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Abstract

In tunnel reinforcement design, having a suitable tool which is able to capture

complex ground material and various tunnelling conditions is definitely signifi-

cant. Since early stages of tunnelling engineering, empirical approaches using rock

mass classification and accumulated experiences have been commonly used. Nev-

ertheless, as developed from long-term accumulated knowledge in older projects,

it is not always applicable to new ground conditions and also hardly guarantees a

best design to be obtained. Analytical method is another tool to provide explicit

calculations, however, its applications are limited to only some simple scenarios

such as circular tunnel. It is also noted that these two approaches are only appli-

cable to free-field conditions. Owing to the ability in modelling complex ground

conditions with consideration of discontinuities or adjacent structures, numerical

simulations has been constantly developing and applying in tunnel excavation de-

sign in the last decades. An appropriate incorporation of numerical analysis and

optimisation techniques, if applicable, would provide a powerful tool for obtaining

an optimal tunnel design.

In spite of effectiveness of topology optimisation theory, which is proved to work

effectively in a broad range of engineering disciplines, its applications in geotech-

nical engineering and specifically in tunnelling design is fairly humble. Some

research works have already attempted to incorporate topology optimisaton tech-

niques in tunnel reinforcement design and proposed some initial achievements in

the area. However, simple assumptions on the material models and modelling

techniques of geomaterials and reinforcement materials have essentially limited

its applications and practicality in a complicated structure like underground ex-

cavations.
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This thesis explores the incorporation of topology optimisation methods in tunnel

reinforcement design. The main focus of the study is to improve some critical

shortcomings of the previous works on reinforcement optimisation and propose

new optimisation algorithms in searching for the best distribution of reinforce-

ment material.

As the first step in this study, material nonlinearities are accounted for in op-

timisation techniques to improve the linear elastic material model assumption

of previous studies. Practical behaviours of material, hence, can be captured.

The Bidirectional Evolutionary Structural Optimisation (BESO) method is ex-

tended to consider nonlinear material behaviour. An elastic perfectly-plastic

Mohr-Coulomb model is utilised for both host ground and reinforced material.

External work along the tunnel wall is considered as the objective function. Var-

ious in situ stress conditions with different horizontal stress ratios and different

geostatic stress magnitudes are investigated through several examples. The out-

comes show that the proposed approach is capable of improving tunnel reinforce-

ment design. Also, significant difference in optimal reinforcement distribution for

the cases of linear and nonlinear analysis results proves the importance of the

influence of realistic nonlinear material properties on the final outcome.

Another serious shortcoming of the previous studies is that reinforced areas were

modelled as homogenised isotropic elements. Optimisation results, therefore, do

not clearly show reinforcement distributions, leading to difficulties in explain-

ing the final outcomes. In order to overcome this deficiency, a more advanced

modelling technique in which reinforcements are explicitly modelled as truss el-

ements embedded in rock mass media is employed. Corresponding optimisation

algorithm are proposed to seek for an optimised bolt layout. Also, a topology

optimisation technique is employed to simultaneously optimise all bolt parame-

ters including pattern for bolts, spacing between the bolts and size of the bolts.

The external work along the opening is selected as the objective function with

a constraint on volume of bolt. To demonstrate the capabilities of the methods,

numerical examples of nonlinear material models are presented. Various tun-

nelling characters and geological conditions with presence of discontinuities in

the host rock have been successfully investigated in numerous examples, showing
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the broad applicability and usefulness of the proposed approaches.

In reality, minimisation of certain displacements such as heave issues or ground

displacements in shallow tunnel is sometimes of concern. Extending optimisation

methods to capture these objective functions is crucial. A general displacement-

based objective function is introduced with a constraint on a bolt volume. Sensi-

tivity analysis is conducted and details on identification of necessary parameters

are provided. Using the presented optimisation algorithm, an example on opti-

mising bolt layout to minimise a heave function is performed. It is shown that the

displacement-based objective function can be effectively captured by the proposed

optimisation technique.

This study focuses on applying topology optimisation in tunnel reinforcement

design to take advantage of both numerical analysis and optimisation methods.

The presented techniques are applicable to any material models of host ground

and reinforcements and provides clear and practical final outcomes. Using the

proposed methods, all significant factors including geological conditions, con-

struction sequences and tunnel characters can be taken into account to obtain

an optimised reinforcement distribution. It is also demonstrated that various ob-

jective functions can be employed and usefully optimised by the methods. The

obtained results proves that the optimisation techniques presented in this thesis

are promising tools to reinforcement design of underground excavations.
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Chapter 1

Introduction

1.1 General

Design of underground structures like shafts, caverns or tunnels in rock media

faces a number of challenges owing to complex rock mass properties and ground

conditions. Having a relevant tool which is able to capture a variety of rock mass

conditions is definitely essential to obtain a technically safe and economically

reasonable design. Various types of design tools and methods normally employed

in rock engineering can be named as analytical calculations, numerical modellings,

empirical systems and observational methods. Each of these methods has both

advantages and disadvantages and can be applied to various phases of planning

and construction period.

Development of high speed computers and improvements in optimisation algo-

rithms have supported not only academic interests but also a large number of

engineers to work on and benefit from optimisation methods. Optimisation tech-

niques have been continuously developed in the last decades and achieved some

significant practical applications in manufacturing industry (particularly in car

and aerospace industries) (Rozvany, 2009). They have also been broadly ex-

panded to a wide variety of physical problems including structure, heat trans-

fer, fluid, electromagnetics, photonics and their combinations. In geotechnical

engineering design, there is a considerable number of design problems where op-

timisation techniques can be applied to such as slope design with and without
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reinforcement, foundation engineering, tunnel design, etc. Despite its promising

potential, there are few applications employing modern optimisation techniques

to obtain a more rational design in geotechnical engineering, particularly in tun-

nelling design.

Given available information on ground conditions and design requirements, the

conventional methods combined with engineers’s experiences would provide even-

tual outcomes of the required tunnelling features and the ground behaviour

around the opening. Nevertheless, no one can guarantee that the proposed design

is the most appropriate one. An incorporation of the conventional design tools

with optimisation techniques would expectedly provide an advanced and useful

tool in design of underground structure. Finding optimal shape of underground

excavations or optimal size and patterns of reinforcement materials around the

opening are some of typical achievements by such an approach.

1.2 Levels of optimisation

In structural design, optimisation can be classified into three categories, namely

size optimisation, shape optimisation and topology optimisation. The earliest

approach is size optimisation which finds the optimal structural dimensions with

predefined shape by changing size variables. Problems such as seeking out an

optimal cross section area of truss elements or an I beam have been solved by

sizing optimisation in structural design. Shape optimisation is performed to mod-

ify predetermined boundaries on continuum structures to achieve the best shape.

Searching for the best shape of a hole in a loaded plate is a typical example of

shape optimisation. Topology optimisation in a discrete structure can be used

to find the optimal spatial order and its connectivity. For continuum structures,

it can be used to search for the best locations and geometries of cavities in the

domain. Topology optimisation is by far the most technically challenging as well

as economically rewarding among these types. Conceptual illustration of these

optimisation levels is depicted in Fig. 1.1.

Benefiting from the significant improvements of numerical analysis and powerful



Chapter 1. Introduction 3

Figure 1.1: Three levels of optimisation: a)Topology optimisation; b)Shape opti-
misation; c)Sizing optimisation (Ghabraie, 2009)

digital computers, the optimisation techniques, especially topology optimisation

techniques, have been rapidly expanded in the last two decades. Topology opti-

misation has not been limited to structural engineering applications, but widely

applied in material design, micro- and nanotechnologies and wave propagation

problems (Bendsøe and Sigmund, 2003). Achievements in both theoretical impli-

cations and important practical applications have been obtained.

1.3 Applications of Topology Optimisation in Tunnelling De-

sign

Topology optimisation techniques are utilised in this study to search for the opti-

mal reinforcement design for underground excavations by economically distribut-

ing reinforced material where it is mostly required. The obtained outcomes are

expected to provide goetechnical engineers with an overview on tunnel reinforce-

ment design and specific suggestions on optimal reinforcement distribution for

underground excavations.

In geotechnical engineering design, there is a considerable number of design prob-

lems where topology optimisation techniques can be applied to such as tunneling
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engineering, slope design with and without reinforcement, foundation engineer-

ing, etc. However, there are only few publications on employing the well-known

robustness of topology optimisation in geomechanics problems due to complex

behaviour of geomaterials.

Generally, natural geological materials like rock and soils are discontinuous, inho-

mogeneous, anisotropic and not-elastic (Harrison and Hudson, 2000). Also, the

presence of fluids and discontinuities in rock mass such as bedding planes, joints,

and faults makes rock a fractured porous media. Compared to manufactured

materials with clearly defined physical and engineering properties, the properties

of geomaterials needs to be established based on laboratory test and empirical

knowledge. These special features give rise to difficulties in mathematical repre-

sentation of geomaterials and subsequently in modelling.

Another dominant feature of geotechnical engineering is the effects of loading

sequence on ground behaviours. Specifically in underground excavation design, a

change in the opening shape during excavation process causes stress relief around

the opening and alters the loading conditions. Also, tunnel advancement and

reinforcement installation significantly affect the reaction of surrounding ground

and their interactions with the reinforcements. This interaction is an important

factor to determine the types and amounts of the reinforcements required.

Some studies have attempted to optimise shape and reinforcement distribution

of underground excavation. Shape optimisation of underground opening was ex-

plored by Ren et al. (2005); Ghabraie et al. (2008); Ren et al. (2014). Also, tunnel

reinforcement optimisation have been studied by several optimisation methods

(Yin et al., 2000; Yin and Yang, 2000a,b; Liu et al., 2008b; Ghabraie, 2009;

Ghabraie et al., 2010). A rigorous review of these works will be detailed in chap-

ter 2.

Finding the optimal shape of underground openings is beyond the scope of this

study. With regards to reinforcement optimisation, a common limitation of the

above-mentioned earlier works is linear elastic analysis which is not valid for

most of the cases in geomechanics and can only be considered as the initial step

in analysis (Jing, 2003). Additionally, in the previous studies, homogeneous re-



Chapter 1. Introduction 5

inforced material models were used to model reinforcement material, which leads

to difficulties in explicitly simulating anisotropy of material and interpreting the

final outcomes. Common reinforcement types like rock bolts or nails are steel

bars being fixed at their ends and pretensioned or connected to the surrounding

rock over their entire length by grouting. Obviously, using these reinforcement

types, the reinforced area will have different mechanical properties in different

directions. Considering this effect explicitly in tunnel reinforcement optimisation

can capture the behaviour of reinforced rock mass more accurately and be seen

as an essential improvement to the existing studies. Furthermore, existence of

discontinuities in rock mass such as joints, bedding planes etc. can heavily in-

fluence the rock mass behaviour. A thorough consideration of discontinuities is

therefore crucial in securing more reliable and practical design.

1.4 Objectives and Scope of Study

In this research, the most critical shortcomings of the previous studies will be

improved and further developments in applying topology optimisation techniques

on tunnel reinforcement design will be conducted. Specifically, the following

research objectives are to be addressed:

1. Considering elasto plastic material models and using nonlinear finite ele-

ment analysis in tunnel reinforcement optimisation.

2. Considering anisotropic properties of reinforced material by explicit mod-

elling of rock bolts.

3. Proposing an optimisation approach to optimise rock bolt size.

4. Proposing a simultaneous optimisation approach of bolt size and pattern.

5. Capturing the effects of geological conditions on optimised bolt configura-

tions

6. Considering various objective functions in the proposed optimisation tech-

niques.
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1.5 Outline of the Thesis

An overall literature review is conducted in the next chapter. Paricularly, in the

first part, an overview of geotechnical materials and tunnel reinforcement de-

sign issues is presented. A careful discussion is given to analyse difficulties and

limitations of using various conventional approaches in design of underground ex-

cavation. In the second part, details of the topology optimisation techniques and

their potential applications on underground excavation design are presented. Pre-

vious works on applying topology optimisation on tunnel design are summarised

to show their limitations and also to propose some possible improvements and

further developments in the area.

Chapter 3 removes a serious assumption in the previous reinforcement optimi-

sation works by taking into account material nonlinearities. Examples on both

elastic and elasto-plastic cases are illustrated to show that the proposed approach

is applicable to any material models used. Various factors affecting optimised dis-

tribution of reinforcement material are discussed via examples.

As a further improvement, in chapters 4 and 5, an explicit modelling method

is used to simulate tunnel reinforcements and corresponding optimisation ap-

proaches are proposed to seek for optimised reinforcement configurations. Chap-

ter 4 provides an optimisation approach to search for optimised bolt sizes. An

advanced optimisation approach to simultaneously optimise bolt size and pattern

is proposed in chapter 5. A series of examples are presented in each chapter

to demonstrate effects of various important inputs on bolt design including tun-

nelling features, geological conditions and construction sequences.

In chapter 6, attempts are made to extend the the proposed optimisation meth-

ods by considering a general displacement-based objective function. A typical

example is shown to illustrate the usefulness of the method.

A summary of this research outcomes is presented in the conclusion chapter,

chapter 7. Ideas and recommendation for future research is also listed.



Chapter 2

Literature Review

The aim of this study is to propose algorithms which are able to optimise rein-

forcement distribution around underground openings satisfying given objective

functions and constraint conditions. This chapter is devoted to a review of pub-

lished literature related to both tunnel reinforcement design issues and topology

optimisation techniques.

2.1 Overview of rock mechanics

In the design of underground excavations, a comprehensive understanding of ge-

omaterial behaviour and its interaction with external structures are important

inputs for modelling and designing tunnel structures. In the following sections,

details on material properties of rock mass and modelling issues are presented.

2.1.1 Special character of rock mass

Unlike other engineering properties, a special character of rock material is the

existence of discontinuities which may be filled with liquid or gas or solids under

complex in situ stress conditions. The characters of discontinuities are dominant

factors, to a large extent, governing rock mass behaviour (Bieniawski, 1989).

These characters can be categorised in two types, geometric and non-geometric

properties. The geometric properties covers the fabric of discontinuities in the
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rock mass while the non-geometric captures the infill material mechanical prop-

erties and shear strength of intact rock close to discontinuities (Hack, 1998).

However, obtaining all of these features is normally impossible in reality. Instead,

information obtained from borehole cores, field observations and rock mass classi-

fication system provides designers with an overall picture of discontinuties within

a rock mass.

2.1.2 Strength of rock mass

Strength of a rock mass depends on the strength of intact rock and the shear

strength of discontinuities. In the case of a rock mass with few discontinuities,

the strength of discontinuities should be explicitly determined by a shear strength

criterion while the strength of intact rock is considered by using a failure criterion

for intact rock. On the other hand, in the case of heavily jointed rock, the strength

of discontinuities can be implicitly combined with the strength of intact rock to

utilise a failure criterion for the whole rock mass.

Mohr-Coulomb model is widely used to model both the shear strength of surfaces

and jointed rock mass while Hoek-Brown is among the most renowned empirical

failure criterion of jointed rock mass.

a. Mohr-Coulomb failure criterion

In the Mohr-Coulomb criterion, yielding starts when the relation between a nor-

mal stress σn and a shear stress τ satisfies the following condition:

τ = c+ σn tanφ, (2.1)

where c is the cohesion and φ the friction angle.

The criterion can be expressed in terms of principal stresses σ1 ≥ σ2 ≥ σ3 as

follows

f = (σ1 − σ3)− (σ1 + σ3) sinφ− 2c cosφ = 0. (2.2)

b. Hoek-Brown failure criterion

The empirical Hoek-Brown failure criterion was originally proposed by Hoek and
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Brown (1980). Over the years, this criterion has been modified by Hoek et al.

(1992, 1997); Hoek and Brown (1980); Hoek et al. (2002) to improve its practi-

cality and usefulness. The most general form, called the generalised Hoek-Brown

failure criterion (Hoek et al., 2002), is written as follows

σ′1 = σ′3 + σci

(
mb

σ′3
σci

+ s

)a
, (2.3)

where mb is a reduced value of the material constant mi and expressed as

mb = mi exp

(
GSI − 100

28− 14D

)
. (2.4)

s and a are constants for a rock mass and given by

s = exp

(
GSI − 100

9− 3D

)
, (2.5)

a =
1

2
+

1

6

(
e−GSI/15 − e−20/3

)
. (2.6)

GSI is the Geological Strength Index, D a factor accounting for the degree of

disturbance of the rock mass, σ′1 and σ′3 the major and minor effective stresses

and σci the uniaxial compressive strength of the intact rock.

As the Mohr-Coulomb is a popular model in many geotechnical software packages,

it is a necessity to work out a correlation between the Hoek-Brown and the Mohr-

Coulomb model parameters. Hoek et al. (2002) proposed equivalent friction angle

and cohesion for each rock mass under a stress range as

φ′ = sin−1

[
6amb (s+mbσ

′
3n)a−1

2(1 + a)(2 + a) + 6amb (s+mbσ′3n)a−1

]
, (2.7)

c′ =
σci [(1 + 2a)s+ (1− a)mbσ

′
3n] (s+mbσ

′
3n)a−1

(1 + a)(2 + a)
√

1 + (6amb)s+mbσ′3n)a−1) /((1 + a)(2 + a))
. (2.8)

2.1.3 Rock mass classification systems

Due to rock mass complexity, rock mass classification systems flourished as pow-

erful tool to have an overall picture of physical and mechanical properties of rock
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mass. Over the years, many rock mass classification systems have been developed

for the sake of characterising rock mass and establishing empirical design tools.

Based on a certain field of application, either for rock mass characterisation or

for empirical method formalisation, or for both of these, various classification

systems put different weights on various engineering geological parameters (Russo

et al., 1998). The most commonly used classifications systems can be named as

the Rock Mass Rating (RMR) system (also called Geomechanics Classification

System), the Q system and the GSI system . A summary of these systems is

detailed below.

The Q system

Barton et al. (1974) proposed a rock classification system, Tunneling Quality

Index (Q), to estimate support requirements for rock tunnels. The Q index value

is a function of rock mass quality and defined as

Q =

(
RQD

Jn

)(
Jr
Ja

)(
Jw
SRF

)
, (2.9)

where RQD is the Rock Quality Designation, Jn the Joint Set Number, Jr the

Joint Roughness Number, Ja the Joint Alteration Number, Jw the Joint Reduc-

tion Factor and SRF the Stress Reduction Factor.

The three quotients in Eq. (2.9) respectively represent block size, inter-block fric-

tional shear strength and active stress of a rock mass. The value of Q ranges from

0.001 to 1000 in which a small value represents a poor rock mass and inversely,

a high value determines a good one. Using this range of Q, nine classes of rock

mass are defined varying from ‘exceptionally poor’ to ‘exceptionally good’.

The Q-system is widely employed as an empirical design method for rock support.

Knowing the size of the opening, the Excavation Support Ratio (ESR) and the Q

value, the amount of rock support can be estimated. Similar to the RMR system,

the Q value can also be used to approximate rock mass deformation modulus

(Grimstad and Barton, 1993) and the parameters m and s in the Hoek-Brown

failure criterion (Hoek, 1983; Hoek and Brown, 1988) detailed in 2.1.2.
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The RMR system

The RMR system was firstly published by Bieniawski (1973) and significantly

revised in the later years (Bieniawski, 1974, 1976, 1989). The following presents

the latest version of the RMR system (Bieniawski, 1989), classifying the rock

mass using six parameters

1. Uniaxial compressive strength of intact rock

2. Rock Quality Designation (RQD)

3. Spacing of discontinuities

4. Conditions of discontinuities

5. Ground water conditions

6. Orientation of discontinuities

A rating value is assigned for each parameter and the RMR value is determined

by adding up these individual parameters. The value of RMR is in the range of

0 to 100 and based on this, five rock mass classes are defined from a “very good

rock” to a “very poor rock”.

Extending the applications of the RMR system, Bieniawski (1989) proposed

guidelines for rock support applied in tunnels. Also, some empirical relations

between RMR value and rock mass properties have been established, such as the

relationship between RMR and rock mass deformation modulus (Serafim and

Pereira, 1983; Bieniawski, 1984, 1989), and RMR and m and s parameters in the

Hoek-Brown failure criterion (Hoek, 1994; Hoek and Brown, 1997).

