

orbital configurations for triples (Verrier & Evans 2007). However, the code was not 

made public. 

Other codes include the HNBody package, for the symplectic integration of 

nearly-Keplerian systems.  

Of these scientific-grade symplectic integrators, perhaps the most popular and 

well-used codes are Mercury6 and Swift, with the latter’s HJS add-in being particularly 

appropriate for the triple star system to be investigated. This code was supplied to us by 

its author (Beust 2013, private communication).  

Evaluating these two integrators on their suitability for our purpose, the 

symplectic integration scheme in Mercury6 is the algorithm from Wisdom and Holman, 

which only uses Jacobi coordinates for massive objects. For masses around an 

hierarchical triple these would in theory be the same as Beust's hierarchical Jacobi 

coordinates, as long as one of the binary pair from the triple was specified as the central 

object. (As Chambers has pointed out, the Chambers et al. (2002) technique is identical 

to the Breust algorithm if only one planet is present in the system.) 

We use test particles to investigate the regions of orbital stability, and Wisdom 

and Holman used a different coordinate scheme for test particles, where they were taken 

as the first relative Jacobi index, and this may not work for circumtriple objects. It 

therefore looked as if Beust's hierarchical Jacobi coordinate scheme might be more 

appropriate for a triple system. Much research that looks at hierarchical systems uses 
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this code (Verrier 2013, private communication). However, it appeared that the use of 

Mercury6’s robust Bulirsch-Stoer algorithm would probably circumvent this problem. 

Therefore, after evaluating both Mercury6 and Swift/HJS, we elected to use 

Mercury6. 

Although this package cannot incorporate collisions, since these cannot be 

modelled symplectically, it performs well on most metrics, especially for modelling 

relatively few bodies (where it is very accurate) and the handling of close encounters. It 

can therefore be used in our proposed planetary simulations, where there are no 

collisions and only test particles. Its simplicity of use and clarity of documentation are 

attractive. It is written in Fortran 77 and uses the following N-body algorithms: 

(1) A second-order mixed-variable symplectic (mvs) algorithm incorporating simple 

symplectic correctors. It is very fast but cannot compute close encounters 

between objects. 

(2) A general Bulirsch-Stoer (bs) algorithm. This is slow but accurate in most 

situations. It can be used when all else fails, or to test whether the other 

algorithms are appropriate for a specific problem. 

(3) A conservative Bulirsch-Stoer algorithm (bs2). This is twice as fast as the 

general bs routine, but it will only work for conservative systems, in which 

accelerations are a function of position only, e.g. Newtonian gravity but not 

general relativity.  

(4) Everhart's RA15 (Radau) algorithm. This scheme is 2 - 3 times faster than the 

general Bulirsch-Stoer. It is usually reliable, except for very close encounters or 

very eccentric (e.g. Sun grazing) orbits. 

(5) A hybrid symplectic/Bulirsch-Stoer integrator (hyb). This is very fast, quite 

robust but only moderately accurate. It can compute close encounters. 
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The main characteristics of these algorithms are summarised in Table 5. 

Table 5. Main characteristics of the Mercury6 algorithms. 

For a compact triple, close encounters are likely. The two Bulirsch-Stoer algorithms and 

the hybrid scheme are able to handle these. However, the mvs algorithm is unsuitable 

for this configuration, which therefore excludes the hybrid scheme. Note also that the 

symplectic integrators may give spurious results if some objects have highly eccentric 

orbits during an integration.  

The Bulirsch-Stoer algorithm will work with any system, but it may, however, 

be slow (Chambers 2013, private communication). Since the system is conservative, ie. 

has no relativistic effects, the conservative Bulirsch-Stoer becomes the best choice 

because of its relatively higher speed.  

On a more practical level, the program settings for the number of time steps 

between progress alerts, output notifications and data dumps, as well as the number of 

time steps between checks for ejections and the recomputation of Hill radii can be 

critically important, since the writing of output is much slower than computation. For 

example, frequent output can negate the intrinsic speed advantage of the mvs and hybrid 

algorithms because of their fixed time steps (which result in a fixed number of steps), 

decreasing their speed by orders of magnitude relative to Bulirsch-Stoer, which may 

have increased the initial time step selected (resulting in a smaller number of steps). The 

sensitivity of speed to these factors becomes highly apparent when running integrations. 

Description Abbrev. Relative Close Timestep

speed encounters?

Bulirsh-Stoer (general) bs 1x Yes Variable

Bulirsh-Stoer (conservative systems) bs2 2x Yes Variable

Second order mixed-variable symplectic mvs "Very fast" No Fixed

Hybrid (symplectic/Bulirsh-Stoer) hyb Intermediate Yes Fixed and variable

Radau 15th order rad 2-3x No Variable
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2.2 Selecting the compact triple 

Identifying candidate hierarchical compact triples 

Some multiple stars, termed trapezian, are usually very young, unstable systems. The 

relative distances between these bodies are comparable and they are usually unstable on 

time-scales of a few million years or less. These are thought to form in stellar nurseries 

and quickly fragment into stable multiple stars, which in the process may eject 

components as galactic high-velocity stars. An example of such a system is the 

Trapezium at the centre of the Orion nebula. 

However, most multiple stars are organized in a structured manner, with smaller 

orbits nested inside larger orbits. In these systems there is little interaction between the 

orbits and, as in binary stars, the orbits are stable.  

A gravitational three-body system is called hierarchical if its motion is well 

approximated by a pair of non-crossing elliptic orbits.  

In a triple star system, each star orbits the center of mass of the system. Usually, 

two of the stars form a close binary system and the third orbits this pair at a distance 

much larger than that of the binary orbit. This arrangement is therefore hierarchical. The 

reason for this is that if the inner and outer orbits are comparable in size, the system 

may become dynamically unstable, leading to one star being ejected from the system. 

Hierarchical triple systems are important for testing theories of star formation and of 

stellar evolution in the presence of nearby companions. 

In 1887 Heinrich Bruns proved that only specific solutions to the generalised 

three-body problem were possible. The motion of three bodies is now known to be 

generally nonrepeating, although some specific repeating solutions have been found. 

However, these were sparse, consisting of just three families. Recently, though, a 

surprising 13 new families were discovered (Šuvakov & Dmitrašinovic 2013). It 
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remains to be established which of these new solutions are stable and may represent 

actual systems, of both stars and planets. 

While triple systems are less common than binaries, as previously discussed, and 

compact triples are rarer still, their prevalence is not insignificant. A very recent study of 

the photometric database of eclipsing Kepler binaries identified 39 candidate triple 

systems and estimated that at least 20% of all close binaries have tertiary companions 

and that at least 8% have tertiary companions with a period less than approximately 7 

yr. (Rappaport et al. 2013).  

Roell et al (2012) defined the multiplicity of an exoplanet host star by its 

inclusion in the Catalogue of Components of Double and Multiple Stars or CCDM 

(Dommanget & Nys 2002), available at vizier.cfa.harvard.edu/viz-bin/VizieR?-

source=I/274. We followed this approach in our search for good candidate compact 

triples. 

The current list of discovered planets in triple systems is shown in Table 6, 

reproduced from Desidera (Desidera et al. 2011). The first two columns list the name 

and the mass of the planet's host star. The third and fourth columns list the individual 

masses of the two components of the close pair and their semimajor axis or projected 

separation. The fifth column lists the projected separation between the planet host and 

the distant pair and the sixth column shows the critical semimajor axis for dynamical 

stability of planetary companions around the planet host. The seventh, eighth and ninth 

columns list the main planet parameters and finally the tenth column reports the 

references for the individual objects.  

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=I/274
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=I/274
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Table 6. Hierarchical triple systems with planets. 

References: 1: Guenther et al. (2009); 2: Morbey & Brosterhus (1974); 3: Mugrauer et al. 

(2007a), 4: Mugrauer et al. (2007b), 5: Eggenberger et al. (2007); 6: Desidera et al. (2011); 7: 

Tokovinin et al. (2000); 8: Patience et al. (2002); 9: Raghavan et al. (2006); 10: Washington 

Double Star Catalog (WDS) (Mason et al. 2001). 

Notes: a: The critical semimajor axis for dynamical stability was obtained from the projected 

separation as in Bonavita & Desidera (2007). b: Minimum mass from spectroscopic orbit. c: 

Value of plausible mass. d: Planet announced in 2003 (Mitchell et al. 2003) but never 

published in refereed journals, confirmed at the Conference “Planetary Systems Beyond the 

Main Sequence”, as reported in the Extrasolar Planet Encyclopedia. Stellar mass of 91 Aqr 

obtained from parameter interface (Da Silva et al. 2006) using the input parameters from 

Hekker et al. (2007); stellar masses of the companions from magnitudes in the Washington 

Double Star Catalog (WDS) and mass-luminosity relation. 

In all these systems the planet orbits the isolated component of the hierarchical triple, 

with a close stellar pair at a much larger separation.  

As a first-order approximation, the dynamic effects of the distant pair can be 

approximated as a single star with the sum of the masses of the individual components. 

After deriving the critical semimajor axis for dynamical stability (Holman & Wiegert 

Planet Host

Name Mass

M⊙

Comp. Mass

M⊙
ρ close

AU

ρ wide

AU

a crit
a

AU

M pl

MJ

a pl

AU

e pl Ref

30 Ari B 1.16 1.31+0.13
b 0.02 1500 318 9.88 1.00 0.29 1,2

HD 40979 1.19 0.83+0.38 129 6400 1452 3.83 0.85 0.27 3

HD 65216 0.92 0.09+0.08 6 253 82 1.21 1.47 0.41 4,5

HD 132563B 1.01 1.08+0.56
c 10 400 78 1.49 2.62 0.22 6

HD 178911B 1.06 1.10+0.79 3 640 120 7.35 0.35 0.14 7

16 Cyg B 0.99 1.02+0.17 70 850 183 1.68 1.68 0.68 8

HD 196050 1.15 0.29+0.19 20 511 146 2.90 2.45 0.23 5

91 Aqr
d 1.23 0.87+0.84 18 2250 461 2.90 0.30 – 9,10,6

Close pair Wide pair Planet
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1999) in this way, no systems have been found for which the outer pair has a strong 

impact on the planetary region.  

One investigator summarised this as follows: “It seems that hierarchical triple 

systems do not represent an hostile environment for planet formation around the 

isolated component, regardless of the mass ratio between the planet host and the sum of 

the masses of the other components. …In all but one stellar triple with planets, the 

separation of the stellar pair is larger than the planet semimajor axis. While selection 

effects certainly play a role, a moderately wide pair in a triple system guarantees that 

the present stellar orbits are not disruptive for the planetary system around the isolated 

component. A wide stellar triple might also indicate a rather unperturbed dynamical 

history for the system.” (Desidera et al. 2011). 

In comparison, the circumbinary planets around eclipsing binaries that have 

been found to date are all rather massive and have long periods.  

Our objective was to map the stability landscape of an hierarchical compact 

triple. The geometry of the stability zone would indicate not only where to look for 

planets but how to look, i.e. whether radial velocity, transit or microlensing methods 

would be most suitable. 

So the next step was to identify a triple amenable to this investigation and which 

may harbour planets in P-type circumtriple orbits. Ideally, one would like to select a 

triple system that: 

(1) Has a known geometry 

One option is to choose it from the Rappaport 2013 list of 39 triple candidates, for 

which orbital parameters are given. These triples were selected from the Kepler 

eclipsing binary data, i.e. no planets had been found. The disadvantage is that these 
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triples have been inferred from eclipse timing variations and are only tentative.  

A better option would be to select it from the Eggleton & Tokovinin 2008 data, 

which was based on catalog searches. However, of the 285 triples in the Eggleton and 

Tokovinin catalogue, 74 have only an inferred third component. Of the remaining 211, 

the dozen most compact systems are shown in Table 7, ranked by the period of the outer 

component, which is arbitrarily truncated at 5 000 d. 

Table 7. Most compact triples from the Eggleton & Tokovinin 2008 survey. 

Only two can be considered very compact triples: VV Ori with an inner binary orbital 

period of 1.485 d and an outer component with a period 119.09 d (and masses 10.2 Ms, 

4.5 Ms and 2.3 Ms respectively), and 35 Lam Tau with periods of 3.95 d and 33.025 d 

(and masses 6.8 Ms, 1.8 Ms and ~1 Ms respectively). However, the geometry of these 

two systems remains uncertain, especially regarding VV Ori’s outer star (Terrell, 

Munari & Siviero 2007; Van Hamme & Wilson 2007). 

The same uncertainty pervades some of the subsequent less compact systems, 

with the possible exception of 64 Orionis. Indeed, some studies even suggest that Phi 

Phe (Pourbaix et al. 2013) and 4 Draconis (Wheatley, Mukai & De Martino 2003) are 

not triple at all. 

No. System Full Configuration Inner Outer Period

name record (per Eggleton 2008) period period ratio

ref. (d) (d)

1 Lam Tau 34 ((A4IV + B3V; 3.953d SD) + ?; 33.03d, e=0.15) 3.95 33.0 8

2 VV Ori 57 ((B1V + B5-9V; 1.485d) + A7V:; 119.1d e=.29) 1.49 119.1 80

3 Bet Per 24 ((6.0G8IV + 2.2B8V; 2.87d SD) + 4.72F1; 1.86y, e=0.23) 2.87 679.4 237

4 B Per 37 ((A2V + ?; 1.527d e=.02) + ?; 1.921y, e=.24) 1.53 701.6 459

5 The Car 132 ((B0.2Vp + ?; 2.139d e=.24) + 13.0; 2.242:y) 2.14 818.9 383

6 Phi Phe 13 ((A3V + ?; 41.49d e=.32) + ?; 2.403y) 41.49 877.7 21

7 Lam Sco 208 ((B1.5IV + ?; 5.953d e=.26) + B2IV; 1053d, e=.12) 5.95 1 053.0 177

8 4 Dra 143 ((WD + M4V; 0.16d, SD, CV) + M3III; 1703d, e=0.30) 0.16 1 703.0 10 644

9 HR 6469 205 ((F2V + F8:; 2.23d) + G8III-IV; 2019d e=.67) 2.23 2 019.0 905

10 15Eta Vir 141 ((A2IV + A4V; 71.79d e=.27) + A8-F0; 4791d, e=.08) 71.79 4 791.0 67

11 1 Gem 67 (4.77(G6III + ?; 9.597d) + K0III; 13.20y e=.34) 9.60 4 821.3 502

12 64 Ori 66 ((B7III + B8III; 14.57d e=.39) + B5V; 13.22y, e=0.73) 14.57 4 828.6 331
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(2) Will be searched for planets. 

The difficulty lies in finding what is on the target lists of the myriad searches, including 

ground-based, that are being undertaken for exoplanets. For example, a forthcoming 

probe such as GAIA will to some extent close the gap left by the end of the Kepler 

programme. But unlike Kepler, which generally provided only estimates of planet radii 

and orbital periods, many of the GAIA planets will have their full orbits revealed. But 

GAIA does not have a target list as such. It will conduct an unbiased astrometric survey 

of all stars down to 20th magnitude to search for companions (either stars or planets). 

Although it will be sensitive to planetary companions only for fairly bright stars, it is 

expected to find around 2 500 new planets.  

(3) Alternatively, has been searched for planets without success (but may still 

harbour planets that were not detected). 

Options (1) and (3) are to some extent related, and preferable to option (2). We 

therefore pursued the third option. 

Very compact hierarchical triple systems form a very small minority of 

hierarchical triples, with only 7 of the catalogued 724 systems having outer periods 

shorter than 150 days. 

The first compact hierarchical triple system, discovered from Kepler 

photometric data, was the triple KOI 646 (Fabrycky 2010).  

In 2011 eclipse timing variations in Kepler photometry discovered the compact 

hierarchical triple KOI 928, where a low-mass eclipsing binary orbits a more massive 

third star (Steffen et al. 2011). For KOI 928, the orbital period of the star orbiting the 

binary of 116 d is quite short compared to the known hierarchical triples (Eggleton & 
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Tokovinin 2008), and the mass ratio of this star to the binary of 2.5 is exceptionally 

large.  

This was followed by the detection of the eclipsing compact hierarchical triple 

KOI 126 (Carter et al. 2011) and HD 181068, a red giant in a triply-eclipsing compact 

hierarchical triple (Derekas et al. 2011). A subsequent detailed investigation of the 

structure of HD 181068 indicated that the close and wide subsystems revolve in almost 

exactly coplanar and prograde orbits (Borkovits et al. 2013). 

