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Abstract: This paper develops a modified preconditioned conjugate gradient (M-PCG) 

method for moving force identification (MFI) by improving the conjugate gradient (CG) and 

preconditioned conjugate gradient (PCG) methods with a modified Gram-Schmidt algorithm. 

The method aims to obtain more accurate and more efficient identification results from the 

responses of bridge deck caused by vehicles passing by, which are known to be sensitive to 

ill-posed problems that exist in the inverse problem. A simply supported beam model with 

biaxial time-varying forces is used to generate numerical simulations with various analysis 

scenarios to assess the effectiveness of the method. Evaluation results show that 

regularization matrix 𝐋 and number of iterations 𝑗  are very important influence factors to 

identification accuracy and noise immunity of M-PCG. Compared with the conventional 

counterpart SVD embedded in the time domain method (TDM) and the standard form of CG, 

the M-PCG with proper regularization matrix has many advantages such as better adaptability 

and more robust to ill-posed problems. More importantly, it is shown that the average optimal 

numbers of iterations of M-PCG can be reduced by more than 70% compared with PCG and 

this apparently makes M-PCG a preferred choice for field MFI applications. 

Keywords: moving force identification; modified preconditioned conjugate gradient; time 

domain method; regularization matrix; number of iterations; modified Gram-Schmidt 
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1. Introduction

Advances in structural health monitoring of bridges have driven research into inverse

problems involving system parameter identification, damage detection, and dynamic state 

estimation in vehicle-bridge system [1,2]. Amongst these, moving force identification (MFI) 

is a representative inverse problem of vehicle-bridge system that has drawn much the 

attention from many researchers in the past two decades. The rationale for MFI applications is 

that it is often very difficult or even impossible to measure dynamic loads directly, which 

leads to the booming development of the theory of load identification [3]. 
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Chan et al developed interpretive method I (IMI) [4], interpretive method II (IMII) [5], 

time domain method (TDM) [6] and frequency-time domain method (FTDM) [7] in the past 

two decades and conducted series in-depth studies with these four methods [8-11]. 

Computation simulations and laboratory tests show that the TDM and FTDM are clearly 

better than those from both IMI and IMII [12]. Law et al [13] indicated that the TDM was 

better than FTDM in solving for the ill-posed problem. Liu et al [3] also indicated that 

compared with frequency-domain methods, methods in time domain have clearer physical 

meaning and relatively higher accuracy, which can be used to identify various types of loads 

and have a good prospect in engineering. Therefore, the TDM is a widely used method which 

has been improved by some researchers [14-15]. The singular value decomposition (SVD) of 

the coefficient matrix of the overdetermined equation has been introduced in FTDM [16] and 

TDM [17] to improve the identification accuracy. However, it was still found that the 

identified accuracy of many methods is sensitive to noise and exhibit large fluctuations, since 

the nature of the complex inverse problem is inherent ill-posed [18], which rationalizes the 

ongoing effort of many researchers in deriving new methods to overcome the ill-posedness of 

MFI. 

Sanchez et al [19] indicated that the ill-posedness of MFI is problematic since noise 

becomes very influential and results in inaccurate or non-unique solutions. To combat this ill-

posedness, additional constraints are typically applied to redefine the problem, leading to a 

well-defined problem with a unique solution. Pinkaew [20] presented an updated static 

component (USC) technique to solve the accuracy of the identified results is very sensitive to 

the vehicle-bridge properties. González et al. [21] introduced an algorithm based on first order 

Tikhonov regularization to overcome the impact of noise in strain responses. Yu et al. [22,23] 

proposed an algorithm of moments (MOM) and a weighted l1-norm regularization method to 

acquire an acceptable solution to the ill-posed problem that often exists in the inverse problem 

of MFI. Wu et al. [24] developed a MFI technique based on a statistical system model. 

Dowling et al. [25] adopted cross entropy optimization method to calibrate the vehicle-bridge 

system matrices required of the MFI algorithms. Feng et al. [26] used a Bayesian inference 

regularization approach to solve the ill-posed least squares problem for input axle loads. Chen 

et al. [27] presented a truncated generalized singular value decomposition method (TGSVD) 

aims at obtaining an acceptable solution of MFI and making the noise to be less sensitive to 

perturbations with the ill-posed problems. 

As mentioned earlier, methods in time domain have clear physical meaning, relatively 

higher accuracy and stronger immunity of ill-posed problem compared with frequency-

domain methods. In the time domain, the MFI problem eventually becomes solving the linear 

algebraic equation which can be dealt with by least square approximation methods. In linear 

algebra, the conjugate gradient (CG) algorithm is a well-known iterative method proposed by 

Hestenes and Stiefel in 1952 [28]. The CG process has some inherent regularization effect 
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which can be used to combat the ill-posedness for solving sparse systems equation [29]. 

Concus et al. [30] proposed the block preconditioning for the CG method and indicated that a 

particularly attractive preconditioning, which uses special properties of tridiagonal matrix 

inverses, can be computationally more efficient for the same computer storage than other 

preconditionings. Meurant et al. [31] introduced the Lanczos algorithm constructs a basis of 

Krylov subspaces to CG algorithm with deep links for solving linear algebraic equations. The 

CG algorithm and the preconditioned conjugate gradient (PCG) algorithm have been widely 

used since their numerical behaviour can be explained by an elegant mathematical theory. 

Chen and Yu [32-34] presented a PCG algorithm for MFI and verified this method by 

experiment but the accuracy of the PCG under different iteration settings has not been 

investigated. In addition, there has been a lack of literature on the evaluation of different CG 

methods against each other as well as against other similar methods especially in regard to 

solving the MFI problem. 

In this paper, based on the existing CG and PCG techniques, a modified preconditioned 

conjugate gradient (M-PCG) method is proposed for MFI aiming to overcome the ill-posed 

problems. In order to improve the computational accuracy and ill-posed immunity of PCG, 

the regularization matrix 𝐋 and the number of iterations 𝑗 are introduced and simulations are 

conducted to evaluate this modification. Furthermore, the iterative optimization of M-PCG 

also has been conducted under tight scrutiny to improve the computation efficiency by 

introducing the modified Gram-Schmidt (MGS) algorithm [35]. The simulation results show 

that the M-PCG has many advantages such as higher precision, better adaptability, more noise 

immunity and ill-posed immunity as compared to TDM when the regularization matrix 𝐋 and 

the number of iterations 𝑗  are selected properly. Moreover, the M-PCG can identify the 

moving load faster and more effectively compared with the PCG, resulting in the average 

optimal numbers of iterations reduced by more than 70%. These advantages of M-PCG will 

be very useful towards field applications to solve MFI problems.  