The GSI system

Hoek (1994); Hoek and Brown (1997) introduced a rock mass classification scheme

known as Geological Strength Index (GSI) based on visual exposures of a rock

structure. Specifically, two features of a rock mass are accounted for, which are

conditions of the discontinuity surfaces and its blockiness. It is noted that the
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GSI values merely represent the visual descriptions and do not explicitly include

quantitative inputs as in the case of RMR and Q systems.

2.1.4 Numerical analysis methods in rock mechanics

Due to the complicated behaviour of material such as jointed rock mass, a closed-

form solution is unavailable for most of the practical cases and numerical method

is an effective alternative for such problems. With the development of digital

computer, numerical analysis has become an effective and powerful means for

predicting rock mass behaviour (stresses and strains at specific points). Particu-

larly, it is capable of providing us with an understanding of progressive changes

in rock mass due to engineering actions (excavation/reinforcement installation).

An issue arises in jointed rock modelling as whether a rock mass should be treated

as continuum or not. Depending on the size of the analysed structure, simulation

of rock mass behaviour can be considered as intact rock or rock mass with few dis-

continuities or heavily jointed rock mass. For the intact rock and heavily jointed

rock cases, the medium can be modelled as continuum or equivalent continuum

while in the case of rock with few discontinuities, the continuum assumption is

not valid and discontinuum models need to be used (Brady and Brown, 2006).

A number of numerical methods have been developed and broadly applied for

continuous and discrete systems in the design of rock engineering structures and

some of the commonly used ones are listed below:

• Continuum methods

– Finite Difference Method (FDM)

– Finite Element Method (FEM), and

– Boundary Element Method (BEM)

• Discontinuum methods

– Discrete Element Method (DEM)

– Discrete Fracture Network Method (DFN)
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• Hybrid continuum/discontinuum methods

– Hybrid FEM/BEM

– Hybrid DEM/DEM

– Hybrid FEM/DEM, and

– Other hybrid models

This study aims to work on optimisation algorithms which can be extended to

tunnel reinforcement design. Numerical method is simply a means of conducting

numerical analysis to provide input for such optimisation engines. A detailed

investigation of these numerical methods is beyond the scope of this study and

therefore not presented herein. Rigorous reviews of these methods in rock mod-

elling can be found in Jing (2003); Bobet et al. (2009). Because of its capabilities

and widespread usage, FEM is used in this research.

The degree of approximation of numerical modelling depends on the quality of the

geometrical characterization of discontinuity systems, understanding of physical

properties of the discontinuities and their interactions. Obviously, in rock me-

chanics, a full validation of numerical models by experiments is impossible due to

incomplete knowledge of the geometry and properties of jointed rock mass. Only

a partial validation can be conducted. Furthermore, uncertainty and variability

of the rock properties, loadings, initial and boundary conditions are parts of rock

mechanics. As a consequence, it is a crucial requirement to have a clarification of

the input information and a thorough understanding of assumptions employed.

2.2 Tunnel Support and Reinforcement

2.2.1 Terminology

In the excavation process, the surrounding rock displaces and squeezes, which

results in movement of a whole or some rock blocks towards the opening. Failure

may happen if displacement is larger than an admissible value. Moreover, loss

of shear strength at the opening may cause failure due to disruption of in-situ
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stresses. As a result, additional reinforcement or support during and after excava-

tion is necessary to prevent such failures and maintain stability of an excavation.

Tunnel support can be divided into two types: reinforcement (active) and sup-

port (passive) (Windsor and Thompson, 1993). The term reinforcement refers to

a means of improving rock mass properties by stimulating the ground material

to sustain a portion of external loads. Some examples in this group can be listed

as rock bolts, cable bolts and ground anchors. On the other hand, the term sup-

port refers to employing external structures to support the rock mass. Timber,

shotcrete and steel liners can be listed in this category. To the extent of this re-

search, only mechanical behaviour of underground excavation with reinforcement

is considered. From the topology optimisation point of view, external support

design is similar to structural design and is well understood.

2.2.2 Ground and support interaction

As a tunnel face advances, a considerable change of stress distributions in the

surrounding rock mass is observed and needs to be captured. Also, a ratio-

nal support design has to account for the interaction between reinforcement or

support systems and the rock mass. A significant factor controlling a design of

support and reinforcement systems is the rock displacement. Particularly, enough

displacement of rock mass has to be allowed to sufficiently mobilise the required

support load. However, an excessive displacement, if occurred, would result in

a loosening of the rock mass and a decrease in its load-carrying capacity. The

reinforcement stiffness and time of installation are the dominant factors affecting

the rock mass displacements.

Fig. 2.1 shows a ground reaction curve which illustrates a close relation between

internal pressures and inward radial displacements as excavation proceeds. It

can be seen that the internal pressure pi which is initially equal to the in situ

stress p0 starts decreasing as excavation proceeds. The rock mass yields as the

internal pressure becomes less than a critical value, pcr. When pi ≥ pcr, elastic

behaviour is observed. When pi < pcr, plastic displacement occurs. The function

of a support system is like an extra internal pressure added to pi. As displacement
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increases, the internal pressure decreases and the support stress increases. The

equilibrium is obtained once the ground response curve intersects the support

reaction curve. Clearly, the installation of support system is more effective if the

support system takes more stress before reaching an equilibrium. But this stress

needs to be less than the yield stress of reinforcing bars.

Figure 2.1: Ground reaction curve and support interaction (Ghabraie, 2009)

2.2.3 Rock bolt

Finding an optimal distribution of reinforcement around the opening is of concern

in this study. Owing to the popularity and effectiveness, design of rock bolt is

selected to be optimised. Rock bolt reinforcement system was developed since the

1940s and has become one of the most dominant support methods in underground

structures (Kovári, 2004). It belongs to the active support category with the

effective principle of employing the ground itself to stabilise the rock mass system.

Also, rock bolt is believed to be more economic than other methods in terms of

both material and manpower consumptions. More importantly, bolt can be used

together with other various support methods like concrete lining, shotcrete and

also is applicable to various geological conditions. Practical descriptions of how

rock bolts work, are installed and the design-related criteria can be found in a

standard book on the topics of rock engineering design or tunnelling design such
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as Hoek et al. (1997) or Brady and Brown (2006).

The ultimate goal of a bolt design is achieved by proposing bolt parameters in-

cluding density, orientation, length, size and pretension. However, due to the

complexity and varieties of geological conditions, rock bolt pattern design has

been more of an art rather than a science. In conventional design, rock bolt is

assumed to be distributed evenly around the opening with a certain length and

spacing depending on specific class of rock mass and structure size (Grimstad and

Barton, 1993; Bieniawski, 1993). Many other crucial factors in rock engineering

design such as fracture presence, in situ stress state or tunnel features have not

been fully accounted for. Additionally, it cannot be guaranteed that the con-

ventional design is an optimal one with respect to different objective functions.

Solving the rock bolt design problem as an optimisation problem can provide us

with more reasonable designs and also improve our understanding in this area.

2.2.4 Modelling of rock bolts

The effect of rock bolts can be simulated by two approaches.

One is the homogenisation approach in which the reinforcement effect is con-

sidered by using a stiffer and stronger material for the reinforced areas. The

method then consists of simulating the reinforced rock mass as a homogeneous

material with anisotropic strength and stiffness properties (Bernaud et al., 1995;

Wong and Larue, 1998). An advantage of this technique is the reduced effort

and computational time in the modelling process. However, it should be noted

that the homogenisation approach assumes a perfect bonding between the sur-

rounding rock and the bolts which might overestimate the effect of reinforcement

(de Buhan et al., 2008). Also, using such modelling technique does not give us a

clear bolt pattern and might require post-processing of the final results.

Another method is a direct numerical simulation which treats the bolts as indi-

vidual elements embedded in the rock mass. Such approach can give us a higher

level of accuracy but also requires more computation time and more powerful

computational tools.
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2.3 Rock engineering design tools

This section will detail the approaches used in a rock engineering design, including

methods for rock bolt design. Generally, the following input needs to be provided

for a rock engineering design

• Geological and geotechnical features including properties of intact rock and

discontinuities

• Conditions of the in-situ and induced stresses

• Specific design requirements such as acceptable deformation, lifetime of the

structure, etc.

2.3.1 Procedures of rock engineering design

From an engineering point of view, Schubert et al. (2001) summarised the general

procedures of an underground excavation design from pre-construction stage to

tunnel construction into three steps.

1. Step 1: Rock mass characterisation

For characterising rock mass, rock mass type needs to be defined. Using

data from lithology, field observations and laboratory tests, key parameters

describing rock types are determined

2. Step 2: Determination of rock mass behaviour types.

This step is to determine behaviour of rock mass by combining rock mass

type with other system factors such as discontinuities feature, effects of

ground water, shape and size of the opening. Potential failure modes such

as sliding, shear failures are identified and the displacements are estimated.

Analytical and numerical methods are also employed in this step to verify

the predicted behaviour. From the obtained rock mass behaviour approx-

imations, concepts of a support system is proposed to be analysed in the

subsequent steps.

3. Step 3: Analysis of system behaviour
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Monitoring and observation are conducted during the construction stage

to capture the system behaviour. The system behaviour is analysed con-

sidering the rock mass and support interaction and the obtained system

behaviour is then verified with the specific design requirements. Some ex-

amples of such requirements can be named as allowable surface settlement

for shallow tunnels or the allowable load in the lining for deep tunnels.

Generally, at various construction phases, various tools are utilised. The following

sections will summarise these tools and also specify benefits and drawbacks of each

of them.

2.3.2 Empirical systems

As mentioned in section 2.1.3, apart from the aim of providing an experience-

based tool to characterise the properties of rock mass, the rock mass classification

systems have been also developed for use in reinforcement design. Some of the

common empirical support design methods are tabulated in Table 2.1.

Among these, the two most commonly employed empirical systems in under-

ground design are the RMR and the Q systems with simple and practical appli-

cations (Riedmüller and Schubert, 1999)
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Table 2.1: Some empirical methods for the underground support design (revised from Palmstrom and Stille (2007))

Name Applications Reference
The Terzaghi rock load classification system For steel support design in tunnels Terzaghi (1946)
The New Austrian Tunnelling Method (NATM) For excavation and design in incompetent ground Rabcewicz (1964, 1965)
The Rock Structure Rating (RSR) classification For steel support design in tunnels Wickham et al. (1972)
The Rock Mass Rating (RMR) classification Design of tunnel, mine and foundation Bieniawski (1973)
The Q Classification System For support design in underground excavations Barton et al. (1974)
The RMi Rock Support Method For support design in underground excavations Palmstrom (1995, 2000)
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The Q system

Inputs of the Q system include the calculated Q value from Eq. (2.9), size of an

opening and an Excavation Support Ratio (ESR). The amount of rock support

can be estimated using a chart proposed by Barton et al. (1974) and later revised

by Grimstad and Barton (1993). Palmstrom and Broch (2006) presented some

critical comments on the use and limitations of the system, and pointed out

an area in the chart that the Q system works best. Also, some of the other

shortcomings of the Q system were mentioned below.

• The stress reduction factor (SRF) is not clear for rock burst, squeezing rock

or weakness zones.

• Characterisation of the degree of jointing by RQD reveals some limitations.

• The effects of water on rock support requirements is not clear.

The RMR system

The RMR system as presented in section 2.1.3 provides some guidelines on sup-

port design against block fall instability (Bieniawski, 1993). However, these rec-

ommendations are proposed only for a 10 m horseshoe shaped tunnel with vertical

stress of under 25 MPa. This approach also shares the last two shortcomings of

the Q system listed above.

Due to the complexity of rock mass conditions as well as the ease of use of the

empirical systems, these approaches are widely employed in underground rein-

forcement design. However, these methods contains a couple of disadvantages.

A common feature of empirical design systems is that they are defined using

the accumulative knowledge of previous projects. A direct application of these

approaches into practical designs therefore imposes some inherent shortcomings.

Firstly, behaviour of an underground excavation is fundamentally unique for a

particular ground condition while the empirical systems characterise or identify
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rock support for a certain type of rock mass. Hence, the actual ground reac-

tions may not be reasonably captured, leading to inappropriate predictions of the

system behaviour especially for heterogeneous and poor rock mass (Riedmüller

and Schubert, 1999). Another critical drawback of the empirical systems is the

incapability of separate definitions of the common requirements in modern design

codes like structural resistance, serviceability and durability. It is noted that the

currently available empirical systems merely consider the matter of structural re-

sistance which covers only one requirement in a typical design while other project

requirements cannot be addressed. It is also obvious that the empirical systems

are unable to define the degree of safety of a certain design.

2.3.3 Analytical calculations

The analytical approach is an advantageous tool to provide explicit solutions

of system behaviour with particular material models of rock mass and support

elements. Also, these approaches enable us to study the interaction between

rock and structure or investigate structural resistance related issues such as block

stability. However, given the scope of being only capable of applying in simplified

cases such as a circular tunnel with isotropic stress field, the application range of

this method is really limited.

2.3.4 Numerical simulations

Behaviour of rock mass and rock support can be modelled in the form of complex

differential equations and the aim of any numerical modelling is to work out nu-

merical solutions to these differential equations. Numerical methods are powerful

tools to deal with a broad range of problems in rock mechanics including impacts

of construction sequences, existence of nearby structures or rock-support inter-

action (de Farias et al., 2004). Various geological conditions and tunnel features

can also be handled by suitable numerical methods. However, the most signif-

icant issue arising in numerical simulations is the reliability of the input data,

especially the following information (Palmstrom and Stille, 2007).
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• characters of in situ stress

• models of rock mass and their input parameters

• extent and location of various geological conditions

Like the empirical systems and analytical calculations, the numerical approaches

are unable to account for non-calculable load cases such as frost, weathering as

they have been primarily developed to capture structural resistance.

2.3.5 Observational methods

The complexity of rock mass characters and current limitations of rock engineer-

ing design present some challenges in determining the responses of ground mate-

rial around the opening. As a result, accurate predictions of stress and strain are

not always possible. Observation of the system behaviour during construction is

required to verify the estimated analysis. However, it should be noted that using

the observational approach might lead to time delays or claims for unspecified and

unpredictable scenarios. A strict observation program with listed requirements

needs to be prepared prior to construction stage to avoid these cases.

2.3.6 Summary

The primary priority in any rock engineering design is a thorough understanding

of geological and ground conditions. An appropriate tool can then be applied

to propose a design satisfying the given requirements. Among various design

tools, observational approach is a mandatory supplement to others to capture

any unexpected scenarios. Certainly, engineering judgement is absolutely signifi-

cant to evaluate the method employed and work with unforeseeable situations in

construction.



Chapter 2. Literature Review 23

2.4 Simulation of excavation sequence and reinforcement

installation

2.4.1 2D/3D modelling

Underground excavation is practically a three dimensional (3D) construction pro-

cess. Along with the development of numerical techniques and powerful comput-

ers, a 3D analysis is possible (Grasselli, 2005; Liu et al., 2008a). Obviously, a 3D

modelling is more appropriate to capture actual geological conditions, construc-

tion sequences or exact locations of support systems. However, it requires highly

powerful computer resource and also consumes a lot of time. These barriers have

therefore limited its usage. On the other hand, a two dimensional (2D) analysis

with appropriate assumptions, in some cases, provides an acceptable approxima-

tion. Therefore, 2D analysis is still a convenient and common approach.

When performing an optimisation problem, in which a number of analyses are

required, the excessive computational time required for a 3D analysis is a major

drawback. In this study, all examples will be performed in 2D analysis using

plane strain assumption. It should be noted that generally the proposed optimi-

sation approach can be applicable to 3D analysis without any modifications. To

capture 3D effects in a 2D analysis, assumption will made by prescribing rather

than predicting the volume loss and appropriate modelling techniques need to be

followed as will be mentioned in the next section.

2.4.2 Simulating tunnel excavation

When a two dimensional simulation is chosen, an assumption needs to be made to

account for the volume loss and deformation of the excavation boundary before

reinforcement activation. Several methods to consider these 3D effects can be

named as the gap method (Rowe et al., 1983; Lee and Rowe, 1991), the progressive

softening method (Swoboda, 1979; Swoboda et al., 1994), the volume loss control

method (Potts and Zdravković, 2001) and the convergence-confinement method

(Panet and Guenot, 1982). In this study, the convergence-confinement method
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is employed. Using this method, a proportion of unloading is prescribed before

reinforcement introduction to predict the volume loss value. By applying an

internal force vector, βn·σ0 (where σ0 is the initial stress, n the inward unit vector

normal to the opening surface) at the nodes on the opening, a definition of the

relationship between internal pressure - radial displacement can be established.

Initially, β is equal to 1 to represent the initial stress condition and then gradually

decreased to 0 to represent the excavation process. At a prescribed value of βt that

the reinforcement is activated, the stress reduction is determined as (1 − βt)σ0.

Details of this modelling procedure are presented in §4.2.

2.5 General form of optimisation problems

A general optimisation problem consists of objective function (f) and constraints

(g and h) and can be stated in the following form

min
x1,x2,...,xn

f(x)

such that hj(x) = 0, j = 1, 2, . . . , nh;

gk(x) ≤ 0, k = 1, 2, . . . , ng

(2.10)

where x = (x1, x2, . . . , xn) are the design variables, and nh and ng are the number

of equality and inequality constraints, respectively.

Mathematical programming methods which directly optimise the objective func-

tion are commonly used to deal with general optimisation problems. However, in

topology optimisation problems, this approach is usually costly and time consum-

ing due to a huge number of design variables which are proportional to the number

of elements in the design domain. Moreover, in structural optimisation problems,

a huge amount of numerical calculation is needed for determination of objective

functions, constraints conditions and their derivatives (Haftka and Gurdal, 1992;

Kirsch, 1993). Therefore, using mathematical programming method is practi-

cally ineffective. On the other hand, if the objective function and/or constraints

are not expressed as explicit functions of the design variables, classical analytical

approaches are incapable of dealing with it. “Optimality criteria” approach is a
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good alternative to overcome these difficulties.

The optimality criteria method usually relies on Karush-Kuhn-Tucker (KKT)

optimality conditions (Karush, 1939; Kuhn and Tucker, 1951) to test whether a

candidate point is a minimum or not instead of solving a set of nonlinear equa-

tions. If x is a local minimum for the problem Eq. (2.10), there exist constants

λj and νk such that:



∂f
∂xi

+
∑nh

j=1 λj
∂hj
∂xi

+
∑ng

k=1 νk
∂gk
∂xi

= 0 i = 1, . . . , n,

hj = 0, j = 1, . . . , nh,

gk ≤ 0, k = 1, . . . , ng,

gkνk = 0, k = 1, . . . , ng,

νk ≥ 0, k = 1, . . . , ng

(2.11)

where λj and νk are Lagrangian multipliers.

In order to apply the KKT conditions, sensitivity analysis of the objective func-

tion is required. In the following section, commonly used topology optimisation

methods which solve optimisation problems indirectly based on the optimality

criteria approach are introduced.

2.6 Methods of topology optimisation

In an underground excavation design, the optimal shape of the opening and the

optimal pattern of the reinforcement material are two design objectives which can

be solved (and have been solved in some previous studies) by topology optimi-

sation. The opening shape is usually determined by functional requirements and

methods of construction (Hoek and Brown, 1980), and it is beyond the scope of

this work. This study only focuses on developing optimisation methods to seek

out an optimal reinforcement design.

Topology optimisation includes a determination of the best locations and geome-

tries of holes in a continuum domain or the optimal spatial order and its con-

nectivity in a discrete structure. Using topology optimisation techniques, tunnel
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reinforcement design can be transformed into a material distribution optimisation

problem.

2.6.1 Overview

In a milestone paper, Bendsøe and Kikuchi (1988) introduced the first practical

general-purpose structural topology optimisation method. Commonly referred to

as the “homogenisation method”, this method set up the basis for many further

studies in the field. The main concept of this method is to simulate the design

domain by complex material with periodic microstructures.

Among other notable topology optimisation methods, one can name the Solid

Isotropic Material with Penalisation (SIMP) method and Bi-directional Evolu-

tionary Structural Optimisation (BESO) method (Ghabraie, 2009). The SIMP

method was introduced by Bendsøe (1989). In this method, a power-law rela-

tionship between the elasticity tensor and the density of the material is assumed

and based on sensitivity analysis of a chosen objective function, material density

in each element of the design domain is updated iteratively. The BESO method

was initially introduced by Querin (1997), Querin et al. (1998) and Yang et al.

(1999). This method approaches the optimal material distribution by iteratively

removing the least efficient elements and adding more elements around the most

efficient parts of the design domain.

