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ABSTRACT 

Human gait identification is a potential new tool for identifying individuals. The 

emergence of motion capture techniques provides high accuracy identification because 

completely recorded gait information can be compared with gait information obtained 

by security cameras. The emergence of motion capture techniques provides high 

accuracy identification because recorded gait information can be compared and 

matched with gait information obtained by security cameras. 

This research aimed to build a practical method of gait identification and investigate 

the individual characteristics of gait and find new identification factors that can be 

extracted from gait features. A gait identification method was proposed, several studies 

of individual gait characteristics were performed, and a number of methods were used 

to compare the identification results. 

 The project was conducted in three parts. First, it identified the most suitable digital 

video camera to record the subjects' gait using close-range photogrammetry. Five types 

of digital video cameras with various specifications and costs were tested, calibrated 

and analysed. These tests found the most suitable video cameras to capture the gait of 

the recruits during walking. Second, it used photogrammetry to identify individuals 

from their gait via a novel set of features based on 3-D motion capture data such as the 

knee-ankle joint. Analysis of the identification factors was based on three phases of 

gait: a) heel-down, b) mid-stance and c) toe-off, and statistical analysis was used to 

validate the identification factors extracted from the gait features. Third, the footprint 

data of the same recruits was analysed using the RSSCAN International footprint 

sensing platform. Data, such as total force value for one gait cycle, was extracted from 

the footprint platform and synchronised with the data extracted from the 

photogrammetry part of the methodology. The two sets of data (photogrammetry and 

footprint) were obtained at the same time during walking on the sensing platform. 

Identification factors obtained from the footprint sensing mat were added to the 

identification factors from the photogrammetry part.  

The resulting factors were found to increase the accuracy of the human identification 

technique explored in this research. Using statistical analysis, we identified the most 

significant gait analysis factors for use in human identification. The average 

identification rate was over 95%, with the best result close to 100%. This high 
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identification rate is the result of the two correlated identification techniques. Thus , 

This identification technique could help the crime investigators to identify the 

perpetrator because of many identification , authenticated factors included. 
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1 CHAPTER 1 
1.1 Introduction 

This chapter provides a general overview of the research topic. It presents the research 

gap, objectives, questions, significance and the scope of the research. It also outlines 

the structure of the thesis. 

1.2 Overview 

Security has become a significant concern in modern society. This is due to the 

proliferation of crimes and terror attacks, and the need to provide a safer environment. 

Because of the rapid growth of security cameras and the lack of manpower to supervise 

them, the integration of biometric technologies into surveillance systems is a critical 

factor for the automation of security and forensic analysis (Nurse et al., 2017;Harrati 

et al., 2017). More importantly, with the early recognition of suspicious individuals 

(who may pose security threats) via the use of biometrics, a security system would be 

able to deter future crimes due to the identification of perpetrators as soon as possible, 

thus preventing further offences and to allowing justice to be administered 

(Christensen et al., 2021;Leipold, 2021).  

Biometrics is concerned with deriving a descriptive measurement based on either 

human behavioural or physiological characteristics which distinguish one person from 

other people (Bouchrika, 2018;Bouchrika, 2017). Examples of physiological-based 

biometrics include the face, ear, fingerprint and DNA, whilst behavioural features 

include gait, voice and signature. Apart from being unique, the biometric description 

should be universal and permanent. The universality condition implies that measures 

can be taken from the entire population, while permanence signifies that the biometric 

signature should stay the same over time.  

Unlike traditional identification or verification methods such as passports, passwords 

or personal identification numbers (PINs), biometrics cannot be transferred, forgotten 

or stolen, and should ideally be obtained non-intrusively (Tvoroshenko and 

Kukharchuk, 2021). Biometrics can work in either verification or identification mode. 

For verification, the system performs a one-to-one match for the newly acquired 

person’s signature against a pre-recorded signature in a database to verify the claimed 

identity. A one-to-many matching process is conducted for identification against all 
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subjects already enrolled in the database to infer the subject’s identity (Gautam et al., 

2019). 

 Biometrics is now in regular use; deployed in various applications such as 

immigration border control, forensic systems and payment authentication 

(Sabhanayagam et al., 2018). The use of biometrics for people identification is 

considered to be a vital tool for forensic investigation.  

Forensic science can be defined as a gathering, analysing and interpreting past 

information related to criminal, civil or administrative law. This includes the 

perpetrator identity and modus operandi (Lynnerup and Vedel, 2005). Forensics 

involves investigation, evaluation, forensic intelligence, automated surveillance and 

forensic identity management (Tistarelli et al., 2014). Forensic analysis is performed 

to conclude further evidence to exonerate the innocent and corroborate the 

perpetrator's identity by producing well-supported evidence. 

 The term “evidence” spans physical evidence, scientific statements and expert witness 

testimony (Harrati et al., 2017). Scientific statements are usually supported by 

hypotheses and experiments driven by statistical-based evidence and biometrics. 

Forensic biometrics is the scientific discipline concerning the use of biometric 

technologies to determine whether a perpetrator's identity (recorded during the crime 

scene) can be identified or excluded via a process of matching against a list of suspects 

(Bouchrika, 2017). 

Many biometric features can be used in forensic analysis, such as the face, ear 

(Eftekhari et al., 2015), speech and gait (Bouchrika et al., 2011). However, the 

availability of biometric features for identification is limited to forensic experts, 

depending on the nature of the crime scene and perpetrators. An expert witness is 

usually based on a body of knowledge or experience provided by an individual who is 

formally qualified and broadly experienced in a particular domain. Important factors 

contribute to establishing an individual's credibility acting as an expert. These include 

educational qualifications and relevant experience. However, qualitative and 

descriptive-based expert opinions are argued to be insufficient and less credible (Biber, 

2009;Edmond et al., 2014;Porter, 2009) compared to empirical-based statements that 

are gaining wider acceptance.  
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Human gait analysis, the systematic study of human walking, has been developed from 

early descriptive studies to newer studies involving mathematical analysis and 

modelling, and has become an important part of human motion analysis. Gait analysis 

has been applied in many areas including the biomechanical, psychological and 

security disciplines. The goal of researchers is to analyse a walker's status (such as 

gender, age and health) based on their gait (Jung et al., 2018;Prakash et al., 

2018;Schülein et al., 2017;Smith-Ray et al., 2015). Furthermore, researchers aim to 

identify individuals (Khamsemanan et al., 2017;Wang and Yan, 2020;Song et al., 

2019).  

Recently, the use of soft biometrics for recognition has been studied. In Annamalai et 

al. (2018), a video analysis framework using soft biometric signatures such as skin 

tone and clothing colour was used for airport security surveillance. In (Kozlow et al. 

2018), an efficient framework combining soft biometrics, such as height and stride 

length, along with gait features was proposed. With the development of gait recording 

techniques, research methods have also advanced. The question that was first proposed 

in the 1970s, “Can people recognise their friends or family by gait” has been developed 

to “Can we identify a particular person by gait” (Cutting and Kozlowski, 1977;Troje 

et al., 2005;Jokisch et al., 2006;Moustakas et al., 2010). Intuitively, we know that 

individual gaits are different and include some personal information. Can gait features 

be used like a 'biometric signature' to identify individuals, similar to DNA or 

handwriting? This question inspired the research aims of this thesis. 

 In this research, a novel approach for identifying individuals is proposed based on 3D 

motion capture data. A novel gait feature set is presented and evaluated. It investigates 

the different influences on gait features from three gait phases (heel-down, mid-stance 

and toe-off). The first part of this research which is close-range photogrammetry, as 

the name suggests, has been traditionally limited to short to medium camera-to-object 

distances. With the growing use of off-the-shelf digital cameras for photogrammetric 

measurement, however, requirements are emerging to perform measurements over: a) 

long distances, for applications in construction engineering, deformation monitoring 

and traffic accident reconstruction and b) very short distances for applications such as 

digital documentation and 3D measurements for forensic application via image-based 

approaches.  
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Such measurements often require long focal length lenses to keep the spatial resolution 

high and optimize the angular measurement precision. One of the most important 

factors of photogrammetry is camera calibration. Well calibrated cameras create 

images that are high precision, measurable and scalable objects. Different approaches 

to camera calibration depend on the type of project  (Chong et al., 2014). For the close 

range photogrammetry used in this research, iwitness pro v.4.1 was used to obtain a 

well calibrated camera. The reason for the adoption of iwitness pro v.4.1 is described 

in detail in Chapter 3. 

 Human gait recognition has some challenges due to walking velocity changes (Heo et 

al., 2019). One possible way to solve this problem is to use the footprints remaining 

after human walking behavior. For this reason, we add to this research, a second 

identification technique to add more authenticated identification parameters to the 

photogrammetry using footprint features. Our study uses the footprints of recruits with 

their shoes on because this is an identification technique related to forensic 

applications.  

Footprint-based person recognition methods began with Nakajima et al. (2000) who 

demonstrated an 85% recognition rate for ten men using normalized static footprints. 

Jung et al. (2003) showed the possibility of unconstrained person recognition using 

position-based quantisation of the centre of pressure (COP)_trajectory from shoe-type 

pressure sensors. Jung et al. (2003) tested five men's walking data and showed 100% 

recognition rate. But there was a problem that data are considerably correlated since 

all data were collected in a same day. Moreover, using a shoe-type sensor could be a 

serious constraint in the view of users.  

In this research, one of the footprint identification parameters is calculating the total 

value of foot pressure for one complete step with shoes-on on a pressure sensing 

platform. In Chapter 3, we will describe in detail the identification parameters 

extracted by footprint data, and in Chapter 4 we will explain the statistical analysis of 

this data and evaluate the adoption of these parameters for human identification as an 

authenticated factor. For this research, a novel gait phases definition was proposed. 

The similarity and dissimilarity between gait features were investigated. The 

relationship between gait features and footprint features were analysed, and a 

predictable model for gait attractiveness was built. 
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1.3  Research gap 

From a review of the literature (detailed in Chapter 2), it can be seen that the most 

common gait identification is using computer vision such as photogrammetry and 

silhouette to extract gait features and use them for human identification. The other 

application used is foot scan analysis for medical applications.  In this research, we 

use a new approach for human identification. We correlate the two parts of human 

identifications. The first part uses computer vision close-range photogrammetry to 

capture images at specific gait phases and extracts gait features to use them in 

identification. The second part of this research uses footprint features for human 

identification. The new approach used in this research is to correlate these two parts to 

extract identification features simultaneously during walking on a force platform. The 

extracted identification factors from the two parts are combined and used as one set of 

human identification factors.  

The existing literature has not reported any works that: 

a) correlate both photogrammetry techniques and Footprint techniques for human 

identification  

b) use the RSSCAN international footprint scan for human identification while 

shoes are on 

c) use gait features as in this research to extract identification factors such as knee-

inner joint ankle 3-D distances and force foot 2-D distance.  

These strategies can help to increase the accuracy of human identification from 95%-

100% because they combine two different techniques and correlate their identification 

factors to become one set of identification techniques. 

1.4 Research questions  

This research has several questions which are: 

1. Photogrammetry camera calibration: 

a) What type and configuration of photogrammetric control is required to calibrate 

the cameras used in this research? 

b) Does the configuration of camera tripods affect optimum 3-D images? 

c) What is the minimum number of cameras that can provide the highest accuracy 

to obtain the subject’s identification data? 
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2. Gait and plantar pressure test: 

Does 20-30 subjects are enough to obtain their identification information accurately? 

 

3. Plantar pressure: 

a) What are the most reliable footprint parameters that give the most accurate data 

for the subject? 

b) What is the minimum number of gait cycles that can be used to achieve the 

highest accuracy for the subject? 

4. Close-range photogrammetry: 

a) Is the accuracy of subject identification affected if the data is captured using 

different cameras or CCTV systems? 

b) Will data accuracy be affected when cameras are not frequently calibrated? 

1.5 Objectives  

The main aim of this study is to introduce a more efficient approach for identifying a 

human subject. In order to achieve this aim, four objectives were formalised: 

1- Determine the most reliable video camera features for human gait recording. 

This includes finding the most suitable digital video cameras. Also, finding the 

best calibration techniques to ensure that accurate data is extracted from gait 

recordings 

2- Demonstrate an innovative alternative methodology to extract human 

identification parameters by analysing gait features using photogrammetry 

techniques  

3-   Demonstrating the effectiveness of the innovative methodology using the 

footprint features for human identification. This can be proved by extracting 

the footprint features data using the force foot platform  

4- By The correlation of force/pressure and physical three - dimensional measures 

, we can obtain a huge potential in finding suitable ways to separate perpetrator 

from suspects. These potentials provide excellent research opportunities for the 

betterment of forensic sciences.  

1.6 Research outcomes and significance 

Completing this research may bring a number of substantial benefits. These are: 
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1. Assist criminal investigators to identify criminal suspects using this new 

technique 

2. Increase the security of the interior and exterior of places such as 

government buildings and banks by adding the designed system to the main 

entrance of these buildings  

3. Can be used when other facial recognition techniques fail 

4. Help to detect suspects by combing data from more than one position that 

uses the same system 

5. Can be applied to individuals wearing shoes or trousers 

6. Low-cost equipment compared with other security systems. 

1.7 Thesis structure 

This thesis consists of six chapters, and each chapter provides essential information on 

the study. The rest of the thesis is structured as follows:  

Chapter 1:  The introductory chapter explains the background and definition of 

human gait and gait identification, photogrammetry techniques and the 

footprint force platform. The research problems and aims, research 

objectives, significance of the research, expected outcomes of the 

research and the thesis structure are also discussed  

Chapter 2:  Presents the literature review which considers the importance of human 

gait analysis, human identification methods using gait analysis, and 

close-range photogrammetry with the footprint force platform 

Chapter 3:  Divided into two parts, it describes the instrumentation used to perform 

the study's experiments. The first part shows the measurement systems 

used to measure kinematics of the lower limb movements, the test 

protocol, camera calibration and photogrammetric data capture, data 

collection from the recruits’ gait, calculation, and statistics. The second 

part describes the materials used for the practical application of the 

research. It also describes the method of data collection using both regions, 

photogrammetry and the foot force platform. This chapter shows 

participants, protocol tests, data collection and processing, and statistical 

analysis. 



 
 

 
8 

 

Chapter 4: Presents the results of the photogrammetry testing, including camera 

calibration, force foot platform testing and the statistical analysis that 

reveals the identification parameters used to validate the research 

techniques used to evaluate and validate the presented methods 

Chapter 5:  Presents the main discussions points of the research conducted 

Chapter 6:  Presents the conclusion of the thesis and the future work. 
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2 CHAPTER 2 
2.1  Introduction 

 
The increase in the number of crimes worldwide has led researchers to explore new 

methods of identifying crime suspects. A traditional identification method is 

recognition by gait pattern. Another approach is using biometric devices to analyse 

footprint features. A new method, proposed in this study, is correlating lower limb gait  

analysis with footprint features analysis to obtain more accurate, authentic and reliable 

data that helps forensic investigators detect crimes quickly and accurately.  