 

2.  Moving force identification theory 

2.1.  Theory of time domain method (TDM) 

The bridge-vehicle system is modeled as a simply supported beam and subject to a time 

varying force as shown in Fig.1. The load 𝑓(𝑡) is assumed moving at a prescribed velocity 𝑐 

at time 𝑡, along the axial direction of the beam from left to right. The equation of motion in 

terms of the modal coordinate 𝑞𝑛(𝑡) can be written as 

�̈�𝑛(𝑡) + 2𝜉𝑛𝜔𝑛�̇�𝑛(𝑡) + 𝜔𝑛
2𝑞𝑛(𝑡) =

2

𝜌𝐿
𝑝𝑛(𝑡)，(n = 1,2, … , ∞)                         (1)    

where 𝐿  is the span length of the beam; 𝜌  is the constant mass per unit length;  𝑝𝑛(𝑡) =

𝑓(𝑡) sin
𝑛𝜋𝑐𝑡

𝐿
 is the modal force; 𝜔𝑛 =

𝑛2𝜋2

𝐿2 √
𝐸𝐼

𝜌
 is the nth modal frequency; 𝐸 is the Young’s 
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modulus; 𝐼 is the second moment of inertia of the beam cross-section; 𝜉𝑛 =
𝐶

2𝜌𝜔𝑛
 is the modal 

damping ratio and 𝐶 is the viscous damping.  
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Fig.1.  Moving force identification model with a simply supported beam 

 

Based on modal superposition, the deflection 𝑣(𝑥, 𝑡) of the beam at point 𝑥 and time 𝑡 can 

be described as Law et al. [6] 

𝑣(𝑥, 𝑡) = ∑
2

𝜌𝐿𝜔𝑛
′

∞

𝑛=1

sin
𝑛𝜋𝑥

𝐿
∫ 𝑒−𝜉𝑛𝜔𝑛(𝑡−𝜏)sin𝜔𝑛

′ (𝑡 − 𝜏)sin
𝑛𝜋𝑐𝜏

𝐿
𝑓(𝜏)d𝜏

𝑡

0

 

                (2)  

where 𝜔𝑛
′ = 𝜔𝑛√1 − 𝜉𝑛

2 and the bending moment 𝑀(𝑥, 𝑡)of the beam at point 𝑥 and time 𝑡 is 

𝑀(𝑥, 𝑡) = −𝐸𝐼
𝜕2𝜈(𝑥, 𝑡)

𝜕𝑥2
= ∑

2𝐸𝐼𝜋2

𝜌𝐿3

∞

𝑛=1

𝑛2

𝜔𝑛
′

sin
𝑛𝜋𝑥

𝐿
∫ 𝑒−𝜉𝑛𝜔𝑛(𝑡−𝜏)sin𝜔𝑛

′ (𝑡 − 𝜏)sin
𝑛𝜋𝑐𝜏

𝐿
𝑓(𝜏)d𝜏

𝑡

0

 

     (3) 

The acceleration �̈�(𝑥, 𝑡) of the beam at point 𝑥 and time 𝑡 also can be described as 

�̈�(𝑥, 𝑡) = ∑
2

𝜌𝐿
sin

𝑛𝜋𝑥

𝐿

∞

𝑛=1

[𝑓(𝑡)sin
𝑛𝜋𝑥

𝐿
+ ∫ ℎ̈𝑡(𝑡 − 𝜏)𝑓(𝜏)sin

𝑛𝜋𝑐𝜏

𝐿
d𝜏]

𝑡

0

 

               (4)  

where ℎ̈𝑛(𝑡) =
1

𝜔𝑛
′ 𝑒−𝜉𝑛𝜔𝑛𝑡 × {[(𝜉𝑛𝜔𝑛)2 − 𝜔𝑛

′2] sin 𝜔𝑛
′ 𝑡 + (−2𝜉𝑛𝜔𝑛𝜔𝑛

′ ) cos 𝜔𝑛
′ 𝑡}.  

If the bending moment responses are measured, the moving force 𝐟 can be identified by 

equation 𝐁 ∙ 𝐟 = 𝐌. Similarly, if the acceleration responses are measured, the moving force 𝐟 

can be identified by equation 𝐀 ∙ 𝐟 = �̈�. If the bending moment and acceleration responses are 

measured at the same time, both of them can be used together to identify the moving force. 

The vector 𝐌 and �̈� should be scaled to make them dimensionless, and the two equations are 

then combined to give 

[
𝐁/‖𝐌‖

𝐀/‖�̈�‖
] × 𝐟 = {

𝐌/‖𝐌‖

�̈�/‖�̈�‖
}                                                       (5)                                                                              

where ‖∙‖ is the norm of the vector; 𝐁 and 𝐀 are the vehicle-bridge system matrix; 𝐌 and �̈� 

are the bending moment and acceleration responses matrix, respectively.  

 

2.2.  Theory of conjugate gradient (CG) 

In the time domain, the MFI problem eventually converts to a linear algebraic equation in 

the form 𝐀𝐱 = 𝐛, where 𝐀 ∈ 𝐑𝑚×𝑛, 𝐱 ∈ 𝐑𝑛, 𝐛 ∈ 𝐑𝑚, 𝑚 ≥ 𝑛. The 𝐀 is vehicle-bridge system 

matrix, the vector 𝐛 is measured responses of bridge structures contaminated by an unknown 
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error stemming from measurement error. The CG algorithm is an iterative method which 

terminates in at most 𝑗  steps if no rounding-off error is encountered. With number of 

iterations 𝑗, the approximations moving force 𝐱𝑗 can be obtained and the residual 𝐫𝑗 = 𝐛 −

𝐀𝐱𝑗. In case the matrix 𝐀 is symmetric and positive definite, by defining 𝐩0 = 𝐫0 = 𝐛 − 𝐀𝐱0, 

where 𝐱0 is arbitrary initial moving force, the 𝑗th step of the CG process can be expressed as 

giving coefficients 𝛼𝑗 and 𝛽
𝑗
 used to update the iteration vectors [28] 

𝛼𝑗 =
(𝐩𝑗, 𝐫𝑗)

(𝐩𝑗, 𝐀𝐩𝑗)
 

                                                        (6) 

𝛽𝑗 = −
(𝐫𝑗+1, 𝐀𝐩𝑗)

(𝐩𝑗 , 𝐀𝐩𝑗)
 

where  

𝐫𝑗 = 𝐫𝑗−1 − 𝛼𝑗−1𝐀𝐩𝑗−1 

𝐩𝑗 = 𝐫𝑗 + 𝛽𝑗−1𝐩𝑗−1                                                       (7) 

𝐱𝑗 = 𝐱𝑗−1 + 𝛼𝑗−1𝐩𝑗−1 

in which 𝐱𝑗 is the approximation to 𝐱 after 𝑗-th iterations, while 𝐩𝑗  is an auxiliary iteration 

vector of length 𝑛. 