Each of the above-mentioned topology optimisation methods has its own advan-

tages and disadvantages. Selecting an appropriate one for a certain problem

depends on a number of factors. In the light of their potential applications in an

underground excavation design which composes complex geomechanics behaviour

and complicated loading sequences, particular benefits and shortcomings of these

methods should be well recognised.

For the homogenisation method, a huge number of design variables are required,

while the final solutions are complicated and not easily implemented in con-

struction. Another serious shortcoming is that it is hard to combine the ho-

mogenisation algorithm with commercial finite element packages using which is
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a significant requirement to propose a practical tool for engineering design of

underground structures.

On the other hand, the SIMP and the BESO methods have been proved to be

applicable to a wide range of practical applications (Rozvany, 2009; Huang and

Xie, 2010a). Being computationally efficient is an advantage of both methods.

Especially, an outstanding benefit of these methods is that they are flexible and

therefore it is easy to link them to an external finite element package. Although

these methods are prone to some numerical instabilities as other topology opti-

misation methods, these issues can be usually solved by some relatively simple

approaches.

Generally, working with an underground excavation design, the SIMP and the

BESO methods are powerful in terms of computational linkage and convenience.

In this thesis, optimisation methods based on the concepts of these two methods

are going to be extended and applied to tunnel reinforcement design.

2.7 The SIMP method

2.7.1 Overview

Bendsøe (1989) introduced the SIMP method. In this method, material consti-

tutive tensor at each element is defined as a function of material density varying

from very small value (representing voids or weak elements) to 1 (representing

solids or strong elements). It is noted that the optimal outcomes using this

scheme consist of mostly “grey” elements, which represent intermediate density

values. In order to achieve a nearly “black-white” solution, grey elements with

intermediate densities need to be penalised. The simple power-law interpolation

function proposed by Bendsøe (1989) is one of the most common penalisation

rules which takes the form

E(ρ) = [ρ(x)p]Ē (2.12)

where E is the interpolated stiffness tensor; Ē the elasticity constants of the base

material, ρ(x) the relative density function at the location represented by x and
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0 ≤ ρ(x) ≤ 1, and p the penalty factor and p ≥ 1. The penalty factor p is to

penalise the intermediate density value and consequently push the elements to

the two extremes of solid or void.

The interpolation scheme in Eq. (2.12) can be applied to a material-void problem

in which the considered element could be either solid or void or intermediate. In

a two-material problem, the considered element would be selected as either one of

two given materials or intermediate, and the interpolation scheme can be stated

as

E(x) = E(1) + ρ(x)p(E(2) − E(1)) (2.13)

where E(1) and E(2) are the elasticity constants of materials (1) and (2), respec-

tively. Other penalisation rules for suppressing the intermediate elements can also

be found in Stolpe and Svanberg (2001a); Fuchs et al. (2005); Sigmund (2007);

Ghabraie (2009).

Since its introduction, there have been a number of publications developing and

applying the SIMP method. A detailed review of these works can be found in

Rozvany (2001). Especially with the publications of an educational article on a

99-line topology optimisation code (Sigmund, 2001) (with an improved version

provided by Andreassen et al. (2011)) and a web-based topology optimisation

program (Tcherniak and Sigmund, 2001), the SIMP method has been broadly

known in the optimisation area. Applications of the SIMP method have been

extended to a wide range of problems including compliant mechanism (Sigmund,

1997), geometrically nonlinear structures (Sigmund, 1997), phonotic crystal struc-

tures (Jensen and Sigmund, 2004), reliability-based problems (Kharmanda et al.,

2004), and design-dependent load (Du and Olhoff, 2004a,b).

2.7.2 Details of the method

Selecting mean compliance as the objective function, which is very common in

structural optimisation, the optimisation problem using the SIMP method can
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be expressed as

min
ρ1,ρ2,...,ρn

W (ρ) = f · u

such that K(ρ)u = f ,

0 ≤ ρi ≤ 1, i = 1, . . . , N

N∑
i=1

(ρiVi)− V̄ ≤ 0

(2.14)

where f is the vector of nodal forces, u the displacement vector, K the global

stiffness matrix of the structure, ρ = [ρ1, ρ2, . . . , ρn] the relative density vector

which is the design variable, N the number of elements, Vi the volume of the i-th

element and V̄ the maximum alowable material volume.

The Lagrangian functional for the optimisation problem takes the following form

L = W +
N∑
i=1

(
λi(ρi − 1)− λiρi)

)
+ Λ

(
N∑
i=1

(ρiVi)− V̄
)

(2.15)

where λi, λi and Λ are non-negative Lagrange multipliers. Stationariness of L

with respect to ρi implies that

∂W

∂ρi
+ λi − λi + ViΛ = 0, i = 1, . . . , N (2.16)

If we define

Bi =
−∂W

∂ρi

ViΛ
, i = 1, . . . , N (2.17)

the update scheme for ρ can be expressed as follows (Bendsøe, 1995)

ρ
[k+1]
i =


max{(1− ζ)ρ

[k]
i , 0}, if ρ

[k]
i (B

[k]
i )η ≤ max{(1− ζ)ρ

[k]
i , 0}

min{(1 + ζ)ρ
[k]
i , 1}, if ρ

[k]
i (B

[k]
i )η ≥ min{(1 + ζ)ρ

[k]
i , 1}

ρ
[k]
i (B

[k]
i )η, otherwise

(2.18)

Here the superscript [k] indicates that the values are from the k-th iteration. ζ

is the move limit and η is a tuning parameter.

To calculate the values of B, we need to know the Lagrange multiplier for the

volume constraint (Λ). The value of Λ in Eq. (2.17) is found using an inner loop
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such that the volume constraint is satisfied.

A general algorithm of the SIMP method is summarised in Fig. 2.2

1. Discretise the design domain
2. Select initial values of densities
3. repeat
4. Perform finite element analysis
5. repeat
6. Update design variables (Eq. (2.18))
7. Update Lagrangian multiplier Λ
8. until volume constraint is satisfied
9. until convergence criteria are met

10. print results
11. end

Figure 2.2: An algorithm of the SIMP method

2.7.3 Numerical instabilities and solutions

Numerical instabilities are common and sometimes a serious problem in most

topology optimisation methods (Sigmund and Petersson, 1998). This causes some

critical obstacles in obtaining the optimal results or interpreting the final out-

comes. Three numerical instabilities in topology optimisation can be mentioned

as checkerboard, mesh-dependency and local minima.

Checkerboard problem corresponds to the formation of regions with alternating

void and solid elements resulting in difficulties in interpreting the final optimum

and also manufacturing process (Diaz and Sigmund, 1995). An example of the

checkerboard problem can be observed in Fig. 2.3. It has been believed earlier

that these regions represent some sort of optimal microstructures; however, by

theoretical approach, Jog and Harber (1996) demonstrated the numerical causes

of checkerboard formation rather than physical one.

Mesh dependency issue is due to nonexistence or nonuniqueness of final solutions

under different discretisations or mesh-sizes.

Firstly proposed by Sigmund (1994), the filtering technique has been widely used

to overcome both mesh dependency and checkerboard problems encountered in
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Figure 2.3: Checker board problem

the SIMP method. The filtered sensitivities are expressed as

∂̂W

∂ρi
=

∑N
j=1 ρj

∂W
∂ρj

ωij

ρj
∑N

j=1 ωij
(2.19)

where ωij is the weighting factor defined as

ω(rij) = max{rf − rij, 0} (2.20)

where rf is a predefined filtering radius, and rij the distance between the centres

of elements i and j. By choosing rf less than the size of elemens, the filtering

scheme is inactive and the filtered sensitivities are the original sensitivities.

Another technique to cope with this numerical problem is setting gradient con-

straints (Petersson and Sigmund, 1998). Also, Matsui and Terada (2004) pre-

sented a method of continuous approximation of material distribution for topol-

ogy optimisation to obtain a checkerboard-free optimum results without using

any additional constraint parameters. There are also other techniques proposed

in the literature to overcome these numerical instabilities but studying them is

beyond the scope of this project.

Local minima relates to not obtaining the same final solution under the same

discretisation with different algorithm parameters or initial guess designs. The

presented SIMP method is a gradient-based approach, and therefore is not guar-

anteed to yield the global optimum. A popular approach which sometimes can

overcome this issue is to employ a continuation technique (Sigmund and Peters-

son, 1998). For example, Harber et al. (1996) started the algorithm with low

penalties then gradually increased them to the desired value. Also, Sigmund

(1997) utilised a large value of filtering radius initially then gradually lowered
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it. Although sometimes local minima can be solved with continuation technique,

much more time and efforts are demanded by this technique.

2.7.4 Example

To demonstrate the application of the SIMP method, a simply supported beam

sketched in Fig. 2.4 is optimised topologically. The magnitude of the load is

P = 1. The width and the length of the beam are l = 10 and w = 3 respectively.

The material has the Young modulus of E = 1 and Poisson’s ratio of ν = 0.3.

The design domain is discretised into 100×30 square shaped elements. A penalty

factor (p) of 3 is applied. The move limit and the tuning parameter are selected

as ζ = 0.2 and η = 0.5, respectively. The filtering scheme (Sigmund, 1994) with

a filtering radius of 1.5 times the element size is applied to tackle checkerboard

problem and mesh dependency. Using the 99 line code proposed by Sigmund

(2001), the obtained evolution of topologies and objective function variations are

shown in Fig. 2.5.

P

w

l/2 l/2

100× 30

Figure 2.4: Design domain of a simply supported beam

In Fig. 2.5, the darkness in grey-scale is used to represent the densities of ele-

ments. It can be seen that although penalisation is applied, the final topology

still contains some intermediate elements, resulting in a blurred image. In relation

to the objective function variation, the initial mean compliance corresponding to

a uniform material distribution is 245 J. An optimised value of 50.6 J is then

obtained after optimisation.
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(a) K = 5 (b) K = 10 (c) K = 20

(d) K = 30 (e) K = 50 (f) K = 64 (final topol-
ogy)
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Figure 2.5: Topologies obtained by the SIMP method for a simply supported
beam (K is the iteration number). Owing to symmetry, only half of the beam is
shown.
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2.8 The BESO method

2.8.1 Overview

The BESO method was initially introduced as an extension of the Evolutionary

Structural Optimisation (ESO) method. Proposed by Xie and Steven (1992), the

concept of the ESO method is fairly simple: by gradually removing inefficient

elements from the structure, it can move towards its optimal shape and topology.

A rejection criterion is set to manage the removal process with an introduction of

a threshold value. Mechanical responses of elements are represented by a scalar

function, and the elements with values smaller than the threshold value will be

removed.

From engineering point of view, the ESO method seems to be an attractive ap-

proach because it is simple and can be easily implemented with the aid of a FEA

package with a small amount of time. However, a removed element cannot be

reintroduced, which can cause non-optimal solution. Also, if a large value of ele-

ment removal ratio or inappropriate constraint is utilised, a much worse solution

than the optimal would probably be obtained. Recent detailed discussion on the

ESO method and its shortcomings can be found in a paper by Ghabraie (2015a).

To remedy the deficiencies of the ESO method, beside removal of inefficient ele-

ments, addition of efficient elements are considered in the BESO method (Querin,

1997; Querin et al., 1998; Yang et al., 1999; Rispler et al., 2000). In the BESO

method, a ground structure covering the whole design domain including both solid

elements and void elements is considered. Different from the SIMP method, the

BESO method uses binary design variables by assigning the value of either 1 or 0

to a solid or void element respectively. For example, the compliance minimisation
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problem using the BESO method can be expressed as

min
x1,x2,...,xN

W (x) = f · u

such that K(x)u = f ,

xi ∈ {0, 1}, i = 1, . . . , N

N∑
i=1

xiVi ≤ V̄

(2.21)

As the void elements are not present in the mechanical analysis, their sensitivity

numbers cannot be directly calculated. Instead, information from the neighbour-

ing elements can be used to estimate their sensitivity numbers. For instance,

Querin (1997) assumed that void elements having a common node with the most

efficient elements take those elements’ sensitivity numbers and are to be added.

In another work, Li et al. (1999) and Yang et al. (1999) presented an approxima-

tion technique to extrapolate the nodal displacements of the surrounding solid

elements to the nodal displacements of the void elements. Then the sensitivity

numbers of the voids can be calculated. In a newer version of the BESO method,

Huang and Xie (2007) applied a linear filtering technique to approximate the

sensitivity numbers of the voids as

α̂i =

∑N
j=1wijᾱj∑N
j=1wij

(2.22)

where N is the total number of nodes in the sub-domain Ωi of the i-th element.

The sub-domain Ωi for element i is defined by drawing a circle centred at its

centroid with a radius of length scale rmin. w(rij) is the weight factor determined

by

w(rij) = max{0, rmin − rij} (2.23)

where rij is the distance between centroids of element i and element j. It was

suggested that rmin should be larger than half of the element size and a value of

1-3 times the element size was recommended.

Since its introduction, the BESO method has attracted a large number of pub-

lications in both theoretical and practical aspects. History of the method devel-
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opment, improvement and its applications are consolidated in a book by Huang

and Xie (2010a) and review papers by Rozvany (2009); Huang and Xie (2010b).

2.8.2 Details of the method

In the original version of the BESO method, the stress-based objective function

was developed with a Von Mises-based stress criterion by Querin (1997); Querin

et al. (1998, 2000). The algorithm selected under-stressed elements to be removed

and void elements near the over-stressed elements to be changed to solid elements.

Numbers of elements in removal and addition process for each iteration were

controlled by two separate parameters: rejection ratio (RR) and inclusion ratio

(IR), respectively. Due to the irrelevance of RR and IR, their values need to

be carefully chosen to achieve corresponding optimal design. It can be seen that

separation of removing and adding process based on ranked elements is somewhat

illogical and cumbersome. Some other issues also exist in initial versions of the

BESO method such as mesh-dependency, checkerboard pattern, and convergence

problem.

In newer versions, Huang et al. (2006); Huang and Xie (2007) improve these

shortcomings by proposing a single parameter called as Evolutionary Volume

Ratio (EVR) to control the process of adding and removing elements. This pa-

rameter controls the volume of the structure in each iteration using the following

relation

V k+1 = V k(1± EV R) (2.24)

where V k is the volume at the iteration k. Once the objective volume (V̄ ) is

reached, the volume will remain constant (V k+1 = V̄ ).

The switching process is controlled based on the rank of the sensitivity numbers.

Solid elements with lower values are to be removed and void elements with higher

values are to be added. The void elements’ sensitivity numbers are determined

using the filtering scheme in Eq. (2.22). It is noted that this filtering scheme is

also effective to cope with numerical instabilities as discussed in the next section.

The addition and removal of elements are controlled by the following steps
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1. Sort sensitivity numbers in an ascending order

2. Assign the sensitivity number αth corresponding to the target volume V k+1

3. Calculate Admission Ratio AR = V add

V
, where V add is the volume of void

elements whose sensitivity numbers are greater than αth and V the volume

of solid and void elements.

4. Compare AR and ARmax in which ARmax is a prescribed maximum admis-

sion ratio. If AR ≤ ARmax, skip to step 7. Otherwise, continue to step

5.

5. Sort the sensitivity numbers of void elements in descending order. Assign

αaddth equal to the sensitivity number of the void element corresponding to

the new volume of adding elements V add which is calculated as V add =

ARmax × V .

6. Assign αdelth equal to the sensitivity number of the solid element correspond-

ing to the volume of removing elements V del with V del = V add +V k+1−V k.

7. Void elements will be added (switched to 1) if αi ≥ αaddth and solid elements

will be removed (switched to 0) if αi ≤ αdelth .

A general algorithm of the BESO method is summarised in Fig. 2.6

1. Discretise the design domain
2. Select initial values of EV R and ARmax, set value of V̄
3. repeat
4. Conduct finite element analysis and calculate sensitivity numbers
5. Filter sensitivity numbers (Eq. (2.22))
6. Add and remove elements
7. until Convergence criteria
8. print results
9. end

Figure 2.6: An algorithm for the BESO method

The BESO methods can be divided into two categories: hard-kill and soft-kill

techniques. In the hard-kill BESO approach, inefficient elements are completely

removed from the design domain. Permanently removing an element may cause

nonoptimal final solution as there could be possibly considerable change in stress
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patterns between various stages of iteration. The soft-kill alternative was intro-

duced to overcome the issue by replacing the removed elements by soft elements

with significantly small elastic modulus. Hinton and Sienz (1995) replaced the

removed elements by elements with the elastic modulus scaled to a factor of 10−6.

Rozvany and Querin (2002) considered the void elements as soft elements with

significantly small density in their proposed Sequential Element Rejection and

Addmission (SERA). Zhu et al. (2007) introduced a similar method to BESO

in which an orthotropic cellular microstructure (OCM) element is utilised to re-

place the deleted element. Huang and Xie (2009) further improved the BESO

method by using material interpolation scheme with penalisation used in the

SIMP method. It is noted that the hard-kill BESO method can be seen as a

special case of the soft-kill when stiffness of the soft material approaches zero.

The hard-kill approach is naturally suitable for single material problems. On

the other hand, applications of the soft-kill approach is more broader and can

be extended to multi-material problems. The optimisation problem of finding an

optimised reinforcement distribution can be seen as a problem of searching for

an optimised distribution of multi-materials, i.e. host ground and reinforcement

materials. In this research, the soft-kill BESO method is therefore employed.

2.8.3 Numerical instabilities and solutions

Similar to the SIMP method, the BESO method also encounters numerical in-

stabilities including checkerboard problems, mesh dependency and local minima.

The following presents solutions applied to these problems for the BESO method.

Checkerboard problem:

Li et al. (2001) applied a filtering technique for the ESO method by simply aver-

aging the sensitivity numbers of surrounding elements to suppress the formation

of checkerboard patterns. However, this smoothing scheme does not overcome

the mesh-dependency issue. In the improved BESO version proposed by Huang

and Xie (2007), the proposed filtering technique is capable of effectively dealing

with both mesh dependency and checkerboard issues. The sensitivity number

of void elements which are initially assumed to be zero are modified by the fil-
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tering scheme. Elemental sensitivity numbers are converted to nodal sensitivity

numbers by averaging elemental sensitivity numbers connected to each node as

ᾱnj =

∑M
i=1 Viα

e
i∑M

i=1 Vi
(2.25)

where ᾱnj is nodal sensitivity number of node j, M the total number of elements,

Vi the volume of the element i with elemental sensitivity number αei . The nodal

sensitivity numbers are then converted to elemental sensitivity numbers and only

nodes inside a defined sub-domain are considered in the calculated elemental

sensitivity numbers as defined in Eq. (2.22). Also, historical information of the

elemental sensitivity number is taken into account to stabilize the optimisation

process. To do so the sensitivity numbers of the current iteration are assigned as

follows

α̂i =
α̂ki + α̂k−1

i

2
(2.26)

where k is the current iteration number.

The above filtering scheme is effective with single material distribution but in-

effective with multi-material problems (soft-kill BESO) (Ghabraie, 2015b). To

tackle this deficiency, Huang and Xie (2009) applied a material interpolation

scheme with penalisation employed in the SIMP method in BESO. Alternatively,

Ghabraie (2015b) proposed another filtering scheme by replacing Eq. (2.25) by

the following equation

α̃nj =

∑M
i=1 ViEiα

e
i∑M

i=1 ViEi
(2.27)

It is noted that although no theoretical justification has been offered, the filtering

technique is simple to implement without introducing any extra constraints and

produces acceptable results.

Mesh dependency:

The perimeter control method (Harber et al., 1996; Jog, 2002) is a solution to

tackle mesh dependency problem. It is known that among two topologies, one

with fewer holes also contains a smaller perimeter. By introducing a constraint

on the perimeter, the method would be able to control the obtained topologies

and the mesh dependency issue can be prevented (Yang et al., 2003). However,
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physical significance of perimeter control is somewhat meaningless, and selecting

an appropriate value for a topology optimisation design is a difficult task.

Apart from the perimeter constraint approaches, the aforementioned filtering

technique is also effective to overcome mesh dependency problem.

Local minima:

Applying the concept of the continuation approach utilised in the SIMP method,

Ghabraie (2015b) proposed a gradual BESO (gBESO) method to tackle the local

minima problem in the soft-kill BESO method. In the first step, elastic moduli of

all materials are selected very close to the softest material. These values of stiffer

materials are then gradually increased in next steps as optimisation algorithm

proceeds till the elastic moduli reach their prescribed values.