The development of gait recognition is shown in Figure 2.1. Unique walking patterns 

such as lower limb movement patterns and ground reaction forces (GRFs) have been 

used to identify individual humans through biomedical and forensic experiments. 

These patterns have helped with individual gait recognition  (Tao et al., 2007). Ground 

reaction force (footprints) has also been used to identify criminals (Tao et al., 2012). 

The cumulative foot pressure record image system provides a lot of information for 

identifying the different walking patterns compared to the simple 2D system 

(Sivapalan et al., 2011). The cumulative system has also been used in biomedical 

assistants and forensic investigations.  

Combining evidence from different sources has been achieved by proposing a 

multimodal biometric system (Jain et al., 2004).These sources come from other sensors 

(Poon et al., 2006), different classification algorithms (Shan et al., 2008), or directly 

from diverse biometric trails (Lanitis, 2010). 
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Figure 2.1: A taxonomy and timeline of gait recognition. On the left side is a list of enabling 
technologies. On the right, gait recognition and its advancements over time are shown 
divided into three main areas: gait analysis, gait forensics and gait biometrics. Some of 
the images used in this and other figures are from the Internet (Connor and Ross, 2018).
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2.2 The content of gait analysis 

Human walking is a simple process that involves a large amount of information. The 

analysis of quantitative gait data has mainly focused on the identification, animation, 

pattern analysis and recognition, attractiveness, and other specific factors. 

 Gait animation 

Gait animation has been observed in a variety of application fields including 

computers, game design, advertising and simulation. Gait animation has attempted to 

create a virtual human that seems more like an actual human. The problem of human 

motion animation is the requirement for reality and complexity. Human motion 

animation ranges from very subtle motions such as smiling to whole-body motions 

such as dancing and running. Much previous research has focused on modifying and 

rebuilding existing movements based on motion capture data. Motion editing methods 

have been surveyed in Balazia and Plataniotis (2016). The generation of synthetic 

walkers was investigated as early as 1978 (Cutting et al., 1978). 

Research related to articulated figure motion expanded the range of possible motion 

(Kaufman et al., 1999). Generating motion with mood, such as a “tired” walk, from a 

normal motion was studied via Fourier principle methods in Granieri et al. (1995). 

Research has also attempted to retarget motion to new characters by re-establishing 

constraints while maintaining the frequency characteristics of the original motion 

(Kleissen et al., 1998). Figures 2.2 and 2.3 illustrate an example of animation. 

 

 

 
 
 
 
 

Figure 2.2: Gait with mood Angry, Sad and happy  (Granieri et al., 1995).  
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 Gait attractiveness 

Psychologists have long been interested in how people assess the attractiveness of 

others. Body shape is static, but the gait is dynamic. People continuously perceive gait 

attractiveness, whether this perception is conscious or not, because in real life, human 

figures are active most of the time, and walking is a common movement. As early as 

the 1930s, some researchers considered the factors influencing gait movement 

attractiveness (Allport and Vernon, 1933;Wolff, 1935;Eisenberg and Reichline, 1939). 

One study demonstrated that the gait of dominant women were rated as more attractive 

than those of non-dominant women, but these results were not conclusive because of 

methodological difficulties such as how to present the behavioural component of gait 

separately (Eisenberg and Reichline, 1939). At that time, the medium used to record 

gait was motion pictures. After the development of the point-light kinematic display 

method, it became possible to establish that people can indeed infer various traits of a 

subject based solely on movement cues from gait (Kozlowski and Cutting, 

1977;Cutting et al., 1978). Some point-light research investigated the vulnerability 

Figure 2.3: Retargeting process which adapts the motion as the character 
morphs to 60% of its original size (Granieri et al., 1995). 
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cues in the gait of target choices for assault (Grayson and Stein, 1981;Gunns et al., 

2002).  

Experimental results showed that the impression of awkward movement as a kinematic 

gait quality is related to both a higher feminine impression as well as a higher 

likelihood of being a target for sexual advances (Sakaguchi and Hasegawa, 2006). 

Computer animation technology has also provided new methods of gait analysis that 

have been used to explore gait attractiveness. Johnson et al. (2007) found that animated 

walkers were rated as more attractive by the opposite sex if they exhibited more sex-

typical walking movements. The emergence of 3D motion capture techniques has 

improved the quality of data that can be used to analyse the gait attractiveness of real 

human walkers. For example, (Provost et al., 2008;Sheng et al., 2008) used motion 

capture to analyse variations in gait between women at high and low probability of 

conception and the attractiveness ratings that men assigned to these variations. 

They found that the gait of women not using hormonal birth control were slightly more 

attractive during the luteal stage than in the late follicular phase. 

 

 Gait pattern analysis and recognition 

Gait is related to a variety of information including health status, medical disease, age, 

gender, emotion and so on. Pattern analysis studies the gait patterns of a particular type 

of subject to reveal the relationship between this information and gait. Pattern analysis 

focuses on revealing the difference in gait pattern and the factors that affect a particular 

gait pattern, such as elder gait, female/male gait, patient gait and so on. For example, 

much research has focused on the effect of gender on gait (Cho et al., 2004;Murphy et 

al., 2005;McKean et al., 2007;Kobayashi et al., 2014). The gait of healthy subjects and 

patients has received increasing attention since the emergence of the motion capture 

technique (Woollacott and Shumway-Cook, 2002;Aminian and Najafi, 2004;Zhou and 

Hu, 2008;Aich et al., 2018).  

In medicine, gait research is normally based on a single type of subject to investigate 

the difference between their gait and normal gait. In 1994, Hennekes and  Nigg  

researched the gait characteristics of age and gender (Hennekes and Nigg, 1994). Age-

related changes in gait were researched in 2005 (Kovacs, 2005). In 2009, researchers 

investigated the effect of walking surfaces, footwear and age on gait (Menant et al., 

2009). Gait recognition is one important part of gait analysis and has attracted much 
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attention since the beginning of gait analysis. Gait recognition is a broad topic that 

includes gender recognition, age recognition, medical recognition, action recognition, 

and other recognitions depending on the characteristic used as the classification 

standard. Gait recognition is highly related to pattern analysis. 

Pattern analysis analyses the different patterns of different groups compared the 

differences in the appearance of different groups of walkers and investigates the factors 

that affect gait. Gait recognition identifies the group to which the walker belongs. For 

example, there are some common types of recognition such as gender recognition, age 

recognition and health recognition. 

 

 Gait identification 

A particular area of gait recognition research is gait identification which identifies 

individuals. In gait recognition, different subjects are classified by type. Gait 

identification research aims to identify individuals. It is only recently that 

identification by human gait has become an active area of study. Early medical studies 

demonstrated that individual gaits are unique, varying from person to person, and 

difficult to disguise (Murray et al., 1964). Kich showed that this personal identification 

ability also extends to the recognition of friends (Kich, 1992).  

Stevenage et al. (1999) demonstrated that the individual human subject could be 

identified on the basis of their gait signature, without reliance on body shape, in the 

presence of lighting variations and under brief exposures. A novel technique for 

analysing  moving shapes is presented using area-based metrics for automatic gait 

recognition (Kim and Paik, 2009). This technique is also used to discriminate between 

male and female subjects.  

The field of security has also utilised gait analysis techniques. Scientists have been 

investigating the use of gait for personal identification and have tried to identify gait 

signatures that are specific to individuals. Security and biometrics aim to identify an 

individual through their actions. In 1988, the recognition of friends had already been 

researched from a medical/behavioural perspective (Norman, 1988). Later, several 

attempts were made to investigate the gait recognition problem from the perspective 

of capturing and analysing gait signals (Boulgouris et al., 2005). In 2014 and 2015, the 

identification of individuals was investigated based on walking pattern (Lee et al., 

2014;Sprager and Juric, 2015) and area-based metrics (Foster et al., 2003). 
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Researchers have attempted to extract gait signature (Raj et al., 2010) or some 

combinations of gait and force foot signatures  (Balazia and Plataniotis, 2016). Most 

recent work investigating the appropriateness of gait as a biometric for human 

identification has been performed in the context of the Human ID project sponsored 

by the U.S. Defense Advanced Research Project Agency (Bouchrika, 2017).  

2.3 Human gait applications  

Early work by Vasconcelos and Tavares (2008) discuss the application domains in gait 

analysis. In this section, we discuss the state of the art in the possible application of 

gait analysis. Gait analysis applications can be clustered under five applications: 

analysis, biometric, artificial gait, control based and other applications as shown in 

Figure 2.4.  

 

 

 Clinical purposes 

As stated earlier, evaluating some aspects of quality of life can be achieved by 

examining peoples’ gait. According to (Muro-De-La-Herran et al.2014), gait analysis 

Figure 2.4: Application of data analysis (Prakash et al., 2018).  
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becomes of particular interest when considering some special health situations and 

diseases that negatively impact a person's ability to walk normally;for instance, some 

neurological and systemic diseases or those caused by aging. From a clinical point of 

view, knowing and monitoring patients' gait characteristics can help specialists 

diagnose some diseases earlier and recommend better treatments. Zhou et al. (2020) 

have used some gait characteristics with machine learning techniques to predict falling 

behaviour in the elderly. Some gait parameters showed more significant associations 

with fall prediction as found with the study of the gait of 12 young and 12 elderly 

participants. This study concluded that injuries could be prevented by early 

identification of changes in gait. 

Brehm et al. (2008) employed gait analysis to examine the effect of the so-called ankle-

foot orthoses on walking efficiency in a heterogeneous group of children with cerebral 

palsy. They analysed the data of 172 children with spastic cerebral palsy (Kerkum et 

al., 2015;Ridgewell et al., 2010;Brehm et al., 2008). By analyzing and studying some 

gait parameters, the researchers concluded that the energy cost of walking of 

quadriplegic children with cerebral palsy decreased with the use of an ankle-foot 

orthosis. On the other hand,in diplegic and hemiplegic children with cerebral palsy the 

energy cost of walking was not affected. Another study showed the importance of gait 

analysis in rehabilitation (Schmid et al., 2013). The effect of two orthoses on gait in 

12 hemiplegic cerebral palsy patients was examined. Gait analysis tools helped the 

researchers reveal that the hinged-foot orthosis resulted in significant gait 

improvement, while the dynamic-foot orthosis did not.  

Martínez et al. (2018) examined some parameters of the pressure beneath the foot of 

24 patients with Parkinson's disease. They wanted to determine the characteristics of 

the heel to toe motion of these patients. They found that these patients have a 

characteristic heel to toe motion pattern. It was also stated that the determination of 

such a pattern could be helpful for diagnostic, treatment and rehabilitation purposes. 

 Research by Majeed and Chong (2020b) used the foot pressure image to detect the 

foot drop of elderly diabetes sufferers. They found that a number of important 

measures can be determined based on plantar pressure and recorded time in the foot 

pressure image or pedobarographic. These variables are peak pressure (PP), pressure-

time integral (PTI), contact area (CA), contact time (CT) and COP. 
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 An in-sole pressure sensor provides accurate PP, PTI and CT, and these plantar 

pressure measures are available for standing still, walking and running (Maetzler et 

al., 2010;Keijsers et al., 2009;Tong and Ng, 2010). Accordingly, PP is the single most 

commonly reported measure and represents the maximum load in the plantar surface 

of the foot or a given area of the foot (Keijsers et al., 2009;Bus and Waaijman, 

2013;Melai et al., 2011). This measure is clinically significant because the magnitude 

of PP can be localized when standing and walking (Melai et al., 2011). PTI is defined 

as the area under the pressure-time curve within each mask and expressed in 

kilopascals multiplied by seconds (kPa.sec) (Rao et al., 2011). Studies have found that 

those with forefoot pain had significantly higher PTI levels than healthy controls 

(Keijsers et al., 2013;Burns et al., 2005). The CT is a crucial measure as it indicates 

the time in milliseconds (ms) that each area of the foot is in contact with the pressure 

pad during the stance phase (Maetzler et al., 2010), as shown in Figure 2.5.  

 

 Sports purposes 

Another crucial use of gait analysis is for sports purposes. Athletic performance can 

be improved and injury can be prevented using gait analysis (Suchomel et al., 2016). 

It has been applied in sports such as golf, running and basketball training (Chow et al., 

2014). According to Viteckova et al. (2018), examining an athlete's running gait, 

whether it has a natural or any abnormal running pattern, might be conducted by 

employing human gait analysis techniques. Monitoring the pattern and improving it, 

will lead to better performance and lower injury possibilities if there are any movement 

abnormalities. Preatoni et al. (2013) used gait analysis, particularly kinematical study, 

to introduce a method that helps make proper measurements to evaluate sports skills 

quantitatively. 

Losciale et al. (2021) studied the differences between the gait characteristics of two 

groups of athletes, namely those who passed and those who did not pass the return-to-

sport (RTS) criteria six months after anterior cruciate ligament (ACL) reconstruction. 

They found that there are some differences between the two groups. In addition, they 

observed that those who did not pass the criteria of RTS had more abnormal and 

asymmetrical gait behaviours. These findings enable clinicians to have a testing 

criterion to recognise athletes with such abnormalities after ACL construction. They 

The return-to-sport (RTS) criteria may also improve the sports medicine specialist's 
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ability to identify athletes with a higher risk of secondary injury as shown in Figure 

2.5. 

 

 

 

 Forensic purposes 

Gait is a reliable tool for recognising people at a distance, which is very helpful in the 

security field. According to Rouzbeh and Babaei (2015), recognising people by gait 

refers to identifying them by their walking style. In this case, a person's gait is used as 

a biometric measure (Randhavane et al., 2019). According to Bhatia (2013), biometric 

means a measure obtained from a person to be used as a recognition or identification 

tool such as fingerprints, faces, irises, voices etc. Gait is a more valuable biometric 

than the others because surveillance applications do not easily recognise biometrics 

such as iris and face details at low resolution (Buciu, 2014). Gait, however, can be 

easily detected and measured by low-resolution surveillance applications (Reid et al., 

2013), as shown in Figure 2.6. As a result, researchers have benefited from its 

parameters for security purposes. For instance, Lebleu et al. (2020) used gait features, 

namely ankle elevation, knee elevation, ankle stride width and knee stride width, along 

Figure 2.5: Planting sensors on the runner to record movement data 
(Wahab and Bakar, 2011). 
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with a locomotion human model to propose a novel recognition approach. Teufl et al. 

(2019) described an automated system to classify gender by using general (temporal 

and spatial) parameters, kinematic parameters, and moments.  

 

 

2.4 Common human gait identification technologies 

 Motion capture cameras 

One of the established techniques of gait analysis is the use of motion capture cameras. 

Although a number of researchers are trying to establish various strategies in 

representation, characterisation and recognition of human gait, extracting suitable, 

targeted features from an image sequence is a very challenging task. Targeted features 

can be joint positions, joint motion trajectories and joint angle variations during 

walking. 