  

2.3.  Theory of preconditioned conjugate gradient (PCG) 

As mentioned above, the CG process is based on the matrix 𝐀  is symmetric positive 

definite coefficient matrix. When the matrix 𝐀 is nonsymmetric and nonsingular matrix, the 

CG process can be extended by using 𝐀𝐓𝐀 replace the matrix 𝐀 and using equation 𝐀𝐓𝐀𝐱 =

𝐀𝐓𝐛 replace the equation 𝐀𝐱 = 𝐛. To explain this regularizing effect of the CG method, 

Concus et al. [30] introduced the Krylov subspace to CG method 

𝒦𝑘(𝐀𝐓𝐀, 𝐀𝐓𝐛) = span {𝐀𝐓𝐛, 𝐀𝐓𝐀𝐀𝐓𝐛, ⋯ , (𝐀𝐓𝐀)
𝑘−1

𝐀𝐓𝐛}                     (8) 

Then the CG method can be rewritten to solve the following problem 

𝐱𝑗 = argmin‖𝐀𝐱 − 𝐛‖2    subject to     𝐱 ∈ 𝒦𝑘(𝐀𝐓𝐀, 𝐀𝐓𝐛)                     (9) 

The primary difficulty with the MFI ill-posed problem is that it is essentially 

underdetermined due to the cluster of small singular values of vehicle-bridge system matrix 𝐀. 

Hence, it is necessary to incorporate further information about the CG process in order to 

stabilize the problem and to single out a useful and stable solution. For ill-posed inverse 

problems, the preconditioning represents an unavoidable and fundamental part of practical 

computations. A sparse approximate inverse preconditioner for an unsymmetric matrix 𝐀 may 

be obtained by constructing a set of approximate biconjugate directions for 𝐀 [36]. Then the 

preconditioned conjugate gradient method (PCG) is introduced by adopting the regularization 

matrix 𝐋. 
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Assuming that the initial estimate moving force is the 𝐱∗ , the dominating approach to 

regularization of MFI ill-posed problems is to require that the 2-norm of the solution be small. 

Hence, the side constraint Ω(𝐱) involves minimization of the quantity 

Ω(𝐱) = ‖𝐋(𝐱 − 𝐱∗)‖2                                                  (10) 

Here, the matrix 𝐋 is typically either the unit matrix 𝐈𝑛 or a 𝑝 × 𝑛 discrete approximation of 

the (𝑛 − 𝑝)-th derivative operator, in which case 𝐋 is a banded matrix with full row rank. As 

𝐋1 = 𝐈𝑛, based on the finite difference methods for the derivatives, 𝐋2 , 𝐋3, 𝐋4 and 𝐋5 are 

approximations to the first, second, third and fourth derivative operators with null space as 

shown in equation (11). The proper choice of matrix 𝐋 depends on the particular application, 

but often an approximation to the first or second derivative operator gives good results [37]. 
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If the matrix 𝐋 is the unit matrix 𝐈𝒏, i.e., there is no regularization process, then the PCG is 

essentially the form of CG and the regularization problem with side constraint in equation (10) 

is standard form. However, in MFI applications, regularization in standard form is not the best 

choice, i.e., one should use some 𝐋 ≠ 𝐈𝑛 in equation (10). If the matrix 𝐋 is the first or second 

derivative operator, then the PCG is general form. From numerical point of view, the standard 

form is much simpler to treat problems compared with general form as only one matrix 𝐀 is 

involved instead of the two matrices 𝐀 and 𝐋. Hence, it is convenient to transform the general 

form into standard form. 

The singular value decomposition (SVD) of bridge-vehicle system matrix 𝐀  can be 

expressed with two orthonormal columns matrices 𝐔 = (𝐮1, 𝐮2, ⋯ 𝐮𝑛) and 𝐕 = (𝐯1, 𝐯2, ⋯ 𝐯𝑛) 

as 𝐀 = 𝐔𝚺𝐕𝑇 = ∑ 𝐮𝑖
𝑛
𝑖=1 𝛔𝑖𝐯𝑖

𝑇 .The ∑ = diag(𝜎1, 𝜎2, ⋯ , 𝜎𝑛)  has non-negative diagonal 

elements, which is constituted with the singular values 𝜎𝑖 as 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0. 
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By introducing �̅� = 𝐀𝐋𝐀
+ , �̅� = 𝐛 − 𝐀𝐱0 and �̅� = 𝐋𝐱, the general form of equation can be 

transformed into standard form. The 𝐋𝐀
+  is 𝐀-weighted generalized inverse of 𝐋 as, which can 

be expressed as 

 𝐋𝐀
+ = 𝐗 (𝐌−1

0
) 𝐕𝑇                                                      (12) 

where the vector 𝐱0 = ∑ (𝐮𝑖
𝑇𝐛)𝑛

𝑖=𝑝+1 𝐱𝑖, 𝑝 is the rows of matix 𝐋. Then the Krylov subspace 

of PCG algorithm can be written to solve the following problem 

�̅�𝑗 = argmin‖�̅��̅� − �̅�‖
2
    subject to     �̅� ∈ 𝒦𝑘(�̅�𝐓�̅�, �̅�𝐓�̅� )                     (13) 

The 𝑗-th iterate of PCG algorithm can be written as 

�̅�𝑗 = ℛ𝑗(�̅�𝐓�̅�)�̅�𝐓�̅�                                                      (14) 

where ℛ𝑗  is a polynomial of degree 𝑗 − 1 satisfying the following recurrence relation and 

with initial conditions ℛ0 = ℛ−1 = 0 

ℛ𝑗 = (1 − 𝜃𝛼𝑗 +
𝛼𝑗𝛽𝑗−1

𝛼𝑗−1
) ℛ𝑗−1 −

𝛼𝑗𝛽𝑗−1

𝛼𝑗−1
ℛ𝑗−2 + 𝛼𝑗                           (15) 

where 𝜃 is Ritz value related to eigenvalues of matrix 𝐀, with �̅� = 𝐀𝐋𝐀
+  and �̅� = 𝐛 − 𝐀𝐱0 

insert into the equation (14), it can be rewritten as 

�̅�𝑗 = ℛ𝑗((𝐋𝐀
+)𝑇𝐀𝐓𝐀𝐋𝐀

+)(𝐋𝐀
+)𝑇𝐀𝐓(𝐛 − 𝐀𝐱0)                               (16) 