2.8.4 Examples

An example of finding an optimal topology of a cantilever beam is performed to

illustrate the application of the BESO method. The design domain and boundary

condition of the problem is shown in Fig. 2.7. A load of P = 1 is applied. The

beam has a length of l = 5 and a width of w = 3. The material properties are

Young modulus of E = 1 and Poisson ratio of ν = 0.3. A discretisation of 50×30

square elements is applied to the design domain. A full design is used as an

initial design. The maximum allowable volume of material is assigned as 50% of

the design domain volume. The evolutionary volume ratio is set as EV R = 0.01.

The filtering radius (Eq. (2.22)) is set as three times as the element size. Fig. 2.8

shows the obtained topologies and the evolutionary of the objective function and

volume fraction.

2.9 Applying topology optimisation in underground excava-

tion design

The complicated nature of rock mass behaviour introduces a number of challenges

in the rock engineering design as mentioned in previous sections. Another special
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feature of underground excavations is the changes of stress-strain patterns due to

excavation and installation of support/reinforcement. These obstacles results in

several limitations and difficulties in using topology optimisation in tunnelling en-

gineering. This section is devoted to review published works on applying topology

optimisation in underground excavation design and their corresponding limita-

tions.

2.9.1 Shape optimisation of underground excavations

Numerical shape optimisation of underground openings was firstly investigated

by Ren et al. (2005). They used an intuitive stress-based criterion using the mean

principal compressive stress expressed as

σ̄ =
σ1 + σ2 + σ3

3
(2.28)

where σ̄ is the mean stress, σ1, σ2 and σ3 the principal stresses. The ESO method

is used to gradually eliminate elements with lower σ̄ in the finite element mesh

until a control condition is satisfied. Some examples in both two and three di-

mensions were demonstrated and verified with analytical solutions. The ground

material was assumed to follow linear elastic regime.

Applying the ESO concept, an attempt was made by Ghabraie et al. (2008) to

optimise the opening shape considering nonlinear material properties. An elastic-

perfectly plastic Mohr-Coulomb model was used to simulate ground material. A

rejection criterion based on Mohr-Coulomb yield function was proposed to control

the elimination process.

Replacing the intuitive stress-based optimisation, Ren et al. (2014) studied the

shape optimisation based on a stiffness rejection criterion. The BESO method

was employed and nonlinear behaviour of material was incorporated in the sensi-

tivity analysis. The proposed approach was demonstrated by presenting a shape

optimisation of an underground excavation under biaxial stress. Also, three di-

mension example optimising a shape of a mine pillar was shown to demonstrate

to the applicability of the approach.
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2.9.2 Reinforcement optimisation of underground excavations

In civil and mining engineering, underground reinforcement have been routinely

designed using empirical methods. This tool is credited for its usefulness and

convenience, however, it imposes some limitations in practicality as discussed in

§2.3.2. To improve the conventional design method, some attempts have been

made recently to apply topology optimisation in tunnel reinforcement design.

The application of topology optimisation in tunnel reinforcement design was ini-

tially studied by Yin et al. (2000). In this work, the homogenisation method is

used to minimise the external work along the opening defined as

W =

∫
Γ

f · udΓ (2.29)

where u is the displacement vector, Γ the tunnel’s boundary, and f the surface

traction on the opening before excavation. Elements in the design domain were

modelled by a square cell made of original rock at the centre surrounded by

reinforced rock.

Yin and Yang (2000a) conducted further research on tunnel reinforcement distri-

bution in various layered geological conditions. Four cases of rock structures were

investigated including isotropic soft, hard/soft, soft/hard, and hard/soft/hard

rock layers. A displacement-based objective function which is the sum of relative

displacements around the tunnel boundary is considered in the optimisation prob-

lem. The SIMP method is employed to determine the optimum distribution of

reinforcement density in the design domain. The power-law interpolation similar

to Eq. (2.13) is employed.

Using the same approach, another important issue in tunnel reinforcement design,

namely tunnel and sidewall heave caused by squeezing rock, was also addressed

by Yin and Yang (2000b).

Liu et al. (2008b) studied the displacement-based objective function to optimise

reinforcement distribution around the opening by a Fixed-Grid Bidirectional Evo-

lutionary Structural Optimisation (FG BESO) method. This approach was used
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to overcome mesh-dependency and zigzag boundary problem in intermediate and

final results. A linear interpolation scheme is used to represent the material

properties of elements in the design domain in the form

E(xe) = xeE
(r) + (1− xe)E(o) (2.30)

where xe is the design variable of the e-th element, taking the value of 0 if the

element e is not reinforced or 1 if the element e is reinforced. We have E(xe) =

E(o) for xe = 0 and E(xe) = E(r) for xe = 1.

A simultaneous optimisation of shape and reinforcement distribution of an un-

derground excavation was explored by Ghabraie et al. (2010) using the BESO

method. Some numerical examples on single and twin tunnels considering the in

situ stress and traffic loadings were demonstrated.

It is noted that a linear elastic material behaviour was assumed to model both

the original rock and reinforced in all the above-mentioned works. Also, all these

works used isotropic homogenised material properties to model reinforced areas.

2.9.3 Limitations of the previous works and potential improvement

The two main limitations of the previous works on reinforcement optimisation

include the linear elastic assumption for material behaviour and the modelling

techniques of reinforcement material.

The elastic material model as assumed in the existing reinforcement optimisation

works is a serious shortcoming as it is incapable of illustrating practical behaviour

of geomaterials. Applications of these methods in tunnelling engineering is, hence,

limited. This assumption will be removed in chapter 3 by considering nonlinear

elastic-perfectly plastic material models.

Also, modelling reinforcement materials as homogenised isotropic elements causes

inevitable inaccuracies in considering specific properties of reinforcement and also

in explaining and processing the final outcomes. An advanced explicit modelling

technique and relevant optimisation algorithm will be introduced in chapter 4 to
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optimise bolt sizes in a given pattern around a tunnel. Further development of

the reinforcement optimisation will be presented in chapter 5 in which the bolt

pattern is also optimised.

The objective function of the external work around an opening has been widely

used in the literature and also in the first chapters of this thesis. To consider

other practical problems such as minimisation of heave or ground displacements

due to tunnel excavation, a general formulation for displacement-based objective

functions is introduced in chapter 6. The proposed optimisation techniques are

then extended to that objective function.





Chapter 3

Nonlinear behaviour of geomaterial in

optimisation

It is noted in §2.9.2 that the previous works on optimising tunnel reinforcement

assumed linear elastic model for both host ground and reinforced material. As

mentioned earlier this assumption is not always valid especially for geomechanics

materials and should only be considered as the initial step to model geotechnical

problems (Jing, 2003). Therefore, considering nonlinear material behaviour in

topology optimisation is a reasonable extension of the previous studies towards

obtaining proper and more reliable designs. In this chapter, the BESO method

is improved and extended to search for an optimal reinforcement distribution in

an underground excavation design modelled with nonlinear material model.

The work in this chapter has been published in a journal paper by Nguyen et al.

(2014).

3.1 Motivations

Nonlinearity is a natural character of geomaterials (Jing, 2003). The behaviour

of geomaterials is generally stress dependent. Particularly in tunnelling engi-

neering, the stress-strain behaviour of ground material is continuously altered

under repeated acts of tunnel advancement and support installation. It is there-

fore significant to capture practical material behaviour under various phases of
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construction to gain an overall understanding of the system behaviour.

However, using such nonlinear material models in topology optimisation is some-

what challenging. The first and the most notable difficulty is the sensitivity anal-

ysis if the material nonlinearity or the construction sequence is to be concerned.

Additionally, a typical optimisation algorithm normally requires a considerable

number of finite element analyses. Solving such problems demand a huge com-

putational effort and time, and is another barrier. Despite this, however, incor-

poration of material nonlinearities would provide us with more practical results

and therefore be a crucial contribution to the area.

Historically, the topology optimisation methods mentioned in §2.6 are all ini-

tially applied for optimisation problems with linear material behaviour. Effects

of nonlinear material behaviour on topology optimisation design have been stud-

ied later in some works by Maute et al. (1998); Bruns and Tortorelli (2001); Jung

and Gea (2004) and Huang and Xie (2008). However, consideration of topology

optimisation for multiple nonlinear materials working together has not been fully

studied.

The previous works on tunnel reinforcement optimisation merely considered ho-

mogeneous, linear elastic material behaviour. This work is going to improve and

extend the BESO to multimaterial problems with nonlinear materials and apply

it into tunnel reinforcement design. It will be shown that the derived sensitivities

could be used with any material model employed.

3.2 Tunnel modelling

The typical tunnel used in illustrative examples in this chapter is assumed to be

long and straight enough to satisfy plane strain assumption. The geometry of the

tunnel is a rectangle of size w×h = 10m×5m augmented at the top with a semi-

circle of radius 5m. After some numerical testings, the design domain geometry

is selected as a square of side length 8h. This is to ensure that the design domain

size does not have a noticeable effect on topology optimisation results.

Fig. 3.1 shows the initial guess reinforcement design which represents a uniform
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Figure 3.1: Initial guess design

distribution of reinforcements based on current empirical recommendations. In

this figure, the reinforced zone is illustrated by dark grey elements. Elements

around the tunnel opening are assigned as non-designable elements, printed black

and assumed to have the same properties as the reinforced material. Using sym-

metry, only half of the design domain is modelled in the finite element analysis

with proper symmetric conditions. Excavation process is analysed by finite el-

ement method using ABAQUS (version 6.11). Since the case of deep tunnel is

investigated, the effect of difference in gravity force is ignored here. Also, the

materials are assumed to be weightless.

Unlike linear material models, loading history affects the response of nonlinear

materials. Thus, the tunnel excavation is modelled in two separate steps. Firstly,

pre-excavation conditions are obtained by restraining the nodal displacements of

elements at the tunnel surface and at the boundary regions between the reinforced

rock and the original rock. In the subsequent step, the displacement restraints

along the boundary of the opening are removed.

It is clear from the tunnel model that two types of materials, i.e. host ground

and reinforced material, are of concern. Mohr-Coulomb constitutive model which

has been broadly used in geotechnical engineering applications is employed to
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model host ground and reinforced material owing to its simplicity and acceptable

accuracy. Yield function and flow potential of the elasto plastic Mohr-Coulomb

model with a non-associated flow rule are expressed as (Menétrey and Willam,

1995)

F = Rmcq − p tanφ− c = 0 (3.1)

G =

√
(εC|0 tanψ)2 + (Rmωq)

2 − p tanψ (3.2)

where

Rmc(Θ, φ) =
1√

3 cosφ
sin
(

Θ +
π

3

)
+

1

3
cos
(

Θ +
π

3

)
tanφ, (3.3)

Rmw(Θ, e) =
4(1− e2) cos2 Θ + (2e− 1)2

2(1− e2) cos Θ + (2e− 1)
√

4(1− e2) cos2 Θ + 5e2 − 4e
Rmc(

π

3
, φ),

(3.4)

Rmc(
π

3
, φ) =

3− sinφ

6 cosφ
, (3.5)

p = −1

3
trace(σ) (3.6)

q =

√
3

2
S : S (3.7)

φ, c and ψ are the friction angle, cohesion and dilation angle of the rock, re-

spectively. Θ is the deviatoric polar angle, ε the meridional eccentricity, e the

deviatoric eccentricity, and C0 the initial cohesion yield stress. p is the mean

stress, q the Mises stress, and S the deviatoric stress. The values adopted for the

material parameters are shown in Table 3.1.

Table 3.1: Engineering properties of host ground and reinforced material

Material properties Host ground Reinforced material
Young modulus (GPa) 0.1 0.5
Poisson’s ratio 0.3 0.3
Friction angle (◦) 27 32
Cohesion (MPa) 0.1 0.3

It should be emphasised, however, that as will be clear later, the approach pro-

posed here is not dependent on the material model used.
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3.3 Statement of objective function

The aim of the tunnel reinforcement design is to employ a minimum amount of

reinforcements while tunnel deformation after activating the reinforcements needs

to be limited. This objective can be reformulated as minimising tunnel deforma-

tion after reinforcement installation under a prescribed reinforcement volume. In

the proposed method below, the optimisation process minimises the external work

along the tunnel wall which is a functional of the tunnel deformation under a con-

strained reinforcement volume. The outcomes provide an optimal distribution for

a certain amount of reinforcement volume in order to obtain a minimum external

work. It can be shown that any solution to this problem is also a solution to

finding a minimum reinforcement volume subject to a constrained external work.

The optimisation problem can be stated as

min W =

∫
f · du = lim

n→∞

[
1

2

n∑
i=1

(ui − ui−1) · (f i + f i−1)

]

subject to: VR =
M∑
e=1

Vexe

xe ∈ {0, 1}

(3.8)

where W is the total external work, u the displacement vector, f the external

force vector, n the number of iterations in solving the non-linear equilibrium

equations, Ve the volume of element e, VR the prescribed reinforced volume, and

M the total number of elements in the design domain. xe is the design variable of

element e. xe = 1 means that element e is reinforced and xe = 0 means element

e is not reinforced.

3.4 Nonlinear sensitivity analysis

To search for an optimal reinforcement distribution, the core task of the BESO

method is to switch elements’ material between two material types, host ground

and reinforced material, based on the rank of their sensitivity numbers. The sen-

sitivity analysis for the above-mentioned objective function with a consideration
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of material nonlinearities is presented herein.

Equilibrium requires the residual force vector to be eliminated, i.e.,

R = f − p = 0 (3.9)

where p is the internal force vector. The internal force vector can be expressed

as

p =
M∑
e=1

∫
e

CeBσdν =
M∑
e=1

∫
e

CeBDeεdν (3.10)

where Ce is the matrix which transforms local force vector of element e to global

force vector, B the strain-displacement matrix, and De the matrix defining the

stress-strain relationship. The sensitivity of the objective function to a change in

variable x is

∂W

∂x
= lim

n→∞

[
1

2

n∑
i=1

(ui − ui−1) ·
(
∂f i
∂x

+
∂f i−1

∂x

)
+

1

2

n∑
i=1

(
∂ui
dx
− ∂ui−1

dx

)
· (f i + f i−1)

]
(3.11)

Note that the second sum vanishes because at any point either the external force

is zero or the displacement is fixed.

The adjoint method is applied by adding an adjoint term to the objective function

(3.8).

W = lim
n→∞

[
1

2

n∑
i=1

(ui − ui−1) · (f i + f i−1)− λi · (Ri + Ri−1)

]
(3.12)

Differentiating Eq. (3.12) and using Eq. (3.9), we obtain

∂W

∂x
= lim

n→∞

1

2

n∑
i=1

[
(ui − ui−1) ·

(
∂f i
∂x

+
∂f i−1

∂x

)
− λi ·

(
∂f i
∂x
− ∂pi

∂x
+
∂f i−1

∂x
− ∂pi−1

∂x

)]
(3.13)

In order to eliminate the unknown part ∂f i
∂x

+ ∂f i−1

∂x
, λi is selected as

λi = ui − ui−1 (3.14)

Substituting Eq. (3.14) into Eq. (3.13), the sensitivity of the objective function
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is
∂W

∂x
= lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
∂pi

∂x
+
∂pi−1

∂x

)
(3.15)

In order to calculate the sensitivity of the internal force vectors, we use the

material interpolation scheme suggested by Stolpe and Svanberg (2001a). Using

this interpolation scheme, the matrix De in terms of design variables is expressed

as

De(xe) = D(2)
e +

xe
1 + q(1− xe)

(
D(1)
e −D(2)

e

)
(3.16)

where De is the stress-strain matrix of the e-th element and D(1)
e and D(2)

e the

stress-strain matrices of the same element if it was made of the reinforced material

(material 1) and unreinforced material (material 2) respectively. xe is the design

variable of the e-th element and we have De = D(2)
e for xe = 0 and De = D(1)

e

for xe = 1. A value of q = 0 results in a linear interpolation. Ghabraie (2015b)

showed that using linear interpolation in the BESO can result in unrecognisable

topologies when filtering techniques are adopted to overcome numerical instabil-

ities. In this work, a value of q > 0 is used to prevent such situations.

Differentiating Eq. (4.2), yields

∂De

∂xe
=

(
D(1)
e −D(2)

e

)
(1 + q)

[1 + q(1− xe)]2
(3.17)

From Eq. (4.3) and Eq. (3.17), we have

∂p

∂xe
=

1 + q

[1 + q(1− xe)]2
M∑
e=1

∫
e

CeB(D(1)
e −D(2)

e )εdν

=
1 + q

[1 + q(1− xe)]2
(
p(1)
e − p(2)

e

) (3.18)
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Substitute Eq. (4.5) into Eq. (3.15), we have

α =
∂W

∂xe
=

1 + q

[1 + q (1− xe)]2
lim
n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
p
(1)
i − p

(2)
i + p

(1)
i−1 − p

(2)
i−1

)
=

1 + q

[1 + q (1− xe)]2

[
lim
n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
p
(1)
i + p

(1)
i−1

)
− lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
p
(2)
i + p

(2)
i−1

)]

=
(1 + q)

[1 + q (1− xe)]2
(
Π(1)
e − Π(2)

e

)
(3.19)

where Π
(1)
e and Π

(2)
e are the total strain energies of element e if it was made of

material 1 and 2 respectively.

The sensitivity number α is a direct measure of variation of the objective function

due to switching the two materials. It is interesting to note that the sensitivities

are local, i.e., they only depend on the local responses of the considered element.

It can also be seen that the sensitivities are independent of size of displacement

increments. It is worth noting that in this sensitivity analysis, no assumption

has been made on the behaviour of the material or the failure model. Thus, this

result is valid for all types of material models.

The utilised optimisation method requires a switching procedure of material be-

tween the original rock and the reinforced rock. The elements themselves can be

considered as the design variable during the optimisation process.

3.4.1 Numerical calculation of sensitivity numbers

The elastic perfectly plastic Mohr-Coulomb model is employed for both the orig-

inal (material 2) and the reinforced materials (material 1). Two cases need to be

considered as follows.

Case 1: the element is made of material 1 (xe = 1). In this case, Π
(2)
e in Eq. (4.9)

takes the form

Π(2)
e = lim

n→∞

1

2

n∑
i=1

(εi − εi−1) ·
(
σ

(2)
i + σ

(2)
i−1

)
Ve (3.20)
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where Ve is the volume of the element e.

If the element is in its elastic region under the final strain ε, we have

Π(2)
e =

1

2
Veε · σ(2) (3.21)

and Eq. (4.9) takes the form

α = (1 + q)

(
Π(1)
e −

1

2
Veε · σ(2)

)
(3.22)

Otherwise, the strain energy of the element is made of elastic and plastic compo-

nents and we have

Π(2)
e =

1

2
Ve
[
ε(2)
y · σ(2)

y +
(
ε− ε(2)

y

)
·
(
σ(2) + σ(2)

y

)]
(3.23)

and Eq. (4.9) takes the form

α = (1 + q)

{
Π(1)
e −

1

2
Ve
[
ε(2)
y · σ(2)

y +
(
ε− ε(2)

y

)
·
(
σ(2) + σ(2)

y

)]}
(3.24)

or

α = (1 + q)

{
Π(1)
e −

1

2
Ve
[
ε ·
(
σ(2) + σ(2)

y

)
− ε(2)

y · σ(2)
]}

(3.25)

Case 2: the element is made of material 2 (xe = 0). In this case, Π
(1)
e in Eq. (4.9)

takes the form

Π(1)
e = lim

n→∞

1

2

n∑
i=1

(εi − εi−1) ·
(
σ

(1)
i + σ

(1)
i−1

)
Ve (3.26)

If the element is in its elastic region under the final strain ε, we have

Π(1)
e =

1

2
Veε · σ(1) (3.27)

and Eq. (4.9) takes the form

α =
1

1 + q

(
1

2
Veε · σ(1) − Π(2)

e

)
(3.28)
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Otherwise, the strain energy of the element is made of elastic and plastic compo-

nents and we have

Π(1)
e =

1

2
Ve
[
ε(1)
y · σ(1)

y +
(
ε− ε(1)

y

)
·
(
σ(1) + σ(1)

y

)]
(3.29)

and Eq. (4.9) takes the form

α =
1

1 + q

{
1

2
Ve
[
ε(1)
y · σ(1)

y +
(
ε− ε(1)

y

)
·
(
σ(1) + σ(1)

y

)]
− Π(2)

e

}
(3.30)

or

α =
1

1 + q

{
1

2
Ve
[
ε ·
(
σ(1) + σ(1)

y

)
− ε(1)

y · σ(1)
]
− Π(2)

e

}
(3.31)

where ε is the final strain, σ the final stress caused by ε, and σ
(1)
y , ε

(1)
y , σ

(2)
y , ε

(2)
y

the yield stresses and yield strains of material 1 and material 2, respectively.