KOI 126 and HD 181068 are the first representatives of a new category of triply 

eclipsing triple systems. These two systems are unusual even amongst the very few 

similarly compact triples in having reversed outer mass ratios, i.e. the wide, single 

component is the more massive star, and also the largest and brightest. Before Kepler, 

the highest known outer mass ratio was below 1.5 and for 97% of known hierarchical 

triples it remained under one, i.e. in almost all the catalogued systems, the total mass of 

the close binary exceeded the mass of the tertiary. In contrast, the outer mass ratios of 

these two new systems are ∼3.0 for KOI 126, and ∼1.9 for HD 181068.  

KOI 126 has an outer period of 34 d while for HD 181068 it is 45 d; there is 

only one system with an outer orbital period shorter than this (𝜆 Tau, at 33 d). 

Of these two systems, KOI 126 has been dynamically checked by numerical 

simulations but HD 181068 has not. In addition, dynamical analysis of HD 181068 is 

much less complex than for KOI 126, because of the much simpler and apparently 

constant orbital configurations. 

For these reasons and because it appears to be the more interesting system, we 

decided to investigate the stability of, and the landscape around, HD 181068. 
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Analytical prediction for the stability of the triple 

The most recent stellar and orbital parameters for the HD 181068 system are shown in 

Table 8. 

 

Table 8. Stellar and orbital parameters for HD 181068 (from Borkovits et al. 2013). 

A combination of the obtained  parameter with the two observable inclinations results 

in a mutual inclination of im = 0.8°±1.4°, which suggests exact coplanarity.  

Generally (and unlike S-type orbits) the stability limits for P-type orbits are almost 

independent of the mass ratio of the primaries. The stability criterion for triples in 

particular is given by (Mardling & Aarseth 2001) 

𝑎𝑡𝑟𝑖𝑝 ≳ 𝐶 (
𝑀𝑡𝑟𝑖𝑝

𝑀𝑏𝑖𝑛
)

2
5
 
(1 + 𝑒)

2
5

(1 − 𝑒)
6
5

 𝑎𝑏𝑖𝑛                                                                                         (1) 

where atrip and e are the full semimajor axis of the triple (i.e. of the outer orbiting star) 

and its corresponding orbital eccentricity, abin is the orbital separation of the two stars in 

the binary and Mtrip and Mbin are the mass of the triple and binary respectively, while C 

Star Ba Bb A

Mass [Ms] 0.915(34) 0.870(43) 3.0(1)

Radius [Rs] 0.865(10) 0.800(20) 12.46(15)

[AU] 0.00402 0.00372 0.05793

Density (calculated) [g cm
-3

] 1.995 2.398 2.189E-03

Subsystem Ba–Bb A–B

Period [d] 0.9056768(2) 45.4711(2)

a [Rs] 4.777(39) 90.31(72)

[AU] 0.02221 0.41986

e [-] 0 0

w [-] − −

i [°] 86.7(14) 87.5(2)

Δ [°]

i m
[°]

0.0(5)

0.8(14)

Stellar parameters

Orbital parameters
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= 2.8 is determined empirically. This relationship is shown in Figure 1, which plots the 

ratio of semimajor axes against the triple’s eccentricity for various mass ratios. 

 

Figure 1. Stability criterion for triples - semimajor axis ratio and eccentricity. 

Converting equation (1) to orbital periods, 

𝑃𝑡𝑟𝑖𝑝 ≳ 4.7 (
𝑀𝑡𝑟𝑖𝑝

𝑀𝑏𝑖𝑛
)

1
10
 
(1 + 𝑒)

3
5

(1 − 𝑒)
9
5

 𝑃𝑏𝑖𝑛                                                                                (2) 

where Ptrip and Pbin are the orbital periods of the triple and binary respectively. 

Although the errors in the estimated masses of the binary and triple may be 

large, the small exponent on the mass ratio of means the dependence of period on 

masses is very weak. This can be seen in Figure 2, which plots the period ratio against 

the triple’s eccentricity for various mass ratios. 
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Figure 2. Stability criterion for triples - period ratio and eccentricity. 

However, we usually have quite good estimates of eccentricities e. As shown in Table 8, 

the values for Pbin and Ptrip are quite accurate and there is evidence from the radial 

velocity solution of Derekas (Derekas et al. 2011) that both orbits are circular, so one 

can evaluate the stability of this triple with some confidence. 

For HD 181068 the eccentricity of the triple is thought to be zero, the mass ratio 

is 1.68 and the period ratio is 50.2. The period ratio stability criterion given by equation 

(2) and Figure 2 is 4.95. This suggests that the system should be stable. For the system 

to become unstable, the triple’s outer orbit would have to be quite eccentric, with an 

eccentricity of over 0.67. 

2.3 Parameters 

Initial parameter selection 

Numerical simulations first investigated long-term orbital stability within the coplanar, 
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circular, restricted three-body problem – mainly circumstellar and circumbinary orbits. 

With improvements in computing power, the circular constraint was relaxed to model 

eccentric binary systems, e.g. (Haghighipour 2008; Holman & Wiegert 1999) and there 

is now sufficient computational power to relax the coplanar constraint and investigate 

inclined orbits. 

However, because of the added complexity of modelling a circumtriple four-

body problem, as well as limited computational power, we reverted to the coplanar, 

circular case. 

Databases 

We used the Open Exoplanet Catalogue (OEC) as our database. The OEC was created 

because some exoplanet catalogues, e.g. www.exoplanets.org (Wright et al. 2011) are 

updated only irregularly and often lag several weeks behind important discoveries. 

Other websites, most importantly www.exoplanet.eu (Schneider et al. 2011), are usually 

updated very quickly after an announcement is made, but have had typographical errors 

and inconsistencies and some information such as discovery method, while available on 

the website, was not in the downloadable files.  

The OEC also claims to be the only catalogue that can correctly represent the 

orbital structure of planets in arbitrary binary, triple and quadruple star systems as well 

as orphan planets (Rein 2012).  

Note that exoplanets.org only lists exoplanets that are validated in peer-

reviewed journal articles, whereas exoplanet.eu includes exoplanets that are only 

candidates, and the NASA Exoplanet Archive (exoplanetarchive.ipac.caltech.edu/) lists 

and distinguishes planets at various stages of the confirmation process. Also, the 

NASA Exoplanet Archive uses the Washington Double Star Catalog (WDS) catalog for 

its stellar multiplicities, and the WDS also contains optical systems, i.e. stars that are 

http://www.exoplanets.org/
http://www.exoplanet.eu/
http://exoplanetarchive.ipac.caltech.edu/
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not actually physically associated. Therefore, the fact that a star is listed as having 

multiple components in the NASA Exoplanet Archive does not necessarily mean it is a 

true multiple system. 

Orbital distance 

The mass-semimajor axis distance diagram for all the confirmed exoplanets is shown in 

Figure 3, created from data downloaded from the OEC database.  

 

Figure 3. Exoplanets: mass – semimajor axis distance, with stellar multiplicity. 

We have made the width of the circles proportional to the number of stars in the system 

(from 1 to 4) and the solid circles represent the planets in the Solar System for 

comparison. 

The planets’ semimajor axes span 0.004 AU to 2 500 AU, with masses ranging 

from 8×10-6 MJ to 38 MJ. The planet sample shows observational and selection biases – 

the sample consists of planets generally more massive than most planets in the Solar 
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System and they tend to have semimajor axes that are generally smaller, although there 

is a clear bimodal distribution, with its peaks at around 2 AU and 0.5 AU. Another 

noticeable characteristic of the distribution is the lack of massive planets (say > 1 MJ) 

with small semimajor distances (say < 0.02 AU). Small semimajor distances of course 

imply short-period orbits. There is also a dearth of exoplanets in the region where the 

Solar System planets lie. Semimajor distances larger than 10 AU imply longer orbits 

that can require many years of observation to confirm just a few planetary orbits. At 

these distances, for the more massive planets there is a small tail of observations; 

however, since smaller planets are more difficult to detect there are no observations in 

the large-orbit, small-planet region. 

Although the sample size is small, there appears to be no obvious difference in 

distribution between the different stellar multiplicities shown in the graph. This is 

highlighted in Figure 4, which shows, on an identically scaled graph, the confirmed 

planets discovered in stellar systems of multiplicities greater than one. It also identifies 

those in S-type and P-type orbits, together with the Solar System planets.  

These planets have semimajor distances spanning 0.02 AU to 180 AU, with 

masses ranging from 0.004 MJ to 18 MJ. Again, they tend to be more massive than the 

Solar System planets and in smaller orbits. 

However, here a difference in distribution becomes more apparent – planets in 

P-type orbits are in larger orbits than S-type orbits. This is unsurprising, since the inner 

stability region will tend to be further away for binary and higher multiplicities. The 

masses of planets in P-type orbits are approximately twice those in S-type orbits and 

they move in orbits approximately three times larger. 
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Figure 4. Exoplanets: mass – semimajor axis distance, with stellar multiplicity and orbit 

type. 

In our searches we will sample orbit semimajor axes from a uniform distribution. 

Eccentricity 

Eccentric orbits are a consequence of strong gravitational interactions; eccentric 

planetary orbits in systems with no other detected planets suggest prior scattering events 

where their original siblings were ejected. Planets in multiple systems tend to have 

lower eccentricities, suggesting these interactions did not occur. Planets orbiting their 

central star very closely tend to have very low eccentricities as tidal interactions with 

the star circularises their orbits over long timescales. 

Figure 5 shows the orbital eccentricity of all the confirmed exoplanets against their 

semimajor orbital distances, together with the Solar System planets for comparison. 
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Figure 5. Exoplanets: eccentricity – semimajor axis distance, with stellar multiplicity. 

The distribution of orbital distances is the same as discussed in the previous section, 

whereas the eccentricities display a more uniform distribution, ranging from close to 

zero to almost one, with their peak at around 0.20. Again, the distribution of 

eccentricities for planets orbiting in multistellar systems does not appear dissimilar to 

that for planets orbiting single stars, and is less different to that of the planets of the 

Solar System than it is for mass. 

This is shown in more detail in identically scaled Figure 6.  

The exoplanets are generally in smaller orbits than the average Solar System 

planet and their eccentricities are higher. The average eccentricity of S-type orbits is 

0.25 and that for P-type orbits is 0.16, with both being higher than the Solar System 

planets’ average of 0.08. 
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Figure 6. Exoplanets: eccentricity – semimajor axis distance, with stellar multiplicity 

and orbit type. 

For S-type orbits the gravitational force of the secondary star (or stars) is the main 

source of orbital perturbation, while P-type orbits’ stability is determined by the orbital 

geometry of the stars being orbited. 

One of the proposed explanations is that when the orbit of a close-in planet is 

excited by an outer companion planet, the planets’ gravitational interaction combined 

with tidal effects between the host star and the close-in planet can give rise to an 

increasing growth in the eccentricity of the close-in planet (Alexandre, Gwenaël & 

Jacques 2012).  

We will select eccentricities from a uniform distribution spanning the range 

from zero to almost one. 
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Orbital inclination and coplanarity 

Inclination is defined here as the angle of the orbit relative to the plane of the sky, and 

inclinations of over 90° represent retrograde orbits. The distribution of inclinations of 

the confirmed exoplanets, from the OEC database, are shown in Figure 7. 

 

Figure 7. Exoplanets: number of discovered orbital inclinations. 

The most common inclination found is 80°– 90°, by an order of magnitude. This is the 

natural result of the fact that most discoveries have been made by the transit method. 

While the above graph therefore tells one little about the actual distribution of 

inclinations, on the basis that future discoveries are likely to continue to be via the 

transit method, we will use this range of inclinations in our model. (Using a different 

definition, we will in fact use the equivalent 0°.) 

Turning to coplanarity, one early study determined that at least one third of 

triple stars have non-coplanar orbits (Fekel Jr 1981).  

Planetary orbits in the Solar System are close to coplanar and stable. If multiple 

stars form by hierarchical  fragmentation of a rotating cloud (Bodenheimer 1978) or by 
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fragmentation of a circumbinary disk (Bonnell & Bate 1994), similarly coplanar 

configurations would be expected. 

Close to 85% of Kepler's multi-planet systems are coplanar to within 3° as a 

consequence of the transit technique it used. However, several other studies from radial 

velocity searches reach a similar conclusion: that planets in multiple systems usually 

have very low mutual inclinations. This implies that these planets formed together 

inside a protoplanetary disc and did not experience any large gravitational perturbations, 

which would have increased their orbital inclinations. 

The relative orientation of inner and outer orbits in a triple or higher multiplicity 

system can be measured by the angle ∅ between angular momenta of the orbits. One 

expects totally uncorrelated orbital spins (∅ = 90°) for purely dynamical processes and 

correlated spins (∅ = 0°) for a cascade fragmentation of a rotating protostellar cloud. A 

coplanar system (∅ = 0°) will stay coplanar forever. Early studies showed that the 

available data could only be interpreted by involving a small degree of orbital 

momentum alignment (Tokovinin 1993). A later study of ∅ statistics showed that both 

extreme hypotheses (co-aligned and random orbital spins) could be rejected. The 

average ∅ was around 50° (Tokovinin 2000).  

Also, if a planetary system forms in a primordial binary system, the orbits of the 

planets and the companion star are expected to be essentially coplanar. If a planetary 

system forms around an initially single star, which becomes a binary later through an 

encounter, the orientation of the orbits of the planets is random with respect to the orbit 

of the companion star (Malmberg, Davies & Chambers 2007).  

Linking inclination with eccentricity, the Kozai effect was discovered over fifty 

years ago (Kozai 1962). This mechanism causes the eccentricity of a planet to vary 

periodically if the orbits of the planet and the companion star are sufficiently inclined. A 
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planetary system can be affected strongly by the presence of a companion star, even if 

the semimajor axis of the companion’s orbit is large. However, this is only true if the 

initial inclination between the orbital planes of the planet and the companion star is 

larger than a critical angle of 39.23°.  

It has been shown that for systems which have formed this way, around 80% 

will have an initial inclination above 39.23° and hence be in the region where the Kozai 

mechanism can be important (Malmberg, Davies & Chambers 2007). The Kozai 

mechanism will lead to an increase in the eccentricity of the outer planet, if the binary is 

not too wide. The increased eccentricity of the outer planet leads to strong planet-planet 

interactions in the system, which can lead to the ejection of one or more planets and also 

result in the remaining planets being left on more eccentric orbits than before.  

It has been pointed out (Perryman 2011) that, based on limited data, planets with 

the highest eccentricities (e > 0.8) tend to be accompanied by a stellar or brown dwarf 

companion. This suggests eccentricities are caused by the Kozai mechanism, in which 

hierarchical triple systems with high relative inclinations cause large-amplitude periodic 

oscillations of the eccentricity of the inner. The coupling of these Kozai oscillations 

with tidal friction (Kozai migration) may also lead to circular orbits for short-period 

planets. In multiple systems this may bring massive planets close to their stars and may 

explain why the most massive short-period planets are found in binary or multiple 

systems. 

A simulation of planetary orbits around triples (Verrier & Evans 2007) assumed 

all orbits to be coplanar, justifying this assumption on the basis that higher inclinations 

will be subject to Kozai instability, causing large variations in the stellar orbits, which 

would be expected to destabilize test particles rapidly. Their simulations always kept 

one star in a circular orbit. 
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Another assumption of coplanarity between the orbital plane of the binary and 

the planetary system was based on the fact that this should have only a secondary effect 

on the results, since planetary ejections from scattering do not occur strictly in the plane 

of the planetary system (Moeckel & Veras 2012). 

It has been predicted (Alexander 2012) that disks around close binaries with 

semimajor axes less than 1 AU live longer than those around single stars, but disk 

lifetimes decline as photoevaporation increases at larger binary semimajor axes. As a 

result, they predict a dearth of circumbinary planets around wide binaries with a > 10 

AU and an abundance of circumbinary planets in stellar binaries with a < 1 AU. It has 

also been predicted that circumstellar disks around binaries with a < 100 AU should be 

coplanar to the orbit of the binary. Thus any planets formed from such a disk are 

expected to be aligned with the binary's orbit (Bate et al. 2000).  

Also, most (85%) multi-planet systems have mutual inclinations of less than 3° 

(Julia & Jean-Luc 2012). 