With 𝐱𝑗 = 𝐋𝐀
+�̅�𝑗 + 𝐱0 and (𝐋𝐀

+)𝑇𝐀𝐓𝐀𝐱0 = 𝟎, the 𝑗 iterative steps of PCG method 𝐱𝑗 can be 

obtained as 

𝐱𝑗 = ℛ𝑗(𝐋𝐀
+(𝐋𝐀

+)𝑇𝐀𝐓𝐀)𝐋𝐀
+(𝐋𝐀

+)𝑇𝐀𝐓𝐛 + 𝐱0                                (17) 

From this relation, the purpose of the “preconditioner” is not to improve the condition of 

the iteration matrix but rather to ensure that the “preconditioned” iteration vector 𝐱𝑗 lies in the 

correct subspace and thus minimizes the residual norm of ‖𝐀𝐱 − 𝐛‖2 . The regularization 

matrix 𝐋  and the number of iterations 𝑗  in equation (17) are introduced to improve the 

computational accuracy and ill-posed immunity of PCG.  

 

2.4.  Theory of modified preconditioned conjugate gradient (M-PCG) 

Gram-Schmidt algorithm is named after Jorgen Pedersen Gram and Erhard Schmidt but it 

appeared earlier in the work of Laplace and Cauchy [38]. In mathematics, the Gram-Schmidt 

algorithm is a method for orthonormalising a set of vectors in an inner product space, most 

commonly the Euclidean space equipped with the standard inner product.  

Let 𝐀 be an 𝑚 × 𝑛 real matrix, 𝑚 ≥ 𝑛 of full rank 𝑛. In exact arithmetic, the modified 

Gram-Schmidt algorithm (MGS) computes an 𝑚 × 𝑛  matrix 𝐐  with orthonormal columns 

𝐐𝑇𝐐 = 𝐈 and an 𝑛 × 𝑛 upper triangular matrix 𝐑 such that 𝐀 = 𝐐𝐑. Dax [39] presented the 

row-oriented iterative MGS by improving the classical Gram-Schmidt (CGS) and column-

oriented MGS with iterative orthogonalization. The application of the CGS to the column 

vectors of a full column rank matrix yields the QR decomposition. This CGS loses accuracy 

when ‖𝐫𝑗‖
2
 is small with respect to ‖𝐛‖2, so iterative orthogonalization is essential to ensure 

accurate computation of small residuals. The difference between the algorithms lies in their 
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ability to orthogonalize the columns of vehicle-bridge system matrix 𝐀 . The loss of 

orthogonality in the columns of 𝐐 can be avoided by repeated use of the orthogonalization 

process, which can be named as “reorthogonalization” and “iterative orthogonalization”. 

Many optimization problems are formulated with bounds on the variables, which cannot be 

treated directly by CG method. Comparing with several proposed modifications to CG 

method, it appears that the way the bounds are treated by optimization techniques has a 

significant impact on their efficiency [40]. The CGS and the MGS share the property that the 

matrices 𝐐 and 𝐑 satisfy a bound of the form 

‖𝐀 − 𝐐𝐑‖𝟐 ≤ 𝛾𝜀‖𝐀‖𝟐                                                  (18) 

where 𝛾 is a constant that depends on 𝑚 and 𝑛, 𝜀 denotes the unit round-off. 

The non-negative singular values of matrix 𝐀 can be expressed as 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑛 ≥ 0. 

The condition number of 𝐀 is equal to the ratio 
𝜎1

𝜎𝑛
. If 

𝜎1

𝜎𝑛
≪

1

𝜀
, then the MGS algorithm yields a 

matrix 𝐐 that satisfies [39] 

‖𝐈 − 𝐐𝑇𝐐‖𝟐 ≤ 𝛾𝜀
𝜎1

𝜎𝑛
                                                    (19) 

In other words, 𝐐 is guaranteed to be nearly orthogonal only when 𝐀 is a well-conditioned 

matrix. The CGS fails to satisfy the bound of equation (19) and the columns of 𝐐 may depart 

from orthogonality to an almost arbitrary extent, which was observed by Rice [41]. The use of 

the MGS algorithm for solving linear least-squares problems ensures accurate computation of 

small residuals. A further advantage of the MGS is its ability to provide accurate results when 

𝐐 has some deviation from orthogonality, which is beneficial to boost the iteration efficiency 

of iterative methods. For boosting the iteration efficiency of PCG, the bound equation (19) is 

appended to PCG to expedite the identification process and the new method is defined as 

modified preconditioned conjugate gradient (M-PCG). 

 

3.  Numerical simulation and rusults 

3.1.  Problem description 

As shown in Fig.1, a simply supported beam subjected to a moving force is taken as an 

example for numerical simulations. The beam has a span of 40 m and the parameters of the 

beam are as follows: flexural rigidity EI = 1.274916 × 1011 N ∙ m2, density of unit length 

ρA = 12 000kg ∙ m−1. The first three natural frequencies of the beam are 3.2 Hz, 12.8 Hz and 

28.8 Hz. The analysis frequency is from 0Hz to 40Hz and the sampling frequency is 200Hz. 

The speed of moving vehicle is 40 m ∙ s−1 and the distance between two axles is 4 m. The 

data are extracted from Law et al. [6] to enable comparison with the TDM derived in the 

paper. Biaxial time-varying forces identification with 12 different sensor arrangement and 

locations cases (1st column in Table 1) are simulated and illustrated with new method. The 

time history of the moving force is simulated as follow 

𝑓1(𝑡) = 20 000[1 + 0.1 sin(10𝜋𝑡) + 0.05sin(40𝜋𝑡)] N 

𝑓2(𝑡) = 20 000[1 − 0.1 sin(10𝜋𝑡) + 0.05sin(50𝜋𝑡)] N 
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Random noise is added into the calculated responses to simulate the polluted measurement 

responses in the following form 

𝐑measured = 𝐑calculated ∙ (1 + 𝐸𝑝 ∙ 𝐍noise)                                 (20) 

where 𝐸𝑝  represents noise level choosing as 0.01, 0.05 and 0.10, respectively; Nnoise  is a 

standard normal distribution vector. 