3.5 BESO procedures

The BESO procedure repeatedly switches elements between the two phases of

material based on the obtained sensitivity numbers. In the initial design, the

reinforcement volume is chosen to satisfy the volume constraint given in Eq.

(3.8) and is maintained during the optimisation process. The volume of elements

to be reinforced is thus equal to the volume of elements to be unreinforced in

each iteration. This is beneficial for observing the objective function variations

clearly in each iteration and also in the final optimal result. Additionally, a limit

is imposed on the maximum volume of changing elements to ensure that there is

no sudden change in the design. This limit is referred to as evolutionary volume

ratio (EVR).

The volume of switched elements in each iteration is calculated from

min {EV R, V R, V O} (3.32)

where V R is the total volume of all reinforced elements with sensitivity numbers

smaller than the maximum sensitivity number of the original elements, and V O
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the total volume of all original elements with sensitivity numbers larger than the

minimum sensitivity number of the reinforced elements.

Additionally, to overcome mesh dependency and eliminate checkerboard patterns,

the linear filtering technique (Huang and Xie, 2007) presented in §2.8.3 is also

employed.

The process of finite element analysis and material switching continues until the

following convergence criterion is met (Huang and Xie, 2010a)

error =

∑n
k=1 (Wi−k+1 −Wi−n−k+1)∑n

k=1Wi−k+1

≤ τ (3.33)

where Wi is the value of objective function in the i-th iteration, n is chosen as 5,

and τ is the convergence tolerance selected as 10−4. The flow chart for the whole

program is depicted in Fig. 3.2.

3.6 Examples and discussion

In order to verify and demonstrate the applicability and robustness of the pre-

sented approach, some problems with both linear and nonlinear material models

are solved here. The tunnel reinforcement design presented in Fig. 3.1 is optimised

in all these examples.

For verification, tunnel reinforcement design is firstly carried out assuming linear

elastic material analysis. Both host ground and reinforced material are assumed

to work in elastic regime with Young modulus (E) and Poisson’s ratio (ν) shown

in Table 3.1. Volume of reinforcing material is predefined as 5 percent of that of

the whole design domain. The filtering radius is chosen as 2.5 m. Hoek and Brown

(1980) reported that the ratio between horizontal and vertical stress, k, may be

in the range of 0.4 to 5. In this example, two cases of k are investigated and the

obtained outcomes are depicted in Fig. 3.3. As expected, tunnel reinforcement is

distributed evenly around the tunnel wall in hydrostatic stress condition (k = 1)

(Fig. 3.3a). For k = 0.7, reinforcement areas are more skewed in vertical direction

which agrees well with the results of Yin et al. (2000) (Fig. 3.3b). The objective
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Start

Finite element
analysis

Calculate
sensitivity
numbers
(§3.4.1)
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(Eq. (2.22))
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(Eq. (2.26))

Switching
process (§3.5)

Convergence
(Eq. (3.33))

End

No

yes

Figure 3.2: Flowchart of tunnel reinforcement optimisation using the BESO
method
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function variations for these two cases are shown in Fig. 3.3c. It can be seen

that the objective function reduces gradually with smooth changes and converges

after a few iterations.
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(c) Objective function variations

Figure 3.3: Optimal tunnel reinforcement with an elastic material model

It has been proved that reinforcement design for underground excavation is highly

affected by horizontal stress ratio (Ghabraie, 2009). In the following examples,

various in situ stress conditions including horizontal stress ratios and stress mag-

nitudes are investigated.
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3.6.1 Examples of various horizontal stress ratios in plastic cases

The tunnel described in section 3.2 is analysed with the elastic perfectly plastic

Mohr-Coulomb material model. Since the tunnel is assumed to be deep enough,

vertical stress in the vicinity of the opening can be assumed to be independent of

depth. Various horizontal stress ratios, k = 0.4, 0.7, 1, 1.4 and 2 are investigated

in these examples under the same vertical stress of 0.8 MPa. Filtering radius is

selected as 1 m. Fig. 3.4 shows the obtained reinforcement distributions and

objective function variations for these cases.

It can be observed from the results that the optimal tunnel reinforcement is

significantly dependent on the horizontal stress ratio. Reinforcement distribution

is even for the case of hydrostatic condition (k = 1) (Fig. 3.4c), while for unequal

horizontal and vertical stresses, it can be easily seen that the reinforcement is

aligned towards the direction of the maximum principal stress (Fig. 3.4a, 3.4b,

3.4d, 3.4e). Objective function gradually decreases and converges to the optimum

in all of these examples (Fig. 3.4f).

3.6.2 Examples of stress dependency in plastic cases

The previous examples illustrated the effect of horizontal stress ratio on tunnel

reinforcement design. Investigation of the effects of stress magnitude is conducted

in this section. It is obvious that the effect of stress magnitude on the optimal

reinforcement design only can be captured provided that material nonlinearity is

taken into account.

In these examples, vertical stress (σ1) is varied while horizontal stress ratio re-

mains constant (k = 0.4). In order to obtain a clearer stress effects, a small filter

radius of 1 m is used. Fig. 3.5 depicts tunnel reinforcement for linear materials

and nonlinear materials with various vertical stress magnitudes.

For small vertical stresses, as expected, the optimal reinforcement design of non-

linear materials (Fig. 3.5b) is almost similar to that of linear ones (Fig. 3.5a). This

is easily understandable since a large portion of elements are working in elastic
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Figure 3.4: Nonlinear reinforcement optimisation under various horizontal stress
ratios
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Figure 3.5: Stress dependency of nonlinear optimal tunnel reinforcement
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Figure 3.6: Initial guess design

regime in this condition. Under various stress values, it can be generally observed

that the reinforcement distribution patterns are almost similar and oriented with

the direction of the maximum principal stress (Fig. 3.5b, Fig. 3.5c and Fig. 3.5d).

However, as the stress magnitudes increase, the reinforced elements tend to cover

the areas closer to the openings whereas longer bolts seem to be preferable in

particular directions under higher stress magnitudes. Relatively smooth changes

in the objective function of various cases are also observed in these analyses as

shown in Fig. 3.5e.

3.6.3 Effects of tunnel shape on the reinforcement distributions

In order to investigate the effects of tunnel shape on the optimal reinforcement

distributions, a circular tunnel of the radius 5m is considered with the initial

guess reinforcement design denoted by the dark grey areas as shown in Fig. 3.6.

In situ stress conditions of vertical stress of 0.8 MPa and various horizontal stress

ratios of k = 0.4, 1 and 2 are investigated. Owing to symmetry, only a quarter of

the tunnel is modelled. Results on the optimal reinforcement distributions and

the objective function variations are displayed in Fig. 3.7.

For the case of hydrostatic stress condition, it can be seen that the initial uni-

form guess design is also the optimal reinforcement distribution (Fig. 3.7b) and

certainly, no further objective function improvement is observed (Fig. 3.7d). On

the other hand, the optimal reinforcement distribution in the case of k = 0.4
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Figure 3.7: Reinforcement distribution for circular tunnel with σ1 = 0.8 MPa.
An even distribution of reinforcement, which is similar to the proposed initial
design, is expected for the condition of the hydrostatic stress state (k=1) and the
circular deep tunnel, where material weight is not considered.
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for the circular tunnel (Fig. 3.7a) is almost similar to that for the tunnel shape

presented in Fig. 3.4a. This is expected as the augmented parts of both tunnels

are semi-circular. However, for the case of k = 2, the optimal reinforcement

distribution for the circular tunnel is aligned with the horizontal direction and

slightly different from that in Fig. 3.4e. The shape factor for the circular tunnel

has redistributed the stress around the opening while the rectangle part of the

tunnel in Fig. 3.4e has resulted in stress concentration at the corner, leading to a

difference in the reinforcement distribution. It can be concluded that other than

the in situ stress conditions, tunnel shape also affects the reinforcement design.

3.6.4 Demonstrations of effectiveness of the proposed approach

Based on rock engineering classification systems, empirical methods suggest cer-

tain tunnel reinforcement designs for corresponding ground conditions in which

even reinforcement distribution is commonly observed. On the other hand, ob-

tained results in previous sections show that optimal reinforcement distribution

in the design domain changes with stress conditions and tunnel shape. This sec-

tion is to demonstrate how the proposed approach could be used to improve the

conventional reinforcement design.

Following the example presented in section 3.6.1 for the case of horizontal stress

with k = 2, two openings reinforced by shotcrete lining and differently distributed

rock bolt are presented. One is to illustrate the conventionally even distribution

(Fig. 3.1) as displayed in Fig. 3.8a and another is to illustrate the distribution

optimised by the present method (Fig. 3.4e) as displayed in Fig. 3.8b. Shotcrete

lining and rock bolts are assumed to be elastic perfectly-plastic and their specific

physical and mechanical properties are listed in Table 3.2. Total length of rock

bolts for two designs are 43.54 m and 43.67 m, respectively. This negligible differ-

ence is due to mesh discretisations and has no considerable effects on optimality

conditions pointed out in Eq. (3.8).

With the initial design based on an empirical recommendation (Fig. 3.8a), a finite

element analysis using ABAQUS yields a value of 8.12 × 105 J for the objective

function. On the other hand, starting with the above initial design, the present
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Table 3.2: Physical and mechanical properties of shotcrete lining and rock bolts

Material Shotcrete lining Rock bolts
Young Modulus (GPa) 20 200
Poisson’s ratio 0.2 0.3
Yield stress (MPa) 20 200
Thickness (mm) 100 -
Cross section area ( mm2) - π(15)2
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(b) Optimal design

Figure 3.8: Conventional and optimal rock bolt distribution
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optimisation approach yields a final configuration as shown in Fig. 3.8b with a

value of 7.5 × 105 J for the objective function. Thus, nearly 10% improvement

is observable which is completely consistent with the results achieved in section

3.6.1.

3.7 Summary

Nonlinear material behaviour, a prominent and realistic character of geomechan-

ical materials, has been captured in topology optimisation. Sensitivity analysis,

one of the most significant part of topology optimisation methods, has been con-

ducted for two nonlinear materials. To the extent of this study, the obtained

results then can be utilised to search for an optimised tunnel reinforcement dis-

tribution. However, the approach can also be applicable to other topology opti-

misation problems considering material nonlineartities. Additionally, the method

can be easily extended to a multi-material optimisation problem.

The BESO method has been extended to optimise tunnel reinforcement design in

presence of nonlinear material behaviours of the host ground and the reinforced

material. The proposed method is tested with both linear and nonlinear materials

and the effectiveness of the method has been confirmed.

Some examples on investigating the effects of in situ stress conditions and tunnel

shapes have been performed. Interestingly, various reinforcement designs are

recommended for corresponding stress conditions and shapes of the openings.

Also, to display the post-processing of the final outcomes, a simple example using

the obtained final outcome and an assumed practical reinforcement design has

been demonstrated. Based on the obtained results, it can be concluded that more

advanced and rational designs can be achieved using the proposed optimisation

technique compared to the commonly-employed method.

The presented method can be applied to a computer-aided tunnel support design,

taking into account nonlinear material behaviours, ground conditions and tunnel

shapes. Although only biaxial stress conditions are examined in the presented

numerical demonstrations, this approach can be easily applied to other loadings
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and geometrical conditions such as transport loading condition, twin tunnels, etc.

Apparently, modelling reinforcement material as homogenised elements causes

some inconveniences in interpreting the final outcomes, leading to inflexibility of

the proposed method. In the next chapter, a more advanced modelling approach

along with a relevant optimisation technique will be presented to overcome this

limitation.



Chapter 4

Optimisation of Rock Bolt Size

The work in this chapter has been accepted for publication as a journal paper by

Nguyen et al. (2015b)

4.1 Modelling issues of reinforcement material

In the previous works, to model the areas of the rock mass reinforced by rock

bolts, a homoginised isotropic material which is stronger and stiffer than the

unreinforced rock mass material is used (Yin et al., 2000; Yin and Yang, 2000a,b;

Liu et al., 2008b; Ghabraie et al., 2010; Nguyen et al., 2014). Some limitations

and assumptions are linked to this modelling simplification. Firstly, a perfect

bonding between the reinforced material and the surrounding rock needs to be

assumed (Bernaud et al., 2009). More importantly, such a model cannot consider

the anisotropic nature of the reinforced rock which is significantly stronger in the

bolt direction and weaker in the normal directions. Also, results obtained by such

an approach need to be further processed to yield a clear bolt distribution design

as seen in §3.6.4.

To handle these shortcomings, one should model the reinforcements explicitly

using linear inclusions embedded in the rock mass. This approach may take more

efforts especially in topology optimisation, but a higher level of accuracy could

be achieved.
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This chapter is devoted to seek for an optimal rock bolt configuration by com-

bining an extended optimisation technique and numerical analysis. Rock bolts

will be explicitly modelled and nonlinear behaviour of both rock and bolts will be

taken into account in order to achieve a more practical and effective bolt design.

4.2 Modelling of reinforcement system and excavation se-

quence

For simplicity, the considered tunnel is assumed to be long and straight enough

to satisfy plane strain assumption. The support system employed to reinforce

the tunnel excavation is a combination of a 100 mm-thick shotcrete lining and

rock bolts. The shotcrete elements are attached to deform together with the rock

elements around the excavation boundary. Rock bolts can be generally classified

into two categories, namely anchored bolts and fully grouted bolts. This study

focuses on anchored bolts. Due to their small cross-section area, the bending

stiffness of rock bolts can be neglected and hence truss elements are used here

to model pre-tensioned bolts Coda (2001); Leite et al. (2003). Rock bolts are

embedded in the rock mass by connecting two ends of the bolts to nodes of the

rock elements.

The whole excavation and reinforcement installation process is modelled using

three separate steps as depicted in Fig. 4.1. The first step simulates pre-excavation

situation. In this step, the in situ stress (σ0) is applied while the nodes on the

opening surface are restrained and the reaction forces t = n · σ0 are calculated

(Fig. 4.1a). Here n denotes the inward unit vector normal to the opening surface.

The second step simulates the convergence of the opening before installing the

reinforcement system. In this step the restraints of the opening surface nodes

are removed while a surface traction equal to a certain ratio of their reaction at

the previous step (f = βt) is applied at them (Fig. 4.1b). The value of β can

be assumed based on longitudinal displacement profiles. For the examples we

solved in this chapter, based on the improved longitudinal displacement profiles

provided by Vlachopoulos and Diederichs (2009), it is concluded that a maximum
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of 30% of radial displacement will occur before bolt installation based on which,

the value of β = 0.7 is adopted.

In the third and last step, the shotcrete lining and rock bolts are added to the

model and the surface traction is removed (Fig. 4.1c). Here we assumed that

the bolts will experience the whole excavation load of the tunnel and considered

them as a permanent support system. This can be easily changed if the bolts are

only used to withstand a share of excavation load before installation of the main

support system. In such a case, the traction force βt in step 2 should not be

removed in step 3 but only reduced to β′t where β′ < β and β′ should be found

based on the distance from the face at which the permanent support system is

planned to be installed.

σ0

t

a. Step 1

σ0

βt

b. Step 2

σ0

c. Step 3

Figure 4.1: The three steps in modelling the excavation process.

4.3 Problem statement and optimisation method

The proposed optimisation method minimises the external work along the tunnel

wall introduced in §3.3 under a constrained bolt volume. The final solution is thus

an optimised rock bolt distribution for a certain amount of bolt volume resulting

in a minimum external work. The optimisation problem can be stated as

min W =

∫
f · du

subject to: VR =
m∑
b=1

ablb = V̄R

(4.1)
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where ab is the cross section of the rock bolt b, lb the length of the rock bolt b, m

the number of rock bolts, and V̄R the prescribed bolt volume.

The ground structure concept (Bendsøe and Sigmund, 2003) is used here. A

ground structure is generated with all possibilities of rock bolts one wishes to

consider in the assigned design domain. Within a given ground structure, the

proposed approach seeks for an optimal layout of rock bolts. In tunnel reinforce-

ment design, these rock bolts have one of their ends on the tunnel opening and

another in the rock mass. Using the ground structure, length of each rock bolt is

fixed while its cross section area is selected as a function of a design variable. A

power-law interpolation scheme, which is commonly used to define intermediate

material properties in the SIMP method (Bendsøe, 1989) is expressed below and

employed to define the cross section area of each rock bolt.

ab = a+ αpb(a− a) (4.2)

Here a and a are the lower and upper bound values of cross section area, respec-

tively. p is the penalty factor, and 0 ≤ αb ≤ 1 the design variable of rock bolt

b. Selection of a and a restricts the desired range of cross section areas in the

optimisation outcomes. Choosing a = 0, one enables the optimisation engine to

completely eliminate unnecessary bolts if required.

The penalty factor is used to penalise the intermediate values and consequently

push the cross section areas of bolts to the two extremes of a and a. Without

penalisation (p = 1), the cross section area varies continuously from the lower to

the upper bound values. On the other hand, a penalty factor p > 1 tries to push

the intermediate values to the lower and upper bounds. The effect of penalisation

then reduces to limiting the variety of bolt areas per unit length, ultimately

leading to a reduction in the number of bolt types and/or in the number of

drillings. It should be noted that using a very large value of the penalty factor

results in local minima or convergence problem (Stolpe and Svanberg, 2001b).

Selection of the penalty factor can have a considerable effect on optimisation

results. Therefore, it needs to be carefully considered to meet technical aspects

as well as economical terms. Effects of penalty factor are studied in §4.7 via a
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simple example.

It should be noted that as a two dimensional model is considered here, the ob-

tained optimisation outcomes are bolt cross section areas per unit length of the

tunnel. When translating the designs back to three dimensions, based on avail-

able bolt diameters and the limitations of the drilling machine, one can work out

the spacing between bolts in the third dimension to satisfy the required area per

unit length.

The sensitivity analysis presented in the next section is employed to update the

cross section area of each bolt in each iteration. The updating scheme employed

in the SIMP method (Eq. (2.18)) is used to update these design variables. The

process of finite element analysis and updating design variable continues until

no design variable experiences a change of more than 10−4 in two consecutive

iterations. The flowchart of the proposed approach is depicted in Fig. 4.2.

4.4 Sensitivity analysis

To derive the sensitivity of the objective function due to an infinitesimal change

in variable α, the adjoint method utilised in chapter 3 is employed here again. Eq.

(3.15) can also be obtained herein which the internal force vector (p) is carried

by both the rock material and the bolts and can be expressed as

p = pSb + pR (4.3)

where pSb and pR are the internal force vectors of the rock bolt b and the rock,

respectively. The internal force vector carried by the rock is expressed as

pR =
M∑
e=1

∫
e

CeBσdν =
M∑
e=1

∫
e

CeBDR
e εdν (4.4)

whereM is the total number of rock elements, Ce the matrix which transforms the

local force vector of element e to the global force vector, B the strain-displacement

matrix and DR
e the matrix defining the stress-strain relationship of the rock. As

Ce, B and DR
e are independent of the design variable α, differentiating Eq. (4.3)
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Figure 4.2: Flowchart of the bolt size optimisation approach
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leads to
∂p

∂αb
=
∂pSb
∂αb

(4.5)

Substituting Eq. (4.5) into Eq. (3.15) results in

∂W

∂αb
= lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
∂pSbi
∂αb

+
∂pSbi−1

∂αb

)
(4.6)

The internal force vector in a rock bolt can generally be calculated from

pSb (αb, δb) = ab(αb)σ(δb) = ab(αb)Dbεb (4.7)

where δb is the elongation of the rock bolt b and σ(δb) the stress in the rock

bolt which is a function of this elongation only. Db is the matrix defining the

stress-strain relationship of the bolt and εb denotes the stress and strain vector

of the bolt b. From Eq. (4.7) and Eq. (4.2), differentiation of internal force vector

yields
∂pSb
∂αb

= pαp−1
b (a− a)g(δb)

= pαp−1
b (pSmax

b − pSmin
b )

(4.8)

Substituting Eq. (4.8) and Eq. (4.5) into Eq. (3.15) results in the following

∂W

∂αb
= pαp−1

b lim
n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
pSmax
bi
− pSmin

bi
+ pSmax

bi−1
− pSmin

bi−1

)
= pαp−1

b (ΠSmax
b − ΠSmin

b )

(4.9)

where ΠSmax
b and ΠSmin

b are the total strain energies of the bolt b when its cross

section areas are a and a, respectively. Setting a = 0 the above equation simplifies

further to
∂W

∂αb
= pαp−1

b ΠSmax
b (4.10)

From Eq. (4.8), it can be seen that the sensitivity of a truss element is a direct

measure of its total strain energy and only depends on the considered element.