For all these reasons we will assume coplanarity in the system under 

investigation. It appears that triple star systems tend to be coplanar, and that it is likely 

that any planets are also coplanar with the triple. This assumption will also simplify 

the modelling.  

2.4 Examining the integrators 

Selecting a test system 

In order to examine the capabilities of Mercury6, it was applied to two simple problems 

– first modelling a binary star system and then modelling an exoplanet in a P-type orbit 

around the binary, by approximating the system as a single star and planet. 
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HW Virginis, previously seen in Table 4, was selected for this test and 

approximation. It contained the first circumbinary planet to be detected around a host 

other than a pulsar (Lee et al. 2009), and is a triple system with its planet in a P-type 

orbit around the binary. A conceptual diagram of the geometry is shown in Figure 8. 

 

Figure 8. The HW Virginis system data, per Lee et al, 2009. 

The present age of HW Vir is estimated to be at most 12 Gyr. It comprises a very close 

binary consisting of a B-type subdwarf of mass 0.485 Ms and a red dwarf of 0.142 Ms 

orbiting each other with a period of 0.1167 days or 2.8 hours, with the planet orbiting 

this binary in 3 316 days or just over 9 yr and the third star, a brown dwarf of 0.0184 

Ms, orbiting the binary with a period of around 16 yr. The influence of the brown dwarf 

on the binary and planet is therefore likely to be small and it will be a good 

approximation to consider the system as a single star and planet.  

Another reason for this choice was that two detailed orbital analyses, also using 

Mercury6, have been done on this system, by (Beuermann et al. 2012) and (Horner et al. 
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2012) and can be used as a further check on results. Interestingly, while the studies were 

virtually contemporaneous, Beuermann found dynamically stable orbital solutions while 

Horner was unable to find any feasible orbits at all. (One possible reason was that 

Beuermann et al assumed that the eccentricity of the outer companion’s orbit was near-

circular and fixed, with a period of 55 yr.) If this is the case, the sensitivity of this type 

of numerical study to its assumptions is a bit disconcerting. We used both their sets of 

assumptions for this exercise. 

The parameters of the system, including the parameters proposed initially by 

Lee et al and later by Beuermann et al are shown in Table 9.  

 

Table 9. Parameters for the HW Vir system, from Lee et al. (2009) and Beuermann et al 

(2012). 

The eccentricity of the orbit of the binary is unknown. However, there is a direct 

correlation between the period of revolution of a binary star and the eccentricity of its 

orbit, with systems of short period having a lower eccentricity. It has been shown that 

for binaries with periods less than ~4.3 d (log P < 0.6), the individual eccentricities are 

Name HW Vir HW Vir (AB) b HW Vir (AB) C HW Vir (AB) b HW Vir (AB) C

RA 44:20.0

Dec -08:40:17

Magnitude 10.9

Spectral type sdB+M

Discovered in 2008

Detection method Eclipse Timing Variations

Parameter Unit

Mass A Ms 0.485±0.013

Mass B Ms 0.142±0.004

Total binary mass Ms 0.627±0.017 0.01861844

Separation abin AU 0.00399833 0.0468±0.0066 0.1551±0.0054

Eccentricity e -

Inclination i bin ◦ 80.92±0.36

Distance pc 181±20

T HJD 2 445 730.557123±2.5E-5 2 449 840 ± 63 2 454 500 ± 39 2 452 401 2 461 677 :

P d 0.11671959933±5.5E-10 3316 ± 80 5786 ± 51 4638.675 ± 73.1 20088.75 (fixed)

M sin i Ms 0.00809 ± 0.00040 0.01836 ± 0.000031 0.0136 ± 0.0009 0.062 ± 0.014

a sin i AU 3.62 ± 0.52 5.30 ± 0.23 4.69 ± 0.06 12.8 ± 0.2

e - 0.31 ± 0.15 0.46 ± 0.05 0.40 ± 0.10 0.05 :

ω ◦ 60.6 ± 7.1 90.8 ± 2.8 -18 ± 10 0 :

Beuermann (2012)Lee (2009)
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not significantly different from zero as a result of tidal interactions, as shown in Figure 

9 (Abt 2005). 

 

Figure 9. Eccentricities for 155 B0–B9.5 main-sequence spectroscopic and visual 

binaries against the logarithms of their periods. Note that systems with zero eccentricity 

are frequent in systems with periods of 0.5 – 10 days (log P = -3 to 1) and extend to 105 

days. 

An eccentricity of zero for the binary was therefore assumed. 

The fitted parameters for the planet and outer companion show they are both 

very large, with masses comparable to a gas giant and brown dwarf respectively, and 

have highly eccentric, probably mutually crossing orbits with separations that could see 

close encounters. Significant mutual gravitational interactions may therefore be likely, 

with dynamic instability being possible. These factors could make it a good test for the 

integrators. 
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Modelling the binary system 

In our modelling, HW Vir A was always considered the central body or Body 1, with 

HW Vir B denoted as Body 2. 

The benchmark used was the output from the Fortran program TwoStars (Carroll 

& Ostlie 2007), a binary star code available from the book’s site www.aw-

bc.com/astrophysics. Since this model calculates the Keplerian orbits analytically, the 

only sources of cumulative error over time would be due to numerical precision and 

roundoff. 

The inputs to the program were the binary’s parameters, which were input using 

the same number of significant figures as in Table 9, except for the period, which was 

truncated to four decimal places. The orientation of periastron was arbitrarily selected as 

zero for convenience and the binary’s center of mass velocity vector was also chosen to 

be zero. 

Examining the literature showed that the traditional number of time steps used in 

integrations is around 20 per orbit. A total number of time steps of 106 was chosen to 

ensure reasonable run times. This was therefore equal to 106/20 = 50 000 orbits, 

equivalent to 50 000×0.1167/365  16 yr. 

A few code modifications were made to TwoStars’s default program settings: 

(1) The binary parameters were hardcoded into the program for convenience. 

(2) The number of orbits was made the (only) input variable. 

(3) The time step was changed to 20 steps per orbit. 

(4) A timer was inserted to provide the elapsed (wall clock) computation time. 

The program was run on a laptop with the specifications shown in Table 10.

http://www.aw-bc.com/astrophysics
http://www.aw-bc.com/astrophysics
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Table 10. Specifications of computer used for simulations. 

The program was then compiled and run, requiring a computation time of 602s, as 

shown in Table 13. 

Running the program resulted in the z′ and y′ coordinates of the two bodies, 

shown by the inner orbit in Figure 10. The z′ - y′ plane lies in the plane of the sky and 

the x-axis points towards the observer. However, the z′ and y′ coordinates returned by 

TwoStars are from the observer's perspective. Because of the 80.9° inclination (which 

makes the system an eclipsing binary) the perspective is highly elongated, as seen in 

Figure 10. In the other algorithms we used a Cartesian coordinate system centred on 

HW Vir A, and to make them comparable we needed to transform TwoStars’s 

coordinates. This was easily done by inverting equations K1 to K3 in (Carroll & Ostlie 

2007) Appendix K, which results in 

𝑥 = 𝑥′ sin 𝑖 − 𝑧′ cos 𝑖                                                                                                     (3) 

𝑧 = 𝑥′ cos 𝑖 + 𝑧′ sin 𝑖                                                                                                     (4) 

where i is the inclination. 

Applying this transformation to the output data lead to the modified coordinates 

x and z shown in Figure 10. Since we chose an eccentricity of zero, the orbit was now 

circular, as expected. 

We then needed to compare the output from the various algorithms in Mercury6 

with this result. 

System

Processor Intel(R) Core(TM) i7-3630QM CPU @ 2.4GHz 

Total amount of system memory 16 GB RAM

System type 64-bit

Number of processor cores 4

GPU

Display adapter type NVIDIA GeForce GTX 670M

Total available graphics memory 10.984 GB
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Figure 10. TwoStars: the binary’s orbit in two coordinate systems. 

Before using Mercury6, it was first updated with a fix for a minor bug that had been 

discovered (de Souza Torres & Anderson 2008). 

The program was also modified with the insertion of a timer to provide 

computation time. Each of the Mercury6 algorithms was then run for 50 000 orbits. The 

code used for the timer and a typical set of input parameters are shown in Appendix C. 

The reference manual that discusses the algorithms, the parameters and some of their 

recommended values may be found at 

http://star.arm.ac.uk/~jec/home.html#publications. 

For convenience we often used Keplerian orbital elements for input and output, 

but in this particular comparison we selected Cartesian elements for the output in order 

for them to correspond with the output from TwoStars.  

We selected the argument of pericentre, the longitude of the ascending node and 

the mean anomaly to all be zero for convenience. Other key data are the masses of the 

-4.E-03

-3.E-03

-2.E-03

-1.E-03

0.E+00

1.E-03

2.E-03

3.E-03

4.E-03

-4.E-03 -3.E-03 -2.E-03 -1.E-03 0.E+00 1.E-03 2.E-03 3.E-03 4.E-03

y [AU]

z [AU]

TwoStars output TwoStars modified coordinates

http://star.arm.ac.uk/~jec/home.html#publications


47 

 

bodies and their density; these were calculated from the published masses and radii and 

are shown in Table 11. 

 

Table 11. HW Virginis components - mass and density. 

The maximum distance from the body (in Hill radii3) that constitutes a close encounter 

was set to its default of one. No external user-defined forces on the bodies were used. 

An initial time step of 0.00584 days, corresponding to 1/20th of an orbit, was used in 

each of Mercury6’s algorithms. Variable time step algorithms such as Bulirsch-Stoer 

and Radau may subsequently choose different time steps. The integration accuracy 

parameter was chosen as the default 10-12. It is ignored by the MVS algorithm. Medium 

precision, corresponding to roughly nine significant figures, was used. An escape 

distance from the central body of 4 AU, much smaller than for planetary systems, was 

chosen because of the much smaller mass of the central body and the very close orbit of 

its companion. For the output we chose a central origin for the elements rather than 

barycentric or Jacobi elements, since this is appropriate to this system and the 

approximation to it that will be made later. The usual Keplerian output elements were 

                                                 

3 An astronomical body's Hill (or Roche) sphere approximates the gravitational sphere of 

influence of this body in the face of perturbations from a more massive body – it is the region 

in which it dominates the attraction of satellites. The Hill radius RH  for a small body of mass 

m orbiting a larger body of mass M with a semi-major axis a and eccentricity e is defined as 

𝑅H = 𝑎(1 − 𝑒)√
𝑚

3 

3
 . 

System density estimate Body 1 Body 2 Combined

HW Vir A HW Vir B HW Vir AB

Mass Ms 0.485 0.142 0.627

Radius Rs 0.183 0.175 0.226

Density ρ (calculated) g/cm
3 111.70 37.40 77.03
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selected, together with the Cartesian positions for the orbiting body.  

A typical Mercury6 output is also shown in Appendix C. There were no close 

encounters reported in any of the simulations and none of the output files showed any 

changes in the orbital parameters of the bodies, except in the case of the hybrid 

algorithm, which showed a very small change in eccentricity, shown in Table 12.  

 

Table 12. Orbital elements at end of the integration. 

Any orbital changes were therefore very small in this undemanding and therefore 

probably very accurate simulation and we had to devise another method for measuring 

them. 

The performance of the algorithms was measured in two ways. First, the 

intrinsic error or drift of an algorithm was measured by comparing the coordinates of 

the calculated orbit at the beginning and at the end of the simulation. Second, on the 

assumption that the analytical TwoStars computation is exactly "correct", the orbits 

calculated by the other algorithms were compared with it, at the end of the simulations. 

In order to quantify the intrinsic error in the program, we compared the first and 

last orbits, represented by the plain line and marked line respectively in Figure 11, and 

measured the difference between them. In order to avoid too much dependence on just 

the first and last 20 points representing each orbit, we took the last 10 orbits of each, i.e. 

compared the first and last 200 points.  

Algorithm a  [AU] e i  [°] Mass [Ms ] Rot/day Obl

bs 0.00400 0.00000 90.80000 0.14200 0.00000 90.80000

bs2 0.00400 0.00000 90.80000 0.14200 0.00000 90.80000

hyb 0.00400 0.00040 90.80000 0.14200 0.00000 90.80000

mvs 0.00400 0.00000 90.80000 0.14200 0.00000 90.80000

rad 0.00400 0.00000 90.80000 0.14200 0.00000 90.80000
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Figure 11. Orbits at the beginning and end of the simulation. 

For the difference between orbits we selected as our goodness-of-fit metric the root 

mean square error (RMSE), represented for the z coordinates by 

𝑅𝑀𝑆𝐸𝑧 = √∑ (𝑧1, −𝑧2, )
2 

 =1

𝑛
                                                                                                          (5) 

where 𝑧1,𝑡  and 𝑧2,𝑡 represent the z-coordinates for the first and last orbits respectively at 

each time step t around the orbit and n is the total number of time steps. 

Similarly, for the y coordinates, 

𝑅𝑀𝑆𝐸𝑦 = √∑ (𝑦1, −𝑦2, )
2 

 =1

𝑛
                                                                                                         (6) 

and we measured the total error between the two orbits as 

𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = √(𝑅𝑀𝑆𝐸𝑧)2 + (𝑅𝑀𝑆𝐸𝑦)2                                                                      (7) 

Applying this method to TwoStars resulted in an 𝑅𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 of 4.32×10-3 AU.  
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The procedure was repeated for the other Mercury6 algorithms and the results are 

shown in Table 13.  

 

Table 13. Binary stars – comparison of integration algorithms. 

In terms of computation time, the simple analytical calculations of TwoStars made it 

faster than the other algorithms by a factor of over four. 

The difference between the run times of the Mercury6 integration algorithms 

was very small. This suggested that in this very undemanding problem, where there 

were only two bodies, no close encounters, collisions or ejections, the algorithms did 

not need to use their special capabilities, were all doing essentially the same elementary 

thing and were not fully utilised. 

The algorithms' performance in terms of changes in energy and angular 

momentum is shown in Figure 12.  

These two measures were usually fairly closely aligned. The smallest changes 

by far were from the MVS algorithm, followed by the two Bulirsch-Stoers (with the one 

for conservative systems performing slightly more poorly on both energy and angular 

momentum) and then Radau, which was roughly two orders of magnitude worse. The 

hybrid algorithm was quite different, with very dissimilar changes in energy and angular 

momentum; it produced the second-best performance on angular momentum but the 

worst one on energy. 

Algorithm Description Run Intrinsic error Algorithm error

time Energy Momentum

(s) (dE/E) (dL/L) First and last orbits*, Bulirsh-Stoer bs and

for algorithm. algorithm, for last orbit

TwoStars Analytical 2s 602 - - 4.32E-03 -

Bulirsh-Stoer (general) bs 2638 1.89E-10 9.46E-11 9.74E-04 0.00E+00

Bulirsh-Stoer (conservative systems) bs2 2639 6.83E-10 3.42E-10 9.73E-04 7.55E-07

Mercury6 Hybrid (symplectic/Bulirsh-Stoer) hyb 2530 1.61E-07 2.90E-13 8.56E-04 1.61E-03

Second order mixed-variable symplectic mvs 2637 2.72E-13 1.36E-13 9.68E-04 5.29E-06

Radau 15th order rad 2654 3.64E-08 1.82E-08 1.00E-03 2.68E-05

* Comparison of first and last 20 orbits

HW Vir B: Total RMSE difference between:

Change in:
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Figure 12. Binary stars – changes in energy and angular momentum for the algorithms. 

Nevertheless, all performances were very good – simulations are usually ignored only if 

these changes become as large as 10-4. 

Figure 13 shows the intrinsic errors for the various codes. The units of RMS 

error are AU. 

Surprisingly, however, TwoStars showed the highest drift, by a factor of over 

four. Even though it is written in double precision, it appears that roundoff errors may 

have had a negative effect over the duration of the simulation. Because of this high 

intrinsic error, our earlier assumption that this is the exactly “correct” solution to use as 

the benchmark for comparing the integration algorithms’ accuracies became 

questionable. It was therefore replaced by the general Bulirsch-Stoer as the benchmark 

against which the other algorithms’ orbits were compared.  
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Figure 13. Intrinsic and algorithm error for the algorithms. 

In terms of intrinsic error or drift, all the integrations had very similar RMS errors after 

50 000 orbits.  