 Gait motion can be analysed with or without having any marker attached on human 

body (Colyer et al., 2018;Nagymáté and Kiss, 2019). This technique can be used both 

for 2D or 3D analysis of human gait. A single camera is commonly used to acquire 

data for 2D analysis (Castelli et al., 2015;Colyer et al., 2018). In this case, the camera 

is placed parallel with the subject’s plane of motion of interest.  

Figure 2.6: Sample frame images from crime scene CCTV cameras 
(Bouchrika et al., 2011). 
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One of the limitations of this technique is out-of-plane movement which leads the 

analysis to unusual outputs. This problem can be overcome using treadmill walking.  

For 3D analysis, more than one camera with a complex setup is required as the 

observation should focus on all planes of movements (Majeed et al., 2017;Peyer et al., 

2015). As 3D analysis requires the reconstruction of the points of interests on the 

subject for all the time, the points should be visible for at least two cameras for every 

moment (Schepers et al., 2018;Colyer et al., 2018). When using markers, the skin 

movement artifacts over the musculoskeletal system should be eliminated from the 

captured data before the reconstruction of motion. Benoit et al. (2015)  consider that 

60 Hz is adequate for kinematic analysis while the subject is walking at normal speed. 

But for faster locomotion it needs to increase the frequency of data sampling rate where 

extra lighting mechanism is required.Another challenge of camera use is the angle of 

view and focal distance which impose limits on capture volume. In order to account 

for parallax errors and body segment deformation, joint kinematics curves obtained 

for each lower limb model are averaged using a multiple anatomical calibration 

approach (Montefiori et al., 2019;Cereatti et al., 2015). For each joint kinematics the 

mean value was calculated. In Figure 2.7, a lower limb multi-segmental model 

resulting from the processing of the RGB-D recordings is superimposed to the RGB 

image in a gait cycle illustrative frame. Figure 2.8 shows the estimated knee angle 

pattern during a patient’s gait cycle obtained using the marker less protocol. 
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Figure 2.8: Foot contour (in blue), shank and thigh models (in 
blue), relevant stick segments (in black) connected 
through the joint centers (in red) resulting from the 
proposed ML protocol are superimposed onto the 
relevant RGB frame (Cocchi et al., 2019). 

Figure 2.7: Knee kinematics resulting from the proposed protocol during 
an illustrative gait cycle (Cocchi et al., 2019). 
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 Inertial system 

The inertial system combines accelerometers and gyroscopes and works on the 

principle of inertial measurements. The accelerometer and gyroscope provide the data 

of acceleration and orientation of the attached point through which segment 

acceleration, segment orientation and joint position can be achieved for gait analysis, 

see Figure 2.9. The sampling rate for both the accelerometer and gyroscope are same, 

and vary from 100 Hz to 10 KHz.. The tri-axial acceleration and gyration capabilities 

provide the facilities to analyse human locomotion in a 3D environment (Sheng et al., 

2008;Sant'Anna et al., 2012;Lemoyne et al., 2009). The sensors are small, lightweight 

and capable of detecting a large range of angular velocity and acceleration (Rundo et 

al., 2018). The use of smartphones and portable media devices with integrated inertial 

sensors offer a new dimension in gait analysis and monitoring. The disadvantage of 

using this system is the skin movement artifacts which can affect the reading of 

acceleration and gyration (LeMoyne and Mastroianni, 2015;Morris and Lawson, 

2010). Identification of the segment length and exact rotational axis is also 

challenging. Acceleration is relative to the position of the Inertial Measurement Unit 

(IMU) system (Lopez-Nava and Munoz-Melendez, 2016). 



  

 
23 

 

 Electrogoniometer  

An electrogoniometer (EGM) is an electro-mechanical instrument that measures 

angles of joint movements and is used in gait analysis. Two types of EGM are used: 

potentiometric EGM (pEGM) and flexible EGM (fEGM) (Roetenberg, 2006). For 

pEGM, a potentiometer is used at the joint rotational axis of two arms (Piriyaprasarth 

et al., 2008). These arms are normally attached with the two segments of a particular 

joint of the musculoskeletal system, especially at the knee (Akhtaruzzaman et al., 

2015). The major challenge in capturing knee movement data for walking is to co-

relate the knee-joint axis with the system joint axis. To provide this facility, some 

flexibility is necessary at the attachment point of the instrument with limb segments. 

This problem can be overcome with the fEGM system as a flexible spring transducer 

and optical fiber are used with a fixed end and a telescopic end block. For both systems 

(pEGM and fEGM), when the leg moves, EGM converts the mechanical signals into 

electrical signals (Lopez-Nava and Munoz-Melendez, 2016). The drawbacks of the 

systems are that the angle movements can be measured only for one plane and accurate 

calibration is needed for the joint axis. Moreover, the instrument is uncomfortable to 

wear and very difficult to fit with a joint (such as hip or ankle) having more than one 

Degree of Freedom (DoF) (Roetenberg, 2006). Research shows that, although the 

Figure 2.9: H-Gait and STEP32 sensor positioning. The images show the: (a) 
frontal, (b) lateral and (c) rear view of a subject prepared for the bi-
instrumented gait analysis. The MIMU sensor positioned below the medial 
malleolus is shown in panel (d), the footswitches in panel (e) (Agostini et 
al., 2017). 
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system produces good results for the elbow joint, it does not offer the same good 

quality data when used at the knee joint (Morris and Lawson, 2010). 

 

 Gait mat/pressure mat 

A gait mat is a special kind of carpet where an arrangement of sensors is embedded. 

The geometry of the mat is pre-determined and the sensors of the mat are able to sense 

the foot contact as well as the GRF while walking (DeLisa, 1998). The uses of the gait 

mat and pressure mat are almost similar to the force plate. Portability, low cost and 

nonactive attachments to the subject are the advantages of using this system (Mariani, 

2012). Most importantly, the system provides a good dataset of foot contact, step and 

stride length, distributed pressure and GRF. The limitation of these systems is the 

resolution of sensing points because of the finite size of the sensors. Moreover, 

increased resolution decreases the scan rate and raises the processing capabilities of 

the system (Zang et al., 2015). 

 

 Force sensing shoes 

Force sensors like Force Sensitive Resistors (FSR) are arranged in the soles of shoes 

in such a way that the distributed foot pressure can be measured. As the GRF begins 

at the point of heel contact and ends at the point near toe, force shoes can provide a 

good dataset for gait analysis. In this context, FSR sensors may not be enough to 

measure tri-axial force and moment information (Zijlstra and Aminian, 2007;Castro et 

al., 2014). Parallel force sensor technology attached at the heel and forefoot regions 

could provide a reliable dataset for motion dynamic analysis (Castro et al., 2014;Liu 

et al., 2004;Tao et al., 2012). Force shoes data also need to be combined with limbs’ 

kinematic data to identify and characterise human locomotion (Tao et al., 

2012;Akhtaruzzaman et al., 2015). 

The schematic of a wearable GRF sensing example is illustrated in Figure. 2.10. The 

force plate is attached to the bottom of the shoe. The X axis is in line with the moving 

direction, while the Z axis is the vertical, and Y forms a right-handed coordinate 

system together with the other two axes. According to Koch et al. (2016) and Niu et 

al. (2014) the maximum vertical GRF is about 120% of the body weight during the 

loading response. The maximum of antero-posterior GRF is about 25% of the 

bodyweight, while the mediolateral GRF is the lowest in amplitude and directed 



  

 
25 

 

laterally. Regarding the lower-limb as a musculoskeletal functional unit, the combined 

effort of the locomotion system can be recorded by the gait on force plates. However, 

there is no general agreement on the parameterisation of GRF. The indices for 3-D 

parameters vary considerably. 

 

 

In recent years, force sensors emerged due to their embedded footwear to realise 

ambulatory measurements of GRF (Ramirez-Bautista et al., 2017;Yang et al., 2019). 

Force sensors are usually employed to distinguish the pressure of different parts 

directly from insole sensing elements. Force sensors suitable for measuring 

consecutive gait cycles (Song and Kim 2017) on uneven and bumpy surfaces such as 

ascending and descending stairs (Figueiredo et al., 2018). Wearers do not have to focus 

on their steps which improves the accuracy and reliability of gait recognition (Shen et 

al., 2018). Figure 2.11 shows an instrumented insole constructed by embedding force 

sensors. Each insole consists of seven sensing elements pasted on the insole, one 

conditioning circuit for signal formulating and one battery for the power supply. Based 

on the data obtained in Shen et al. (2018), the value of foot pressure is highest at the 

heel, forefoot and hallux, and that of the mid-foot and lateral border is relatively low. 

The lowest pressure exists beneath the posterior metatarsal. 

 

Figure 2.10: A insole sensor GRF sensing device (Yang et al., 2019). 
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 Force plates mechanism 

This technique consists of metal plates having load cell (most commonly) at each 

corner of the plates. This mechanism is used to measure the GRF caused by standing 

or moving. The shape of the force plate can vary based on design: square or triangular. 

Sensors (resistive, capacitive, piezoelectric, piezoresistive, strain gauge, etc.) used in 

the force plate can also vary based on pressure range, sensitivity and linearity. The 

Figure 2.11: Instrumented insole is divided into 3 discrete zones, the hind-, 
mid- and forefoot (A). The load applied to each of these zones 
occurs at a constant distance from the ankle joint centre which 
is considered to be the zone centre of pressure (COP) (B). 
Moment arms (r) are calculated as the  difference of these centres 
of pressure with the distance from the posterior aspect of the 
sensor to the ankle joint centre (xoffset). Plantar flexion moment 
is calculated as the sum of the scalar products of the moment 
arm and force applied to each zone.(Hullfish and Baxter, 2020). 
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force plate mechanism provides the facility to measure the force induced on the plate 

and its directions. As the force plates are placed on a fixed location on the ground, the 

CoP of the subject’s body can easily be calculated but for a long force platform  it may 

leads to increase its cost. Moreover, the suitable position of footsteps on the plate may 

not be followed properly which could lead to the wrong calculation of the CoP point. 

Data captured from foot plates should be combined with limb kinematics information 

to analyse the principles of gait (Refai et al., 2017). 

 In the systems based on this technique, sensors are placed along the floor on the so-

called force platforms or instrumented walkways where gait is measured by pressure 

or force sensors and moment transducers when the subject walks on them. There are 

different types of floor sensing platforms depending  of the manufacturer design. Floor 

sensing platforms vary in size, length and number of sensors per cm2. When the venue 

has a length of 2 meters, the subject can walk for two gait cycles. An increase is the 

number of sensors leads to an increase in the frames extracted per second (i.e 

increasing of the accuracy). There are two types of floor sensors: force platforms and 

pressure measurement systems, see Figure 2.12. Force platforms should be 

distinguished from pressure measurement systems, although they too quantify the CoP 

but do not directly measure the force vector applied. Pressure measurement systems 

help quantify the pressure patterns under a foot over time but cannot quantify 

horizontal or shear components of the applied forces (Refai et al., 2017). An example 

of an instrumented floor sensor and the acquired data from research conducted at the 

University of Southampton is depicted in Figure 2.13.  
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Figure 2.13: RSscan international foot pressure mat (author owns this image). 

Figure 2.12: Prototype floor sensor carpet (Chaccour et al., 2015). 
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The characteristic that distinguishes floor sensors (FS-based) systems from IP-based 

systems is the analysis of force transmitted to the floor when walking, known as GRF. 

This type of system is used in many gait analysis studies (Muro-De-La-Herran et al., 

2014;Iwashita et al., 2013). Costilla-Reyes et al. (2018) performed a comparative 

assessment of spatiotemporal information contained in the footstep signals for person 

recognition, analysing almost 20,000 valid footstep signals. These devices are the most 

basic ones that can be used to obtain a general idea of gait problems. Since the reaction 

force is exactly the opposite of the initial force (Newton's Third Law), the specialist 

identifies the evolution of the foot's pressure on the floor in real-time. These data, 

added to the previous comparison, help specialists make diagnoses. Pressure is given 

in percentage of weight in order to compare the patients' data. Pressure varies during 

the time the foot is in contact with the floor. The maximum pressure occurs when the 

heel touches the floor and when the toes pushes off to take another step. During this 

time, pressure may reach up to 120%–150% of the patient's body weight. 

2.5 Human gait identification techniques 

 Close-range photogrammetry 

Close-range photogrammetry, as the name suggests, has traditionally been limited to 

short to medium camera-to-object distances. With the growing use of off-the-shelf 

digital cameras for photogrammetric measurement however, requirements are 

emerging to perform measurements over: a) long distances for applications in 

construction engineering, deformation monitoring and tracking accident 

reconstruction, and b) very short distances for applications such as digital 

documentation and 3D visualisation of cultural heritage objects via image-based 

approaches (Koeva, 2016). Such measurements often require long focal length lenses 

to keep the spatial resolution high and optimise angular measurement precision.  

It has long been recognised that there can be practical photogrammetric impediments 

to the employment of very long focal lenses with small format cameras, centring 

principally upon potential difficulties in analytical orientation and subsequently self-

calibration. As focal length increases, so the field of view becomes narrower. This can 

impact the performance of the conventional central perspective adversely (Chong et 

al., 2009). In applying network orientation with self-calibration to images with very 

narrow fields of view, problems can arise through over parameterization, ill-
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conditioning and subsequent numerical instability in the ordinary equations of the 

bundle adjustment. Recovery of satisfactory camera calibration parameters is often 

precluded in such `weak geometry' cases due to linear dependencies that arise between 

the interior and exterior orientation parameters. The non-linearity of the collinearity 

equations is considered an inherent obstacle when it comes to the self-calibration of 

long focal length lenses, since the deterioration of the linear independence of the 

interior and exterior orientation parameters can be anticipated (Chong, 2011). 

 This partially accounts for why recent research on this topic has focused more on the 

development of alternative linear models to accommodate such network geometries. 

For example, Bell et al. (2016) developed an orthogonal projection model to address 

the issue of long-distance measurements in close-range photogrammetry. Even though 

their model was successful, it had limitations in that calibration of interior orientation 

elements was ignored and object space control points were required for the calculation 

of the initial exterior orientation parameters. 

 For the measurement of small objects, Jia et al. (2015) implemented a parallel 

projection model that requires parallel projection images taken with telecentric lenses, 

with the bundle adjustment incorporating a simplified interior orientation model. For 

either of these cases, a fully automatic self-calibration procedure was not reported. 

Obtaining the most suitable digital camera with less distortion and high accuracy is the 

main topic of this part of the research.  

 
2.5.1.1 Collinearity Equations 

The mathematical formulation of the relationship between image and object space can 

be described by collinearity equations which derive from central projection. The 

fundamental characteristic of such a relationship is that the perspective centre, the 

image point and the corresponding object point all line up in a straight line in space. 

Perturbations to this relationship however, give rise to departures from collinearity. 