It is important to note that the sensitivity analysis outcomes can be applied to
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any material models of the rock mass and bolts as no assumptions on material

behaviour have been made in the above derivation.

4.5 Improving the uniform rock bolt distribution

A simple rock bolt design example is considered to illustrate the applicability and

effectiveness of the proposed approach. The geometry of the tunnel is a rectangle

of size w×h = 10 m× 5 m augmented at the top with a semi-circle of radius 5 m.

In order to ensure that the boundary effect is negligible, the modelled domain is

chosen as a square of side length 20w (i.e. 200 m). Using symmetry, only half

of this domain is modelled in the finite element analysis as displayed in Fig. 4.3.

For a better view of the reinforcement layout, only an area around the opening

with the size of 15 m× 30 m will be illustrated in other figures.

Figure 4.3: Full model of the tunnel

A typical rock bolt design practice commonly involves determining three param-

eters, namely, length, spacing and cross section area of bolts. The bolts are

empirically distributed uniformly around the areas of the opening which need to

be reinforced and normal to the opening. Generally, the selection of bolt length is

based on the thickness of unstable strata to ensure that the bolts are long enough

to be firmly anchored in a competent rock mass. In homogeneous rock media,

however, bolt length is selected to generate a radial compression to the rock arch

increasing load carrying capacity of the rock arch. For the investigation of bolts

in a weak homogeneous rock, following the suggestion of Dejean and Raffoux



Chapter 4. Optimisation of Rock Bolt Size 77

(1976), length of rock bolts should be in the range of w
3

to w
2
, where w is the

width of the opening. A fixed length of approximately 5 m is chosen here.

Fixing the rock bolt length and its orientation, a ground structure can be gener-

ated by assuming a value for rock bolt spacing. In this example, a ground struc-

ture is created with a bolt spacing of 1 m and is codenamed GS10 as displayed

in Fig. 4.4. It is worth noting that the considered ground structure reflects the

empirical suggestions with even distribution of bolts (Bieniawski, 1979; Grim-

stad and Barton, 1993). Effects of ground structure densities on optimisation

outcomes will be discussed in §4.8.
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Figure 4.4: Initial bolt ditribution and the ground structure with bolt spacing of
1 m (GS10). As a symmetric model is shown in this figure, the half bolt areas of
“157” are used for the bolts on the symmetry line.

Nonlinear material models are used to predict responses of the rock mass, shotcrete

and rock bolts. The rock mass is modelled by the elasto plastic Mohr-Coulomb

model described in §3.2. The shotcrete and rock bolts are assumed to be elas-

tic perfectly-plastic. A non-associated flow rule Drucker-Prager model is used

to govern the shotcrete behaviour with the yield function and the flow potential

being defined as

F = t− p tan β − d = 0 (4.11)

G = t− p tanψ (4.12)
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where

t =
1

2
q

[
1 +

1

K
−
(

1− 1

K

)(
r

q

)3
]
, (4.13)

p is the mean stress, q the Mises stress, and K the ratio of yield stress in triaxial

tension to yield stress in triaxial compression. β, ψ and d are the friction angle,

dilation angle and cohesion of rock material, respectively (ABAQUS, 2013). The

material properties of the rock mass, shotcrete lining and the rock bolts are

summarised in Table 4.1.

The lower bound value of cross section areas (a) is assigned to be zeros to allow

complete elimination of unnecessary bolts and the upper bound value (a) is 649×
10−6 m2 (corresponding to the bolt diameter of 29 mm). No penalisation (p = 1) is

applied in this example. The bolt volume constraint is selected as 34381 mm2/m

(see Fig. 4.4). In this example, an in situ stress condition with vertical component

of σ1 = 5 MPa and horizontal to vertical stress ratio of k = 0.4 is considered. The

optimised results are depicted in Fig. 4.5.

Table 4.1: Properties of homogeneous rock and reinforcement materials

Material properties Rock Rockbolt Shotcrete
Young modulus (GPa) 1.4 200 25
Poisson’s ratio 0.3 0.3 0.2
Friction angle (◦) 24 - 30
Dilation angle (◦) 0 - 12
Cohesion (MPa) 0.3 - 3
Yield stress (MPa) - 400 20

Fig. 4.5 displays the evolution of the bolt layouts with numbers at the end of bolts

representing their cross section areas per unit length of the tunnel (mm2/m) and

the variation of the objective function. Since the tunnel is considered in plane

strain condition, the obtained cross section areas per unit length can be converted

to practical and appropriate spacings and sizes of bolts in three dimensions as

noted before. It is noted that the plotted line width for each bolt is proportional

to its cross section area. In order to demonstrate the plastic behaviour around

the opening, plastic strain magnitudes defined as
√

2
3
εpl : εpl (where εpl is the

plastic strain tensor) are shown by colour-filled contour lines with a colour-bar
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Figure 4.5: Bolt layouts and objective function variation for the case of σ1 =
5 MPa and k = 0.4. Numbers at the end of bolts represent their cross section
area per unit length of the tunnel in mm2/m.
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on its right to define the magnitudes. The elastic areas are coloured grey. It can

be seen in the optimised bolt layout (Fig. 4.5f) that more bolts are placed at the

tunnel ribs where the largest plastic strains are observed.

The initial external work of the model is 1.37 MJ. A decrease in the objective func-

tion is obtained before reaching the convergence at the external work of 1.28 MJ

(Fig. 4.5g). Hence, 6% improvement of the objective function is achieved which

demonstrates the advantage of the obtained result compared with the empirical

design.

To illustrate and compare tunnel convergence under the initial uniform and the

optimised bolt layouts, displacements around the opening are displayed in Fig.

4.6. It can be seen that the proposed bolt layout provides smaller displacements

nearly everywhere around the cavity, particularly at the tunnel ribs where a

considerable displacement reduction is obtained. In other words, the presented

algorithm has redistributed the initially uniform bolt layout to a more effective

one.

Further advantages of this approach will be pointed out via further examples

by examining various in situ stresses and ground conditions. These examples

will also demonstrate how this approach can be used to provide us with a better

understanding of the effects of different factors on rock bolt design.

 

 

Initial tunnel shape
Displacement under initial design
Displacement under optimal design

Figure 4.6: Tunnel displacements under uniform and optimised bolt layouts (tun-
nel deformation is multiplied by a factor of 25)
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4.6 Effects of in situ stress conditions on rock bolt design

An investigation on effects of various in situ stress conditions on optimisation out-

comes is conducted by varying magnitudes of vertical stress (σ1 = 3, 4, 5 MPa)

and horizontal stress ratio (k = 0.4, 1, 2). A circular tunnel with a radius of 5 m

is considered. The initial guess design is shown in Fig. 4.7. Other modelling and

optimisation parameters are similar to the example described in §4.5. Fig. 4.8

displays all the obtained bolt layouts and the corresponding objective function

variations.
1

5
7

3
1
4

3
1
4

3
1
4

3
1
4

3
1
4

314

314

314

314

157

Figure 4.7: Initial design for circular tunnel

For the case of hydrostatic stress state (k = 1), as expected, bolts are mostly

distributed evenly around the opening (Figs. 4.8b, 4.8e and 4.8h). For the case

of k = 0.4, more bolts are observed in the horizontal direction (Figs. 4.8a, 4.8d

and 4.8g). Finally, for the case of k = 2, bolts are distributed mostly in vertical

direction (Figs. 4.8c, 4.8f and 4.8i). It can be clearly seen that bolts tend to be

distributed more densely at regions with larger plastic strains.

With regards to the objective function variations, a stable convergence is observed

in all cases (Fig. 4.8j). As expected, for the hydrostatic stress conditions, the

optimised layouts are just slightly different from the initial design and small

improvements of approximately 0.3% are obtained for the objective function. For

the other stress states, higher improvements are achieved with the largest value

of 4.8% observable for σ1 = 4 MPa and k = 0.4. The magnitudes of initial and

optimised objective functions and their relevant improvements are tabulated in

Table 4.2 for all cases of stress states depicted in Fig. 4.8
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Figure 4.8: Effects of in-situ stress conditions on optimised reinforcement layouts
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Table 4.2: Summary of the optimisation outcomes under various in situ stress
conditions

In situ stress
Objective function

Improvement (%)
Initial (J) Optimised (J)

σ1 = 3 MPa, k = 0.4 135171 132563 1.9
σ1 = 3 MPa, k = 1 191557 191302 0.1
σ1 = 3 MPa, k = 2 907087 885019 2.4
σ1 = 4 MPa, k = 0.4 297788 283463 4.8
σ1 = 4 MPa, k = 1 422782 421350 0.3
σ1 = 4 MPa, k = 2 2149557 2102266 2.2
σ1 = 5 MPa, k = 0.4 467175 449962 3.6
σ1 = 5 MPa, k = 1 830538 827360 0.4
σ1 = 5 MPa, k = 2 4210250 4088152 2.9

4.7 Effects of penalisation on optimisation outcomes

In order to clearly show the role of the penalty factor (p) on optimisation out-

comes, the example presented in Section 4.6 with the stress condition of σ1 =

4 MPa and k = 0.4 is reconsidered with different values of penalty factor. The

obtained optimised bolt layouts and variations of objective function are presented

in Fig. 4.9.

By increasing the value of p from 1 to 3, the ineffective bolts are gradually elimi-

nated, leading to a decline in the number of bolts (number of drillings) (Figs. 4.9a

and 4.9b). For values of p between 3 and 7, the bolt layouts remain unchanged

(Figs. 4.9b, 4.9c and 4.9d). Using these p values, the objective function converges

at almost the same value (converged values are shown below each figure in Fig.

4.9). Once p reaches 8, a convergence problem occurs with fluctuation of objective

function about the optimised value obtained with smaller penalty factors (Fig.

4.9f). As expected, this example shows that using penalisation might result in

a reduction of bolt numbers. However, it is observed that convergence problems

might occur with large values of p. Looking at the behaviour of different cases in

Fig. 4.9f, the value of p = 3 seems to yield the best result in this example.
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Figure 4.9: Effects of penalisation on optimised reinforcement outcomes (σ1 =
4 MPa, k = 0.4)
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4.8 Effects of ground structure density on optimisation out-

comes

Along with the ground structure GS10 introduced in §4.5, two other ground

structures with different densities are generated to investigate their effects on the

optimisation outcomes. One is with the bolt spacing of 0.5 m (codenamed GS05)

as shown in Fig. 4.10a and the other one with the spacing of 1.5 m (codenamed

GS15) as shown in Fig. 4.10b.
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Figure 4.10: Ground structures with bolt spacings of 0.5 m (GS05) and 1.5 m
(GS15)

The in situ stress condition of σ1 = 3 MPa and k = 0.4 is investigated and the

obtained outcomes are detailed in Fig. 4.11 and Table 4.3.

Table 4.3: Summary of the optimisation outcomes for different ground structure
densities (σ1 = 3 MPa, k = 0.4)

Ground structure
Objective function

Improvement (%)
Initial (J) Optimised (J)

GS05 344021 314947 8.4
GS10 344098 327392 4.8
GS15 343410 336584 2

It can be seen that qualitatively the optimised bolt layouts are almost similar for

different ground structure densities (Fig.4.11a, 4.11b and 4.11c) with more bolts

observed at the tunnel floor and tunnel ribs. However, various bolt densities

result in various levels of improvements in the objective function. As tabulated
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Figure 4.11: Effects of ground structure density on optimised reinforcement out-
comes (σ1 = 3 MPa, k = 0.4)
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in Table 4.3, there is not much difference in the initial values of external work for

the three ground structures. Nevertheless, the objective function improvements

are considerably different. While 8.4% and 4.8% improvements in the objective

function are achieved for the ground structures GS05 and GS10, respectively,

only 2% improvement is obtained for GS15. This is expected as denser ground

structures provide more freedom and more choices to the optimisation algorithm

to chose from. Therefore, to obtain higher improvements, it is beneficial to use a

denser ground structure. However, in practice choosing a very small bolt spacing

might result in damage around bearing plates due to stress concentration and

also introduce more drilling work.

4.9 Effects of rock material on optimised bolt layout design

Rock mass is naturally discontinuous with fractures, cracks, bedding planes, etc.

A thorough consideration of fractures is necessary to obtain a more accurate

model and hence a more reliable tunnel reinforcement design. To demonstrate

the efficacy of the proposed approach for different material models, here a heavily

jointed rock mass with highly densed parallel joint surfaces in different orienta-

tions is considered. A jointed material model supported in Abaqus 6.11 library

is employed to describe the jointed rock mass behaviour. The jointed material

model involves two governing behaviours for the bulk material and the joint sys-

tems (ABAQUS, 2013). Bulk material is governed by the Drucker-Prager model.

Additionally, the jointed material model includes a failure surface due to sliding

in joint system a, which is expressed as

fa = τa − pa tan βa − da = 0 (4.14)

where τa is the shear stress magnitude resolved on the joint surface. pa is normal

pressure stress acting on the joint. βa and da are the friction angle and cohesion

for system a, respectively.

Replacing the homogeneous model by the above jointed material model, the tun-

nel geometry investigated in Section 4.5 is reconsidered here. Two models, one
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with a horizontal set of joints and one with a vertical set of joints, are explored.

Properties of the bulk material and the joint systems are identified in Table 4.4.

Table 4.4: Properties of jointed rock

Material properties Bulk material Joint surface
Young modulus (GPa) 5 -
Poisson’s ratio 0.3 -
Friction angle (◦) 35 26
Dilation angle (◦) 5 12
Cohesion (kPa) 6× 103 70

Fig. 4.12 displays the optimised bolt layouts for the cases of horizontal joints and

vertical joints. It can be seen that the introduction of joint systems has altered

the plastic strain and optimised bolt distributions around the opening. For the

horizontal joints (Fig. 4.12a), the bolts are only present at the tunnel crown and

tunnel floor. On the other hand, for the case of vertical joints (Fig. 4.12b), the

bolts are concentrated at the corner of the tunnel crown and the tunnel ribs, and

at the tunnel floor. Objective function values and obtained improvements are

demonstrated in Fig. 4.12c and Table 4.5.

Table 4.5: Summary of the optimisation outcomes for different rock joint sets
(σ1 = 5 MPa, k = 0.4)

Ground condition
Objective function

Improvement (%)
Initial (J) Optimised (J)

Rock mass with horizontal joints 218925 216038 1.3
Rock mass with vertical joints 258340 255437 1.1

4.10 Effects of bedding plane on optimised bolt layout

This section aims to explore the effects of a bedding plane presence on optimised

bolt layouts. The tunnel investigated in Section 4.5 is considered with the exis-

tence of a bedding plane at 1.5 m above the tunnel crown. A surface-based contact

supported by Abaqus 6.11 is employed to model the interactions of surfaces. The

mechanical behaviour of the surface interaction is governed by the Coulomb fric-

tion model in which the coefficient of friction (µ) is defined as the ratio between a

shear stress and a contact pressure. A hydrostatic stress condition with a vertical
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Figure 4.12: Effects of rock material on optimised reinforcement outcomes (σ1 =
5 MPa, k = 0.4)
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stress of 5 MPa and two friction angles (φ) of the bedding plane, 5◦ and 15◦, are

investigated. Fig. 4.13 displays the achieved optimised bolt layouts and Table 4.6

tabulates the initial and final values of the objective function.
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Figure 4.13: Effects of bedding planes on optimised reinforcement outcomes (σ1 =
5 MPa, k = 1)

It can be generally seen that with both values of friction angle, more bolts are

distributed at the top of the tunnel where the bedding planes are located than
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Table 4.6: Summary of the optimisation outcomes considering bedding planes
(σ1 = 5 MPa, k = 1)

Friction angle
Objective function

Improvement (%)
Initial (J) Optimised (J)

φ = 5◦ 1400179 1355220 3.2
φ = 15◦ 1176049 1167870 0.6

the other positions around the opening (Figs. 4.13b and 4.13d). Also, the bolt

volume at the tunnel crown of the case of friction angle of φ = 5◦ is more than that

of the friction angle of φ = 15◦. In order to display slippage along the bedding

planes, relative tangential displacement (RTD) is illustrated for the initial and

the optimised bolt layouts. Clearly, the concentration of more bolts at the tunnel

top areas has reduced slippage along the bedding planes; especially for the case

of friction angle of φ = 5◦. Additionally, further improvements of the objective

functions are obtained as displayed in Fig. 4.13e and summarised in Table 4.6.

Consequently, it can be concluded that the effects of the bedding planes can be

effectively captured by the proposed method.

4.11 Summary

By explicitly modelling the rock bolts, the proposed approach is capable of pro-

viding clearer, more accurate, more effective and more practical reinforcement

layouts compared to the earlier works in this area. An incorporation of an op-

timisation technique and numerical analysis has made the presented method a

significant improvement and a potential tool in tunnel reinforcement design.

The proposed optimisation algorithm is independent of material models and thus

the complexity of the models adopted in this approach is only limited to the ca-

pabilities of the method used for analysis. Furthermore, as the sensitivities are

directly calculable from displacements, any analysis method which can provide

the values of displacements under different loadings can be easily adopted in this

approach. Nonlinear behaviour of both reinforcement material and rock in ho-

mogeneous media and fractured rock mass have been considered in the presented

examples and finite element method is used as the method of analysis.
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It has been shown that this approach can be effectively used to study and im-

prove our understanding of effects of different parameters on optimised bolt

layouts. The examples demonstrated that the commonly-employed empirical

method where a uniform distribution of bolts is used is not necessarily opti-

mal and can be further improved by the proposed approach. In the considered

examples, reductions of up to 8% have been reported in the value of external

work which was selected as the objective function.

In this chapter, the effects of ground structure and penalisation factor are demon-

strated through some examples. In addition, the impacts of in situ stresses, rock

material properties and geological features such as bedding planes on optimised

solutions are studied via several examples.

The proposed optimisation algorithm determines various bolt sizes around the

opening to satisfy the given objective function while the bolt pattern has not

been taken into account. In order to obtain an even more effective bolt design,

all bolt parameters including size and pattern should be accounted for in an

optimisation algorithm. The next chapter will focus on studying a simultaneous

optimisation of bolt size and pattern to propose a more powerful bolt design

approach.



Chapter 5

Simultaneous Optimisation of Rock Bolt

Size and Pattern

The work in this chapter has been accepted for publication as a journal paper by

Nguyen et al. (2015a)

5.1 Overview

The optimisation approach proposed in the chapter 4 provides an optimised dis-

tribution of the bolt sizes around the opening. It has been shown that the effects

of ground conditions (see §4.10) can also be taken into account by distributing

more bolt volume at more critical conditions. Nevertheless, in a more advanced

scenario with presence of more complex discontinuities in rock, bolt pattern, i.e.

length and orientation of the bolts, needs to be optimised to capture the ground

condition effects and obtain a more reasonable and practical design.

In this chapter, an optimisation method is proposed to simultaneously optimise

bolt size and pattern. In addition to the benefits discussed in chapter 4, this

advanced optimisation approach would provide further objective function im-

provement and especially capture various complex ground conditions in a bolt

design.
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5.2 Design variables

Using a reinforcement system with rock bolts and shotcrete, the modelling ap-

proach described in §4.2 is employed in this chapter. Here, a conservative value of

β = 0.3 is selected in the second step to simulate the convergence of the opening

before introducing reinforcement materials.

The location of the end point of the bolts as well as their cross section areas are

considered as design variables. We denote the location of the end point of bolt b

by the coordinates (xb, yb) and its cross section area by ab. The number of bolts

is denoted by m. It should be noted that by allowing ab to take the value of zero,

it is possible to remove the bolt b from the design and hence change the spacing

between its adjacent bolts. It is also noted that by controlling (xb, yb) both length

and orientation of the bolt b are controlled. Hence using these three variables per

each bolt we can completely define the rock bolt design around the opening.