At the end of these simulations, the conservative Bulirsch-Stoer showed the 

smallest RMSE difference from this benchmark, followed by MVS and Radau, with 

these three approximately an order of magnitude apart, and then the hybrid scheme, 

with an error over two thousand times larger. Nevertheless, all these RMS errors remain 

acceptable. For example, in the highest-error hybrid scheme, the maximum difference 

between this orbit and the general Bulirsch-Stoer orbit was less than 0.2%. 

The faster algorithms are less accurate. However, in more complex integrations, 

the algorithms with the larger errors may see these errors remain within acceptable 

limits but could begin to garner the benefit of faster computation times. 
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Modelling the binary exoplanet 

In this evaluation we modelled an exoplanet in a P-type orbit around the same binary, 

by approximating the system as a single star and planet.  

We first carefully calculated the coordinates of the planet’s orbit analytically and 

assumed this to be the “correct” benchmark. We then ran each of the integration 

algorithms for a large number of orbits and at the end of the simulations measured the 

amount by which their orbits differed from this benchmark. 

The benchmark used was the output from the program Orbit (Carroll & Ostlie 

2007), a binary star code available from the book’s site www.aw-bc.com/astrophysics.  

The Orbit procedure is a stepwise calculation of the planet's orbital path. Subject 

to a sufficiently small time step, the allowable error at the end of the calculated orbit is 

defined as the fractional amount by which either time or angular distance differ from 

that given for one full orbit, and is explicitly defined in the program as 10-15. We 

retained this value for the benchmark orbit. 

Since this model calculates the planet’s Keplerian orbit analytically over many 

small time steps, the only sources of cumulative error over time would again be due to 

numerical precision and roundoff. This error is affected by the size of the time step used 

and the error tolerance selected. 

The inputs to the Orbit program were the mass of the central “single” star, the 

semimajor axis of the planet’s orbit and its eccentricity. Approximating the system as a 

single star and planet, the mass of the central star was taken as the sum of the masses of 

HW Vir A and HW Vir B. It is assumed that this mass is located at the centre of mass of 

the two stars. It is actually unimportant whether it is located here or at HW Vir A or B, 

since this difference, of 0.003998/2  0.002 AU, is very small compared with the 

planet's semimajor axis of 3.62 AU, amounting to only 0.06% of this distance. The 

http://www.aw-bc.com/astrophysics
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notional radius and density of this single central star was calculated from the two 

components, as shown in Table 11. The radius and density of the planet are unknown 

and were set to the program default values of one. 

The orbital parameters were entered using the same number of significant 

figures as in Table 9, except for the period, which was truncated to four decimal places. 

For the input data asteroidal elements were again used and the central “single” body 

was chosen as the origin for the output elements. 

Since the scale of this system is far larger than that of the binary pair of stars, the 

ejection distance was increased to 100 AU. All the other parameters were retained and 

the accuracy parameter in particular was kept at 10-12. 

One million time steps were used around the orbit, with every 106/200 = 5 000th 

saved, resulting in an output of 200 points with which to compare the other algorithms. 

All these parameter values were hard-coded into the Orbit program for 

convenience, the program was modified to produce output in days as well as years and a 

timer was added. Mercury6 was then run and the planet’s orbit calculated. 

The period of the planet as calculated by the program (using Newton’s form of 

Kepler's third law) for the above parameters is 3 156 days, compared with Lee et al's 3 

316 days in Table 9, a 5% difference. 

The time step should now be approximately 1/20th of the orbital period or ~160 

days. An actual value of 157.824 days was selected to make the time steps exactly the 

same magnitude as in Orbit, so that the coordinates of the orbits from Orbit and 

Mercury6 could be compared at exactly the same times.  

The comparisons were made over exactly one thousand orbits, equivalent to 

8 642 yr. The 200 calculated points of the thousandth orbit calculated by the integration 

algorithms was then compared with the 200 points of the analytical solution. This is 
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illustrated in Figure 14, which shows the analytical orbit and some of the 200 

comparison points for the Bulirsch-Stoer algorithm. 

 

Figure 14. Coordinates of the planet after 1 000 orbits using the Bulirsch –Stoer 

algorithm, compared with the analytical orbit. 

All the other Mercury6 algorithms were then run. There were no close encounters 

reported in any of the simulations and none of the output files showed any change in the 

orbital parameters of the bodies, except a small difference for the planet in the case of 

the hybrid algorithm, as shown in Table 14.  

 

Table 14. Planet elements after 1 000 orbits. 

Algorithm a  [AU] e i  [°] Mass [Ms ] Rot/day Obl

bs 3.62000 0.31000 0.00000 0.00809 0.00000 0.00000

bs2 3.62000 0.31000 0.00000 0.00809 0.00000 0.00000

hyb 3.61890 0.30954 0.00000 0.00809 0.00000 0.00000

mvs 3.62000 0.31000 0.00000 0.00809 0.00000 0.00000

rad 3.62000 0.31000 0.00000 0.00809 0.00000 0.00000
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The differences in the planet’s semimajor axis and eccentricity were 0.03% and 0.15% 

respectively. 

The differences between orbits were again measured using RMS error. The 

results are shown in Table 15. 

 

Table 15. Binary exoplanet – comparison of integration algorithms. 

The analytical calculation of the planet’s orbit was very fast, with the integrations 

taking 300 times longer. There were no material differences between the times taken by 

the various algorithms. The changes in energy and angular momentum are shown in the 

table and also plotted in Figure 15. 

Generally, changes in energy were larger than changes in angular momentum. 

Taking a rough average of these two measures, the smallest changes were for the MVS 

algorithm, followed by Radau, the conservative Bulirsch-Stoer and then the general 

Bulirsch-Stoer.  

The hybrid scheme was again anomalous, with the lowest change in angular 

momentum (by three orders of magnitude compared with the next highest) but the 

highest on energy (by a large seven orders of magnitude compared with the next worst). 

Algorithm Description Run Algorithm error

time Energy Momentum HW Vir (AB) b: Total 

RMSE difference between:

(s) (dE/E) (dL/L) Bulirsh-Stoer (general) and

algorithm, for last orbit

Orbit Analytical orb 0.54 - - -

Bulirsch-Stoer (general) bs 160 1.95E-10 5.00E-11 9.8393E-01

Bulirsch-Stoer (conservative systems) bs2 162 1.65E-11 2.26E-12 9.8393E-01

Mercury6 Hybrid (symplectic/Bulirsh-Stoer) hyb 162 3.17E-04 2.91E-14 6.4289E+00

Second order mixed-variable symplectic mvs 162 9.86E-13 1.40E-13 9.8393E-01

Radau 15th order rad 157 2.13E-12 1.25E-12 9.8393E-01

Change in:
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Figure 15. Binary exoplanet – changes in energy and angular momentum for the 

algorithms. 

Turning to the algorithm errors or differences between orbits as shown in Table 15, the 

RMS errors are generally larger than for the binary star model, which was not 
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planet is a thousand times larger than that of the two binary stars and its period is 

28 000 times longer. As pointed out by Beuermann et al, who used an integration time 

step of 35 d, “The gravitational field at the position of a distant companion can be 

represented as the sum of the constant field created by the combined mass of the binary 

components and a gravitational wave, emanating from the revolving binary with periods 

of 2.8 h for the fundamental and 1.4 h for the first harmonic. The relative strength of the 

wave field is 4 ×10−8 and closely averages to zero over the 300 or 600 periods that occur 

in a time step of 35 d. The retroaction of the companion tends to excite an eccentricity 

in the binary, but with a relative strength of 10−8 this effect is also entirely negligible.” 

(Beuermann et al. 2012). 

A three-body model of the HW Virginis system 

We then went a step further in examining the capabilities of Mercury6, by retaining this 

assumption but expanding the model of the system by including HW Vir C in the 

integrations. 

The parameters used for HW Vir C’s mass (M sin i), semimajor axis and 

eccentricity were those proposed by Lee et al (2009) and shown in Table 9. This body 

was assumed to be coplanar with HW Vir (AB) b, i.e. to also have an inclination of 

80.92°. The integrations were begun with HW Vir C and HW Vir (AB) b at maximum 

periastron separation, i.e. the longitude of periastron of the outer body’s orbit with 

respect to the periastron of the inner body’s orbit was fixed at 180° initially. The 

unknown density of the outer body was set at the Mercury6 default value. The Bulirsch-

Stoer algorithms was used in this simulation, with the same time step of 157.824 d as in 

the previous integration.  



59 

 

The results for the two bodies, showing their semimajor axes, radial distances 

and eccentricities over time, are presented in Figure 16. The fractional changes in the 

energy and angular momentum of the three-body (central “body” and two companions) 

system at the end of the integration were very good, at 10-11 and 10-12 respectively. 

 

Figure 16. Three-body Bulirsch-Stoer integration: Lee et al (2009) proposed parameters. 
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The system was unstable, with HW Vir (AB) b being ejected at 205 171 days or 562 yr. 

As shown in the figure, its orbit was initially reasonably stable up to around 220 yr. 

However, over this period its eccentricity increased steadily from 0.31 to over 0.90. At 

this stage its semimajor axis expanded dramatically to over 30 AU and then at around 

450 yr it expanded further, to over 90 AU, before passing the program’s 100 AU limit a 

hundred years later and being deemed to be ejected.  

Clearly, HW Vir C was gravitationally affected by HW Vir (AB) b up until the 

planet's orbit expanded at 220 yr, after which the planet’s considerably diminished 

gravitational influence allowed the dwarf’s motion to become a very stable Keplerian 

orbit, undergoing only a small further adjustment at the next and final expansion of the 

planet's orbit. HW Vir C’s eccentricity ended up at 0.43, close to the 0.41 where it 

began, but the size of its orbit contracted from 5.3 AU to 3.3 AU with the ejection of the 

planet. The inclination of its orbit was unaffected. 

This simulation therefore supported the contention by Beuermann et al that Lee 

et al’s proposed orbits for the two bodies in this system are unstable. 

The simulation was then repeated using the parameters proposed by Beuermann 

et al, also shown in Table 9. The Bulirsch-Stoer algorithm was again used, as well as the 

assumption of coplanarity. The first simulation was done over a period of 165 yr, 

equivalent to three of the proposed orbital periods for HW Vir C. 

The results are shown in Figure 17. 
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Figure 17. Three-body Bulirsch-Stoer integration using Beuermann et al’s proposed 

parameters – short term. 
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The orbit of HW Vir C is also stable, but periodic. Over short time intervals, the 

periodicity is at the synodic period of the planet, i.e. 

𝑃syn  =  (𝑃HW Vir (AB) b
−1 − 𝑃HW Vir C

−1 )
−1

                                                                           (8) 

and is approximately 16 yr. The graphs shown are essentially identical to those 

published by Beuermann et al, 2012 and shown in Figure 18, confirming the correct 

operation of Mercury6. 

 

Figure 18. Temporal variation of the semimajor axes and the eccentricities of the 

osculating orbits of the companions to HWVir as calculated with Mercury6 (Beuermann 

et al, 2012). 
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The next step was to extend the integrations to 10 000 yr. In this case HWVir (AB) b 

collided with the central binary at 3 359 299 days or 9 197 yrs. The evolution of the 

orbits of the two bodies is shown in Figure 19. 

Figure 19. Three-body Bulirsch-Stoer integration using Beuermann et al’s proposed 

parameters – longer term. 
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For the planet, instability begins to set in after about 4 000 yr, with its semimajor axis 

contracting from 4.7 AU to 3.7 AU prior to collision and its eccentricity rising from an 

initial 0.41 to an highly elliptical 0.90. There were 17 close encounters with the central 

binary pair before the ultimate collision. 

For the dwarf, the planet’s instability began to affect it after 5 500 yr, with its 

semimajor axis increasing from an initial 12.8 AU to 17.7 AU and it’s eccentricity from 

a (notional) 0.05 to 0.30. On the removal of the planet it entered a stable Keplerian orbit 

at those values. 

It was useful to repeat the simulation using all the integration schemes and to 

compare their performance, as shown in Table 16. 

Table 16. Three-body Bulirsch-Stoer integration using Beuermann et al’s proposed 

parameters – longer term: comparison of algorithms. 

Surprisingly, the fastest algorithms are the two Bulirsch-Stoers, with the hybrid and 

MVS schemes taking 3-4 times longer, and the Radau lying somewhere in between. 

Looking at the changes in energy and angular momentum, also highlighted in 

Figure 20, while changes in angular momentum are similar to those in the two-body 

case, the change in energy was poor in both the hybrid case (as usual), but also for the 

MVS algorithm. Contrary to expectations, the non-Bulirsch-Stoer algorithms are both 

slower and perform worse on this measure, as well as taking longer. 

Algorithm Description Run

time d=10
-12

d=10
-16

Energy Momentum

(s) (dE/E) (dL/L)

Bulirsch-Stoer (general) bs 140 9 197 7 630 5.68E-10 1.24E-11

Bulirsch-Stoer (conservative systems) bs2 155 None 9 293 7.31E-10 5.16E-13

Mercury6 Hybrid (symplectic/Bulirsh-Stoer) hyb 566 1 953 2 448 2.12E-01 3.98E-14

Second order mixed-variable symplectic mvs 578 8 346 8 346 2.66E-05 4.21E-15

Radau 15th order rad 376 None 7 974 6.38E-14 1.37E-14

Change in:Time to collision/

ejection

(yr)
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Figure 20. Three-body system – changes in energy and angular momentum for the 

algorithms. 
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integration accuracy parameter. The other exit times differed from the previous ones by 

up to 25%. 

These results are therefore more aligned with those of Horner et al, who were 

unable to find any dynamically feasible orbits for the HW Vir system. 

It is sobering that while our results appear to be identical to Beuermann et al’s 

over a few orbits, they reach completely opposite conclusions on stability over longer 

periods, with these periods being much shorter than the commonly accepted 108 yr 

criterion for stability, even when the parameters used are the “best” ones chosen by 

Beuermann et al from their various simulations. As mentioned at the beginning of this 

section, these integrations appear quite sensitive to initial conditions, raising some 

concern about their robustness. 

Clearly, a lot more work can be done to establish the (in)stability characteristics 

of this system. 

Having examined the characteristics of the various algorithms in Mercury6, we 

then proceeded to use it to investigate HD 1818068. 

3. Results 

3.1 Stability of the HD 181068 stellar system 

Before searching the stability landscape for planets around the compact hierarchical 

triple system HD 181068, also known as the Trinity system, we first needed to check 

the stellar system’s dynamics using the published parameters (Borkovits et al. 2013). 

The notation used is that of Borkovits. A denotes the red giant, the main 

component of the wider A−B binary and the most massive and luminous component of 

the system, while Ba and Bb refer to the members of the close binary formed by the two 

red dwarfs. These symbols are also used as subscripts to physical quantities. 
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The system’s properties are listed in Table 17 (Borkovits et al. 2013; Derekas et 

al. 2011), where the numbers in parentheses are the estimated errors in the last digits. 

 

Table 17. Properties of the HD 181068 system, as measured by Borkovits et al. (2012). 

The binary red dwarfs Ba and Bb orbit each other with period of 0.906 d and the red 

giant A orbits the binary with a period of 45.5 d. Its mass of 3Ms is 1.7 times the total 

mass of the binary and its semimajor axis is eighteen times that of the binary. 

In binary systems the eccentricity is correlated with period; circular orbits 

dominate for periods below 10 days while longer-period systems have eccentricities 

ranging from 0.1 to almost 1.0, with an absence of circular orbits. Note that the 

proposed orbits of both subsystems are circular, with orbital inclinations of i ≅ 90°, and 

the mutual inclination of im = 0.8°1.4° suggests an exact coplanarity. This is not 

surprising given that the system is triply eclipsing. 

Because we were calculating orbital elements with respect to a single star in a 

triple star system of three objects of almost equal mass, Keplerian orbital elements with 

Star Ba Bb A

Description Red dwarf Red dwarf Red giant

Spectral type G8V K1V G

Mass [Ms] 0.915(34) 0.870(43) 3.0(1)

Radius [Rs] 0.865(10) 0.800(20) 12.46(15)

[AU] 0.00402 0.00372 0.05793

Density (calculated) [g cm
-3

] 1.995 2.398 2.189E-03

Subsystem Ba–Bb A–B

Period [d] 0.9056768(2) 45.4711(2)

a [Rs] 4.777(39) 90.31(72)

[AU] 0.02221 0.41987

e [-] 0 0

w [-] − −

i [°] 86.7(14) 87.5(2)

Δ [°]

i m [°]

0.0(5)

0.8(14)

Stellar parameters

Orbital parameters
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respect to one star did not make much sense. We could, however, use Cartesian 

coordinates (i.e. x, y, z, vx, vy and vz) instead. (While it probably made most sense to use 

barycentric coordinates, this was not important since we were not interested in looking 

at the actual orbits per se, but simply measuring the number of years of stability, i.e. no 

collisions or rejections, at any coordinate point.) 