    The relatively percentage error (RPE ) values between the true moving force and the 

identified force are defined as follow 

RPE =
‖𝐟identified−𝐟true‖

‖𝐟true‖
× 100%                                         (21) 

where 𝐟identified, 𝐟true are the identified force vector and true force vector, respectively.  

 

3.2.  Comparison with different regularization matrix 𝐋 of M-PCG 

    The final stage in the regularization of ill-posed problems is the choice of regularization 

parameters. The identification accuracy and ill-posed immunity of M-PCG is profoundly 

affected if the regularization parameter is not correctly selected. The preconditioner 

𝐋𝐀
+(𝐋𝐀

+)𝑇and the number of iterations 𝑗 play an important role of regularization parameter, 

which should be chosen by numerical simulation prudently. In this part, the regularization 

matrix 𝐋 of preconditioner 𝐋𝐀
+(𝐋𝐀

+)𝑇 will be chosen. The RPE values of biaxial time-varying 

forces identified from combined responses (1/2m&1/4a&1/2a) by M-PCG with 8 different 

regularization matrices are shown in Fig.2. The abscissa values 1 to 8 are corresponding to 

regularization matrix 𝐋1  to 𝐋8 , respectively. Illustration results demonstrate that the 

regularization matrices 𝐋2, 𝐋3 and 𝐋4 are much suitable matrices of M-PCG compared with 

others. In addition, the RPE values of 𝐋2 and 𝐋3 are slightly lower than 𝐋4, and then the 𝐋2 

and 𝐋3  are chosen as regularization matrices for subsequent research. The regularization 

matrices 𝐋1 ,  𝐋2  and 𝐋3  are corresponding to CG( 𝐋1 ), M-PCG( 𝐋2 ) and M-PCG( 𝐋3 ), 

respectively. 
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Fig.2. Biaxial time-varying forces identified from combined responses by M-PCG with different regularization 

matrices (1/2m&1/4a&1/2a) 

 

Table 1  

Comparison on RPE values (%) identified by TDM(SVD), CG and M-PCG with two different regularization 

matrices 

Sensor location regularization matrix 𝐋 

1% noise 5% noise 10% noise 

front axle rear axle front axle rear axle front axle rear axle 

1/4m&1/2m 

TDM(SVD) 93.5 * * * * * 

CG(𝐋1) 26.0 21.7 33.8 28.7 42.5 39.7 

M-PCG(𝐋2) (5.0) (5.2) (11.7) (10.7) (18.6) (18.2) 

M-PCG(𝐋3) 4.5 4.2 10.3 9.9 17.3 17.5 

1/4m&1/2m&3/4m 

TDM(SVD) 50.8 * * * * * 

CG(𝐋1) 17.1 18.4 24.2 25.3 34.3 34.1 

M-PCG(𝐋2) (3.3) (3.1) (10.4) (10.8) (16.9) (17.2) 

M-PCG(𝐋3) 3.3 3.3 9.8 6.9 16.9 11.3 

1/4a&1/2a 

TDM(SVD) 19.2 29.7 96.1 * * * 

CG(𝐋1) 7.6 2.9 12.8 13.0 16.8 16.4 

M-PCG(𝐋2) (1.3) (1.3) (2.8) (2.8) (5.5) (5.5) 

M-PCG(𝐋3) 1.4 1.7 2.5 2.7 4.3 4.7 

1/4a&1/2a&3/4a 

TDM(SVD) 0.5 1.0 2.4 5.1 4.7 10.1 

CG(𝐋1) 0.5 1.1 2.4 5.1 4.7 10.2 

M-PCG(𝐋2) (0.5) (0.9) (1.8) (1.5) (2.7) (3.3) 

M-PCG(𝐋3) 0.4 0.9 1.6 2.5 2.8 3.8 

1/2m&1/2a 

TDM(SVD) 86.3 94.7 * * * * 

CG(𝐋1) 14.0 16.1 18.2 20.7 20.3 22.9 

M-PCG(𝐋2) (2.6) (3.7) (7.9) (7.5) (10.2) (9.2) 

M-PCG(𝐋3) 3.1 3.6 10.2 7.6 12.8 9.4 

1/4m&1/2m&1/2a 

TDM(SVD) 54.6 48.5 * * * * 

CG(𝐋1) 14.1 15.2 18.1 20.7 22.1 22.6 

M-PCG(𝐋2) (2.4) (3.5) (7.2) (7.1) (9.6) (10.3) 

M-PCG(𝐋3) 2.5 2.6 7.9 10.7 12.2 12.0 

1/4m&1/2m&1/4a&1/2a 

TDM(SVD) 11.7 15.0 58.6 74.9 * * 

CG(𝐋1) 7.8 3.0 14.2 12.1 17.8 19.3 

M-PCG(𝐋2) (1.3) (1.4) (2.8) (3.0) (5.2) (4.6) 
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M-PCG(𝐋3) 1.2 1.5 2.8 4.4 5.2 5.9 

1/4m&1/4a 

TDM(SVD) * * * * * * 

CG(𝐋1) 15.4 15.5 19.4 22.8 29.3 23.8 

M-PCG(𝐋2) (3.7) (5.5) (6.0) (5.5) (6.7) (7.2) 

M-PCG(𝐋3) 3.0 4.8 9.9 7.3 9.7 8.1 

1/4m&1/4a&1/2a 

TDM(SVD) 18.4 29.0 91.9 * * * 

CG(𝐋1) 7.9 3.4 14.3 12.2 17.2 18.7 

M-PCG(𝐋2) (1.4) (1.4) (2.3) (3.0) (4.1) (4.2) 

M-PCG(𝐋3) 1.6 1.3 2.3 4.3 4.3 5.5 

1/2m&1/4a 

TDM(SVD) 48.1 84.0 * * * * 

CG(𝐋1) 16.8 17.2 23.5 23.6 27.5 27.2 

M-PCG(𝐋2) (4.6) (4.8) (6.5) (6.9) (6.8) (8.4) 

M-PCG(𝐋3) 4.6 4.6 10.9 8.9 11.3 10.5 

1/4m&1/2m&1/4a 

TDM(SVD) 44.3 71.0 * * * * 

CG(𝐋1) 15.6 14.6 21.5 21.2 26.2 24.5 

M-PCG(𝐋2) (3.8) (3.6) (6.4) (6.5) (7.1) (8.0) 

M-PCG(𝐋3) 2.8 4.1 7.4 7.6 11.1 10.3 

1/2m&1/4a&1/2a 

TDM(SVD) 11.9 15.0 59.5 74.7 * * 

CG(𝐋1) 8.1 3.5 14.2 11.7 17.7 18.9 

M-PCG(𝐋2) (1.4) (1.1) (3.1) (2.9) (6.4) (6.1) 

M-PCG(𝐋3) 1.4 0.9 2.9 3.2 5.6 5.8 

Note: 1/4, 1/2 and 3/4 represent the measurement location at a quarter, middle span and three quarters respectively. 