Altogether we have 3m design variables. We define the design variable vectors as

x = [x1, x2, . . . , xm]T

y = [y1, y2, . . . , ym]T

a = [a1, a2, . . . , am]T

(5.1)

and also introduce the length vector l = [l1, l2, . . . , lm]T in which lb is a function

of xb and yb. The total volume of bolts can now be expressed as

VR = l · a (5.2)

To simplify the modelling process in the finite element method, it is preferable

to limit the possible locations of the end points (xb, yb) to a suitable subset of

the available nodes of the finite element mesh. Such a suitable set of allowable

end points for each bolt can be defined based on its allowable range of angles and

lengths (Fig. 5.1).

In topology optimisation, the collection of all allowable sets for all elements in
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A

`0
`1

α0

α1FEA mesh
limits of the allowable end point

allowable end nodes

`1: maximum allowable length

`0: minimum allowable length

α1: maximum allowable angle

α0: minimum allowable angle

Figure 5.1: An example of finding a suitable set of allowable end points for a bolt
emerging from point A.

a problem is usually referred to as the ground structure (Bendsøe and Sigmund,

2003). The allowable set of end nodes helps us develop a ground structure for the

problem. A number of nodes along the boundary of the opening are considered

as first nodes of bolts. For each of these potential nodes a sub-ground structure

is determined as a group of bolt elements emerging from this node and ending

at one of the corresponding allowable end nodes in the design domain. Merging

all the sub ground structures, one obtains the ground structure for the problem.

The ground structure shows the range of all possible solutions in the optimisation

problem. Fig. 5.2 shows an example of a ground structure and one of its sub-

ground structures for a tunnel rock bolt design problem.

 A

(a) Ground structure

 A

(b) Sub ground structure

Figure 5.2: Ground structure and sub-ground structure for the bolt having the
first node at A.
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Minimum bolt length is selected as 1.5 m in this study. The maximum length of

bolts are selected such that all the bolts fall within a 30 m× 30 m square which is

considered as the design domain of the optimisation problem. Half of the design

domain is depicted in Fig. 5.2a as a shaded rectangle.

5.3 Objective function and problem statement

As a continuation of the work presented in the chapter 4, the same optimisation

problem (see §4.3) is solved herein. In addition to working on bolt size optimisa-

tion, the proposed optimisation method in this chapter would provide a general

optimisation of both size and pattern of the bolts. The optimisation algorithm

solves the problem iteratively. Each iteration involves analysing the model us-

ing Finite Element Method, calculating the sensitivities (detailed in section 5.4),

updating the design variables (detailed in section 5.5) and subsequently creating

a new model for the next iteration. This process continues until a predefined

convergence criterion is met. In this work, convergence is assumed when either

relative changes in the design variables in two consecutive iterations is less than

1× 10−4 or the improvement in the objective function is negligible (Eq. (3.33)).

5.4 Sensitivity analysis

From Eq. (4.6) in which the variable αb is replaced by a general variable ξ and

Eq. (4.7), it can be seen that the sensitivity numbers depend on the internal force

vector in rock bolt which in turn depends on a and D. By solving the problem

with respect to a, obviously cross section areas of the bolts can be optimised.

On the other hand, noting that Db depends on the location of the end points

of bolt b, dealing with D one can optimise lengths and orientations of the bolts.

Sensitivity analyses with respect to cross section areas of the bolts has been

presented in §4.4. Sensitivity analysis with respect to lengths and orientations of

the bolts is detailed below.
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5.4.1 Sensitivity analysis for lengths and orientations of the bolts

As noted previously, a ground structure is used to capture all possible lengths

and orientations of different bolts. Based on the discrete nature of this part of

the problem, a switching procedure is followed to update length and orientation

of bolts.

For simplicity we assume a continuous linear interpolation scheme based on a

normalised variable 0 ≤ tb ≤ 1 as follows

Db(tb) = tbD
e
b, b = 1, . . . ,m′ (5.3)

where m′ � m is the number of all potential bolt elements in the ground struc-

ture. De
b is the stress-strain matrix of bolt b if it is present in the model. We

have Db = 0 for tb = 0 which represents the non-existing potential bolts in the

ground structure and Db = De
b for tb = 1 which represents the existing bolts.

From Eq. (4.7) and Eq. (5.3), we have

∂pS

∂tb
= abD

e
bεb = peSb , b = 1, . . . ,m′ (5.4)

Here peSb is the internal force vector of bolt b if it is in the model. We clearly

have peSb = pSb if b is an existing bolt (see Eq. (4.7)).

Substituting Eq. (5.4) and Eq. (4.5) into Eq. (3.15) and setting x = tb, one obtains

∂W

∂tb
= lim

n→∞

1

2

n∑
i=1

(ui − ui−1) ·
(
peSbi + peSbi−1

)
= Πe

b, b = 1, . . . ,m′ (5.5)

where Πe
b is the total strain energy of bolt b if it was present in the model. If b is

an existing bolt, we have Πe
b = Πb.

It is important to note that in deriving these sensitivity numbers (Eq. (4.9) and

Eq. (5.5)) we did not apply any assumption on the material model used. Hence,

these results are applicable for all material models. It is also interesting to note

that the sensitivities in both cases only depend on the strain energy results of the

considered element which makes them very cheap to calculate.
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5.5 Variable updating schemes

As noted earlier, the design variables are updated in two separate steps. In the

first step of optimisation, the stress-strain matrix D is fixed while the cross section

areas (a) are optimised. The updating scheme of the bolt size is already explained

in §2.7.2 (Eq. (2.18)). In the second step, the values of matrices D are updated.

The next section presents the updating scheme for lengths and orientations.

5.5.1 Updating lengths and orientations

A switching procedure is employed to find the best possible end node for each

bolt. In this step, each bolt is updated separately. Sensitivity of each potential

alternative for a bolt is evaluated using Eq. (5.5). This requires calculation of

Πe
b for each potential bolt b. For the existing bolts we have Πe

b = Πb whose

value is directly obtainable from the results of the finite element analysis. For

the non-existing bolts, this value can be calculated based on the displacement

results. Here an elastic-perfectly plastic material model is assumed for the rock

bolts. Based on this model, we have

Πe
b =


abEδ

2
b

2lb
, for δb ≤ δY b = σY lb

E

abσY
(
δb − lbσY

2E

)
, otherwise

(5.6)

where σY and E are the yield stress and elastic modulus of the bolt material

respectively. δY b is the elongation at which bolt b yields.

In the optimisation problem Eq. (4.1), we also have a volume constraint that

needs to be satisfied. To make sure that switching bolts will not change the total

volume, we need to adjust the cross section area of all the potential alternatives

based on their lengths. This is similar to considering the strain energy density

instead of the strain energy as the switching control parameter. The strain energy
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density for bolt b can be expressed in the following form

πeb =
Πe
b

Vb
=


Eδ2b
2l2b
, for δb ≤ δY b = σY lb

E

σY

(
δb
lb
− σY

2E

)
, otherwise

(5.7)

where Vb = ablb denotes the volume of the bolt b.

Switching bolt i with bolt j is modelled by changing the value of ti from 1 to 0

and the value of tj from 0 to 1. The change in the objective function due to this

switching (noting the volume adjustment explained above) can be approximated

as follows

∆W ≈ ∂W

∂ti
∆ti +

∂W

∂tj
∆tj = Πe

i − Πe
j = (πei − πej )Vi

To minimise W we need πej > πei . Hence, among all different potential alternatives

for a rock bolt, the one with the highest value of πe is the most efficient to be

used and switching to it will result in the largest drop in the value of the objective

function.

In the second step of updating, the optimisation algorithm goes through all the

bolts one by one and switches them for their best potential alternative which is

the one with the largest value of strain energy density. This switching procedure

ensures that the objective function is decreasing and also the volume constraint

is not violated.

The flowchart of the optimisation process is depicted in Fig. 5.3.

Note that in Eq. (5.6), δb is the only parameter which needs to be obtained

through mechanical analysis of the model. This means that all the required

sensitivities are calculable as long as one can obtain the displacement results for

all the end nodes of all potential bolts. This makes the proposed optimisation

approach extremely flexible: as long as one can provide the nodal displacement

results for the design domain, irrespective of the method used for it, the proposed

optimisation approach can be used to optimise the rock bolt design. As mentioned

before, in this study we use finite element method for mechanical analysis of the

model, but as just noted the optimisation method can as well be linked with any

other suitable mechanical analysis method.
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Figure 5.3: Flowchart of the proposed approach.
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5.6 A basic example

The tunnel with initial bolt layout (Fig. 4.4) and material models described in §4.5

is also used in this example. The main material parameters used are summarised

in Table 5.1. These input parameters will also be adopted in other examples in

the following sections.

Table 5.1: Properties of rock and reinforcement materials

Material properties Rock Rockbolt Shotcrete
Young modulus (GPa) 1.4 200 25
Poisson’s ratio 0.3 0.3 0.2
Friction angle (◦) 27 - 30
Dilation angle (◦) 0 - 12
Cohesion (MPa) 0.3 - 3
Yield stress (MPa) - 400 20

A hydrostatic in situ stress condition (horizontal to vertical stress ratio of k = 1)

with a vertical stress of σ1 = 3 MPa is investigated and the achieved optimisation

outcomes are displayed in Fig. 5.4. To demonstrated the plastic zones around the

opening, the plastic strain magnitudes computed as
√

2
3
εpl : εpl (where εpl is the

plastic strain tensor) are illustrated by colour-filled contour lines.

In the displayed bolt configurations (Figs. 5.4a-5.4h), the values of bolt cross

section areas are noted at the end of the bolts. As noted before, these values

are actually cross section area required per unit length of the tunnel. Based on

available bolt sizes and machinery, one can chose the required spacing along the

longitudinal tunnel axis to satisfy the required cross section areas per length.

Generally, it can be observed that more bolts are distributed at the tunnel ribs

and the tunnel floor which are experiencing larger and more widespread plastic

strains. The bolts on the arched tunnel crown, on the other hand are generally

shortened and weakened. This result matches the well-known supporting effect

of arched roofs.

At the tunnel crown, the bolt orientations are almost similar to the initial layout

with the radial alignment. On the other hand, in the optimised pattern, the

bolts are not normal to the tunnel faces at the tunnel floor and the tunnel ribs.
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Figure 5.4: Optimised bolt layout and objective function variations for the case of
σ1 = 3 MPa and k = 1. Numbers at the end of bolts represent their cross section
areas per unit length of the tunnel in mm2/m. (“A” stands for area optimisation
and “P” stands for patern optimisation)
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Also, various bolt lengths are observed at various positions along these faces. It

is expected that the shape of the opening is one of the main factors determining

the optimal bolt layout. The effects of the tunnel shape on optimised bolt designs

will be investigated in the Section 5.7.

Fig. 5.4i shows the evolution of the objective function with a gradual reduction

before reaching the convergence. The external work of the initial bolt design

is 523, 254 J, whereas that of the optimised bolt configuration is 485, 880 J. An

improvement of 7.1% is hence achieved, verifying the effectiveness of the proposed

optimisation algorithm.

In order to clearly differentiate between the improvement components obtained

by cross section area optimisation and length and orientation optimisation, these

steps are marked differently. In Fig. 5.4i and also in all the following figures de-

picting objective function variations, filled markers are used for the cross section

area optimisation and hollow markers are used for length and orientation optimi-

sation. It can be observed that initially the cross section area optimisation played

a significant role in improving the design (lowering the objective function), but

after that it was mainly the length and layout optimisation that improved the

design. This of course demonstrates the significance of considering both bolt size

and pattern in optimisation.

Apart from the value of the objective function, it is clearly observable that the

optimised design reduced the plastic zone as well. In particular, the areas with

large plastic strain magnitudes are significantly reduced in the optimised design.

To further compare the initial uniform bolt layout and the optimised one, dis-

placement profiles of the opening are displayed in Fig. 5.5 under each design. At

the tunnel crown, the opening displacements for these two designs are almost

similar. However, a significant reduction in tunnel convergence is recorded at

the tunnel ribs and the tunnel floor. These observations can further approve the

superiority of the optimised design over the initial one. This means that the

uniform bolt layout advised by empirical methods is not necessarily optimal.

The proposed method can be used to provide optimised and improved bolt designs

for different situations. We can thus use it to capture the effects of different
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Initial tunnel shape
Displacement under initial design
Displacement under optimal design

Figure 5.5: Tunnel displacements under uniform and optimised bolt layouts (the
tunnel deformation is multiplied by a factor of 10).

crucial factors on tunnel reinforcement design, e.g. tunnel features and geological

conditions. The following sections will explore the impacts of these factors on

optimal bolt designs.

5.7 Studying the effects of tunnel shape on optimal bolt

configurations

To investigate the effects of tunnel shape on the optimisation outcomes, different

opening shapes are considered as shown in Fig. 5.6. A uniform bolt distribution is

assumed as the initial design (Figs. 5.6a-e). Using symmetry, a quarter model is

used for the circular (shape 1) and the square (shape 5) tunnels and a half model

is used for the other shapes (shapes 2, 3 and 4). A hydrostatic stress condition

(k = 1) with a stress magnitude of 3 MPa is assumed for all cases. Figs. 5.6f-j

show the obtained optimised bolt configurations and Table 5.2 reports the initial

and final values of the objective function.

In the case of the circular tunnel, as expected the bolt volume is distributed

almost evenly around the opening (Fig. 5.6f). In other cases, there is a noticeable

difference between the initial and the optimised bolt design. It is interesting

to note that generally larger bolt volumes are required along the straight faces

and/or curved faces with larger radius compared to faces with smaller radius (see

Figs. 5.6g, 5.6h, and 5.6i). Another noticeable point is that the corner bolts are
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Figure 5.6: Initial and optimised bolt configurations for different tunnel shapes
and corresponding objective function variations (σ1 = 3 MPa and k = 1).
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Table 5.2: Summary of the optimisation outcomes for different tunnel shapes
(σ1 = 3 MPa and k = 1)

Tunnel shape
Objective function

Improvement (%)
Uniform (J) Optimal (J)

Shape 1 192 563 183 217 4.8
Shape 2 294 434 276 564 6.1
Shape 3 409 994 379 500 7.4
Shape 4 523 254 485 880 7.1
Shape 5 416 882 401 416 3.7

eliminated or significantly weakened in all cases.

Apart from the volume of bolts, their pattern also varies along different faces.

Along the curved faces, the bolts are almost radially aligned and shorter lengths

are preferable as is clearly observable in shapes 1 and 2, and also at the roof and

floor of shape 3, and the roof of shape 4. On the other hand, the bolts emerging

from the straight faces are not necessarily normal to the face and various bolt

lengths are required along these faces as observable along the ribs of shapes 3 and

4, the floor of shape 4, and the square tunnel.

Looking at the variations of the objective function values, again it is noticeable

that the contribution of optimising cross section areas is only significant in the

initial stages. In all cases, a significant portion of the reduction achieved in the

objective function value is due to updating the lengths and layout of bolts.

5.8 Consideration of discontinuities

Rock mass is naturally discontinuous and its mechanical behaviour is governed by

the presence of rock discontinuities such as fractures, joints and other geological

structures (Jing, 2003). A practical rock bolt design approach, should be able

to explicitly capture the effects of discontinuities on proposed bolt layout. In

the examples presented in §5.6 and §5.7, a homogeneous rock mass medium was

modelled. This section is devoted to investigate the effects of rock mass discon-

tinuities on the optimised rock bolt design. Two examples are considered here:

one with a bedding plane and the other with two fractures in the rock mass.
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Assuming that the discontinuity surfaces are cohensionless, the Coulomb’s friction

model is employed to model the slipping along the discontinuity. In this model,

we have the following relationship at slippage,

τ = σn tanφ. (5.8)

Here τ and σn are the shear and normal stresses along the line of discontinuity

respectively, and φ is the friction angle of the discontinuity surface.

5.8.1 Bedding Plane example

Bedding planes are commonly found between different layers of rock in sedimen-

tary strata. A bedding plane at 1.5 m above the top of the tunnel is considered

under two values of friction angle: φ = 10◦ and φ = 25◦. In order to solely inves-

tigate the effects of the bedding plane, the rocks above and below the bedding

plane are assumed to possess the same material with properties defined in Table

5.1. A hydrostatic stress state of magnitude σ1 = σ2 = 5 MPa is considered.

The optimisation outcomes are presented in Fig. 5.7 and Table 5.3. To illustrate

the slippage along the bedding plane, relative tangential displacements (RTD)

are plotted along the bedding plane for the initial and optimised bolt layouts in

Fig. 5.7. Looking at the initial designs (Figs. 5.7a and 5.7b), it can be seen that

with φ = 25◦, the bedding plane is stable while slippage is occurring for φ = 10◦.

The optimised rock bolt design reduces this slippage (Fig. 5.7c).

Table 5.3: Summary of the optimisation outcomes in consideration of effects of a
bedding plane (σ1 = 5 MPa and k = 1).

Friction angle
Objective function

Improvement (%)
Uniform (J) Optimal (J)

φ = 10◦ 1933504 1641544 15.1
φ = 25◦ 1675770 1488113 11.1

With the friction angle of 10◦, more bolt volume is distributed at the tunnel

roof (Fig. 5.7c), which is a critical position due to the existence of the bedding

plane. It is also interesting to note that two bolts at the large slippage areas

are extended to the other side of the bedding plane, whereas the other bolts are
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Figure 5.7: Effects of bedding plane on the optimisation outcomes (σ1 = 5 MPa
and k = 1).
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shortened. Utilising the proposed bolt layout, an improvement of up to 15.1% is

achieved as presented in Table 5.3. Although the considered objective function

is not directly related to slippage, as noted before, the optimised design also

considerably reduced the slippage along the bedding plane. Also noting at the

plastic strain contours, it is clear the the optimised designs reduced the peak

value and resulted in flatter distribution of plastic zone.

For the other case, the friction angle of 25◦ is very close to the friction angle

of the intact rock material (27◦). In the optimised design, the bolts are almost

distributed evenly around the opening in the radial alignment and with short

lengths (Fig. 5.7d). This bolt configuration is similar to that of the circular

tunnel presented in Fig. 5.6f. It is clear that the existence of a bedding plane in

this case has not resulted in any noticeable effect on the optimised bolt design.

Details of the objective function evolutions and their corresponding improvements

are shown in Fig. 5.7e and Table 5.3. It is noted in Fig. 5.7e that the cross section

area optimisation does not contribute much to the objective function improve-

ments, while significant improvements are made by the length and orientation

optimisation.

5.8.2 Fractured rock mass

A circular tunnel going through a rock mass with two major fractures as displayed

in Fig. 5.8 is considered here as another example. It is assumed that the properties

of these fractures are similar and two cases of friction angle of 10◦ and 25◦ are

investigated. A hydrostatic in situ stress with a stress magnitude of 4 MPa is

considered.

Fig. 5.9 shows the initial designs and optimisation results. Again, relative tan-

gential displacements (RTD) are plotted along the fracture lines to illustrate the

slippage.

Fig. 5.9g displays the objective function evolutions and Table 5.4 shows the initial

and final objective function values and the achieved improvements. Apart from

more that 7% improvement in the objective function values for both cases, it is
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Figure 5.8: Model of the fracture rock mass

Table 5.4: Summary of the optimisation outcomes in consideration of effects of
fractures (σ1 = 4 MPa and k = 1)

Friction angle
Objective function

Improvement (%)
Uniform (J) Optimal (J)

φ = 10◦ 1573381 1454088 7.5
φ = 25◦ 1376301 1279959 7.0

again interesting to note that the optimised rock bolt designs also significantly

reduced the slippage along the discontinuities, reduced the peak plastic strains,

and resulted in more uniform and flatter plastic zone around the tunnels.

A clear difference in the bolt volume distribution is observed for the case with φ =

10◦. The bolts in top left areas with no fracture are weakened to allow more bolt

volume at more critical locations. Both bolt size and orientation are automatically

adjusted in a way that reduces the movement along the discontinuities. Where

the fractures were prone to slippage, bolt length are adjusted to staple the two

sides of the plane of discontinuity. As seen in Fig. 5.9c, considerable reductions

in the slippage magnitudes are obtained along the discontinuities. Particularly

the peak values are significantly reduced.

For the case of φ = 25◦, the bolt volume around the “fracture 2” is just slightly

higher than the other side. Three bolts are extended beyond this fracture plane

where maximum slippage is expected. Noting the relatively small amount of

slippage, as expected, the bolt orientations are almost similar to the initial design

while shorter lengths are selected. The optimised design slightly reduced the

slippage along the two discontinuities.