As the Cartesian coordinates we selected modified Herschel astrocentric 

coordinates, which are commonly used for exoplanets. The formulas for converting 

Keplerian elements into these coordinates are shown in Appendix D. Astrocentric 

coordinates have a few drawbacks, e.g. in numerical integrations all bodies must be 

integrated with time steps smaller than the innermost body’s period, because of the 

high-frequency forcing this body introduces. 

The conservative Bulirsch-Stoer algorithm was chosen for integrating the triple; 

this is the only algorithm that will work for the multiple, close and massive bodies in 

this configuration, and it can also provide close encounter data and handle highly 

eccentric orbits. A time step of one twentieth the period of the binary, 0.05 d, was 

selected and an accuracy tolerance of 10-12 was used. Component Ba was chosen as the 

central body and central coordinates were used. An ejection was deemed to occur if a 

body’s distance from Ba exceeded 50 AU or approximately 900 times the outer 

semimajor axis (i.e. of A). The two bodies Bb and A were always aligned initially with 

both at pericentre, with their x-coordinates being the proposed semimajor axes distances 

and their tangential velocity components vy being the Keplerian velocities implied by 

the proposed orbital parameters. These were +0.1540 AU d-1 for Bb and -0.0580 AU d-1 

for A. They were launched on opposite sides of Ba, and Bb was given a positive vy 

velocity component. A was initially assumed to have a prograde orbit relative to Bb. An 

initial eccentricity of zero was assumed for both bodies, so their initial velocity 
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components vx were both zero. This eccentricity assumption is very probably true for Bb 

since the inner period is only ~1 d and this orbit is highly likely to have been 

circularized. The configuration described is shown schematically in Figure 21. 

 

Figure 21. Initial configuration of orbit geometry – stellar system. 

The evolution of the orbits of Bb and A relative to Ba over the first 10 days of the 
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Figure 22. Orbits of HD 181068 Bb and A - first ten days. 

The orbit of Bb is stable over this period. However, A’s x-coordinate immediately 

begins to slowly rise, with its y-coordinate increasing even more rapidly: A is being 

ejected. This is more clearly seen on the x-y plot in Figure 23. 

 

Figure 23. Orbital motion of A over ten days. 
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Here the binary is located at the origin and the arrows show the initial position and 

velocity components of A. The perturbation of A’s path by the ~1 d period of Bb is 

clearly evident. The results of extending the integration for a longer time are shown in 

Figure 24. 

 

Figure 24. Orbits of HD 181068 Bb and A – longer term. 
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The orbit of the binary remained stable over this period, while A continued to move 

away, being classified as ejected on reaching the 50 AU limit after 469 days. 

Since the proposed orbital parameters did not produce a stable orbit, it 

therefore became necessary to examine the stability region for the third star in this 

system. 

In investigating the stability region for body A, we noted that the uncertainty 

given by Borkovits et al for its period is 4.4×10-5 %, while that for its semimajor axis is 

two orders of magnitude larger at 8.0×10-3 %. We therefore assumed the period was 

correct and varied the semimajor axis. In Mercury6, while bodies defined as "small 

bodies" do not affect one another gravitationally, they do affect any "big bodies". One 

therefore cannot use a large number of massive test particles to check the orbit of, for 

example, A - they have to be massless test particles, otherwise they will all perturb Bb. 

The generation of large numbers of test particles for the program’s input files is 

fairly straightforward, and an example is given in Appendix G. 

We therefore launched 600 massless test particles with semimajor axes ranging 

from 0.1 AU to 0.7 AU into initially circular orbits around the binary, assuming an 

inclination of zero, and integrated for 25 yr (~9 200 d). No stable orbits were found. The 

subsequent unsuccessful searches for stable orbits are detailed in Appendix E. Finally, 

we explored the possibility that A’s initial velocity was different to that implied by the 

published parameters. 

We then launched 333 test particles from the same initial location, the system’s 

published semimajor axis of 0.4198 AU, with velocities vy  ranging from -0.0015 AU d-1 

to -0.5 AU d-1 (compared with the implied Keplerian value of -0.0580 AU d-1), and with 

vx = 0. These test particles were integrated for 200 yr. 
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After this period 39 particles remained. These were then integrated for 500 yr, 

after which 37 remained. Integrating these for 104 yr resulted in 36 survivors and further 

integrations of 4×104 yr and 105 yr saw no further ejections or collisions, indicating 

probable stability. Longer integration times were constrained by available computing 

power. However, this was compensated to some extent by the compactness of the 

system, since the number of orbits in any time period is higher than for the wider 

systems for which most dynamical analyses have been done.  

The initial velocities of the stable orbits found ranged from -0.027 AU d-1 

to -0.123 AU d-1. So velocities significantly greater than the Keplerian velocities 

implied by the orbital parameters resulted in stable orbits. The implication is that A’s 

eccentricity is not zero. 

On examining these orbits we found that while orbits that are stable up to 4×104 

yr are found over the initial velocity range from -0.027 AU d-1 to -0.123 AU d-1, this 

range is discontinuous, with stable regions from -0.027 AU d-1 to -0.045 AU d-1 and 

from -0.09 AU d-1 to -0.123 AU d-1, with an unstable gap from -0.045 AU d-1 to -0.09 

AU d-1.  

Using the uncertainties given for the published period and semimajor axis, the 

resulting uncertainty around body A’s implied velocity can be calculated to 

be -0.058480.00046 AU d-1. The published orbital parameters imply a velocity that, 

together with its uncertainty range, falls well inside this unstable region. This explained 

the difficulty in finding stable orbits using this value as a starting point.  

It was also substantially easier to find stable retrograde orbits than stable 

prograde orbits. In an initial investigation of the parameter space for orbits, we took 

1000 massless test particles, with semimajor axes a = 0.4198 AU, eccentricities e = 0 

and tangential orbital velocities vy ranging from -0.0002 AU d-1 to -0.2 AU d-1 (i.e. with 
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velocity increments -2×10-4 AU d-1) and launched them in both prograde and retrograde 

orbits. 

All the prograde test particles either collided with the central body or were 

ejected past a 500 AU ejection limit, with none surviving longer than 39 yr. However, 

of the retrograde particles, 279 or over a quarter were still in stable orbits after 104 yr.  

This was noted in the literature some time ago, e.g. (Donnison & Mikulskis 

1995), and in the specific case of hierarchical triples with an inner binary it was found 

that retrograde systems are more stable for all mass ranges. It was also found that for 

those systems in which the binary eccentricity is small the retrograde orbits are more 

stable, while for systems with both large binary and outer-body eccentricities the 

prograde orbits tend to be more stable.  

A wider, higher-resolution search was then made for the prograde case - over the 

range -0.0001 AU d-1 to -1.0 AU d-1 using 10 000 test particles (i.e. with a velocity 

increment of -10-4 AU d-1). Again, no stable orbits were found. 

(A minor modification to the Mercury6 code was necessary to do this, as the 

number of bodies is limited to 2 000.) 

Usefully, these large parameter space searches are in fact quite fast, since most 

end in failure, and the collisions and ejections usually occur quite soon. This is 

illustrated in Figure 25, which shows, for a typical simulation that had no survivors, the 

attrition of an initial set of test particles over time. Over 97% of the 695 test particles 

failed in the first 11 d or 4% of the simulation time. 

There was often a clear demarcation in velocity where the cause of failure 

changes from collisions to ejections, with this transition usually showing longer survival 

times, making this a possibly promising region. 
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Figure 25. Attrition over time of a group of test particles. 

This transition was at -0.0145 AU d-1, so the range -0.014 - -0.015 AU d-1 was 

investigated with another10 000 test particles, giving a velocity increment of -10-7 AU 

d-1. However, no orbits survived for more than 1 200 yr. 
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stable orbit, we were therefore forced to conclude that despite the determinations of 

Borkovits et al, it appears that there may be a higher probability that stable orbits of 
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Figure 26. Initial velocities for which stable retrograde orbits result. 

The implications were that: 

• If the orbital parameters of body A were correct, its orbit was unstable, or 

• If its orbit was stable, the orbital parameters for A (and/or for Ba-Bb) were 

incorrect.  

Since the ages of all three stars in the system are estimated at 200 – 500 Myr and 

assuming they were formed together rather than one component being captured, the 

second possibility appeared more likely.  

If we assume that the orbital period of body A is correct, then the only way for 

the orbital velocity vy to fall into the low-velocity range shown in Figure 26 is for the 

body's semimajor axis to be smaller than the given 0.4198 AU, assuming the given 

eccentricity of zero is correct. It can be calculated that this semimajor axis would lie in 

the range 0.195 AU - 0.326 AU. If the eccentricity was greater than zero, this semimajor 

axis could be smaller. 
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Similarly, the only way for the orbital velocity to fall into the high-velocity 

range would be for its semimajor axis to be materially higher than the given value, 

again assuming an eccentricity of zero. This higher value can be calculated to be above 

0.65 AU. Again, higher eccentricities would allow this value to be smaller. 

If, however, we assume that the published value of the semimajor axis is correct, 

then the only way a higher orbital velocity can be achieved (at the same coordinate 

point) is for the eccentricity to be greater than zero. Again, this can be calculated, which 

shows that for the low-velocity range an eccentricity greater than 0.42 would be 

required. 

These simulations used test particles in order to quickly survey a wide range of 

orbital velocities, since one can integrate a number of test particles simultaneously but 

have to do massive test bodies one by one. We now needed to integrate the dwarf body 

A as a massive body of 3.0 Ms over the velocity ranges that appeared stable using the 

test particles. 

The logical next step was therefore to formally examine the stability landscape 

of the system for body A by constructing an a - e stability diagram. 

Since there are six orbital elements for each star, the system constitutes a 

6 × 6 × 6 dimensional space, so some simplifying assumptions were needed to make the 

investigation feasible. First, all orbits were taken as coplanar; this assumption is 

probably correct, as discussed earlier. Second, the initial orientation of the three stars 

was fixed. This leaves only the semimajor axes and the eccentricities as free parameters. 

These were taken as given for the binary, so we needed only to vary these two 

parameters for body A. The two bodies Bb and A were always initially aligned with 

both at pericentre. 
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We monitored conservation of total energy and angular momentum for the 

integration. Using an initial time step of 0.05 d (~1/20 of the binary’s period) and an 

error tolerance of 10−12 leads to an overall fractional change in the system energy ΔE/E 

of about 10−7 or better over a 105 yr integration. This can be considered the maximum 

time the system can be followed accurately. The fractional angular momentum change 

was usually around 10−8. With the computing power available, the practical upper 

limited on integration time was 105 yr and the simulations discussed are typically for 

this time.  

A grid of values of semimajor axis a ranging from 0.10 AU to 1.00 AU 

incrementing by 0.005 AU, and eccentricities from 0 to 0.9 incrementing by 0.1, was 

used and was integrated for 105 yr. An orbital period of 45.4711 d was used and the 

other orbital elements were fixed at: argument of pericentre w = 0, mean anomaly M = 0 

and, assuming coplanarity as discussed, inclination I = 0. Stability was then measured 

by computing the survival time in years of the orbit at each grid point. 

Orbits were deemed to have failed if body A collided with the binary or was 

ejected. An ejection distance of 5 AU was set. Most failures were collisions with the 

central binary rather than ejections. 

It was again found that orbital failures tend to occur very quickly - if an orbit did 

not fail within 10 yr, it was usually stable up to 105 yr. While longer integration times 

are always desirable, the fact that the system is compact works in our favour: 105 yr is 

equivalent to over 800 000 orbits of the outer body A. 

The results are shown in Figure 27. 
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Figure 27. Stability map of HD 181068. 

Stable orbits were found in only a minor portion of the parameter space examined. The 

region of stability reflected an inverse relationship between the semimajor axis and the 

eccentricity of stable orbits. For orbits of zero eccentricity the region of stability lay 

between semimajor axes of ~0.70 AU – 0.90 AU. For high eccentricities approaching 

one, the semimajor axis of stable orbits declined to around 0.40 AU.  

The orbital parameters given by Borkovits et al of a = 0.4198 AU and e = 0 

represent a point that appears to lie well outside the region of stability. The implication 

is that if this semimajor axis is correct, the eccentricity of the orbit must be very high, 

or, if the eccentricity is correct, the semimajor axis must be significantly larger, possibly 
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around 0.80 AU. We assumed that the given semimajor axis was more likely to be 

correct and investigated the eccentricities required for stability. 

It appears from Figure 27 that this semimajor axis may lie inside the stable 

region at high eccentricities, so we constructed a higher-resolution map of the area 

enclosed by the box in Figure 27. This zoomed-in region of the stability map is shown 

in Figure 28. 

Figure 28. Stability map of HD 181068 – zoomed-in region. 

The semimajor axis of 0.4198 AU intersects the stable region at eccentricities lying 

between 0.825 and 0.900. The most probable value is estimated as 0.8560.015. Note 

that the survival times in the stability maps are smoothed. The actual data is in 

Appendix G. 
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While this is an intriguing result, there are some caveats.  

First, integration times of 105 yr are insufficient. With an estimated age of the 

stellar system of 300 Myr -500 Myr, integration times should be comparable to this. 

Therefore, as a further check, the point representing our most probable parameters and 

another four points immediately surrounding it, as indicated by the boxed region in 

Figure 28, were integrated for 106. All these orbits were found to be stable over this 

period. 

Second, the maps are of relatively low resolution, which may leave some large 

areas of stability or instability unrevealed.  

Third, each point in the stability maps consist of only one simulation. It was 

noticeable that even small changes in the input parameters can have a large effect on 

survival times, sometimes even changing a point from being stable to unstable and vice 

versa. It is good practice to take the average of multiple survival times at each point 

using slightly different initial conditions; some research has used an average of 40 

simulations. This was not done here because of computational limitations. 

Also, the influence of orbital inclination on these results was not examined. 

High inclinations will lead to Kozai instability, resulting in even larger variations in the 

stellar orbits 

The final caveat arises from the wide variety of trajectories of the stable orbits. 

For example, Figure 29 shows the trajectory of a particle with initial velocity vy 

= -0.12 AU d-1 over its first 362 days, which brings it almost to a full orbit around the 

binary. 
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Figure 29. Body A: vy = -0.120 AU d-1, orbit over 362 d. 

This is clearly not an “osculating” Keplerian orbit. Because it is plotted using central 

coordinates centred on Ba, the body shows a scalloped trajectory arising from the 

gravitational influence of Bb’s orbit, with the wavelength of this scalloping increasing 

as its orbit speeds up close to the binary and vice versa. In barycentric coordinates the 

trajectory would be a smooth ellipse. Note that the eccentricity of this orbit is not zero 

as suggested by the published orbital parameters, and the semimajor axis is much larger 

than the 0.4198 AU of these parameters. 

Because the period of the orbit of the inner binary is not an exact multiple of the 

orbital period of A, subsequent orbits precess, and their evolution over 200 yr is shown 

in Figure 30. 
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Figure 30. Body A: vy = 0.120 AU d-1, orbits over 200 yr. 

The movement of the precessing orbits is bounded. While all the orbits we found for the 

triple were well-behaved, this will not necessarily be true for any planets. Their orbits 

could be chaotic. Nevertheless, if chaotic orbits completely fill an orbital space, 

although they are not “stable” in the traditional sense, they are bounded.  

Chaos is a term used to describe a system with nonrepeating motion over a given 

timescale - it is deterministic but unpredictable because of high sensitivity to initial 

conditions. Stability describes the ‘‘boundedness’’ of a system; a system is stable if 

changes in its evolution are confined to a certain range. Therefore, one of the most 

fundamental features of a chaotic system is stability. For example, a chaotic system can 

be stable in that the orbits of the bodies do not interchange or become unbound, and the 

oscillations of orbital elements such as eccentricity occur over a finite range. This 

illustrates an important dichotomy in chaotic systems - a system may be formally 

unstable, but, for all practical purposes, it is in fact stable. With “stable chaos” one can 
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predict the general orbital evolution reasonably well but not the exact position of the 

bodies in their orbits. 