The letters ‘m’ and ‘a’ represent the bending moment and acceleration responses respectively. Upright font values 

are for TDM with SVD technique, italics font values are for CG with unit matrix 𝐋1, the values in parentheses are 

for M-PCG with double diagonal matrix 𝐋2, underlined font values are for M-PCG with tri-diagonal matrix 𝐋3. The 

symbol ‘*’ represent the RPE is bigger than 100% in which the identification results are unacceptable. 

The conventional counterpart SVD has embedded in the time domain method TDM to 

improve the identification accuracy [17]. Table 1 tabulates the RPE values of TDM with SVD 

technique, CG and M-PCG with two different regularization matrices in 12 cases. The 

identification results of TDM(SVD) are the worst and most RPE values are bigger than 100% 

when noise level is higher than 5% in 12 cases. When CG(𝐋1) is used to identify the moving 

forces, the RPE values are less than 30% in 10 cases out of all 12 cases with three random 

noise levels choosing as 1%, 5% and 10%, respectively, which has more acceptable 

identification accuracy. When M-PCG(𝐋2) and M-PCG(𝐋3) are used to identify the moving 

forces, the RPE values are less than 20% in all 12 cases with three random noise levels. In 

addition, with the noise level increasing, the RPE values of the M-PCG increase slightly 

indicating that the M-PCG(𝐋2) and M-PCG(𝐋3) have good robustness.  

As shown in Fig.3 to Fig.5, the identification results of TDM(SVD) and CG methods are 

obviously worse compared with M-PCG, especially for the case of TDM(SVD). Similar to the 

data in Table 1, the illustration results also show that even though the CG method has overall 

much better identification accuracy than TDM(SVD), this technique still needs identification 

improvement at certain points such as when both front and rear axles are not simultaneously 

on the bridge. At these boundary points, the identification results of TDM(SVD) and CG are 

in fact both subject to large deviations. By choosing suitable regularization matrices of M-

PCG, the M-PCG(𝐋2) and M-PCG(𝐋3) have almost overcome the ill-posed problem, which 

have perfect identification accuracy in the whole period of vehicle passing through the bridge. 
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More importantly, there are only two responses taken into account in Fig.3 to Fig.5, the 

identification forces of M-PCG(𝐋2) and M-PCG(𝐋3) are in strong agreement with the true 

forces even under various combined responses, which means that the M-PCG has perfect 

adaptability to type of sensors and numbers of sensors. 

Considering altogether the RPE values of M-PCG(𝐋2) and M-PCG(𝐋3) in all 12 cases, the 

RPE values of M-PCG(𝐋3) are relatively smaller than M-PCG(𝐋2) when moving forces are 

identified from bending moment responses alone, which means that the M-PCG(𝐋3 ) has 

better adaptability to type of sensors. As a result, the matrix 𝐋3 is selected as the optimal 

regularization matrix for M-PCG, which is case independent and will be used by default in 

subsequent studies. It should be noted that in this section the optimal numbers of iterations are 

adopted to study the effect of regularization matrix whilst the problem of how to select the 

optimal numbers of iterations for M-PCG will be studied in section 3.4. 

 
(a)  

 
(b)   

Fig.3. MFI from bending moment responses by TDM (SVD), CG and M-PCG with two different regularization 

matrices (1/4m&1/2m 1% Noise). (a) Front axle; (b) Rear axle. 
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(a) 

 
(b) 

Fig.4. MFI from combined responses by TDM (SVD), CG and M-PCG with two different regularization matrices 

(1/4m&1/4a 5% Noise). (a) Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.5. MFI from acceleration responses by TDM (SVD), CG and M-PCG with two different regularization 

matrices (1/4a&1/2a 10% Noise). (a) Front axle; (b) Rear axle. 

 

3.3.  Evaluation of M-PCG against PCG 
Table 2  

Comparison on RPE values (%) and optimal numbers of iterations of PCG and M-PCG 

Sensor location 
1% noise 5% noise 10% noise 

j1 RPE j2 RPE j1 RPE j2 RPE j1 RPE j2 RPE 

1/4m&1/2m 228 
4.6 

39 
4.5 

37 
10.3 

18 
10.3 

37 
17.3 

18 
17.3 

(4.1) (4.2) (9.9) (9.9) (17.5) (17.5) 

1/4m&1/2m&3/4m 352 
3.3 

39 
3.3 

41 
9.7 

19 
9.8 

41 
16.9 

19 
16.9 

(3.8) (3.3) (6.8) (6.9) (11.2) (11.3) 

1/4a&1/2a 1030 
1.4 

88 
1.4 

423 
2.4 

64 
2.5 

400 
4.3 

64 
4.3 

(1.7) (1.7) (2.8) (2.7) (4.8) (4.7) 

1/4a&1/2a&3/4a 608 
1.4 

175 
0.4 

261 
1.5 

65 
1.6 

163 
2.8 

45 
2.8 

(1.0) (0.9) (2.6) (2.5) (3.8) (3.8) 
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1/2m&1/2a 381 
3.1 

53 
3.1 

261 
10.3 

34 
10.2 

45 
12.8 

22 
12.8 

(3.5) (3.6) (9.1) (7.6) (9.1) (9.4) 

1/4m&1/2m&1/2a 1431 
2.5 

98 
2.5 

240 
7.9 

48 
7.9 

33 
11.9 

19 
12.2 

(2.9) (2.6) (9.4) (10.7) (11.5) (12.0) 

1/4m&1/2m&1/4a&1/2a 631 
1.7 

159 
1.2 

501 
2.7 

67 
2.8 

146 
5.2 

43 
5.2 

(1.6) (1.5) (4.5) (4.4) (5.9) (5.9) 