Figure 2.14 shows the relationship between the coordinates x; y of an image point p 

and the coordinates X; Y; Z of an object point P within a basic interior orientation 

model. This can be mathematically formulated as shown in equation (2.1):  
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The parameters xp and yp are the coordinates of the principal point, and c is the 

principal distance or focal length. The parameters rik appearing in Equation (2.1) are 

the elements of the rotation matrix R, which describes the three-dimensional 

orientation of the image with respect to the XYZ object coordinate system. The 

inherent departures from collinearity, due mainly to lens distortion, must be considered 

for metric measurement with these perturbations to the collinearity equations 

described by the terms  Δx and Δy. 

 

Figure 2.14: Relationship between image and object point coordinates (Chong et 

al., 2014). 
 

……. (2.1) 
(Stamatopou
los, 2011) 
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2.5.1.2 Radial Distortion 

Symmetrical radial distortion in photogrammetry is represented as an odd ordered 
polynomial series as a consequence of the nature of the Seidel aberrations 
(Stamatopoulos, 2011) equation 2.2: 
 

 
 

 
where the Ki terms are the coefficients of radial distortion and r0 is the radial 
distance from the principal point (Stamatopoulos, 2011) equation 2.3: 

 
 
Distortion can have both negative and positive values. Positive radial distortion is often 

referred to as pincushion distortion, while negative distortion is known as barrel 

distortion due to the resulting geometry deformation in the image plane. For wide-

angle lenses, the third-, fifth- and seventh-order terms are often required. For most 

medium angle lenses employed in cameras nowadays, the third-order K term is 

sufficient to account for induced aberrations, at least for applications that do not 

demand the highest accuracy. Although radial distortion is present in long focal length 

lenses, its magnitude is generally tiny, and for metric applications, decreases with 

increasing focal length (Fraser, 2013). As the cubic component of radial distortion is 

the most significant, and the combined contribution of the K2 and K3 terms are 

generally relatively small, the distortion can be adequately profiled with just the K1 

term. Additionally, the projective coupling between the principal distance and lens 

distortion can help also in eliminating components of the error.  

It is not uncommon for digital cameras to utilise only the central part of the available 

field of view, which in combination with long focal length lenses, can lead to a radial 

profile that may not depart from a linear function of the form Δr = K0 . This linear 

profile can be absorbed by a change in the principal distance which will, in turn, 

indicate that there is no significant radial distortion. From Equation 2.3, the necessary 

corrections to the x; y coordinates follow as below (Stamatopoulos, 2011)equation 2.4: 
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The coefficients Ki are usually highly correlated with each other. However, this 

does not typically affect their calculation. 

 
2.5.1.3 Decentring Distortion 

The misalignment of the individual elements of the lens along the optical axis 

introduces another error known as a decentring distortion. This can be compensated 

by the functions below p derived by (Shah and Aggarwal, 1996) equation 2.5: 

 

 
 

 
Although not apparent from the above formulation, there is a strong coupling of the 

decentring distortion parameters with the principal point offsets xp and yp (Fraser, 

2013). This correlation increases with increasing focal length, and it can be 

problematic for the calibration of long focal length lenses. Images with higher 

convergence angles can help in diminishing the coupling effect. The image coordinate 

correction values for decentring distortion rarely exceed a few pixels maximum and, 

as a consequence of this and the projective coupling to Interior Orientation (IO), 

decentring distortion is often ignored (Tang, 2013). 

 

2.5.1.4 Linear Distortion 

Digital imaging systems that have rectangular light-sensitive elements instead of a 

square can present deviations of the image coordinate system concerning orthogonality 

and scale uniformity. The metric consequences of such variations are described by two 

parameters: the affinity and shear, and can be modelled as shown below (Chong et al., 

2014). 

: 
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Linear distortion is usually ignored in close-range photogrammetry because of the high 

geometric integrity of modern-day digital cameras with nominally square pixels 

(Chong et al., 2014) equation 2.6. 

 

2.5.1.5 Bundle adjustment 

This procedure is seldom used in practice except as a first step for generating 

approximations for a bundle adjustment, which is a general solution for  the 

collinearity equations initially formulated by Duane Brown in 1958 (Brown and 

Cassells, 1971). The bundle adjustment refers to the bundle of rays of light leaving 3D 

object space and converging to each camera perspective centre. The bundle adjustment 

is essentially the simultaneous relative orientation of all bundles with respect to one 

another that leads to the optimal calculation of the EO (exterior orientation) parameters 

and the object point coordinates. Optionally, it can also include additional calibration 

parameters such as the camera IO (interior orientation) parameters to account for the 

departures from collinearity. This process is commonly called a self-calibrating bundle 

adjustment due to the inclusion of the camera calibration parameters. Figure 2.15 

illustrates a typical case of a bundle adjustment where multiple stations, object points 

and possibly cameras form the photogrammetric network. The bundle adjustment 

constitutes a general solution of the collinearity equations.  

Collinearity equations have to be linearized using the Taylor expansion series for the 

least-squares adjustment as they do not have a linear form. The calculation of the 

differential quotients needed for the linearization process requires approximate values 

of some of the unknown parameters which can be acquired with the methods presented 

in the previous sections. After the linearization process, the bundle adjustment will 

have the form of the unknowns of Equation 2.7 (Chong et al., 2014), and the unknowns 

of a bundle adjustment are the selected camera calibration parameters for each camera 

represented by the vector x1, the EO parameters.  
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x2

T= [X0      Y0       Z0       ω       Ø     ƙ] for each image station and the object point 

coordinates. 

XT
3 = [ X Y Z] for each point. Usually, the vector x1 consists of 8 parameters with  

XT
1= [ xp yp K1 K2 K3 P1 P2]. Thus, for a network of ɭ cameras, m images and n points, 

the total unknowns are 8 ɭ + 6m + 3n, should a basic 8-parameters camera calibration 

model be considered. The observations most of the time solely image coordinates 

measurements, so for a network of similar size as the one already mentioned, the 

number of observations is 2mn if all the points are visible in every image. Multi-image 

photogrammetric networks with many objects’ points are usually highly redundant in 

observations. 

 

 

 

Figure 2.15: Multi-station bundle adjustment. 
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2.5.1.6 Calculation of gait biometric and joint angles using 3-dimensional 

measurements  

 
Photogrammetry means measuring by photography. As such, photogrammetry is a 

technique as old as photography. Photogrammetry is extensively used in surveying, 

mapping and architecture, but also more recently in forensic medicine, and may 

include measurement of unknown values by use of known values within single images 

(Ebert et al., 2016;Buck et al., 2018;Urbanová et al., 2015). Another basic application 

for photogrammetry is measuring objects in a three-dimensional space, using 

photographs of the object taken from different sides and angles. Similar points on the 

different photographs are identified, and a computer program can then calculate the x, 

y, z-coordinates of the points, thus creating a virtual model of the object. If the 

photographs of an object have been calibrated, a true scale model is made. 

 As a forensic case solution by photogrammetry, Lynnerup and Vedel (2005) used the 

above operations to identify perpetrators who robbed a bank on 21 June 2002; a bank 

in the town of Aalsgarde, Denmark. They used Photomodeler Pro V4, a software 

package to analyze the images captured by the CCTV cameras. They compared the 

images of the suspect with the perpetrator in order to note such bodily features and 

proportions that might indicate concordance as well as an incongruity. Obviously, due 

to the use of helmets (unlike, e.g., a tight-fitting stocking or balaclava) and loose-fitting 

clothing, only very general bodily features could be noted. However, several physical 

features did seem fairly concordant. The researchers noted a similarity in body 

proportions, stance and general features, e.g., the back and shoulders (Figure 2.16). 

Both suspect and perpetrator displayed rather rounded shoulders with a wide neck. 

Likewise, the waist–shoulder proportions were consistent. The curvature of the spine 

and resultant morphology of the back was also very similar Figure 2.17. 

 The photogrammetry method as used in this case, had an advantage in that there was 

no need to ascertain the position of the perpetrator in relation to a measuring device. 

As a result of this case, the researcher measured the height of a desk (bolted to the 

floor and not moved between the incident and the analysis) by photogrammetry (result: 

89.3 cm) and compared this to an actual physical measurement (result: 90.0 cm). The 

error was 7 mm or less than 1%. 

. 
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Another photogrammetry technique for human identification presented by Larsen et 

al. (2010) combined the basic human ability to recognize other individuals with 

functional anatomical and biomechanical knowledge to analyze the gait of perpetrators 

Figure 2.16: Comparison of body morphology of 
perpetrator and suspect.(Lynnerup and Vedel, 
2005) 

Figure 2.17: Screen shot of Photomodeler Pro R _ interface showing placing 
of reference points of various bodily features in the left panel and the 
resultant 3D scale “stickmen” of the perpetrator (Lynnerup and 
Vedel, 2005). 
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as recorded on surveillance video. The perpetrators are then compared to similar 

analyses of suspects. Using a structured checklist which addresses the single body 

segments during gait, the researchers identify whether the perpetrator has a 

characteristic gait pattern compared to normal gait, and if a suspect has a comparable 

gait pattern. Researchers also have found agreements such as limping, varus instability 

in the knee at heel strike, more significant lateral flexion of the spinal column to one 

side than the other, inverted ankle during stance (Figure 2.18), pronounced sagittal 

head movements, and marked head-shoulder posture. Based on these characteristic 

features, they can say whether suspect and perpetrator could be the same person, 

though it is not possible to positively identify the perpetrator (Kelly, 2020). 

Nevertheless, researchers have been involved in several cases where the court found 

that this type of gait analysis, especially combined with photogrammetry, was a 

valuable tool. 

  

 

 
 

 Footprint analysis 

2.5.2.1 Pressure sensing systems 

Feet provide the primary surface of interaction with the environment during 

locomotion. Thus, it is crucial to diagnose foot problems early for injury prevention, 

risk management and general wellbeing. One approach to measuring foot health, 

widely used in various applications, examines foot plantar pressure characteristics. It 

Figure 2.18: Inverted ankle during stance, (Kelly, 2020). 
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is, therefore, important that accurate and reliable foot plantar pressure measurement 

systems are developed. One of the earliest applications of plantar pressure was the 

evaluation of footwear (Chatzistergos et al., 2020). Bus et al. (2016) examined the 

effectiveness of footwear and other removable off-loading devices as interventions for 

treating diabetic foot ulcers or the alteration of biomechanical factors associated with 

ulcer healing, and discussed the quality and interpreted the findings of research to that 

point. Since then, there have been many other studies of foot pressure measurement. 

For example, Zhang and Li (2013) applied plantar pressure to footwear design for 

people without impairments. 

Furthermore,  (Fuchs et al., 2020) ,(Coelho, 2018) found that the most effective method 

for reducing the pressure beneath a neuropathic forefoot was using rocker bottom 

shoes and claimed the rocker would decrease the pressure under the first and fifth ray 

(metatarsal head). Metatarsal heads are often the site of ulceration in patients with 

cavovarus deformity. DeBiasio et al. (2013) indicated that future shoe designs for 

preventing metatarsal stress fractures should be gender-specific due to differences in 

plantar loading between men and women. 

 Concerning application once involving disease diagnosis, many researchers have 

focused on foot ulceration problems due to diabetes that can result in excessive foot 

plantar pressures in specific areas under the foot. It is estimated that diabetes mellitus 

accounts for over $1 billion per year in medical expenses in the United States alone 

(Hutton et al., 2014). Diabetes is now considered an epidemic and, according to some 

reports, the number of affected patients is expected to increase from 171 million in 

2000 to 366 million in 2030 (Aboua et al., 2013). 

Improvement in balance is considered important for both sports and biomedical 

applications. Notable applications in sport are soccer balance training (Ramizuddin 

and Washimkar, 2013) and forefoot loading during running (Bus et al., 2016). With 

respect to healthcare, pressure distributions can be related to gait instability in the 

elderly and other balance impaired individuals. Foot plantar pressure information can 

be used to improve balance in the elderly (Machado et al., 2016). Based on the above 

discussion, it is crucial to devise techniques capable of accurately measuring foot 

pressure. 
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2.5.2.2 In-shoe systems 

In-shoe sensors are flexible and embedded in the shoe such that measurements reflect 

the interface between the foot and the shoe. The system is flexible making it portable 

which allows a wider variety of studies with different gait tasks, footwear designs, 

and terrains (MacWilliams and Armstrong, 2000). 

     
 

 

 

Real-time measurement of natural gait parameters requires that sensors should be 

mobile, untethered, can be placed in the shoe sole, and can sample effectively in the 

target environment. The main requirements of such sensors are as follows: 

a- Very Mobile: To make a sensor mobile, it must be light and of small overall 

size [27,28], the suggested shoe mounted device should be 300 g or less. 

b- Limited Cabling: A foot plantar system should have limited wiring, wireless is 

ideal. This is to ensure comfortable, safe and natural gait. 

c- Shoe and Sensor Placement: To be located in the shoe sole the sensor must be 

thin, flexible and light(Lee et al., 2001). It is reported that a shoe attachment of 

mass 300 g or less does not affect gait significantly(Bamberg et al., 2008). Shu 

et al (2010) mentioned that the sole of foot can be divided into 15 areas: heel 

(area 1–3), midfoot (area 4–5), metatarsal (area 6–10), and toe (area 11–15), as 

illustrated in Figure 2.20. These areas support most of the body weight and are 

Figure 2.19 (a) : . An in-shoe based foot plantar pressure sensor by(Yang et al., 2019). (b) An in 

shoe based foot plantar pressure sensor F-Scan® System by Tekscan (Hullfish and 

Baxter, 2020). 

(a) (b) 
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adjusted by the body‟s balance; therefore, ideally the 15 sensors are necessary 

to cover most of the body weight changes based on the Figure 2.20 anatomy. 

d- Low Cost: The sensor must be affordable for general application to benefit 

from inexpensive, mass-produced electronics components combined with 

novel sensor solutions (Arafsha et al., 2018). 

e- Low Power Consumption: It should exhibit low power consumption such that 

energy from a small battery is sufficient for collecting and recording the 

required data(Tahir et al., 2020). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
 

2.5.2.3 Footprint characteristics for identification 

There are many types of research for identification based on the foot pressure analysis 

approach. For example, (Wafai et al., 2015;Nagwanshi and Dubey, 2018;Jung et al., 

2004;Orr and Abowd, 2000;Pirttikangas et al., 2003;Yun et al., 2003;Yun et al., 2005) 

researched person identification using foot pressure over time for the one-foot step 

when passing on a pressure sensor platform. The footstep profile features used in these 

approaches include the mean, standard deviation, duration of the pressure profile, 

Figure 2.20: Foot anatomical areas (Shu et al., 2010) 
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overall area under the profile, pressure value and the corresponding time of some key 

points such as the maximum point in the first and last halves of the profile and the 

minimum threshold between them. In these approaches, due to the nature of load-cell 

based pressure sensing, the spatial pressure distribution during a footstep is not 

measured, and only the amount of pressure and the corresponding time can be used for 

feature extraction and people identification. Therefore, the load-cell-based gait 

identification approaches do not consider spatial pressure distribution and features 

such as COP trajectories.  