To determine the type of motion of the computed orbits, one has to use either 

long-term orbital computations and analysis, or a chaos indicator, such as the fast 

Lyapunov indicator, which is quite a quick tool to distinguish between regular and 

chaotic motion. 

While all the orbits indicated as such in the stability map are stable, even small 

differences in the estimated orbital parameters may result in large differences in orbital 

trajectories. Since these stellar orbits are variable, the initial orbital configurations may 

not define the stable regions well. This could lead to different stability landscapes for 

any planets in the system. It is therefore probably very important to establish the orbital 

parameters of stellar component A precisely. 

Borkovits et al believe there is strong evidence that the orbits of Bb and A are 

both circular, based on: 

(1) The radial velocity solution of Derekas et al. 2011, which suggested that both 

orbits are circular. Derekas et al calculated their orbital solutions by the method 

of differential corrections. The eccentricity from the fit was e = 0.022 ± 0.023, 

consistent with zero, and in the final solution they set e = 0 because its inclusion 

as a free parameter did not improve the solution. 

(2) By the observed locations and shapes of the secondary minima with respect to 

the primary minima in both the close and wide orbits. 

However, our admittedly rudimentary analysis suggests that, in addition to the direction 

of A’s orbit, the combination of semimajor axis and eccentricity proposed by Borkovits 

et al may be incompatible with dynamic stability. 
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We therefore made the provisional assumption that the orbit of body A is 

described by a = 0.41986 AU and e = 0.856, with the remaining parameters as given by 

Borkovits et al, and used this as the geometry of the compact stellar system around 

which we investigated the stability landscape for planets.  

The trajectories of the orbits using these selected parameters are interesting. The 

time series for the first few orbits of body Bb are shown in Figure 31 

 

Figure 31. Position and velocity of body Bb over time. 

The orbit of Bb is almost, but not perfectly, circular. This is more clearly seen by 

plotting its x – y coordinates, as shown in Figure 32. The starting point and direction of 

Bb’s orbits are indicated by the arrow. 
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Figure 32. Initial orbits of Bb. 

Bb’s orbit is not perfectly circular because we are using central coordinates centred on 

Ba, and Bb (as well as Ba) is actually orbiting around their mutual centre of mass. Over 

time, these orbits cover a well-defined region, as shown in Figure 33.  

   

Figure 33. Region filled by the orbits of Bb over (a) 2.7 yr and (b) 19.8 yr. 

Figure 33(a) shows the location of Bb at each of the first 20 000 time steps. Since each 
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time step is 0.05 d, this represents the first 2.74 yr of this body’s evolution.  

This cloud map shows that the region that the orbits fill becomes perfectly 

circular and it also defines the width of the annular space that the orbits fill. Using a 

longer period of time defines this region more crisply. For example, using 145 000 time 

steps, equivalent to 19.8 yr, resulted in the region shown in Figure 33(b). 

The width of the annulus, i.e. the radial variation in Bb’s orbit, is approximately 

0.006 AU, or 28% of its average orbital radius of 0.0221 AU.  

Turning to body A, the evolution of its first few orbits is shown in Figure 34. 

 

Figure 34. Initial orbits of A. 

This unusual-looking orbit approximates a square, and at first sight appeared quite 

improbable. However, it is in a non-inertial reference frame, and is consistent with, and 

simply a more extreme version of, the scalloped orbit shown in Figure 29. Here the size 

of the orbit has been reduced to the extent that the central binary completes 
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approximately only four orbits in the orbital period of A, compared with the numerous 

orbits it completed within the far larger orbit shown in Figure 29. (In fact, reducing the 

size of A’s orbit even further, so that the binary completes only three orbits in A’s 

orbital period, could in principle lead to a triangular orbit!) There is only one mention of 

square orbits in the literature (also in a non-inertial frame), which has received only one 

citation (Stagg 1984). 

Again, the shape of the orbit is because we are calculating orbital elements with 

respect to one star in what is a triple star system with 3 almost equal mass objects (3.0, 

0.915 and 0.87 solar masses). Using barycentric coordinates, as shown in Figure 35, 

results in elliptical orbits as expected. 

 

Figure 35. Initial orbits of A – barycentric coordinates. 

Again, the orbit is not perfectly circular and show some precession. Over time this 

results in the cloud map shown in Figure 36(a), which plots the position of A over the 
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first 2.7 yr or 20 000 points. 

   

Figure 36. Region filled by the orbits of A over (a) 2.7 yr and (b) 19.8 yr. 

Generating more points by following the body for just under 20 yr resulted in a better-

defined orbital region for A, as shown in Figure 36(b). 

Here the width of the annulus is wide, at approximately 0.034 AU or 55% of the 

average orbital radius of 0.063 AU. 

A few examples illustrating the wide variety of stable orbits (in central 

coordinates) and their space-filling regions are shown in Figure 37. All these orbits 

were stable to 105 yr.  

The shape of orbits, while interesting, is, however, irrelevant to our purpose, 

which is to find stable orbits. The stability of an orbit is, of course, independent of the 

coordinate system one elects to view it in. 
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a = 0.4198 AU, e = 0.60 

 

a = 0.4250 AU, e = 0.00 

 

a = 0.4375 AU, e = 0.00 

Figure 37. Stable orbits for body A – (a) first orbit, (b) cloud map of 20 000 time steps 

(~3 yr), (c) cloud map of 226 500 points (~30 yr). 
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a = 0.4437 AU, e = 0.80 

 

a = 0.5000 AU, e = 0.70 

 

a = 0.7000 AU, e = 0.20 

Figure 37 (continued). Stable orbits for body A – (a) first few orbits (b) cloud map of 

20 000 time steps (~3 yr) and (c) cloud map of 226 500 points (~30 yr). 
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3.2 The habitable zone of HD 181068 

Before establishing any regions of orbital stability for planets around the compact triple, 

we calculated the bounds of the habitable zone (HZ), since we would want to know 

where these stable regions intersected the HZ of the system.  

The HZ of a star is given by the distances of an annulus around it where, with 

sufficient atmospheric pressure, water on the surface of a planet can remain liquid. A 

more general concept that takes into account the average time a planet spends in the HZ 

is the eccentric habitable zone (EHZ). Definitions of the habitable zone are given in, 

e.g. (Elser, Grimm & Stadel 2013) and (Jones, Sleep & Chambers 2001). A habitable 

planet is then often defined as a rocky planet of mass ~1 M⨁ up to that of a super-earth 

(~10M⨁), located in the habitable zone of its host star. 

The HZ for single star systems defined by stellar irradiation has been discussed 

by a number of sources, most notably by Kasting (Kasting, Whitmire & Reynolds 

1993), recently updated by Kopparapu (Kopparapu et al. 2013), who provide formulas 

for the inner and outer boundaries of the habitable zone. The HZ of planets in S-type 

orbits has been considered in detail by Eggl (Eggl et al. 2013). The above principles 

have been generalised to circumbinary systems (Kane & Hinkel 2013) and can be 

similarly extended to multistellar systems. 

For a single star, the extent of the habitable zone is primarily controlled by the 

star–planet separation, and is calculated as a function of both the flux received and the 

peak wavelength of the energy distribution, but it is also affected by orbital eccentricity, 

planet rotation, heat sources other than stellar irradiation and atmospheric properties 

including circulation.  

For a multistellar system, the multiple sources of flux results in the locus of the 

HZ no longer being spherical and becoming more complex. The apparent HZ bounds 
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will also be time-dependent as a result of the orbital motion of the central stars. An 

additional perturbation will also be caused by the changing separation between the stars, 

which will result in a complex insolation of the HZ as the stars orbit around their centre 

of mass. In addition, the flux received by the planet varies as a result of its orbit. For 

example, the variation in flux resulting from the factors mentioned previously will be 

enhanced at the planet’s periastron. 

For compact triples specifically, the HZ can often be approximated by 

considering the triple as a single star. It has been demonstrated for binaries that the 

circumstances under which this approximation holds depends only on the stellar masses 

and separations (Kane & Hinkel 2012). 

The effective temperature and luminosity of the three components of HD 

181068 are shown in Table 18, together with the limits of their individual HZs assuming 

they were isolated. The HZ limits were calculated from the equations given by 

Kopparapu et al. 2013, which require effective temperature and stellar luminosity as 

inputs, using his calculator provided at www3.geosc.psu.edu/~ruk15/planets/.  

 

Table 18. Stellar parameters and habitable zones for HD 181068 bodies. Data from 

Borkovits et al. 2013, estimate of habitable zone from Kopparapu et al. 2013. 

Since star A dominates in terms of luminosity, as a first approximation its habitable 

zone provided us with a lower bound of ~10 AU-17 AU for the width of the HZ of the 

system. 

Star Ba Bb A

Mass [Ms] 0.915(34) 0.870(43) 3.0(1)

Radius [AU] 0.00402 0.00372 0.05793

Effective temperature Teff [K] 5100(100) 4675(100) 5100(100)

Luminosity L/Ls [-] 0.447(37) 0.270(27) 92.812(7615)

HZ distance from star - max [AU] 0.68 0.54 9.83

- min  [AU] 1.20 0.96 17.25

http://www3.geosc.psu.edu/~ruk15/planets/
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As a better approximation we assumed that the luminosity of the three stars of 

the triple are additive. The total luminosity was therefore 93.529 Ls. We could then 

calculate the equivalent effective temperature from the Stefan-Boltzmann Law for a 

blackbody 

𝑇𝑒𝑓𝑓 = (
𝐿

4𝜋𝑅2
)

1
4
                                                                                                                       (9) 

where 𝑇𝑒𝑓𝑓 = temperature of body [K] 

 𝐿 = total luminosity of the body [W] 

𝑅 = radius of equivalent body [m2] 

𝜎 = Stefan − Boltzmann constant [5.67×10−8 W m−2 K−4] 

The equivalent radius 𝑅 in terms of the individual stellar radii is given by 

𝑅2 = 𝑟𝐵𝑎
2+𝑟𝐵𝑎

2 + 𝑟𝐴
2
                                                                                                             (10) 

R and Teff were calculated to be 0.0582 AU and 5 078 K respectively. Using these 

values moved the HZ out only marginally, with inner and outer limits increasing to 9.87 

AU and 17.35 AU.  

3.3 The search for planets 

While component A had to be represented by a massive body in the analysis of the 

stellar system as it affects the other stars, since planets are significantly smaller they 

could be represented by massless test particles, which are defined in Mercury6 as 

particles which perturb and interact with all the large, massive bodies in the system but 

do not perturb one another and cannot collide with each other. 

In the search for planets the conservative Bulirsch-Stoer algorithm was again 

used, with a time step of one twentieth the period of the binary or 0.05 d and an 
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accuracy tolerance of 10-12. The central body was component Ba, the "big" body was 

Bb, and central coordinates were again used.  

The upper limit of semimajor axes used in the simulations was chosen to have 

the same gravitational influence as our Solar System has as far out as Pluto. Since the 

total stellar mass of the triple is 4.785 Ms, and Pluto's mean distance from the Sun is 

40.7 AU, from the inverse square law this limit of influence for the triple is 

√4.785 (40.7 AU) 90 AU. An ejection limit of 500 AU was used. 

The lower limit for the semimajor axes used was determined by the stability 

zone. From equation (2) and Figure 2, for the system’s mass ratio of 1.68, if the 

eccentricity is 0.856, the semimajor axis stability ratio is 44.3. The stability zone will 

therefore have an inner limit of 44.3×0.02221 AU  1 AU - the stable region begins 

well inside the HZ. The region between the binary and body A at 0.4198 AU was 

therefore not searched for planets.  

A full eccentricity range, from 0 to almost 1 was used. Low eccentricities are 

more likely for planets closer to the triple, as shown in Figure 38. 

A quick survey of a few similar analyses (Holman & Wiegert 1999; Horner et al. 

2012; Verrier & Evans 2007; Wittenmyer et al. 2011) showed that the average 

increment used for semimajor axes was 0.8 AU and the average increment in 

eccentricity was 0.08. For this analysis increments of 1.0 AU and 0.10 respectively were 

selected.  

The resolution of the stability map would therefore be similar to these previous 

studies, but computational constraints restricted the upper limit on survival times to 105 

yr. As mentioned previously, the compactness of the stellar system results in a relatively 

high number of orbits within any time period, which mitigates the effect of this 

restriction to some extent. 
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Figure 38. Exoplanet eccentricity versus period. Planets detected from radial velocity 

observations (317 planets from exoplanets.org, 2010), with those orbiting single stars 

shown as open circles and those in binary or multiple systems as filled circles. 

(Perryman, 2011) 

Once again, coplanarity was assumed, giving orbital inclinations of zero, and the other 

orbital parameters were fixed at zero as before. Test particles were launched in initially 

circular orbits, with all bodies beginning from their pericentre. Both prograde and 

retrograde orbits (relative to A) were investigated. 

In calculating the Cartesian orbital elements, test particles’ periods in years were 

derived directly from Kepler’s third law  

𝑇 = √
4𝜋2𝑎3

𝐺𝑀
                                                                                                                              (11) 

where a is the semimajor axis, G is the gravitational constant, M is the total mass of the 

stellar triple, all in consistent units, and it was assumed that there are 365.25 days in a 

year.  
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The plane around the triple was first searched using a and e as parameters. 

The initial, preliminary search launched 100 test particles between 1 AU and 10 

AU in increments of 1 AU, with eccentricities ranging from 0 to 0.9 in increments of 

0.1. Prograde orbits were used, with the particles being launched on the opposite side of 

the binary to body A. This is shown schematically in Figure 39. 

 

Figure 39. Initial configuration of orbit geometry – planet search. 

The region 100 AU - 200 AU was then similarly searched, with all the other parameters 

remaining unchanged, using 1 010 test particles. 

Then the area close to the triple, from 0.1 AU to 10 AU, was searched in smaller 

increments of 0.1 AU and also finer increments of eccentricity of 0.05. A total of 1 900 

test particles were used. 

The region 1 AU - 90 AU was then searched using various combinations of 

prograde and retrograde orbits and with test particles being launched on both the same 

and opposite sides of the binary relative to A. Each of these six simulations used 900 

test particles. 

The next simulation selected the most likely scenario, i.e. retrograde orbits with 

an opposite-side launch, and examined the same region at a higher resolution, using 

semimajor axis increments of 0.5 AU and eccentricity increments of 0.02, requiring a 

total of 8 771 test particles. In this case the ejection limit was raised from 500 AU to 

1000 AU. 
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Finally, an even higher resolution search was conducted in the habitability zone 

of 10 AU - 20 AU using a smaller semimajor axis increment of 0.1 AU. 

No stable orbits were found in any of these simulations. The longest survival 

times were only of the order of hundreds of years. 

The next searches were conducted using a different approach, by selecting 

various arbitrary semimajor axis distances and searching a range of orbital velocities vy 

at these points, with test particles again being launched on initially circular orbits. 

The distances selected were 1 AU, 10 AU and 100 AU. The ejection limits used 

were 500 AU, 1 000 AU and 10 000 AU respectively. At each point the velocities 

selected ranged from approximately one quarter the implied Keplerian velocity to four 

times this value. The factor of four was used because this was the multiple by which the 

actual velocity of body A exceeded its Keplerian value in the analysis of the stellar 

system. 

The first four simulations used retrograde orbits and opposite-side launches. In 

each case 1 000 test particles were used. These simulations were then repeated for 

prograde orbits. 

The range of velocities was then expanded, with the upper limit becoming a 

factor of 10 greater than the Keplerian value. This range was applied to the 10 AU case, 

for both retrograde and prograde orbits with opposite-side launches, using 3 290 test 

particles in each case. 

Again, no stable or even long-lived orbits were found. 

A summary of the parameters used in the simulations is shown in Table 19. 
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Table 19. Summary of planet searches.  
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In total, the region 1 AU - 100 AU was searched in increments ranging from 1 

AU to 0.1 AU and eccentricities varying from 0 to 0.96 in increments ranging from 0.1 

to 0.02, and orbital velocities spanning 0.001 AU d-1 - 0.1258 AU d-1, using a total of 

33 810 test particles, without success. 

There is no reason why there should not be stable orbits - if one goes out far 

enough, distant particles should see the stellar system essentially as a point mass, and 

there is absolutely no fundamental reason why all bodies should be ejected. There are a 

few puzzling aspects to this lack of stable orbits. 