1/4m&1/4a 1130 
3.0 

92 
3.0 

119 
9.9 

38 
9.9 

90 
10.2 

33 
9.7 

(4.8) (4.8) (7.2) (7.3) (7.6) (8.1) 

1/4m&1/4a&1/2a 571 
1.6 

130 
1.6 

447 
2.2 

68 
2.3 

149 
4.2 

43 
4.3 

(1.6) (1.3) (4.4) (4.3) (5.8) (5.5) 

1/2m&1/4a 710 
4.8 

77 
4.6 

66 
10.8 

31 
10.9 

57 
11.5 

27 
11.3 

(4.9) (4.6) (9.0) (8.9) (10.8) (10.5) 

1/4m&1/2m&1/4a 1531 
2.8 

98 
2.8 

271 
7.3 

53 
7.4 

48 
10.9 

26 
11.1 

(4.0) (4.1) (7.7) (7.6) (9.7) (10.3) 

1/2m&1/4a&1/2a 861 
1.4 

149 
1.4 

451 
3.0 

65 
2.9 

448 
5.5 

64 
5.6 

(1.9) (0.9) (3.4) (3.2) (5.9) (5.8) 

Note: Upright font values are for PCG with the optimal numbers of iterations j1, italics font values are for M-PCG 

with the optimal numbers of iterations j2. The RPE values not in parentheses are for front axle and the RPE values 

in parentheses are for rear axle, the underlined RPE values are for M-PCG. 

It is well known that the computation efficiency and identification accuracy are equally 

important in the field of MFI. Especially for iterative methods, the numbers of iterations are 

linearly related to the identification time. Reducing the optimal numbers of iterations can 

effectively reduce the calculation time and the computation cost of MFI. Therefore, it is 

necessary to examine the computation efficiency of the M-PCG method against the PCG 

method. As mentioned earlier, one improvement of M-PCG over PCG is the addition of MGS 

iterative orthogonalization. 

Table 2 tabulates the RPE values of PCG and M-PCG with corresponding optimal numbers 

of iterations in all 12 cases. As shown in Table 2, the computation efficiency of M-PCG is 

significantly improved compared with PCG. When noise level is 1%, 5% and 10%, the 

average optimal numbers of iterations of M-PCG in 12 cases reduces by 87.4%, 81.7% and 

74.4% compared with PCG, respectively. Fig.6 also demonstrates that the optimal numbers of 

iterations obviously decrease with the increasing of noise level from 1% to 10%, which has 

same rule for both methods. 

As shown in Fig.7 to Fig.9 and Table 2, the identification accuracy of PCG and M-PCG are 

very close with each other in all cases. The identified forces of PCG and M-PCG are in strong 

agreement with the true forces even under various combined responses. Both of the methods 

have excellent robustness to response noise and ill-posedness problem, the M-PCG is 

recommended for field MFI applications due to its superior efficiency in computation. 
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(a) 

 
(b) 
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(c) 

Fig.6. Influence of numbers of iterations 𝑗 of PCG and M-PCG with three noise levels (1/4m&1/4a&1/2a). (a) 1% 

Noise; (b) 5% Noise; (c) 10% Noise. 

 
(a) 

 
(b) 

Fig.7. Identified biaxial time-varying forces with PCG and M-PCG from bending moment responses 

(1/4m&1/2m&3/4m 1% Noise). (a) Front axle; (b) Rear axle. 
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(a) 

 
(b) 

Fig.8. Identified biaxial time-varying forces with PCG and M-PCG from combined responses (1/2m&1/4a&1/2a 5% 

Noise). (a) Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.9. Identified biaxial time-varying forces with PCG and M-PCG from acceleration responses (1/4a&1/2a&3/4a 

10% Noise). (a) Front axle; (b) Rear axle. 

 

3.4.  Choosing optimal numbers of iterations 𝑗 for M-PCG 
Table 3 
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Comparison on RPE values (%) of M-PCG(𝐋3) with three different numbers of iterations 

Sensor location axle 
1% noise 5% noise 10% noise 

𝑗1 𝑗2 𝑗3 𝑗1 𝑗2 𝑗3 𝑗1 𝑗2 𝑗3 

1/4m&1/2m 
front 11.7 4.5 (5.6) 15.6 10.3 (16.0) 24.8 17.3 (22.3) 

rear 9.2 4.2 (3.9) 12.4 9.9 (14.3) 19.0 17.5 (21.0) 

1/4m&1/2m&3/4m 
front 10.2 3.3 (3.4) 15.1 9.8 (14.7) 21.7 16.9 (21.4) 

rear 10.8 3.3 (3.4) 14.9 6.9 (10.3) 20.7 11.3 (20.5) 

1/4a&1/2a 
front 28.7 1.4 (4.2) 28.2 2.5 (5.3) 27.6 4.3 (6.7) 

rear 27.5 1.7 (3.3) 28.0 2.7 (4.4) 28.4 4.7 (6.0) 

1/4a&1/2a&3/4a 
front 20.1 0.4 (2.5) 20.7 1.6 (3.1) 20.9 2.8 (3.8) 

rear 24.4 0.9 (1.5) 23.9 2.5 (2.1) 23.4 3.8 (3.0) 

1/2m&1/2a 
front 35.5 3.1 (6.0) 36.2 10.2 (10.7) 37.3 12.8 (19.6) 

rear 31.2 3.6 (4.2) 31.8 7.6 (7.7) 32.6 9.4 (15.4) 

1/4m&1/2m&1/2a 
front 30.3 2.5 (4.7) 30.4 7.9 (8.5) 30.8 12.2 (15.0) 

rear 28.9 2.6 (2.6) 29.6 10.7 (6.9) 31.2 12.0 (14.8) 

1/4m&1/2m&1/4a&1/2a 
front 24.8 1.2 (4.3) 25.0 2.8 (4.9) 25.2 5.2 (6.2) 

rear 24.9 1.5 (2.5) 25.9 4.4 (2.9) 25.9 5.9 (4.7) 

1/4m&1/4a 
front 23.3 3.0 (6.1) 25.1 9.9 (10.3) 25.4 9.7 (17.3) 

rear 25.3 4.8 (7.7) 26.1 7.3 (6.9) 26.8 8.1 (12.0) 

1/4m&1/4a&1/2a 
front 23.3 1.6 (4.3) 24.3 2.3 (4.5) 25.2 4.3 (5.3) 

rear 24.7 1.3 (3.0) 25.2 4.3 (3.3) 25.7 5.5 (4.9) 