On the other hand, (Qiu and Xiong, 2015);(Karatsidis et al., 2017) used the 2D COP 

trajectory to recognize people using a mat-type pressure sensor. To identify a person 

based on the foot pressure measured during a gait cycle, it is crucial to extract both 

spatial features such as the trajectories of COP and footstep pressure profile features. 

To address this issue, Wang et al. (2018) developed a reliable approach for the 

identification of a group of twenty people. (Andries;2015) used a Tekscan floor mat 

consisting of a number of pressure sensing mats arranged in a rectangular shape 

spanning a total sensing area of about 180 square feet. Each pressure sensing mat had 

2016 FSR based sensors in a resolution of over six sensors per square inch. By using 

this large area, high-resolution pressure sensing floor, the researcher extracted features 

from both the trajectories of the COP and the pressure profile of both the left and right 

footsteps during a gait cycle. They also used other gait features such as the stride length 

and cadence. 

 The Fisher linear discriminant is used as the classifier. Encouraging results were 

obtained using the proposed method with an average recognition rate of 94% and a 

false alarm rate of 3% using pair-wise footstep data from 10 subjects. Experimental 

results show that the proposed method achieves better or comparable performance 

compared to existing methods. However, the proposed approach is limited in a few 

aspects. (Andries, 2015) considered the identification of individuals through floor 

pressure when walking with shoes off. However, the identification technique used in 

our research considered the subjects wearing shoes as part of a forensic application. 

This advantage makes our research more valuable. Andries (2015) also assumed that 

people walk in a straight line at an average speed. In addition to these limitations, this 

approach needs to be further evaluated using floor pressure data collectedat various 

walking speeds with a larger dataset of more subjects. The identification approach used 
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by Andries (2015) considered clustering and tracking of COP using mean-shift. The 

mean-shift algorithm Cheng (1995) was used to cluster floor pressure data and track 

the COP over time. Mean-shift is a repetitively shifting process to find the sample 

mean of a set of data samples. In this case the data samples are the 2D locations of 

points on the floor with active pressure readings as described in Figure 2.22. 

For this identification approach, the data set was tightly packed into clusters, with all 

data points located closely to the center of that cluster (Andries, 2015). The process is 

said to have converged either after the maximum number of iterations defined by the 

algorithm is reached, or earlier when the mean shift of centres becomes less than the 

convergence threshold. After convergence, each cluster is assigned with a unique 

cluster ID number, and every data point has a ‘label’ associated with the corresponding 

cluster. For every subsequent pressure data frame, centres from the previous frame are 

updated through the mean shift algorithm (Rangarajan et al., 2007) using current 

observed pressure values as weights, and checked for convergence.  

In practice, entirely new data points resulting in new cluster centres can occur if groups 

of data points are not assigned to any existing cluster centres. Figure 2.22 shows 

clustering and tracking results of the pressure data over about 1.5 gait cycles. 

Figure 2.21: Clustering and tracking results over about 1.5 gait cycles: (a) through (f) show 
snap shots of observed floor data and corresponding COPs (red dots) and their ID 
numbers (white digits) (Andries, 2015). 
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 Qian et al. (2008) said that the red dots indicate the cluster centres, and the white digits 

their ID numbers. During a footstep, which is defined as the period between the heel-

strike and the toe-off of a foot, COP can be correctly tracked using the mean-shift 

algorithm since the corresponding cluster-ID is maintained. 

2.5.2.4 Identification using spatio-temporal parameters 

Spatio-temporal parameters, walking velocity, cadence, and step and stride length, 

appear to be the most relevant biomechanical parameters in both individuals with a 

transtibial amputation and healthy adults. In addition, walking velocity is of even 

greater relevance since it also measures, and has a direct effect on, such parameters as 

cadence and stride length (Roberts et al., 2017;Larsen et al., 2010). 

Additionally, these spatio-temporal parameters have a certain ease of measurement. 

Measuring simple spatio-temporal parameters such as walking velocity, would appear 

to be an effective and simple way to add objectivity to clinical gait analysis which is 

primarily aimed at ease of measurement (Roberts et al., 2017;Qiu et al., 2018;Vienne 

et al., 2017). 

Three-dimensional motion analysis (3D-MA) provides objective and highly accurate 

information about the kinematics of gait in terms of both spatio-temporal parameters 

and joint excursions. However, although this approach is very informative, it is 

generally used to obtain only spatio-temporal parameters, thus missing the possibility 

of distinguishing primary abnormalities from active compensatory mechanisms 

(Rucco et al., 2017). In contrast, a kinematic analysis that includes the study of joint 

angular excursions allows the splitting of the movement into its individual elements; 

each of them with a precise biomechanical significance. Along the same line of 

reasoning, the most used concise indices of the quality of gait patterns are calculated 

almost exclusively with kinematic parameters (Rucco et al., 2017).  

The GAITRite walkway system has been shown to be reliable for the measurement of 

spatio-temporal gait parameters (STP), giving an estimate of the quality of gait 

(Bzhikhatlov et al., 2019). This system has been validated in healthy children and 

adults, to analyze gait pathologies such as stroke and vestibular dysfunction (Roche et 

al., 2018;García-Soidán et al., 2021). To the best of our knowledge, one previous study 

reported the feasibility and repeatability of STP measurement with the GAITRite 

system in ataxic gait, which represents a very variable type of gait (Elharrouss et al., 

2021;Roche et al., 2018)  



  

 
45 

 

 
Joint angles of subjects walking at a similar gait speed vary with a standard deviation 

of 2o–8o (Wilken et al., 2012;Chung and Wang, 2010;Bejek et al., 2006). However, 

larger inter-subject variability was found for the minimum and maximum hip angle 

(around 13) (Bejek et al., 2006) and more minor inter-subject variability for pelvic 

rotation and obliquity (around 1.5) (Bejek et al., 2006;Yang et al., 2014a). In forensic 

practice, however, the gait speed of a perpetrator and suspect are likely to differ. 

Therefore, Yang et al. (2014a) investigated whether and when a perpetrator and 

suspect's gait cycle joint angles can be compared if their speed differs. Importantly, 

comparing joint angles from two-dimensional (2D) video footage is meaningless with 

current techniques. Nevertheless, even for observer-based forensic gait analysis, 

knowledge of gait speed effects may be important. Yang et al. (2014a) found that joint 

angles were almost the same for gait speed at mid-stance and mid-swing (around 30% 

and 80% of the gait cycle). During the remainder of the gait cycle, especially at toe-

off (50%–60% of the gait cycle), gait is too variable to compare joint angles separately. 

Front-view joint angles and higher gait speeds are more suitable for comparison than 

side-view angles and lower gait speeds (Yang et al., 2014a). Yang et al. (2014a) 

advised to compare gait joint angles of similar speeds if possible, and to select mid-

stance or mid-swing video frames for comparison of joint angles otherwise.  

(Mutsavi, 2018) compared the posture of the perpetrator during robbery to the stance 

of the suspect based on a covert recording supplied with the images obtained for 

Figure 2.22: Both perpetrator (to the left) and suspect showed inverted left ankle 
(white arrow) during left leg's stance phase and markedly outward rotated 
feet. 
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photogrammetric use, see Figure 2.25. It found concordances between perpetrator and 

suspect, such as restless stance, anterior positioning of the head showing a neck 

lordosis, and inversion in the left ankle joint. Larsen et al. (2010) also observed some 

incongruities. The perpetrator had a wider stance, truncus leaning slightly forward, 

elevated shoulders, and the arms were abducted compared to the suspect. They 

suspected that these incongruities could be the result of differences in the state of 

anxiety between the two recording situations. The results were presented to the police 

using a checklist for posture analysis similar to the list for gait analysis presented here. 

 Larsen et al. (2008) developed a checklist for forensic gait analysis. They first describe 

the general characteristics of the perpetrator's gait and then analyse each of the joint 

rotations and segment movements (by trial and error) found relevant for forensic gait 

analysis. According to their research methodology, it used many video cameras 

recording from different positions to ensure accuracy using statistical calculation and 

not using trial and error. 

 

Recordings from video surveillance systems are used as evidence from crime scenes. 

It would be useful to perform comparisons between disguised perpetrators and 

suspects based on their gait. Larsen et al. (2008) applied functional anatomical and 

biomechanical knowledge to analyse the gait of perpetrators, as recorded on 

surveillance video. Using a structured checklist, which addresses the single body 

segments during gait, it will be able to give a statement concerning the gait patterns 

(Cunado et al., 2003). 

 According to Larsen et al. (2008), in December 2004, a perpetrator robbed a bank in 

Noerager, Denmark. Researchers were contacted by the police to perform a gait 

analysis, as they thought the perpetrator had a unique gait. The robbery was recorded 

by two surveillance cameras. One camera was placed at the entrance, recording the 

perpetrator in frontal view: walking in, standing and walking in the bank during the 

robbery, and leaving the bank. The recording frequency was about 5 Hz. The other 

camera was placed inside the bank, recording the cashier's desk from behind and did 

not record the gait of the perpetrator. However, this camera could be used to measure 

the perpetrator by photogrammetry and to perform a posture analysis.  

It was possible to derive several measures of the perpetrator such as stature, eye height 

and shoulder height, as shown in Figure 2.24, using photogrammetry in 2D (a 
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measuring frame was placed at the position of the perpetrator and used as drawing 

plane using the software package PhotoModeler Pro 5.0 (Sturzenegger and Stead, 

2009). The suspect was recorded from three different cameras simultaneously, and a 

measurable 3D model was created in PhotoModeler Pro 5.0 as shown in Figure 2.24 

(b). It can be seen that the static measures of the perpetrator and the suspect were in 

concordance within 3 cm. Furthermore, the differences in the measures can be 

explained by differences in posture between perpetrator and suspect: the perpetrator 

stood with the head bowed slightly forward (resulting in decreased stature and eye 

height), right shoulder elevated (increased right shoulder height), and lowered left 

shoulder (decreased left shoulder height) (Larsen et al., 2008). 

According to the research methodology, the measurements were applied to the lower 

limb of the individual with more accuracy because the system would validate before 

being applied to the perpetrator and suspect. 
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2.6 Summary 

This chapter addressed the importance of studying human movement and gait 

characteristics. It also demonstrated that many studies have used a variety of methods 

and techniques to analyse human movements and gait characteristics, and that many 

studies have used photogrammetry techniques in science and engineering to make 

accurate 3D measurements of objects.  

The literature review has also explained gait analysis methods used in gait studies such 

as non-wearable devices and wearable devices. The advantages and disadvantages of 

both methods have been explained in detail. However, there is a lack of research 

investigating close-range photogrammetry with force foot platform in terms of 

biomedical information , and a new technique needs to be developed to evaluate the 

way of human identification in high accuracy data. The current work aims to fill this 

research gap by providing an understanding of the gait study methods using new 

strategies and different ideas.  

Figure 2.23: (a) Photogrammetric measurement of the perpetrator in the bank. 

(b)  The suspect with measures of stature, eye height and left /right 

shoulder (Larsen et al.,2008). 
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This aim has been achieved by applying a set of objectives to introduce a new 

technique for human identification in Chapter 3. The first objective is to finding and 

calculating  the most suitable cameras configurations the obtain a high resolution 

digital video image recording to obtain an accurate subject’s data for identification. 

The second objective is demonstrating the most effective 3-dimensions measures and 

angles for the human gait using closed range photogrammetry. for the third objective, 

we calculate the most reliable, accurate parameters by using foot force/pressure data 

using force plate platform. This is a non-wearable sensors device that export foot-print 

data while walking on the platform and that why it can be used for security purposes. 

The fourth objective is correlate the two sets of data that obtained from objective two 

(the close range photogrammetry data) and objective three ( the force foot data) .by 

combining these two sets of data, we can extract a new accurate, reliable and 

authenticated human identification data that used in this research. Finally, this study 

evaluated and validated the performance’s quality of the proposed method by using 

different statistical methods and comparing the results of the innovative methodology 

with those of the most used methods in published works.  
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3 CHAPTER 3 

 

3.1 Introduction  

In this chapter , we will describe the process of methodology and the tools and 
equipment used and the steps applied for the recruits to obtain the data. The process 
under the Human ethics application issues by USQ with HREC ID; H21REA120. 

3.2 Research methodology 

This study offers a new human identification technique to be applied in forensic 

investigations. The system uses five video cameras and a foot pressure sensor mat 

brand (RSSCAN INTERNATIONAL). Both methodology parts (photogrammetry and 

foot pressure sensing mat) worked simultaneously to provide the data. Five video 

cameras were used. These five cameras sat on tripods surrounding the 2 meters long 

RSSCAN foot pressure mat located at a building entrance, as shown in Figure 3.1.  

 

 

  

Figure 3.1: Subjects test position using five digital video cameras and foot pressure 
sensing mat. 
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Three digital timing screens were installed in different positions to ensure full location 

coverage by the cameras. The three timing displays were synchronized for minutes, 

seconds and three digits of milliseconds. The timing was used to extract the same 

frame from each camera. The photogrammetric foot pressure technique was verified 

by calculating the correlation between the morphological assessment of bodily features 

of the lower limb and the dynamic changes of the footprint at a different point on the 

time scale. Twenty-three (23) individuals were recruited to walk on the RSSCAN mat 

surrounding by five digital cameras to obtain two sets of data. 

 The first set of data was collected through photogrammetry. Using five video cameras, 

each subject’s gait data was extracted and analysed from the digital camera footage. 

Physical features were calculated using photogrammetry at the stages of heel-down, 

mid-stance and toe-off. These features included knee to inner ankle joint, ankle to knee 

distance and knee angle. According to Lynnerup and Vedel (2005), a perpetrator’s 

body measurements and leg joints show a strong resemblance to those of the suspect. 

Three-dimensional angles were also calculated at the three postures for the knee (heel-

down, mid-stance and toe-off). In their study, van Mastrigt et al. (2018b) found that at 

the gait speed of the mid-stance and mid-swing stages (around 30% and 80% of the 

gait cycle), the joint angles are most stable.  

To obtain accurate measurements, a complete calibration was applied to the four 

different types of cameras.  These cameras had different specifications such as focal 

length, resolution and cost. Identifying the correct camera positively impacts cost and 

performance. As mentioned above, four types of video cameras were tested in this 

research. The first was the Panasonic Lumix DMC-FZ300 DSL camera with the 

capability of recording 4K streaming at a standard resolution of (4000x4000) pixels 

and 60 frames per second. The second camera was a handheld JVC video camera of 

full high definition (FHD) resolution of (1920x1080) pixel. The third type of camera 

was a closed-circuit television (CCTV) video surveillance camera Uniden brand with 

a recording capability Full HD (1920x1080) pixel but with a different lens focal length  

and cost from the JVC handheld cameras. The CCTV cameras need a digital video 

recorder (DVR) in order to transfer the recording from analogue to digital, and record 

the footage on a hard diskwith a minimum 500 GB installed inside the DVR. The last 

type of camera was a spy camera, providing a low-resolution recording of 720-pixel, 
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small in size, low cost and lens focal length. Figure 3.2 shows the four types of the 

cameras tested before choosing the one most suitable for this study. 