(1) Most orbit failures are ejections. Most of these trajectories are straight lines 

away from the initial position and perpendicular to the line joining the three 

bodies, irrespective of the test particle's initial velocity. Figure 40, in barycentric 

coordinates, shows a few initial time steps (of 0.05 d) in a test particle’s typical 

ejection path. The arrows indicate the initial position and velocity for the bodies. 

 

Figure 40. Initial time steps in an ejection: x-y position coordinates. 
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In this example the test particle was placed at its starting point with no velocity 

at all. In the very first time step it acquired a vy velocity component which 

remained constant thereafter, and no x-velocity, despite the initial location of the 

other two bodies on the x-axis. The velocities are shown in Figure 41, where the 

arrows indicate the initial velocities. After one time step, A’s velocity remained 

where shown. 

 

Figure 41. Initial time steps in an ejection: vx-vy velocity coordinates. 

How the particle acquired a vy velocity component, and a positive one, is not 

clear. 

(2) We then went back to the HW Virginis simulation and removed the 

approximation of the binary being a point mass, splitting it into its two binary 
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(3) The HD 181168 triple was then simplified by consolidating the central binary 

into a single mass, and some of the previous searches shown in Table 19 

repeated. For example, picking an arbitrary semimajor axis of 20 AU and 

searching a wide range of orbital velocities at that point resulted in no stable 

prograde orbits. However, many retrograde orbits were stable up to 105 yr. The 

two regions of stable orbital velocities are shown in Figure 42. 

 

Figure 42. At 20 AU - initial velocities for which stable retrograde orbits resulted. 

The key point is that these velocities are approximately 16 times the appropriate 

Keplerian value. The only way these high velocities can be achieved is if the 

orbits are highly eccentric. To generate the lowest velocity shown in Figure 42, 

an eccentricity of over 0.998 is required. This may be related to the high 

eccentricity of the stellar component A. 

Why only highly eccentric orbits are stable, for both A and for the test particles, 

remains a puzzle. 
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These puzzling aspects suggest that perhaps the algorithm is not appropriate to the 

problem. While Mercury6 worked well in configurations such as the original HW 

Virginis approximation and appeared to model the three components of the triple well, 

the addition of a fourth body in both these cases led to seemingly unrealistic results. As 

mentioned previously, the different coordinate scheme used for test particles may not 

work for objects such as compact, comparable-mass triples. Mercury6 was designed to 

have a dominant body plus much smaller bodies, like a planetary system, which HD 

181068 clearly is not. So even while the Bulirsch-Stoer algorithm is robust, it has been 

embedded in a package structured for systems unlike the compact triple. 

We can, of course, simplify the triple even further, by consolidating all three 

components into a single central mass. This would provide a first-order approximation 

of the stability landscape around the central mass. Doing this for 1 000 test particles 

covering semimajor axis distances from 1 AU to 90 AU and eccentricities from 0 to 0.9 

lead to orbits with a wide range of survival times, with a large number surviving beyond 

106 yr. It must be noted, however, that while momentum conservation ΔL/L was 10-12, 

energy conservation ΔE/E was poor at 10-2. The resulting a-e stability map is shown in 

Figure 43. 

The data does not appear to contain much information. The broadest trend is that 

for the stable regions, eccentricity increases with semimajor axis distance, which is 

consistent with the data in Figure 40. The region of stability is divided by a finger of 

instability at around 50 AU, suggesting two separate islands of stability, one centred at 

around 20 AU with eccentricities in the region of 0.4, and another at about 75 AU with 

much higher eccentricities of around 0.6. 
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Figure 43. Stability map for HD 181068 as a point mass. 

4. Summary and conclusions 

In this study we identified the small number of stellar triples that are compact enough to 

possibly harbour exoplanets in P-type orbits around them. From these we selected and 

analysed the hierarchical triple HD 181068, using the N-body integrator Mercury6 to 

determine the stability of the stellar triple as well as of possible planetary orbits around 

it. Published empirical stability criteria suggested that the stellar system should be 

stable. For the system to become unstable, the triple’s outer orbit would have to be quite 

eccentric, with an eccentricity of over 0.67. 
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However, a stability map of the stellar system, using orbits stable to 105 yr, 

showed a stability zone for the outer body which differed from the published orbital 

parameters of e = 0 and a = 0.4198. For orbits of zero eccentricity the region of stability 

lay between semimajor axes of ~0.70 AU - 0.90 AU, while for the given semimajor axis 

the stable region had eccentricities in the region of 0.825 - 0.900. Generally, retrograde 

orbits were found to be more stable than prograde ones. While the analysis had 

relatively low resolution and survival times, the general pattern was unambiguous. The 

reason for this difference from the published parameters is unknown.  

We therefore made the provisional assumption that the orbit of body A is 

described by a = 0.41986 AU and e = 0.856, with the remaining parameters as 

published. Orbits in this region were shown to be stable up to 106. We then used this as 

the geometry of the compact stellar system around which we investigated the stability 

landscape for planets.  

The limits of the habitability zone were calculated to be 10 AU - 17 AU. The 

plane around the triple was then comprehensively searched for planets, using 33 810 

test particles. The region 1 AU - 100 AU was searched in increments ranging from 1 

AU to 0.1 AU and eccentricities from 0 to 0.96, in increments ranging from 0.1 to 0.02; 

orbital velocities spanned 0.001 AU d-1 - 0.1258 AU d-1. No stable orbits were found.  

It appears that the addition of a fourth body leads to poor performance from the 

algorithm; this was also found when tested in the case of HW Virginis. So although the 

most robust algorithm within the Mercury6 integrator was used, we concluded that this 

package, which was originally designed for configurations comprising one central 

dominant body, probably became inappropriate for a compact triple system of three 

almost equal-mass stars, possibly in the coordinate system for its test particles, i.e. in 

the original splitting of the Hamiltonian for the assumed configuration.  
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Simplifying the model by consolidating the central binary into a single body 

resulted in stable but very highly eccentric orbits. Again, the reason for this is unclear 

and may be related to the high eccentricity of stellar body A. Further simplification of 

the stellar system yielded a planetary stability map out to 90 AU, but computational 

limitations meant that its resolution was not sufficient to extract detailed conclusions. 

The analysis needs to be extended by identifying the best N-body algorithm for this 

particular system and by increasing the resolution of its output. 

5. Further work 

There are two key aspects to tackle. 

The first is to crosscheck these results using a different algorithm. The best 

candidate is Herve Beust’s HJS (Hierarchic Jacobi Symplectic) add-in for Hal Levison's 

Swift package. HJS was specifically designed to symplectically integrate multiple 

stellar systems, i.e. systems with more than one massive centre, provided they have an 

hierarchical structure. However, attempts to compile Swift under Windows were 

problematic; it will probably be better to use a Linux environment for this. 

The second is to address the fact that a large constraint in the study was 

computational. The integrations were slow because of the algorithm used and also the 

computational power available. 

(1) The Bulirsch-Stoer algorithm is very robust but slow. The faster symplectic 

algorithms in Mercury6 cannot be used for this particular problem. Again, the 

Swift/HJS package should be significantly faster. 

(2) On the computing platform used, integrating 100 test particles over 105 yr used 

28 hours of running time, equivalent to ~0.01 sec particle-1 year-1. To construct a 

reasonably high-resolution a – e plot would need around 1 000 points on each 
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axis, or 106 test particles. Smoothing the results by averaging over, say, 20 

simulations using different initial conditions would therefore be equivalent to 

20×106 test particles. Integrating these for the commonly accepted 108 yr on the 

current platform would therefore take around 5×109 yr of computation time, 

which would be tedious. Access to more computing power is necessary. This 

more limited study required computing power approximately five orders of 

magnitude greater than that available.  

Nevertheless, this application remains a small-N problem and this computing 

requirement is far less demanding than for large-N problems such as galaxy evolution. 
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Appendices 

Appendix A: Exoplanet nomenclature 

From medbib.com/Extrasolar_planets#cite_ref-EPE55Can_57-0 

Multiple-star standard 

The standard for naming exoplanets is an extension of the one used by the Washington 

Multiplicity Catalog (WMC) for multiple-star systems.  

The brightest member of a system receives the letter "A." Distinct components not 

contained within "A" are labelled "B", "C", etc. Sub-components are designated by one 

or more suffixes with the primary label, starting with lowercase letters for the 2nd 

hierarchical level and then numbers for the 3rd. For example, if there is a triple star 

system in which two stars orbit each other closely while a third star is in a more distant 

orbit, the two closely orbiting stars would be considered a component with two 

subcomponents. They would receive the designations Aa and Ab, while the third star 

would receive the designation B. (For historical reasons, this standard is not always 

strictly followed. For example, the three members of the Alpha Centauri triple star 

system are conventionally referred to as Alpha Centauri A, B and C while the formal 

standard would give their designations as Alpha Centauri Aa, Ab and B respectively.) 

Extrasolar planet standard 

Following an extension of the above standard, an exoplanet's name is normally formed 

by taking the name of its parent star and adding a lowercase letter. The first planet 

discovered in a system is given the designation "b" and later planets are given 

subsequent letters. If several planets in the same system are discovered at the same time, 

the closest one to the star gets the next letter, followed by the other planets in order of 

http://medbib.com/Extrasolar_planets#cite_ref-EPE55Can_57-0
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orbit size. 

For instance, in the 55 Cancri system the first planet – 55 Cancri b – was discovered in 

1996; two additional farther planets were simultaneously discovered in 2002 with the 

nearest to the star being named 55 Cancri c and the other 55 Cancri d; a fourth planet 

was claimed in 2004 and named 55 Cancri e despite lying closer to the star than 55 

Cancri b; and the most recently discovered planet, in 2007, was named 55 Cancri f 

despite lying between 55 Cancri c and 55 Cancri d. 

If a planet orbits one member of a binary star system, then an uppercase letter for the 

star will be followed by a lowercase letter for the planet. Examples are 16 Cygni Bb and 

HD 178911 Bb. Planets orbiting the primary or "A" star should have 'Ab' after the name 

of the system, as in HD 41004 Ab. However, the "A" is sometimes omitted; for example 

the first planet discovered around the primary star of the Tau Boötis binary system is 

usually called simply Tau Boötis b. 

If the parent star is a single star, then it may still be regarded as having an "A" 

designation, though the "A" is not normally written. The first exoplanet found to be 

orbiting such a star could then be regarded as a secondary sub-component that should be 

given the suffix "Ab". For example, 51 Peg Aa is the host star in the system 51 Peg; and 

the first exoplanet is then 51 Peg Ab. Since most exoplanets are in single star systems, 

the implicit "A" designation was simply dropped, leaving the exoplanet name with the 

lower-case letter only: 51 Peg b. 

A few exoplanets have been given names that do not conform to the above standard. For 

example, the planets that orbit the pulsar PSR 1257 are often referred to with capital 

rather than lowercase letters. Also, the underlying name of the star system itself can 
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follow several different systems. In fact, some stars (such as Kepler-11) have only 

received their names due to their inclusion in planet-search programs, previously only 

being referred to by their celestial coordinates. 

Circumbinary planets and the 2010 proposal 

Hessman et al. state that the implicit system for exoplanet names utterly failed with the 

discovery of circumbinary planets (Hessman et al. 2010). They note that the discoverers 

of the two planets around HW Virginis tried to circumvent the naming problem by 

calling them "HW Vir 3" and "HW Vir 4", i.e. the latter is the 4th object – stellar or 

planetary – discovered in the system. They also note that the discoverers of the two 

planets around NN Serpentis were confronted with multiple suggestions from various 

official sources and finally chose to use the designations "NN Ser c" and "NN Ser d." 

The proposal of Hessman et al. starts with the following two rules: 

Rule 1. The formal name of an exoplanet is obtained by appending the appropriate 

suffixes to the formal name of the host star or stellar system. The upper hierarchy is 

defined by upper-case letters, followed by lower-case letters, followed by numbers, etc. 

The naming order within an hierarchical level is for the order of discovery only. (This 

rule corresponds to the present provisional WMC naming convention.) 

Rule 2. Whenever the leading capital letter designation is missing, this is interpreted as 

being an informal form with an implicit "A" unless otherwise explicitly stated. (This rule 

corresponds to the present exoplanet community usage for planets around single stars.) 

They note that under these two proposed rules all of the present names for 99% of the 

planets around single stars are preserved as informal forms of the IAU-sanctioned 

provisional standard. They would rename Tau Boötis b formally as Tau Boötis Ab, 
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retaining the prior form as an informal usage (using Rule 2, above). 

To deal with the difficulties relating to circumbinary planets, the proposal contains two 

further rules: 

Rule 3. As an alternative to the nomenclature standard in Rule 1, a hierarchical 

relationship can be expressed by concatenating the names of the higher order system 

and placing them in parentheses, after which the suffix for a lower order system is 

added. 

Rule 4. When in doubt (i.e. if a different name has not been clearly set in the literature), 

the hierarchy expressed by the nomenclature should correspond to dynamically distinct 

(sub-) systems in order of their dynamical relevance. The choice of hierarchical levels 

should be made to emphasize dynamical relationships, if known. 

They submit that the new form using parentheses is the best for known circumbinary 

planets and has the desirable effect of giving these planets identical sub-level 

hierarchical labels and stellar component names which conform to the usage for binary 

stars. They say that it requires the complete renaming of only two exoplanetary systems: 

the planets around HW Virginis would be renamed HW Vir (AB) b and (AB) c, while 

those around NN Serpentis would be renamed NN Ser (AB) b and (AB) c. In addition, 

the previously known single circumbinary planets around PSR B1620-26 and DP 

Leonis can almost retain their names (PSR B1620-26 b and DP Leonis b) as unofficial 

informal forms of the "(AB) b" designation where the "(AB)" is left out. 

The discoverers of the circumbinary planet around Kepler-16 followed Hessman et al.'s 

proposed naming scheme when naming the body Kepler-16 (AB)-b, or simply Kepler-

16b when there is no ambiguity.  
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Appendix B: Extracting star system frequencies from the NASA Exoplanet 

Archive 

The object was to extract discoveries by the type of star system, i.e. to list planets: 

(1) orbiting one star of a binary system,  

(2) orbiting two stars of a binary system (circumbinary orbit), 

(3) orbiting one star of a triple system, 

(4) in a circumbinary orbit of the two stars of a triple system,  

(5) orbiting three stars of a triple system (circumtriple orbit). 

While the NASA Exoplanet Archive database includes information on stellar 

multiplicity, this is not currently searchable from the confirmed planet table.  

The easiest way to identify planets which may fall into these categories is to 

look at the host name column in exoplanetarchive.ipac.caltech.edu/cgi-

bin/ExoTables/nph-exotbls?dataset=planets. Stars with a capital letter at the end are part 

of a multiple system. One can then click twice on the i icon, and click on Confirmed 

Planet Overview. The stellar multiplicity information is under Stellar Information in the 

column control panel on the left. One must click the Stellar Companions box and then 

update. 

The new information appears at the bottom of the page and lists the known 

companions. The Washington Double Star Catalog (WDS) (where much of the 

companion information comes from) includes some very wide separations where the 

stars may not be dynamically bound. By comparing the stellar separations and the 

planet-star separation, one can distinguish between circumbinary planets and planets 

around one star in a binary system.  

http://exoplanetarchive.ipac.caltech.edu/cgi-bin/ExoTables/nph-exotbls?dataset=planets
http://exoplanetarchive.ipac.caltech.edu/cgi-bin/ExoTables/nph-exotbls?dataset=planets
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Appendix C: Mercury6 timer code and input/output files 

Timer code added 

!Timer variables 

real(4) :: time1, time2 

!Start timer 

time1=secnds(0.0) 

 

<Bulk of program> 

 

! Stop timer and write 

time2=secnds(time1) 

WRITE (*,'(A,F8.2)') "Time (sec):", time2 

Input files 

File big.in 

)O+_06 Big-body initial data  (WARNING: Do not delete this line!!) 

) Lines beginning with `)' are ignored. 

)--------------------------------------------------------------------- 

 style (Cartesian, Asteroidal, Cometary) = Asteroidal 

 epoch (in days) = 2451000.5 

)--------------------------------------------------------------------- 

 HWVIRB    m=0.142 r=1. d=37.4 

 0.00399833 0. 80.9 0. 0. 0. 