Again it is observable that the majority of the objective function improvement
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Figure 5.9: Effects of fractures on the optimisation outcomes (σ1 = 4 MPa and
k = 1)



Chapter 5. Simultaneous Optimisation of Rock Bolt Size and Pattern 112

in both cases is due to length and orientation optimisation.

5.9 Summary

In this chapter, an advanced optimisation algorithm is proposed which is ca-

pable of optimising all necessary parameters for a typical bolt design including

cross section area, length and orientation. Compared to the previous works in

this area, our proposed approach provides a significant improvement by explicitly

considering bolt layout and length optimisation. The significant contribution of

the length and orientation optimisation in the overall objective function improve-

ment observed in all examples considered here proves the significance of the bolt

pattern optimisation. Including bolt orientation and length in the optimisation

algorithm not only results in more improvements in objective function values, but

also extends the applicability of the proposed approach to more complicated and

practical problems.

As the sensitivity results provided here solely depend on displacement results of

bolts, any method of analysis which is able to provide displacement results can

be adopted in this approach. Furthermore, because no assumption is included on

the material models, the proposed method is directly applicable to any models of

geomaterials and reinforcements. Considering the widespread availability of so-

phisticated numerical tools for analysing underground excavations, the proposed

method is a potentially powerful tool in tunnel reinforcement design.

It is demonstrated that the uniform bolt layout as recommended by empirical

methods is not necessarily an optimal design and more effective bolt layouts

can be obtained. Obviously, the most appropriate bolt configuration needs to

be found on a case-by-case basis by a thorough consideration of specific tunnel

features and geological conditions.

Apart from a design tool, the proposed method can be used to study and inves-

tigate the effects of different parameters on rock bolt designs. A study of the

effects of opening shape has been conducted by investigating various shapes of

the tunnel. It is shown that generally a straight face or a large radius curved face
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requires more reinforcement volumes than curved faces with smaller radii. Also,

different bolt patterns can be advised based on the shape of the opening. The

proposed approach has also been proved to work effectively with various geolog-

ical conditions. Two sets of examples, one with the existence of a bedding plane

and another with a fractured rock mass, have been demonstrated. The proposed

approach automatically redistributes more reinforcement at critical positions and

extend the bolts to cross the discontinuities where significant slippage is expected.

Although the direct objective of the proposed approach is to minimise a certain

portion of the external work along the tunnel face, through several examples, it is

demonstrated that other important improvements can also be achieved indirectly.

This includes reduction of tunnel face deformation, slippage along planes of dis-

continuity, and plastic strain magnitudes. The proposed optimisation method

is also able to extend to other useful objective functions and that topic will be

presented in the next chapter.





Chapter 6

Looking at Displacement-based Objec-

tive Functions

6.1 Introduction

In chapters 3-5, a form of external work around the opening (which is a dis-

placement functional) has been chosen as the objective function owing to its

practical significance and ease of calculation. It should, however, be noted that

at least in theory, the proposed optimisation approaches can be applied to any

other objective function once the sensitivity of the utilised objective function is

calculated with respect to the design variables. In this chapter, a general linear

displacement-based objective function is considered, some forms of which are of

particular interest in tunnelling design.

It is well known that minimisation of the settlement induced by tunnel excava-

tion is important during both construction and operation phases. An excessive

settlement might result in infringing serviceability requirements or in more seri-

ous cases, might cause critical damages to structures (Mair, 1998). For instance,

significant ground movement due to shallow tunnel construction might lead to

damage to the above structures. In the case of deep tunnels, tunnel heave and/or

sidewall heave, which are particularly evident in squeezing and swelling rock

(Hoek and Guevara, 2009; Kovári, 2009) are some of the displacement-related

typical incidents. Apart from developing modern construction methods or en-
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suring quality control, improving our understanding on reinforcement design is

another crucial aspect to enhance an appropriate design with acceptable settle-

ments. As a result, finding an optimised reinforcement distribution to minimise

certain displacements is of interest and importance in many scenarios.

Using topology optimisation to minimise some displacement-based objective func-

tions have been studied by Yin and Yang (2000a,b); Liu et al. (2008b); Ghabraie

(2009). As mentioned previously, the common shortcomings of these studies are

the usage of linear elastic material models and the homogenised isotropic material

model for reinforced rock.

In this chapter, a sensitivity analysis for a general linear displacement-based

objective function is presented considering general nonlinear material models.

Verification of the derived sensitivity analysis is followed. Common problem faced

in numerically calculating the sensitivities are discussed and a simple approach

to estimate them will be proposed. Then, a tyical example is demonstrated to

show the practicality of the proposed approach.

6.2 A general linear displacement-based objective function

An optimisation problem is defined as minimising a general linear displacement-

based function Φd = f̃ · u, where u = [u1, u2, . . . , un] is the displacement vector.

Using topology optimisation approach, sensitivity analysis needs to be provided.

To calculate a change in specified displacement components, a virtual load vector

f̃ = [f̃1, f̃2, . . . , f̃n] is applied to the system. It is noted that an element ui of u

would have a corresponding element f̃i of f̃ , and ui and f̃i have the same starting

point and direction. The elements of f̃ are equal to a certain value at concerned

displacement components and zeros at the others.
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The minimisation problem can then be expressed as

min Φd = f̃ · u (6.1a)

subject to: VR =
m∑
b=1

ablb = V̄R (6.1b)

K · u = f (6.1c)

where u and K are the displacement vectors and the stiffness matrix of the

structure in its equilibrium condition respectively.

It can be seen in the optimisation algorithms shown in Figs. 4.2 and 5.3 that the

proposed optimisation approach can be applicable to other objective functions

provided that the sensitivity analysis is given. The sensitivity analysis for the

general linear displacement-based objective functions is presented in the next

section.

6.3 Sensitivity analysis

The sensitivity of the objective function with respect to an infinitesimal change

in a general design variable ξ is

∂Φd

∂ξ
= f̃ · ∂u

∂ξ
(6.2)

In order to determine the sensitivity du
dξ

, the adjoint method is employed by

introducing a Lagrangian multiplier vector λ and adding zero term λ ·R to the

objective function as

Φd = f̃ · u + λ ·R (6.3)

where R is the residual force vector defined in Eq. (3.9)

The sensitivity of the modified objective function can then be derived as

∂Φd

∂ξ
= f̃ · du

dξ
+ λ ·

(
∂R

∂u

du

dξ
+
∂R

∂ξ

)
=

(
f̃ + λ · ∂R

∂u

)
du

dξ
+ λ · ∂R

∂ξ

(6.4)
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In order to eliminate the unknown term du
dξ

, λ is chosen to satisfy the following

system of nonlinear equations

− λ · ∂R

∂u
= f̃ (6.5)

Noting that the tangent stiffness matrix of the system can be expressed as

KT = −∂R

∂u
, (6.6)

Eq. (6.5) can be rewritten as

λ ·KT = f̃ (6.7)

solving which, λ can be determined.

With the λ determined, Eq. (6.4) can be simplified to

∂Φd

∂ξ
= λ · ∂R

∂ξ

= −λ · ∂p

∂ξ

(6.8)

As explained in the chapter 4, an infinitesimal change in the design variable merely

leads to a change in the internal force vector of the bolts (pS) while the internal

force vector of the rock remains unchanged. Eq. (6.8) can thus be rewritten as

∂Φd

∂ξ
= −λ · ∂pSb

∂ξ
(6.9)

Similar to the approach presented in §5.4, two variables included in the internal

force vector of a bolt are the cross section area (a) and the matrix (D), which is

a function of the location of the bolt. Considering ξ = a, the cross section area

can be optimised, whereas working with ξ = D, one can optimise the length and

orientation of the bolt. The previously defined interpolation schemes in Eqs. (4.2)

and (5.3) can be used here to obtain the final formulae for the sensitivities with

respect to the design variables a and D respectively.

Substituting Eq. (4.8) in Eq. (6.9) and replacing the general variable ξ by the
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variable αb, we obtain the following sensitivities with respect to cross section

areas

ωA =
∂Φd

∂αb
= −pαp−1

m λ · (pSmax
b − pSmin

b ) (6.10)

For sensitivites with respect to length and orientation of bolts, substituting Eq.

(5.4) and Eq. (6.9) in Eq. (6.8), and replacing the general variable ξ by the

variable tb, we have

ωOL =
∂Φd

∂tb
= −λ · peSb (6.11)

Once the sensitivities are determined, applying the variable updating scheme

presented in §5.5, one can work out optimised bolt configurations. It should be

noted again that the presented approach can be applicable to any displacement-

related objective function and to any material model.

6.3.1 Calculation of λ

In order to obtain the sensitivities from Eqs. (6.10) and (6.11), λ needs to be

solved from Eq. (6.7). A problem arises as the matrix KT needs to be deter-

mined. As long as the finite element package is produced by the user, KT can

be conveniently recorded, and thus λ can be found. Obviously, using such ap-

proach would cause some inconveniences in tunnel modelling and hence restrict

the practical applications of the presented method compared to using an external

solver. On the other hand, when a commercial software is employed, obtaining

the matrix KT is challenging. This is due to the fact that for nonlinear materials,

the matrix KT changes accordingly with the application of the virtual load f̃ .

The ability to extract KT is not always available for all finite element packages,

leading to difficulties in handling the Eq. (6.7). It is evident that in tunnelling

engineering with complicated simulation scenarios, employing a commercial soft-

ware would bring us a lot of power and convenience in performing a practical

simulation of the underground excavation. Therefore, one needs to compromise

by using an appropriate method of analysis.

To the extent of this study, the Abaqus finite element package is utilised for

modelling purpose. In order to overcome the challenges of solving the Eq. (6.7),
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an approximation is introduced. By varying the virtual load f̃ , corresponding

λ can be determined and various sensitivities can be calculated using the pro-

posed sensitivity analysis. A relationship between a measured sensitivity and a

proposed sensitivity is established. The virtual load that gives the same value

for the measured and the proposed sensitivity is selected. Further details on the

approximation is presented in an example in the next section.

6.4 Minimising tunnel heave

This section is devoted to illustrate an example of minimising tunnel heave using

the presented general sensitivity analysis. A horseshoe shape tunnel under biaxial

stress condition is considered. It is known that the tunnel corners experience

significantly smaller displacements while the centre of the floor experiences the

largest displacement (see Figs. 4.6 and 5.5). The tunnel heave objective function

can be defined as

Φh = u1 −
u2 + u3

2
(6.12)

where u1, u2 and u3 are the vertical displacements of the centre and the corners

of the tunnel, respectively.

A load case is introduced with an upward load P at the centre of the tunnel floor

and two downward half loads 0.5P at the tunnel corners as shown in Fig. 6.1.

u2
u1 u3

P

0.5P 0.5P

Figure 6.1: Load set to evaluate floor heave
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6.4.1 Verification of sensitivity analysis

A problem of bolt cross section area optimisation is considered to minimise the

tunnel heave under a bolt volume constraint. The tunnel model and the initial

bolt layout are similar to those in the example in §5.6. The bolt identified as

“tested bolt” in Fig. 6.2 is used for verification purpose.
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Figure 6.2: Initial bolt layout

The verification is based on the sensitivity analysis with respect to cross section

areas (Eq. (6.10)). By creating a small change in the design variable (reducing

the initial design variable α from 1 to 0.99), a comparison is made between the

measured sensitivity number calculated as ωA = ∆Φd

∆α
and the proposed sensitivity

(ωA) in Eq. (6.10). By varying the value of P, a relationship between ωA and ωA

is then established to find out a P which gives the best fit of ωA and ωA.

The following presents the verification results for two cases, case 1 with elastic

materials and case 2 with elastic-plastic materials.

a. Case 1: Elastic materials

The host ground and the reinforcement materials are assumed to work in elastic

regime with elastic material properties displayed in Table 5.1. Owing to the

nature of the elasticity, KT = K. From Eq. (6.7), we have λ = ũ. Values of ωA

and ωA are then determined.
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Fig. 6.3 shows the relationship between the ratios (ωA/ωA) and various P.
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Figure 6.3: Approximation of virtual load for elastic case

Regardless of the applied values of P, the measured sensitivity number is almost

the same as the proposed one (ωA/ωA ≈ 1). This is reasonably expected as for

elastic materials, the sensitivity results should be independent of loading.

b. Case 2: Elastic-plastic materials

A similar procedure is applied for another set of material features. Material

models and the related properties of rock, shotcrete and bolts are the same as

the ones presented in §5.6. Under various magnitudes of the load P, the matrix KT

varies accordingly, leading to changes of λ and to the proposed sensitivity ωA.

Whereas the measured sensitivity remains unchanged in the testing condition,

the ratio ωA/ωA varies accordingly with the varying of P as shown in Fig. 6.4.

The relationship between the ratio of measured and estimated sensitivities and

magnitude of P seems to be linear based on our numerical tests. It can be noted

from the figure that P = 60 N gives the desired result here. This value will,

therefore, be used in the example to demonstrate the application of the proposed

method.

6.4.2 Optimisation of bolt sizes

Using the optimisation algorithm shown in Fig. 4.2, the proposed sensitivity

analysis for cross section area (Eq. (6.10)) and the suggested value of P, the

outcome of an optimised bolt size is displayed in Fig. 6.5.
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Fig. 6.5a shows an optimised bolt layout to minimise the floor heave in the tunnel.

It can be seen that the bolts are all distributed at the tunnel floor and the ribs

of the tunnel, leading to a significant reduction in the heave value as depicted in

Fig. 6.5b. The initial value of the objective function is 0.0265 m, which is reduced

to 0.0188 m. An improvement of 29% is thus achieved, showing the usefulness of

the presented method.

6.5 Summary

Considering a general linear displacement-based objective function in the rein-

forcement optimisation problem, one would be able to cover a wide range of

practical problems in tunnelling design including applications in both shallow

and deep tunnels.

A challenge arising in the presented method is to solve the Eq. (6.7) and calculate

the sensitivities numerically. One needs to make a decision on choosing a reason-

able method of analysis. In the case that the simulation package is prepared by

the user, the Eq. (6.7) can be solved directly and the sensitivity can be simply

calculated. However, the practical application might be restricted due to limita-

tions in the simulation capacity. On the other hand, if a commercial package is

employed to take advantage of the simulation benefits, solving Eq. (6.7) cannot

always be solved conveniently. An approximation approach therefore needs to be

introduced to overcome the difficulty.

The achieved sensitivity analysis combined with the optimisation algorithm pre-

sented in the chapters 4 and 5 provides a powerful tool to seek out an optimised

bolt configuration in consideration of a number of practical design requirements.

It has been demonstrated in a typical example that the proposed method effec-

tively minimises the assigned objective function by suggesting an optimised bolt

layout.



Chapter 7

Conclusion

Despite its popularity and a great range of applications, topology optimisation has

not been fully exploited in geomechanics and particularly in tunnelling, an area

that requires a combination of theoretical and practical knowledge and experience.

Owing to computational development and improvement of numerical methods,

numerical analysis has become a powerful method of approximation in the last

decades and also widely utilised in tunnelling design. A successful combination

of optimisation methods and numerical analysis is proposed in this thesis to open

up a new direction in designing reinforcement of underground excavations.

Like any other research work, in this thesis, a literature review was firstly per-

formed. An introduction of special characters of geomaterials, the media in which

the underground excavation is conducted has been given. Various methodologies

of reinforcement design have been introduced and discussed. Issues on tunnel

excavation simulation have been also mentioned.

A summary on optimisation methods has been presented as a continuation in the

literature. Two commonly-used topology optimisation methods among others

have been presented. The details of the methods, their general optimisation

algorithms and typical examples have been demonstrated.

A brief review of previous works on applying topology optimisation on tunnel de-

sign has been given. Two main limitations in these works (linear elastic material

model and modelling reinforced rock as a homogenised isotropic material) have



Chapter 7. Conclusion 126

been pointed out and corresponding necessary improvements have been recom-

mended.

To improve the previous works in this area, the simple assumption on using linear

material has been removed and material nonlinearities have been considered in

the optimisation methods. Behaviour of geomaterial and reinforcement materials

can be modelled more accurately and more practical results can be obtained with

this improvement. A revised optimisation algorithm has been provided. Various

in situ stress states and opening shapes have been investigated in some typical

examples to show the usefulness of the method. Also, an interpretation of the

obtained homogenised reinforcement distribution is provided as an example to

address the method’s performance.

In chapter 4, the limitation of using the homogenised modelling technique is im-

proved by explicitly modelling the reinforcement. More advanced optimisation

approaches, therefore, need to be studied. An optimisation method has been pro-

posed to optimise cross section areas of bolts by applying an interpolation scheme

on the bolt size variable. The bolt spacing can also be indirectly controlled in

this method. The method has been demonstrated to improve the conventional

uniform bolt layout. Effects of various factors on an optimised bolt layout includ-

ing in situ stress, bolt density and ground material features have been analysed.

Also, penalisation effects are detailed in an example.

As a continued development, bolt pattern optimisation is taken into consideration

in chapter 5. Stiffness matrix of bolt has been used as an optimisation variable to

indirectly control the length and orientation of bolt. An optimisation algorithm

has been proposed to simultaneously optimise size and pattern of bolts. The

method has been proved to be an improvement on the conventional uniform bolt

distribution and applicable to more complex and practical problems. Particu-

larly, tunnel shape effects have been thoroughly presented. Moreover, presence

of discontinuities in the media has been considered in some numerical examples.

The effects of these ground conditions have been effectively captured using the

proposed optimisation method by rearranging the bolt volume and pattern to the

most critical positions. A comprehensive understanding of optimal bolt design
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can be achieved by these kind of studies.

The proposed method aims at finding an optimised tunnel reinforcement that

minimises the tunnel deformation under a given cost. A range of objective func-

tions which are expressed as a functional of displacement and displacement-based

functions can be utilised by the proposed methods provided that sensitivity anal-

ysis is obtained. A selection of a certain objective function is dependent on

particular geological conditions and design requirements. In chapters 3-5, a par-

ticular functional of displacement (a form of external work along the opening

surface) has been chosen as the objective function. The selection of objective

function is then extended to a general linear displacement-based objective func-

tion in chapter 6. A wide range of practical problems in tunnelling design can be

addressed with this general objective function formulation. An example has been

demonstrated to search for an optimised bolt layout to minimise tunnel heave

under a prescribed bolt volume.

An outstanding benefit of the presented optimisation methods is that they can be

applicable to any model of both host ground and reinforcement materials. As long

as the employed method of analysis is capable of providing the required outputs,

the optimisation engine can be adopted to seek out an optimised reinforcement

design.

Finding an optimal rock bolt design is a complicated problem which obviously

needs to be studied in a case-by-case basis. The incorporation of advanced nu-

merical modelling in the optimisation algorithms enables the proposed method

to consider many significant factors in tunnelling design including construction

sequences, geological conditions and tunnel features. Considering the widespread

availability of numerical methods in tunnel excavation analysis, the proposed op-

timisation methods are a potentially promising tool in underground excavation

design. Additionally, the concepts in the proposed methods can also be adopted

in other engineering areas such as searching for optimised material distribution in

multi-material problems, like the optimised distribution of steel bars in reinforced

concrete structures, etc.

It can be seen in chapters 3-5 that neither a dramatic reduction in the objective
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function nor a significant change in plastic zones have been observed. This is

due to the fact that a large proportion of tunnel deformation is allowed before

introducing the reinforcement, thus significantly reducing the loads that the re-

inforcements have to carry. Furthermore, the objective function of the external

work is carried by the whole model which has considerably larger scale than the

tunnel opening. If a local objective function is used, much higher improvements

might be observed. This can be seen in the results obtained in chapter 6. A larger

improvement of 29% has been achieved as the local displacement based objective

function was utilised.

Apparently, this study did not cover all details in tunnel reinforcement design.

Further improvements on modelling and optimisation approaches can be achieved

by further studies. Application of the proposed methods to 3D models can prob-

ably be the first useful and most readily achievable extension. It is noted that

regardless of the 2D/3D modelling selection, the methods can be used without

any modifications. However, a great number of analyses would be required, re-

sulting in an enormous consumption of time and computer resources. This study

can also be extended to consider fully grouted bolt rather than the anchored

bolt. Other problems in reinforcement design of shallow tunnels (e.g. minimis-

ing ground displacement) can be investigated. A case study using the proposed

optimisation approaches would further illustrate the applicability of the methods.
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