1/2m&1/4a 
front 52.5 4.6 (7.6) 53.6 10.9 (12.7) 53.4 11.3 (19.3) 

rear 43.7 4.6 (6.3) 45.4 8.9 (10.6) 45.7 10.5 (16.6) 

1/4m&1/2m&1/4a 
front 22.2 2.8 (8.6) 23.3 7.4 (12.8) 23.5 11.1 (18.5) 

rear 26.1 4.1 (7.7) 27.5 7.6 (9.1) 28.2 10.3 (14.7) 

1/2m&1/4a&1/2a 
front 21.3 1.4 (4.2) 21.9 2.9 (5.6) 21.6 5.6 (7.8) 

rear 23.0 0.9 (3.1) 23.6 3.2 (4.2) 24.0 5.8 (6.3) 

Note: Upright font values are for M-PCG(𝐋3) with the worst number of iterations 𝑗1 = 15, underlined font values 

are for M-PCG(𝐋3) with the optimal numbers of iterations 𝑗2 as shown in Table 2, the values in parentheses are for 

M-PCG(𝐋3) with number of iterations 𝑗3 = 40. 

Table 3 tabulates the RPE values of M-PCG(𝐋3) with three different numbers of iterations 

in all 12 cases. As shown in Fig.10, when moving forces are identified from bending moment 

responses alone with high noise level, the larger number of iterations, the greater increase in 

RPE. The RPE values exceed 40% when the number of iterations exceeds 60 with 10% noise 

level. Therefore, choosing the optimal numbers of iterations is helpful to improve the 

identification accuracy of the M-PCG. 

In addition to selecting the optimal numbers of iterations 𝑗2 (the 𝑗2 values of 12 cases can 

be found in the former Table 2 with italics font), there are two other numbers of iterations 

𝑗1 = 15 and 𝑗3 = 40 are chosen for comparing research as the following reasons. 

As shown in Fig.10 to Fig.13, when the number of iterations is 15, the RPE curves have a 

distinct peak, and then the worst number of iterations 𝑗1 = 15 is adopted to explore the 

causes of the excessively high RPE values as the ill-posed problems. It also can be shown in 

Fig.12 and Fig.13, if more than two acceleration responses are contained for MFI, the RPE 

values maintain over a long range of numbers of iterations from 40 to 300. With the increase 

of the numbers of iterations, the identification accuracy is not improved obviously. Therefore, 

it is not worth to find the optimal numbers of iterations while increase the calculation time 

and the identification cost, and then the stable number of iterations 𝑗3 = 40 is adopted to 
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explore whether it can be adopted as reasonable number of iterations of M-PCG to avoid 

choosing the optimal numbers of iterations. 

 
Fig.10. Influence of numbers of iterations 𝑗 of M-PCG(𝐋3) on MFI from bending moment responses 

(1/4m&1/2m&3/4m) 

 
Fig.11. Influence of numbers of iterations 𝑗 of M-PCG(𝐋3) on MFI from combined responses (1/2m&1/2a) 
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Fig.12. Influence of numbers of iterations 𝑗 of M-PCG(𝐋3) on MFI from combined responses (1/2m&1/4a&1/2a) 

 
Fig.13. Influence of numbers of iterations 𝑗 of M-PCG(𝐋3) on MFI from acceleration responses (1/4a&1/2a&3/4a) 

As shown in Fig.14 to Fig.16, the RPE values of M-PCG(𝐋3) are largest with number of 

iterations 𝑗1 = 15 compared with 𝑗2 and 𝑗3 = 40, especially when both front and rear axles 

are not simultaneously on the bridge as the ill-posed problems. The RPE values have little 

change with different noise level and the identified forces have great deviation to true forces, 

and then the use of number of iterations at 15 should be avoided for M-PCG(𝐋3). 

When the optimal numbers of iterations 𝑗2 is adopted, the identification results are most 

accurate, which is the closest to the true forces. When the stable number of iterations 𝑗3 = 40 

is adopted, the identification results also very close to the true forces as shown in Table 3 and 

Fig.14 to Fig.16. It means that when the optimal numbers of iterations cannot be reasonably 

determined without knowing the actual moving forces, the number of iterations 𝑗3 = 40 can 
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be adopted as a reasonable number of iterations of M-PCG(𝐋3) to facilitate MFI. Some other 

simulations with different MFI examples have shown that the stable number of iterations is 

directly related with the number of columns of vehicle-bridge system matrix 𝐀, which can be 

selected as 10% of the number of columns of matrix 𝐀. 

 
(a) 

 
(b) 

Fig.14. MFI from bending moment responses by M-PCG(𝐋3) with three different numbers of iterations 𝑗 

(1/4m&1/2m&3/4m 1% Noise). (a) Front axle; (b) Rear axle. 

 
(a) 
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(b) 

Fig.15. MFI from combined responses by M-PCG(𝐋3) with three different numbers of iterations 𝑗 

(1/4m&1/2m&1/4a&1/2a 5% Noise). (a) Front axle; (b) Rear axle. 

 
(a) 

 
(b) 

Fig.16. MFI from acceleration responses by M-PCG(𝐋3) with three different numbers of iterations 𝑗 

(1/4a&1/2a&3/4a 10% Noise). (a) Front axle; (b) Rear axle. 

 

4. Conclusions 

In this work, a method named M-PCG is proposed for MFI based on CG and PCG methods 

incorporated MGS algorithm. Moreover, this paper proposes qualitative and quantitative 

selection rules about parameters that affect the accuracy of the M-PCG, such as regularization 

matrix 𝐋 and number of iterations 𝑗. When M-PCG(𝐋2) and M-PCG(𝐋3) are used to identify 

the moving forces, the identification accuracy is significantly improved compared with 

TDM(SVD) and CG (𝐋1) in all 12 cases. The M-PCG can overcome most ill-posed problems 

of CG, through choosing proper regularization matrix. It is shown that when the optimal 

numbers of iterations cannot be determined prior, the number of iterations 𝑗3 = 40 can be 
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adopted as a reasonable number of iterations to facilitate the MFI procedure. On the contrary, 

the number of iterations 𝑗1 = 15 should be avoided as it amplifies the ill-posed problems. In 

comparison with similar methods such as PCG, the computation efficiency of M-PCG is 

shown to be superior while retaining the same identification accuracy and robustness against 

response noise and the ill-posedness problem. These advantages obviously make the M-PCG 

a preferred candidate for computationally intensive MFI applications such as those for 

medium to large-scale bridges. 
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