  0. 0. 0. 

 

File element.in 

)O+_06 element  (WARNING: Do not delete this line!!) 

) Lines beginning with `)' are ignored. 

)--------------------------------------------------------------------- 

 number of input files = 1 

)--------------------------------------------------------------------- 

) List the input files, one per line 

 xv.out 

)--------------------------------------------------------------------- 

 type of elements (central body, barycentric, Jacobi) = Central 

 minimum interval between outputs (days) = 0.005835 

 express time in days or years = days 

 express time relative to integration start time = yes 

)--------------------------------------------------------------------- 

) Output format? (e.g. a8.4 => semimajor axis with 8 digits & 4 dec. places) 

 a8.5 e8.6 i8.4 r8.4 y8.6 z8.6 x8.6 

)--------------------------------------------------------------------- 

) Which bodies do you want? (List one per line or leave blank for all bodies) 
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File param.in 

)O+_06 Integration parameters  (WARNING: Do not delete this line!!) 

) Lines beginning with `)' are ignored. 

)--------------------------------------------------------------------- 

) Important integration parameters: 

)--------------------------------------------------------------------- 

 algorithm (MVS, BS, BS2, RADAU, HYBRID etc) = bs 

 start time (days) = 2451000.5 

 stop time (days) = 2454503.5 

 output interval (days) = 5.835e-3 

 time step (days) = 5.835e-3 

 accuracy parameter = 1.d-12 

)--------------------------------------------------------------------- 

) Integration options: 

)--------------------------------------------------------------------- 

 stop integration after a close encounter = no 

 allow collisions to occur = no 

 include collisional fragmentation = no 

 express time in days or years = days 

 express time relative to integration start time = yes 

 output precision = medium 

 < not used at present > 

 include relativity in integration= no 

 include user-defined force = no 

)--------------------------------------------------------------------- 

) These parameters do not need to be adjusted often: 

)--------------------------------------------------------------------- 

 ejection distance (AU)= 4. 

 radius of central body (AU) = 8.5079d-4 

 central mass (solar) = 0.485 

 central J2 = 0 

 central J4 = 0 

 central J6 = 0 

 < not used at present > 

 < not used at present > 

 Hybrid integrator changeover (Hill radii) = 3. 

 number of time steps between data dumps = 1 

 number of time steps between periodic effects = 1 
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Output files 

File element.out 

Time (days):         3503.00000              a        e       i      mass    Rot/day  Obl 

HWVIRB     0.0040 0.00000  80.900 1.4200E-01  0.000  80.900 

 

File info.out 

           Integration parameters 

 

   Algorithm: Bulirsch-Stoer (general) 

 

   Integration start epoch:          2451000.5000000 days  

   Integration stop  epoch:         2454503.5000000 

   Output interval:                       0.006 

   Output precision:                 medium 

 

   Initial time step:                0.006 days  

   Accuracy parameter:              1.0000E-12 

   Central mass:                    4.8500E-01 solar masses 

   J_2:                              0.0000E+00 

   J_4:                              0.0000E+00 

   J_6:                              0.0000E+00 

   Ejection distance:                  4.0000E+00 AU 

   Radius of central body:          8.5079E-04 AU 

 

   Includes collisions:                 no  

   Includes fragmentation:          no  

   Includes relativity:                  no  

   Includes user-defined force routine: no  

 

   Number of Big bodies:        1 

   Number of Small bodies:      0 

 

 

           Integration details 

           ------------------- 

 

   Initial energy:           -2.54850E-03 solar masses AU^2 day^-2  

   Initial angular momentum:  9.46056E-05 solar masses AU^2 day^-1  

 

 WARNING: No Small bodies are present. 

 

   Integrating massive bodies and particles up to the same epoch. 

 

   Beginning the main integration. 
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   Integration complete. 

 

   Fractional energy change due to integrator:    1.89168E-10 

   Fractional angular momentum change:           9.45841E-11 

 

   Fractional energy change due to collisions/ejections:  0.00000E+00 

   Fractional angular momentum change:                        0.00000E+00 

   Time (sec):  2638.13 

File element.out 

                            HWVIRB   

 

    Time (days)         a        e        i        r        y        z        x    

            0.00000  0.00400 0.000000  80.9000   0.0040 0.000000 0.000000 0.003998 

            0.00584  0.00400 0.000000  80.9000   0.0040 -.000017 0.001236 0.003802 

            0.01167  0.00400 0.000000  80.9000   0.0040 -.000033 0.002351 0.003234 

            0.01750  0.00400 0.000000  80.9000   0.0040 -.000045 0.003236 0.002348 

            0.02334  0.00400 0.000000  80.9000   0.0040 -.000053 0.003803 0.001232 

            0.02918  0.00400 0.000000  80.9000   0.0040 -.000056 0.003998 -.000004 

            0.03501  0.00400 0.000000  80.9000   0.0040 -.000053 0.003801 -.001240 

            0.04084  0.00400 0.000000  80.9000   0.0040 -.000045 0.003231 -.002355 

            0.04668  0.00400 0.000000  80.9000   0.0040 -.000033 0.002345 -.003239 

            0.05251  0.00400 0.000000  80.9000   0.0040 -.000017 0.001228 -.003805 

            0.05835  0.00400 0.000000  80.9000   0.0040 0.000000 -.000008 -.003998 

            0.06418  0.00400 0.000000  80.9000   0.0040 0.000017 -.001244 -.003800 

            0.07002  0.00400 0.000000  80.9000   0.0040 0.000033 -.002358 -.003229 

            0.07586  0.00400 0.000000  80.9000   0.0040 0.000045 -.003241 -.002341 

            0.08169  0.00400 0.000000  80.9000   0.0040 0.000053 -.003806 -.001224 

            0.08752  0.00400 0.000000  80.9000   0.0040 0.000056 -.003998 0.000013 

            0.09336  0.00400 0.000000  80.9000   0.0040 0.000053 -.003798 0.001248 

            0.09919  0.00400 0.000000  80.9000   0.0040 0.000045 -.003226 0.002362 

            0.10503  0.00400 0.000000  80.9000   0.0040 0.000033 -.002338 0.003244 

            0.11086  0.00400 0.000000  80.9000   0.0040 0.000017 -.001220 0.003808 

            0.11670  0.00400 0.000000  80.9000   0.0040 -.000000 0.000017 0.003998 

…etc 
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Appendix D: Coordinate conversion 

The conversion of Keplerian elements to the modified Herschel astrocentric coordinates 

that use the sky as the reference plane and are commonly used for exoplanets are 

described by (Dvorak 2008). A schematic view is shown in Figure D1.  

 

Figure D1. The rotated astrocentric reference frame showing the orbital plane and the 

plane tangent to the celestial sphere (sky). The origin of the angles is the point γ. 

Modified from Dvorak 2008. 

The cartesian coordinates and velocities are given by 

𝑥 = 𝑟[cos 𝑓 cos𝑤 − sin 𝑓 sin𝑤] 

𝑦 = 𝑟[cos 𝑓 sin𝑤 cos 𝐼 + sin 𝑓 cos𝑤 cos 𝐼] 

𝑧 = 𝑟[− cos 𝑓 sin𝑤 sin 𝐼 − sin 𝑓 cos𝑤 sin 𝐼] 

𝑣𝑥 = −
2𝜋𝑎

𝑇√1 − 𝑒2
 [sin(𝑓 + 𝑤) + 𝑒 sin𝑤] 

f

 =  
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𝑣𝑦 = +
2𝜋𝑎 cos 𝐼

𝑇√1 − 𝑒2
 [cos(𝑓 + 𝑤) + 𝑒 cos𝑤] 

𝑣𝑧 = −
2𝜋𝑎 sin 𝐼

𝑇√1 − 𝑒2
 [cos(𝑓 + 𝑤) + 𝑒 cos𝑤] 

where 𝑟 is the magnitude of the radius vector and is given by 

𝑟 =
𝑎(1 − 𝑒2)

1 + 𝑒 𝑐𝑜𝑠 𝑓
 

𝑎 = astrocentric semi − major axis [AU] 

𝑒 = eccentricity [−] 

𝑖 = inclination [°] 

𝑇 = orbital period [yr], which may be obtained directly from Kepler′s third law 

𝑓 = true anomaly [°] 

𝑤 =  𝑔 − 𝜋 where 𝑔 is the argument of periapsis/pericentre/perihelion [°] 

Note that the longitude of the ascending node  is fixed at  = 𝜋. 

The true anomaly can be calculated from the eccentric anomaly 𝐸 by 

 𝑓 = arcos (
cos𝐸 − 𝑒

1 − 𝑒 𝑐𝑜𝑠𝐸
) 

and 𝐸 can be calculated iteratively from the mean anomaly 𝑀 by 

𝐸 − 𝑒 sin𝐸 = 𝑀 

In the simulations we generally assumed M = 0, so E = 0. 

Note that if 𝑖 = 0,  becomes meaningless. 
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Appendix E: The search for stable orbits of component A 

We first launched 600 massless test particles with semimajor axes ranging from 0.1 AU 

to 0.7 AU into initially circular orbits around the binary, assuming an inclination of 

zero, and integrated for 25 yr (~9 200 d).The results are shown in Figure E1. 

 

Figure E1. Survival times for test particles with semimajor axes 0.1 AU – 0.7 AU and 

50 AU ejection limit, 25 yr. 

The orbits were generally unstable, with survival times of less than 10 000 d. Close to 

the binary, survival times were less than 10 d. They then tended to increase rapidly as 

one moved away from the binary, as one would expect, with stability peaking above 

1 000 d at around 0.2 AU. Subsequently, however, survival times again declined. This 

was unexpected - the further from the binary one is the more it will behave as a point 

mass and the more stable the orbits should be. 

No orbits were stable - all test particles were either ejected or collided with the 

central binary, with 83% ejected and 17% colliding. 
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There was a local peak of relative stability in the region beginning around 

0.108 AU and ending close to 0.114 AU, with survival times reaching a peak of just 

over 1 000 d at 114 AU.  

Zooming into this region and integrating for 100 yr (36 525 d) resulted in the 

distribution shown in Figure E2. 

Figure E2. Survival times for test particles with semimajor axes 0.107 AU – 0.117 AU 

and 50 AU ejection limit, 100 yr. 

Survival time increased rapidly in this region, but were still short, peaking at 33 085 d 

or 90 yr at a distance of 0.11615 AU. The drop-off from high levels of survival times to 

the new region of six days was instantaneous. 

In this region, only 3% of the test bodies were ejected, with 97% colliding. 

The global peak began at 0.191 AU, with survival times suddenly jumping 

tenfold to over 3 000 d and peaking at just over 9 000 d at a semimajor axis of 

0.201 AU.  
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In comparison, the survival time using the semimajor axis given by Borkovits et 

al of 0.4198 AU was only 810 d. These survival times were too short – it was estimated 

by Borkovits et al that the age of this system is ∼300 – 500 Myr. 

Examining the trajectory of the orbit with the longest survival time in the region 

shown in Figure E2 resulted in the orbit shown in Figure E3. 

 

Figure E3. Longest survival time orbit, at 0.11615 AU. 

This particle did not actually orbit the binary, it moved away in a very wide and highly 

elliptical orbit (as can be seen from the axes scales) before returning and colliding with 

the binary. 

It is important to note that no particles were stable - all were ejected or collided. 

In fact, it turns out that there were no ejections but only collisions: the ejections were 

an artefact of the 50 AU limit used, and the very wide orbits that the particles entered 
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into exceeded this arbitrary limit. So many "ejections" were extremely wide, eccentric 

orbits ending in a collision with the binary on their return. 

Some of the relatively high survival times were not because the particles were in 

stable orbits around the binary but were simply reflections of their orbital velocities 

being relatively low, with the particles therefore taking a longer time to reach the 50 AU 

ejection cut-off. 

The slow decline in survival times after the 0.2 AU peak is a manifestation of 

this: since the larger the initial semimajor axis of the particle is, the closer it is to the 

50 AU cut-off, with a shorter time being required to reach this limit. This may be seen 

in Figure E4, which covers the region from the binary out to 30 AU. 

 

Figure E4. Survival times for test particles with semimajor axes 0.1 AU – 30 AU and 50 

AU ejection limit, 25 yr. 

We therefore extended the ejection limit out to 10 000 AU and repeated the integration 

shown in Figure E1, also integrating for a longer period of 200 yr. The results are 
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shown in Figure E5. 

 

Figure E5. Survival times for test particles with semimajor axes 0.1 AU – 0.7 AU and 

10 000 AU ejection limit, 200yr. 

Increasing the ejection limit resulted in half the particles appearing “stable" up to 200 

yr. Orbits with semimajor axes less than 0.202 AU saw particles colliding with the 

central binary. The closer the orbit the sooner this collision generally occurred, although 

again there was a region of relative stability from 0.108 AU - 0.116 AU. For orbits 

greater than 0.500 AU in semimajor axis, the particles were ejected. Collisions claimed 

17% of the particles and ejections 33%. The slow decline in survival times in the 

ejection region past 0.5 AU was again apparent. 

However, once again none of the ostensibly "stable" orbits were circular and 

repetitive, they were again very wide, highly elliptical orbits that had not yet reached 

the 10 000 AU ejection limit, but would do so given more time. 
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This raised the question of what caused these wide orbits, since the particles 

were initially launched in circular orbits with a velocity of (-vy, vx = 0) in Figure E3.  

There were two possibilities that required investigation: 

(1) Gravitational perturbation from the binary almost immediately introduces a 

nonzero vx velocity component, which initiates a highly eccentric orbit. 

(2) The magnitude of the initial velocity is too high, directly causing large orbits. 

Addressing the first possibility, the nonzero vx velocity component can be seen 

in Figure 23 in the main text. Indeed, Figure E3 is Figure 23 extended in time. Since 

body A of the triple system is relatively close to the binary, any strong nonzero x-

component of velocity will send a particle on a non-circular orbit, either on a probable 

collision course with the binary or almost diametrically away from it, resulting in a 

long, highly elliptical orbit which ends close to where it began, with a correspondingly 

high probability of collision with the binary. 

This implies that the source of orbital instability for the third star is simply its 

proximity to the other two, and the closer it orbits to them, the greater the likelihood of 

its instability. 

Since always initiating an orbit with a zero vx component of velocity guarantees 

that this will become nonzero, initialising with random vx components may result in 

some circular orbits. We therefore introduced a vx velocity component in the initial 

launch of the orbits. The test particles were again launched from the system’s published 

semimajor axis of 0.4198 AU with 601 different values of vx. The particles' total 

velocity was kept constant at the Keplerian value of 0.058 AU d-1 implied by the 

published orbital parameters. The distribution of this velocity between its two 

components vy and vx was varied by changing the argument of pericentre g from -90° to 
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+90°, resulting in vx ranging from -0.058 AU d-1 through zero to +0.058 AU d-1. The 

ejection limit was returned to its initial value of 50 AU. Incidentally, it was noticed that 

when the initial argument of pericentre of the bodies Bb and A were of the same sign, 

i.e. both bodies were initially on the same side of Ba, the resulting system was more 

stable than when the arguments of pericentre were of the opposite sign, i.e. the bodies 

began on opposite sides of Ba. (In all cases Bb and A were in prograde initial orbits.) 

Some initial trajectories for different values of vx are shown in Figure E6. 

 

Figure E6. Initial orbital trajectories for different values of vx. 

With vx equal to zero the initial trajectory was close to circular, so small negative values 

of vx were expected to result in an almost circular initial trajectory. However, once 

again there were no stable particles; although none collided, all again went into very 

wide, eccentric orbits.  

We therefore explored the second possibility, that the body’s initial velocity was 

different to that published.  
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Appendix F: Stellar stability diagram - data 

Figure F1. HD 181068 stability map data: survival time [yr] (rounded). 

 

 

Figure F2. HD 181068 stability map data: survival time [yr] (rounded) – zoomed area. 
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Appendix G: Test particle generation 

There are many ways of quickly generating the input files for test particles. One that is 

surprisingly efficient is to use Excel, as shown in Figure G1. 

 

Figure G1. Excel generation of test particles. 
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The coordinates are calculated as outlined in Appendix D, with some variables 

automatically calculated iteratively as discussed there. 

The headers in the first line of each test particle can pick up any of its 

parameters or other fields as an identifier. 

The shaded area is then simply cut and pasted as text into the required input file. 
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