 

 

The methodology of this research is classified into two major parts. The first part is 

the photogrammetry analysis, including camera calibrations and video frames analysis 

and 3-D measurements of the subjects’ lower limbs, including 3D angles. The second 

part is the footprint analysis using an RSSCAN INTERNATIONAL foot sensing 

platform which extracts the under shoe features to be used as human identification 

factors.  

 

 

Figure 3.2: Four types of cameras used in this research. 1: Panasonic Lumix, 2: 
JVC handheld video camera, 3: Uniden CCTV camera and 4: Digital spy 
camera. 
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3.3 Photogrammetry methodology 

In this section, we will describe the calibration steps for the four different types of 

video cameras, and introduce a photogrammetry technique to obtain the biological 

measurements of individuals. 

 

 The process of camera calibration 

Camera calibration is a crucial stage in photogrammetric work as it improves the 

accuracy of measured imaged coordinates (x, y, z). The calibration software was 

iWitnessPRO V4 licenced by Photometrix . This software is part of a photogrammetry 

package software called Australis. All cameras were calibrated by finding the interior 

orientation parameters (xo, yo, f), radial distortion parameters (K1, K2, K3), and lens 

alignment (P1, P2, P3).  The selected cameras were calibrated individually using a 

self-calibration technique based on iWitness cardboard at an object distance of 900-

1000 mm, see Figure 3.3. 

 

 

Figure 3.3: Camera calibration process using iWitness cardboard distributed on 3D surface 
(author’s own image). 
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The calibration process began by capturing 24 sets of convergent video test clips. The 

cameras were positioned on each corner of the board and the middle of each side, 

each position had three clips, the first one at zero angles of the camera, 900 and -900. 

Individual frames were extracted from each clip and the frames were processed by 

iWitnessPRO. The mathematical concepts of camera calibration are discussed in the 

following section of this chapter. The PLPC (Principal Lens Parameter Computation) 

technique (Chong 2011) was used to determine lens parameters during the imaging 

session, see Figure 3.4. 

 

 Three-Dimensional calibration and measurement with 

iWitnessPRO  

iWitnessPRO is used to convert 2D coordinate (x,y) information of feature points on 

an object recorded in two or more images of a photographed scene into 3D coordinates 

(X, Y, Z). The measurement process is illustrated in raw form in Figure 3.5. Imagine 

that three images of an object are recorded from three different viewing directions 

(with a consumer-grade digital camera,) such that feature points P1 to P5 appear in all 

photos. Intuitively, it is clear that if the positions of the camera stations S1, S2, and S3 

are known in a 3D reference system, with the X, Y, and Z axes as illustrated, and the 

directions of the three imaging rays to a feature point are also known, then the position, 

say P1, will lie at the end of the intersection of the three rays at coordinates (X1, Y1, 

Z1) (Chong et al., 2014). This part is straightforward. Unfortunately, the matter is 

Figure 3.4: Focal length with xp and yp where c=focal length (Chong et al., 2014). 
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complicated because we generally do not know the camera stations' precise locations, 

and we do not directly measure the spatial directions of the imaging rays. 

 

This is where the technology of photogrammetry comes in. If you imagine Figure 3.5 

as illustrating the mutual intersection of three bundles of imaging rays, then this 

assemblage of camera stations and object points forms a 3D shape. The bundles will 

only fit together in one way if the corresponding rays for each point intersect perfectly. 

To achieve this mutual intersection of all matching rays, it is necessary to recover the 

same 'relative orientation' between the images that they possessed at the time of 

photography. This reconstruction of the spatial orientation of images, with the 3D 

reconstruction of the true shape represented by the object points, is termed 

photogrammetric orientation.  

The situation described is no different in principle to the way the human brain recreates 

3D scenes from stereo-imagery, for example as with a 3D movie. But with 

iWitnessPRO any number of images, any number of points, and a wide variety of 

camera viewing directions are accommodated in the 3D coordinate determination. For 

the bundle of rays for each image to be established, it is necessary to determine the 

angular relationship between the rays which all pass through the perspective centre of 

Figure 3.5: Photogrammetric triangulation, XYZ coordinates determined from intersecting 
rays (Chong et al., 2014). 
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the camera lens. This is where the requirement to 'mark' (actually measure) image 

coordinates comes in. For although we might be marking the 2D location on an image, 

we are determining the angular direction of each ray with respect to the camera's 

pointing axis. This is illustrated in Figure 3.6.  

By thinking of the image measurement process as the formation of a bundle of rays 

with known relative directions, we make it easier to visualise the mutual fitting 

together of these bundles to form a 3D shape. This shape can have an arbitrary scale 

(move the cameras stations apart and the shape enlarges) and an arbitrary 3D 

coordinate system. The assignment of scale, or size, and orientation and position of 

the intersected points P1 to P5 in a chosen XYZ coordinate system is termed 'absolute 

orientation' in photogrammetry. 

 

So, the 3D feature point determination can be viewed as a four stage process:  

1- Record two or more images from practical camera viewpoints  

2- Mark the x,y image coordinates to establish the angular relationship between 

rays forming each bundle of rays. The corresponding points are said to be 

Figure 3.6: The camera as an angle measuring device. (Chong et 
al., 2014). 
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'referenced' when they are marked in two or more images. Note that with 

iWitnessPRO, this referencing process can be fully automatic when both coded 

and uncoded high-contrast targets are used as common points  

3- Relatively orient the images, i.e. bundles of rays, to recreate the geometry at the 

time of photography and so define the 3D shape of the array of referenced feature 

points  

4- Assign the desired scale and XYZ coordinate system to the relatively oriented 

assemblage of bundles of rays, thus producing the desired outcome: scaled XYZ 

feature point coordinates.  

 

3.3.2.1 Significance of camera calibration using iWitnessPRO 

We need to state at the outset that photogrammetric measurement is both accurate and 

reliable, and the orientation procedures in iWitnessPRO are more robust if the camera 

is calibrated (Luhmann et al., 2016). As mentioned, the purpose of 

marking/referencing x,y image coordinates is to determine the two angles Ø and α 

shown for each ray. But, this cannot be done unless the distance Si to O is precisely 

known and it happens to be the focal length of the camera lens. More strictly, we talk 

of principal distance, c, rather than focal length, which is typically a nominal value 

corresponding to infinity focus. Note that c changes with focusing, which is why 

images within a project must be recorded at a single focus and zoom setting. 

Note also that the computation of the angles α and β will be influenced by how closely 

the camera optical axis intersects the assumed origin of the x,y coordinate axes (there 

are two IO parameters here). Furthermore, there is an assumption that the object point 

P, the image point p, and the camera station S form a straight line, but lens distortion 

causes the ray to deviate from a straight line, and thus, there is a need to correct for 

such distortion effects. 

3.4 A process of camera calibration 

Before describing the process of camera calibration, the following are some rules 

which apply to recording images for photogrammetric measurements with 

iWitnessPRO: 

1. The camera lens should not refocus during the photography session to ensure 

the focal length does not change 
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2. The lens zoom should not be adjusted during the photography session  

3. If the camera has an auto-rotate function, which digitally rotates the recorded 

image, the function must be turned OFF. In next sections, we will describe in 

detail the calibration of the four camera types and their limitations in order to 

calculate which cameras will be used to capture the gait of the subjects. 

 

 Spy camera calibration 

This low-cost camera has a small focal length of lens with a high range of distortion, 

as shown in Figure 3.7. It also has a small lens angle, limited memory capacity, and a 

low-resolution recording. 

 
The process of calibration by installing the camera on a tripod is shown in Figure 3.7 

above. After extracting more than 20 images from different angles and positions, the 

calibration process was conducted (Figure 3.8). In this process, the green marks 

indicate a successful recognition of the cardboard known by iWitnessPRO, while the 

red marks show unsuccessful recognition. Recognition fails due to high lens distortion 

and low image resolution (Li and Liu, 2018). 

 

Figure 3.7: Spy camera image extracted during calibration process - curved edge due 
to lens distortion (author’s own image). 
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Figure 3.9 shows the distortion grid of the spy camera and how the view of the 

camera focused on the centre of the lens while the outer space had a large amount of 

distortion. Focal length value and participants point with the radial distortion 

coefficients will be discussed in the next chapter. 

 

 
 

Figure 3.8: Calibration process in iWitnessPRO using images extracted from spy camera 
(author’s own image). 

Figure 3.9: Radial and decentring distortion grid of the spy camera (author’s own 
image). 
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 Calibration of UNIDEN closed-circuit television (CCTV) 

camera 

 
A CCTV camera can be defined as a system that captures (relates to optics and sensor) 

and records (pre-processes, encodes, compresses and records) its surrounding area for 

surveillance purposes (Doyle et al., 2013). The most important factor that controls the 

outcome of these cameras is the amount of lens distortion which affects the quality of 

video recording resolution (Wright et al., 2010).The radial and decentering distortion 

grid of this CCTV camera, Figure 3.10 (a and b), shows the distortion which is less 

than the previous type of camera (Spy camera). 
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The extracted frame from the footage of these CCTV cameras had less distortion. 

Figure 3.11 shows one of the CCTV camera calibration process images. We can notice 

that the green marks of the calibration boards are not fully marked. This is because of 

distortion and the low resolution of those cameras.   

Figure 3.10: (a) Uniden CCTV camera and (b) Radial and decentring distortion grid of the 
UNIDEN CCTV camera (author’s own image). 
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 Calibration of JVC handheld video camera 

This type of camera has a good image quality with high resolution (1920x1080) 

pixel. The footage of this camera had less distortion than the two cameras discussed 

previously, see Figure 3.12. 

Figure 3.11: Calibration process for CCTV UNIDEN camera 
(author’s own image). 
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From Figure 3.12, it can be seen that the distortion area is too small, and the lens covers 

most of its view without distortion. During the calibration process (with 

iWitnessPRO), higher resolution images could lead to the cardboard being recognized 

easily and the camera parameters obtained more accurately. The calibration cardboard 

was recognized with a smaller number of rejection points, see Figure 3.14. 

 

 

Figure 3.12: Radial and decentering distortion grid for JVC video camera (author’s own 
image). 

Figure 3.13: JVC hand-help FHD video camera (author’s own image). 
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 Calibration of Panasonic digital camera DMC-FZ300 

This camera (Figure 3.15) was used to collect the data for this research. It can record 

4k video streaming with a high resolution of 3840x2160 pixels. Pixel width = 

0.0050mm and Pixel height = 0.0050mm.  

 

 

Figure 3.14: Calibration of JVC video camera. Digitizing has a small number of non-digitizing 
points (author’s own image). 

Figure 3.15: Panasonic Lumix DMC-FZ 300 used to collect data (author’s 
own image). 
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Before collecting data with this camera (Figure 3.16), the setting was set to FHD 

resolution (1980x1080) pixels, because this resolution is the most common in CCTV 

cameras. The difference in using these cameras is that they have less distortion and a 

wider lens angle. 

 
 
According to Figure 3.17, the distortion area is smaller than the previous cameras. For 

the radial and decentering distortion grid of the Panasonic DMC-FZ300, the green area 

covered most of the grid, meaning less lens distortion during recording of the gait of 

subjects surrounded by five Panasonic cameras sitting on tripods (Figure 3.18). 

 

Figure 3.16: Panasonic digital camera while recording a subject gait. (author’s own 
image) 
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Figure 3.18:  3-D model showing data collection with the distribution of the 
Panasonic cameras. Black mat refers to the RS scan foot pressure mat 
(author’s own image). 

 

In the next section, we describe the data collection procedure using the Panasonic 

digital video cameras using photogrammetry. 

 

Distortion 
areas 

Figure 3.17: Radial and decentering distortion grid for Panasonic Lumix DMC-FZ300 
digital camera (author’s own image). 
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3.5 Gait data collection using photogrammetry 

 A step before collecting data 

After calibrating the cameras, three clock screens were placed in different positions 

to ensure that at least one of them was viewed by the camera recording, see Figure 

3.19. These clock screens are used to ensure that we extracted the same frame from 

the videos recorded by the five different camera positions . The figure also shows a 

scale bar of 846mm length. This scale bar was used as a reference scale set in the 3-

D measurements using iWitnessPRO. The subjects were tested under the Ethics 

application issued by the University of Southern Queensland (USQ) of number:   

USQ HREC ID:    H21REA120. 

 
This part of the research aimed to collect measurements data (3-D distances and 

angles) for the lower limb of the 23 subjects’ information (presented in Table 3.1) at 

the three stages (heel-down, mid-stance and toe-off) and compare them with the other 

individual's data. The comparison was determined with the use of one-way ANOVA 

(analysis of variance) statistics, in order to obtain the similarities and differences of 

the factors that used in these calculations.  

 
  
  

Figure 3.19: Clock screen used in data recording, the three screens are synchronized and 
showing minutes, seconds and three digits of milliseconds (author’s own image). 
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Table 3.1: Subjects’ information 

No. Gender Height (cm) 
Weight 

(kg) 
Age (year) Shoe size (US) 

1. M 186 108 43 12 

2. M 176 100 48 10 

3. F 162 59 45 7 

4. M 178 107 38 11 

5. M 181 70 41 10 

6. M 174 85 39 9.5 

7. F 159 81 41 7 

8. F 155 45 14 6 

9. M 176 84 38 11 

10. M 180 92 39 10.5 

11. F 172 74 29 7 

12. F 166 58 26 7 

13. F 169 60 28 8 

14. M 176 72 45 10 

15. M 183 79 20 11 

16. M 178 69 18 10 

17. F 168 65 35 7 

18. M 178 86 42 10 

19. M 172 81 39 9.5 

20. M 176 88 37 11 

21. M 182 69 17 11 

22. M 178 73 25 10.5 

23. F 161 55 29 7 

 
The photogrammetry software used in this research is called iWitnessPRO Version 4. 

With this software, we need at least two photos taken from different views of the 

cameras to obtain a 3-D model to calculate the 3-D measurements. The question now 

is, why we are using five cameras while we need only two photos to get the 3-D 

measurements. The answer to this question is that, during video analysis using 
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iWitnessPRO, we choose the most suitable captured photo that gives the measurements 

without challenges.  

The captured images extracted three postures of the gait, heel-down, mid-stance and 

toe-off. At the mid-stance stage, the velocity of walking is almost stable (van Mastrigt 

et al., 2018a). Moreover, multi-captured images allowed digitization of the target 

points from the best view and uncovered by the other leg. see Figure 3.20. 

 
 

 Photogrammetry data analysis with the adopted human 

identification factors 

The methodology of this part of the research provides multi-data collected from lower-

limb 3-D measurements. We will consider the measurements as shown in Table 3.2. 

 
 

  

Figure 3.20: Capturing two images with clear view of the lowe-limb with the corresponding 
3-D model of the points selected (author’s own image). 



 
 

 
70 

 

Table 3.2: Photogrammetry factors used in the research methodology  

 

 

 

No
. 

Stage Factor name Example 

1 Heel-down 

a- Knee-inner ankle  
joint distance 

b- Knee-outer ankle 
joint distance 

c- Knee angle 
 

 

2 

 
 
 
 
 
 

 
Mid-stance 

 
 
 
 
 
 
 
 
 
 

a- Knee-inner ankle 
joint distance 

b- Knee-outer ankle 
joint distance 

c- Knee angle 
 
 
 
 
 
 
 

 

 
 

3 

Toe-off 
 
 
 
 
 
 
 

a- Knee-inner ankle 
joint distance 

b- Knee-outer ankle 
joint distance 

c- Knee angle 
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Nine factors were used in the photogrammetry section of this chapter. Six different 3-

D distances for the three phases (heel down, mid-stance and toe-off) and the knee 

angles for each stage. The outcome from footage analysis for the three resulted in the 

nine factors mentioned in Table 3.2 above. They show zero similarities within the 

group of twenty-three subjects. The 3-D angle for the knee at each stage also showed 

zero signs of similarities in the ANOVA calculation. 

  

 Calculation of 3-D distances for the subjects at the heel-

down stage 

Five cameras were used to record and register the subjects’ gait while walking through 

the RSscan foot pressure mat. After extracting the images showing clear views of the 

knee-inner and outer ankle joints and knee angles, the 3-D measurements were 

processed with iWitnessPRO V.4. The selected digital cameras provided a non-blurry 

picture or a picture less blurry than the other cameras discussed in the calibration 

section. Non-blurry images help identify the target more accurately, see Figure 3.21.  

 
Figure 3.21: Two images extracted from two different cameras: a- Image with blurry 

taken from JVC hand-held digital camera, b- Non-blurry image extracted 
from Panasonic digital cameras which were used in this research (author’s 
own image). 
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The 3-D measurements of the knee-inner ankle joint and the outer ankle joint are 

calculated by targeting the knee centre point to the inner ankle joint of the same leg 

for each recruit. Moreover, the images were used to measure the outer joint extracted 

from different cameras just as the inner ankle joint was calculated. 

 The view of the Knee- inner joint Ankle is different from the Knee to the outer joint 

Ankle. Next, the 3-D distance between these two points was calculated using 

iWitnessPRO. Each measurement was verified by comparing the actual measures with 

the photogrammetry measurements. The difference between these two measurements 

shows that less than1 mm. According to calculations for the 3-D distances for multiple 

targets on the lower limb of the subjects, the most significant factors for this stage were 

the 3-D distance from the knee-inner ankle joint and knee-outer ankle joint. This is 

important because the ankle joints are stable during gait and not affected by ground 

level or feet deviations (Yang et al., 2014b).  

The calculation of the 3-D knee angle at this stage starts by locating three target points 

on the leg, see Figure 3.23. The first point on the trap, the second target point on the 

centre of the knee, and the third point on the leg. By drawing two vectors from these 

three target points, we calculated the angle between these two vectors using the 

equation (3.1) below: 

Figure 3.22: Calculating real measurement of knee-inner/outer ankle joint to be compared 
with photo measurement to obtain error difference (author’s own image).  
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θ=cos−1(a⃗ .b⃗ /|a⃗ ||b⃗ |) ………….. (3.1) 

where a⃗ is the 3-D vector from the knee target point to the target point of the trap, b⃗ 

is the 3-D vector point from the knee target point to the target point on the leg. Data 

obtained from the 3-D measurements for the three identification factors showed a 

significant value for human identification. The similarity value with the ANOVA 

calculation was the low value when comparing the tested subjects with the data of the 

others (between-group). While the similarity factor was highest when comparing the 

ten trials’ data for the same subjects (within a group). 

 

  
 

 Calculation of identification factors for subjects at the 

mid-stance stage 

 
Calculation and analysis of extracted data for this stage were more reliable and 

accurate than the other two stages (heel-down and toe-off). This is important because 

the image was less blurry at this posture. Also, the recruit took a long time standing on 

their feet during the mid-stance stage compared with heel-down and toe-off (Hurd and 

Snyder‐Mackler, 2007;Roca-Dols et al., 2018). Four different recruit identification 

factors were obtained from this stage (Figure 3.24): 

Figure 3.23: Calculation of identification factors at heel-down stage. (a) Distance from 
knee-inner ankle joint, (b) Distance from knee-outer ankle joint (author’s own 
image). 
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a) Knee-inner ankle joint 3-D distance 

b) Knee-outer ankle joint 3-D distance 

c) Knee angle in three dimensions 

d) Knee-fore foot 3-D distance. 

 

Figure 3.24: Calculations of identification factors at mid-stance stage. Measurements 
from two cameras views: a) measurements of knee-outer ankle joint, b) 
measurements of knee-inner ankle joint (author’s own image). 

 
3.5.4.1 Calculation of knee – inner ankle joint at mid-stance phase 

To calculate this identification factor, we identified the cameras suitable for recording 

the space of the knee-inner ankle joint. From Figure 3.24(a) we determined that the 

cameras used were numbers 1 and 2 if we considered the distribution of the cameras 

as in Figure 3.18. While in Figure 3.24(b), Camera numbers 4 and 5 were used to 

extract the images. After extracting two images from Cameras 4 and 5 using 

iWitnessPRO, we targeted the knee and the inner ankle joint. After that, using 

iWitnessPRO, we calculated the distance between the two targets. This process was 

applied 10 times to each of the 23 subjects. The distances were measured in 3-D and 

each measurement was compared with the real distance taken from the subjects at the 

same stage. The difference factor between real and photogrammetry was ±3mm. 

The obtained measurements were statistically calculated using one way ANOVA to 

check the significant of this identification factor. Results showed that the significant 

(p) value was 0.01 which means no similarities of the 3-D distances between the group 

of subjects, while this (p) value was 1.000 for the subjects (within a group of same 

subjects). The resulting data showed that this factor can be used for human 

identification because it is the difference significance is very high. 
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3.5.4.2 Calculation of knee–outer ankle joint at mid-stance phase 

To calculate this identification factor, we used a different camera's view from the 

previous factor. As shown in Figure 3.24 (a), we used Cameras 1 and 2 or 1 and 3 to 

calculate this factor with high authentication. We will followed the same procedures 

as the previous step after obtaining the 3-D distances for the knee-outer ankle joint 

angles and calculated them using the ANOVA statistical analysis. The significance 

from this ANOVA calculation showed this factor could also be used as a human 

identification factor. The results will be discussed in detail in the next chapter. The 

significant value for the 23 subjects for this identification factor was around 0.003 if 

we compared the 3-D distances from the knee-outer ankle joint of each subject 

(between group). While this value was approximately 1.000, which considered 

insignificant if we compared these distances for the10 trials of the same subjects 

(within a group). 

 
3.5.4.3 Calculation of knee angle at mid-stance stage 

For this identification factor, we used the same procedure as calculating the knee 

angle at heel-down. First, we identified three points, as shown in Figure 3.25. Points 

13,14, and 15 determined the knee angle by drawing two vectors. The first vector 

from Point 13 – 14. The second vector between Points 14 and 15. The value of the 

angle was as the equation (3.13), which was mentioned above: 

θ=cos−1(a⃗ .b⃗ /|a⃗ ||b⃗ |) ………(3.3)    where 

 a⃗ : vector between Points (13-14) 

b⃗ : vector between Points (14-15).  
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The values of the knee angle were calculated for the 23 subjects and were determined 

statistically using ANOVA analysis and obtained the similarity significant value 

between the group (subjects) with a value 0.01 and 1.00 for the same recruit group 

(within the group). These calculations show that the 3-D knee angle for the subjects is 

a significant identification factor. This factor will used with the other identification 

parameters to identify humans.  

3.5.4.4 Calculation of knee–fore foot 3-D distance at mid-stance stage 

The calculation of this parameter showed that it is significant for identification only in 

the mid-stance stage because the leg is more stable than in the other stages (Hurd and 

Snyder‐Mackler, 2007). Figure 3.26 showed the knee-forefoot 3-D distance at the mid-

stance stage. To calculate this distance, the Knee point was targeted and the front of 

the shoes that touching the toes”?. Next, these two points were connected by drawing 

a line and measuring it with iWitnessPRO. The statistical calculation of these distances 

for the 23 subjects showed that it is a significant identification factor. Calculations 

result 0.01 value of similarity is a significant factor between the group subjects and 

Figure 3.25: Two extracted images with their corresponding 3-D modelling. Points 13, 14 and 
15 to calculate the knee angle (author’s own image). 
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around 1.00 when determining the significant similarity value by ANOVA calculation 

for the subjects (within the group).   

 

 

 Calculation of identification factors for the subjects at 

toe-off stage 

This stage comes after the mid-stance stage. The time for this stage is less than the 

time at the mid-stance stage. As a result, the importance of the cameras chosen for this 

test was shown by the high possibility of obtaining blurry images. The cameras used 

in this research could reduce photo blurriness to identify the target points on the knee, 

inner ankle joint and outer ankle joint.   

 

Figure 3.26: The knee-forefoot 3-D distance at mid-stance stage (author’s own 
image). 
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From Figure 3.27 we can see that five different views were extracted from five 

different positions with the Panasonic cameras. Figure 3.27 (a) is a useless image 

because, at toe-off stage, the left knee was hidden by the right leg. As a result, we used 

the other four images to measure knee-inner ankle joint.  

After calculating the 23 subjects’ measurements (ten tests per recruit) we obtained a 

set of measures data. These data were analysed using the statistical ANOVA analysis. 

The resulting data showed that the knee-inner ankle joint 3-D measures and the knee-

outer ankle joint 3-D measures were significant identifications factors. These factors 

had a similarity factor of around 0.01 between the group of subjects. While the 

significant similarity factor was very high at around 1 for the ten tests of each recruit 

(within-group).  

 The third identification factor for this stage was the 3-D knee angle. To calculate this 

parameter, the same procedure was adopted as that used to calculate the 3-D knee angle 

for the heel-down and mid-stance phases. Three points were targeted. The first point 

was above the knee. The second target point was on the knee and the third was below 

the knee. Vector one was between Points 1 and 2. The second vector was between 

Points 2 and 3. The 3-D angle was calculated according to equation (3.3): 

θ=cos−1(a⃗ .b⃗ /|a⃗ ||b⃗ |) ………(3.3)    . 

where a→ is the vector between Points 1 and 2 

Figure 3.27: Five different views for the toe-off stage for a recruit (author’s own 
image). 
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            b→ is the vector between Points 2 and 3. 

The values of this knee angle were subjected to ANOVA statistical analysis, which 

resulted in significant identification parameters which were added to the other 

photogrammetry identifications parameters. 

 

 Conclusions of photogrammetry methodology 

Before applying the tests to the subjects, we had to find the most suitable video 

cameras that for recording the 23 subjects while walking on the RSSCAN 

force\pressure platform. Calibration data analysis showed the Panasonic Lumix 

cameras to be the most suitable for this research; obtaining reliable, scalable and 

authenticated 3-D measurements. More than 50 identification parameters were tested 

and evaluated, and only the mentioned factors (knee to inner/outer measurements, knee 

angle ) for three stages (heel-down, mid-stance and toe-off) were chosen (according to 

the data analysis) to represent the adopted human identification technique of this study.  

There were some internal and external challenges. The external factors mostly imposed 

challenges to the recognition approach (or algorithm). For example, viewing angles 

(e.g., frontal view, sideview), lighting conditions (e.g., day/night), outdoor/indoor 

environments (e.g. sunny, rainy days), clothes (e.g. skirts). The internal factors were 

changes in natural gait, due to sickness (e.g. foot injury, lower limb disorder, Parkinson 

disease etc.) or other physiological changes in the body due to aging, drunkenness, 

pregnancy, gaining or losing weight and so on. 

3.6 Human identification using RSSCAN International platform 

Force plate-based biometrics is feasible to operate on authentication mode just like a 

sensor based gait recognition systems. Unlike the vision-based gait recognition 

systems where surveillance cameras and images are used to identify people by their 

gait, force plate biometrics has potential applications in user verification for limited 

access systems. They can even be used along with fingerprints or facial recognition in 

an integrated biometric system. 

 The force data biometric system proposed in this paper is simpler than the one 

described by Connor and Ross (2018) in terms of feature sets and recognition 

techniques. This identification technique is the second part of the proposed human 

identification system using gait analysis with the RSScan International foot scan 
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system (Figure 3.28). The specifications of this platform are shown in Table 3.3. This 

model was used to collect data for the same subjects in the photogrammetry data 

described in the previous part of this chapter. There is a correlation between collecting 

photogrammetry data and foot scan data. 

 During the trials, data was collected and processed for both video footage and the foot 

scan system. Four different parameters will be described in this part of the research. 

These parameters showed great advantages for identification. They showed a very high 

difference between groups of subjects and high similarities within the same 

individual's trials. 

  

 
 
 
Table 3.3: Specifications of the RSSCAN foot scan mat used in this research 

(http://www.rsscan.com).   

Specifications  Dimensions  
Advanced & Hi-End 2m plate Dimensions 

(length x width x height): 
2093 mm x 469 mm x 18 mm 

Weight: 28.8 Kg 
Number of sensors: 16384 (arranged in a 256 x 64 matrix) 
Sensor dimensions: 7.62 mm x 5.08 mm 
Active sensor area: 1950 mm x 325 mm 
Sensor technology: resistive 

Data acquisition frequency: up to 500 Hz or 500frame/sec 
Pressure range: 1 – 127 N/cm² 

Operating temperature range: +15 °C to +30 °C 
Storage temperature range: +0 °C to +40 °C 

Relative humidity: 20% to 80% non-condensing 
Plate cable length: 300mm +/- 50mm (integrated cable) 

 
 

Figure 3.28: RSScan International foot pressure mat with high speed 500frame/sec, 2.0 m.  
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The collected data was analyzed using ANOVA just as it was used in the 

photogrammetry analysis. The parameters used in this analysis were as follows: 

1- Force in Newton (N): This parameter is the sum of force in Kelo Newton KN 

for the foot from initial contact to toe-off 

2- Force/pressure distance (mm):  Data for each frame has the information of 

force in KN and the (X, Y) coordinates for these frames. By using equation 

(3.1), we calculated the total distance for the total frames scanned 

3- Temporal parameter (ms): Calculations of gait cycle time in (ms) for subjects 

with all trials  

4- Spatial parameter (mm): Calculation of gait cycle length  

5- Total foot pressure data (N/m2): Calculation of the sum of foot pressure from 

initial contact to toe-off for each subject  

6- Calculating the ambulation time in (ms) for the ten trials of each of the 23 

subjects. The ambulation time was calculated for one gait cycle. 

 Human identification using force foot value  

This identification parameter was obtained by collecting the data from the subjects 

through the RSScan International (specifications shown above). This device was 

calibrated before use by entering the weight of the subject before they walked on it. 

The 5m walkway was designed to provide approximately seven to eight continuous 

gait cycles including walking on the pressure plate. The foot scan system was 

calibrated before each measurement session.  

To calibrate the device, a recruit's weight was entered as instructed by the software 

menu before the subject walked along the walkway at average speed while wearing 

shoes. This force/pressure mat is capable of recording 500 frames/sec. The frames 

were extracted and stored in the computer connected to the pressure platform using 

software named Foot Scan Gait. 

According to Świtoński et al. (2011) dynamic plantar pressure measures have been 

captured using similar devices. Each recruit executed 10 trials starting with the left 

foot and another 10 trials starting with the right foot. The length of the pressure plate 

provided a three-four step steady gait. The data collected from the second step started 

with the left foot (from the right step). Gait is more stable from the second step (Larsen 

et al., 2008;Schöllhorn et al., 2002;Xu et al., 2017;Franklyn-Miller et al., 2014;Bus 

and de Lange, 2005). To obtain the identification factor from the force foot profile, we 
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combined all the force values from the extracted frames for one gait cycle for all 10 

trials and calculated the mean value to be compared with the suspect data.  

  Table 3.4 shows the data extracted for each frame including force value in Kilo 

Newton (KN), time is taken in (ms), and the (X, Y) coordinated 2-D location for each 

frame. 

Table 3.4: Example of data extracted from each frame while subject walked on 
force/pressure platform. 

  

Figure 3.29 shows each frame point for the force foot of a subject. The number of 

frames varied between subjects depending on the foot dimension (Mostayed et al., 

2008). We calculated the value of the force foot from initial contact (heel-down) to 

toe-off for the second step as it is more stable, as mentioned previously. In Table 3.4 

the Force column shows an increase in the force value from zero to the peak value and 

then the force value decreases. This peak was due to increasing foot forces from initial 

contact, which had the least weight, to mid-stance posture representing the peak value. 

The foot force value started decreasing when foot posture transferred from mid-stance 

to toe-off or final shoe contact. 

 

 

 

Frame Time ms X Y Force (N) 
0 0 -12.93 17.68 45 
1 7.94 -10.13 18.07 74 
2 15.87 -8.68 18.84 90 
3 23.81 -7.52 19.91 105 
4 31.74 -5.96 21.74 130 
5 39.68 -5.02 23.79 157 
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 Human subject identification using force/pressure foot 
distance 

This parameter showed significant results for the 23 subjects tested. These results 

were obtained by calculating the foot force/pressure distance shown in Section 3.5.1 

Table 3.4, which delivers for each frame force value in (Newton) and (X, Y) 

coordinates. With this human identification parameter, we calculated the two 

dimensions’ distances using the Pythagorean Theorem to calculate the distance 

between two points, as shown in equation 3.4 below: 

The distance equation 3.4 (Burgstaller and Pillichshammer, 2009) 

Suppose P(x1,y1) and Q(x2,y2) are two points in the number plane. Then: 

 

D=√ ((Xn−Xn-1)2+(Yn−Yn-1)2 )………………………..(3.4)     

 

Where n represents the number of points or frames on the force line. This distance is 

the same as the distance of the pressure line according to the physics equation 3.5 

below: 

P=F/A  ………………..(3.5)  

where P is pressure, F is a force in Newton, and A is the area in m2. 

Figure 3.29: Frame points which contain information of force, 2-D coordinates and 
time for the foot during walking (author’s own image). 
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Table 3.5 the calculation of the force line distance for one trial to one subject.  

 
Table 3.5: Frame no. with the sum of 110 points distances in (mm) compared to the 

shoe length  
No. of frames Total distance (mm) Shoe length 

110 312 320 
 
From Table 3.5, the total force/pressure distance can be seen to be slightly less than 

the shoe length (312mm / 320). The difference in mm refers to the thickness of the 

shoes above the foot. Figure 3.30 below shows the footprint of two different subjects 

with two figures for each subject. Figure 3.30 (a) and (b) show the force/pressure 

frames path for two trials of Subject 9. Figure 3.30 (c) and (d) show the force/pressure 

frames route for Subject 15. We can see the similarity of the force frames rout for (a) 

and (b) and the similarity of frames route between (c) and (d). There is a huge 

difference between the force line and footprint shape between the two subjects 

indicating the value of this factor as one of the identification factors identified by this 

research. 

 
Figure 3.30: Force/pressure line (a,b) for recruit Number 9. We can see the 

similarity of the force line direction. (c,d) force/pressure line for subject 
number 15, and we can see the similarity of the force line direction. 
(a,b) has a different footprint shape and is different from (c,d) in regards 
to the force line direction. (author’s own image). 
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 Identification factor using temporal, spatial and ground 

force reaction parameters for human recognition 

Another vital parameter used as a human identification factor is the timing sequence 

of human gait (temporal)  (Zhu et al., 2018). In this research, we extracted many 

parameters related to the temporal parameter during the subjects walking across the 

RSSCAN INTERNATIONAL foot pressure mat, such as step time, gait cycle time and 

ambulation time, see Figure 3.31. After analysing each parameter for the subjects, the 

most significant parameter that could help with human identification was ambulation 

time. ANOVA analysis results showed that the ambulation time is valuable for 

recognition of subjects. 

 

However, this factor varied with walking speed. An increase in gait speed was 

positively correlated with people's ambulation time (Benson et al., 2018). If we use 

this factor for identification, there will be some challenges: the walking time varied 

according to the changing gait speed. To solve this issue, we stabilized this factor with 

speed increasing or decreasing. One effective way is to normalise the correlated 

Figure 3.31: Temporal analysis diagram with factors related to temporal analysis (author’s 
own image). 
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temporal and special parameters (Bravi et al., 2020). For gait spatial calculation, we 

used the most significant value for identifying the subject: gait cycle distance. By 

normalizing these two values, we obtained a new significant factor that helps in human 

recognition. 

 However, this new value is still affected by the GFR during walking. According to 

Yamin et al. (2017), GFR is an essential parameter in kinetics response concerning 

gait movement on various surfaces. GFR has been widely used in numerous gait 

analyses related to running (Jafarnezhadgero et al., 2020;Teymouri et al., 2017) and 

walking (Wang et al., 2020;DiLiberto et al., 2018) on different gait patten. There is a 

strong correlation between ambulation time and the foot force reaction during running 

and walking (Yamin et al., 2017). According to the above, there is a strong correlation 

between spatial, temporal and foot force reaction, affecting both the running and 

walking of humans. 

 This correlation can be represented by normalizing the spatial factor represented by 

gait cycle distance, temporal (ambulation time) and foot reaction force. According to 

the results obtained in this research, we normalised the three factors (gait cycle, 

ambulation time and foot force reaction) as follows in equation (3.6): 

(Gait cycle *Foot force reaction) / ambulation time)*100%..................(3.6)         

By subjecting the data obtained from the equation above to ANOVA statistics, we 

found significant values for human recognition. These significant values will be 

added to the previous factors to increase the accuracy of human identification 

identified in this research.  
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4 CHAPTER 4 
4.1 Research results  

In this chapter, we will discuss the results obtained from the experiments which we made on 23 

subjects. Subject details were shown in Table 3.1. According to the research methodology described 

in Chapter 3, in this chapter we will classify the results into three main parts. The first part in Section 

4.2 will be about the video camera calibrations and why we chose the Panasonic digital cameras to 

collect data, and the good and weak points for each camera considered. We will discuss camera 

specifications and show a distortion graph for each along with their weaknesses. Then we will move 

to Section 4.3 which is the photogrammetry part. This section represents the central part of the data 

collected as it has many items to discuss: knee to ankle distance, knee to front foot distance, knee 

to rear foot distance, knee angles and more will be described for the three postures of heell-down 

or first contact, mid-stance or full load and the toe-off. We will also consider the most significance 

factors used for human identification. The final part of this chapter, Section 4.4, will discuss the 

RSSCAN INTERNATIONAL foot pressure mat results. The data obtained will show the most 

positive factors used to identify the subjects, such as the foot force line value, foot pressure distance, 

and temporal and spatial statistics.  

4.2 Video camera calibration 

Camera calibration is always considered an essential factor for photogrammetric measurements, 

especially in high-accuracy close-range measurements (James et al., 2019). With the increasing use 

of off-the-shelf digital cameras for new 3D measurement applications, there are numerous 

circumstances where the image network calculation will not support robust recall for camera 

parameters during the calibration process.  

As mentioned in the previous methodology chapter, the software used for calibration and 

photogrammetry is the IWitnessPRO V4.1. To realise maximum accuracy for 3D object feature 

measurements using photogrammetry, the camera or cameras employed must be calibrated. For 

optimal reliability and accuracy of measurement results, iWitnessPRO requires that accurate 

estimates of the camera's focal length (principal distance), lens distortion characteristics and other 

calibration coefficients are available. This calibration information can come from a prior full metric 

calibration of the camera, using either the full or semi-automatic processes. Alternatively, in certain 
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circumstances (and only in these circumstances) a calibration can be carried out as an integral 

component of the overall photogrammetric orientation process. The latter approach is termed self-

calibration since it involves the determination of camera parameters at the same time that 3D object 

point coordinates are computed within the bundle adjustment.  

It must be stressed that camera self-calibration can only be carried out successfully when the multi-

image network exhibits certain characteristics. In the context of most accident reconstruction and 

forensic measurement applications, and close-range photogrammetric measurement in general, 

these conditions are as follows:  

1. The network must display moderate to large convergence angles between different images  

2. The network must have a sufficient number of points imaged in three or more images (the 

threshold is set at 12 points in iWitnessPRO)  

3. There must be orthogonal roll angles within the network (i.e., images recorded in both 90o 

portrait and landscape orientations)  

4. The object feature points should, if possible, be well distributed in three dimensions  

5. The image point distribution should be such that it occupies a large amount of the format 

area of each image.  

Figure 4.1 illustrates a network that will readily support self-calibration since it possesses all the 

attributes listed above.  
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iWitnessPRO will only perform the computation of camera self-calibration without first warning 

the operator when the network meets the following requirements:  

1. Four or more images from each camera in the project  

2. At least one image having a roll angle orthogonal (+/-90o) to that of the other photos  

3. There are 12 or more object feature points referenced in each image  

4. Angles of intersection between several imaging rays of >30o.  

These conditions are necessary, but it is noteworthy that they may not always be sufficient to 

guarantee a successful self-calibration. Care must be taken to make the network comply as closely 

as possible with the general requirements mentioned above. Through experience, the user will soon 

learn when self-calibration is feasible and when it is not. 

 

 Camera calibration parameters 

As shown in Figures 4.2 (a) and (b) the Panasonic Lumix DMC-FZ300 parameters’ dialogue box is 

generated when the calibration process ends successfully. This camera was used to collect the 

Figure 4.1: Camera calibration (Fraser, 2013)  
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subjects' photogrammetry data after testing three other cameras(discussed later in this chapter). The 

groups of camera parameters are as follows: 

i- Sensor Specifics: This gives the horizontal (number of columns) and vertical (number of rows) 

resolution of the camera, along with the pixel size in each direction.  

Note: iWitnessPRO assigns a default pixel size of 0.005mm if a size is not specified. Almost always, 

with modern consumer-grade cameras, the pixel will be square. Choosing the wrong pixel size 

introduces a scaling effect which is compensated by the computed focal length. 

 

 
ii- Focal Length and Principal Point: This box lists both the focal length and the principal point 

offsets which indicate how far the optical axis of the lens is displaced from the center of the image 

format. The 'focal length' refers to the principal distance, which changes with focusing. The nominal 

lens focal length usually relates to infinity focus. Also, with zoom cameras, this focal length value 

can vary dramatically, but we seek only one value for the camera used in the survey. Therefore, it 

Figure 4.2: (a) and (b) Panasonic Lumix DMC-FZ300 parameters after successful 
calibration a- at 4K resolution (3840x2160) pixel, b- at low resolution 
(1280x720) pixel.  
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is important not to change the zoom or focus during the photographic session. Generally, xp and yp 

are close to zero (e.g. 0.5mm or less). 

iii- Radial Distortion: The three parameters, K1, K2 and K3, describe the radial lens distortion of 

the camera lens. Radial distortion can reach significance levels in digital camera lenses and must be 

corrected when computing 3D feature point position to even modest accuracy levels. Radial 

distortion also varies with focusing which is a further reason not to alter focus or zoom within a 

measurement network. 

iv- Decentering Distortion: The parameters, P1 and P2, express the effect of the decentering of 

optical elements within the lens assembly. This error source is generally quite small and can 

typically be ignored in all but moderate-to-high accuracy applications. 

v- Linear Distortion. The parameters, B1 and B2, effectively model any relative error in the 

specified pixel size. They can generally be set 'fixed' to zero and ignored. 

We started by opening the Camera Parameters Dialogue and set B1, B2, P1 and P2 to zero for this 

tutorial. These parameters may already have a zero value, with the Fix box being ticked, which 

locks the value to zero in any calibration. Otherwise, we enter 0.0 and, if necessary, we tick the Fix 

box for each of these four parameters. In the next section, we will discuss the results of the 

calibration of each of the four cameras to obtain the most accurate, sufficient, and low-cost camera. 

 

 Camera calibration data 

4.2.2.1 Spy camera calibration data results 

This type of camera is small, low resolution and low cost. It is called a Spy camera because of its 

small size and is ease to hide. Figure 4.3 shows the Parameters Dialogue box of this type of camera. 

From Figure 4.3 we notice the focal length of this camera is a small value (7.3277 mm) reflecting 

the low value of photo and video shooting which has a major effect on human identification and the 

accuracy of data extracted. Figure 4.4 shows the radial and decentering distortion of this camera. 

As mentioned in Section 3.3.1, we import the diagram again showing the radial and decentering 

distortion and the area of the distortion on this camera (Figure 4.4). 
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Figure 4.3: Spy Camera parameters.  
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Table 4.1 below shows the calibration parameters and their values.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: Radial and decentring distortion for Spy camera.  
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                                      Table 4.1: Spy camera parameters 

 

No. Parameter name Symbol Value 

1.  Principal distance C 7.3277mm 

2.  Principal point offset in x-image coordinate Xp -0.1116mm 

3.  Principal point offset in y-image coordinate Yp -0.0719mm 

4.  3rd-order term of radial distortion correction K1 1.02768e-02 

5.  5th-order term of radial distortion correction K2 .85087e-04 

6.  7th-order term of radial distortion correction K3 1.95258e-06 

7.  Coefficient of decentering distortion P1 -3.1854e-04 

8.  Coefficient of decentering distortion P2 -4.0345e-04 

9.  No significance differential scaling present B1 0.0000e+00 

10.  No significance non-orthogonality present b 0.0000e+00 

 
 
For ’balanced’ principal distance cb, radial distortion correction dr (microns) is given for any radial 

distance r (mm) as: 

dr = K0•r + K1•r^3 + K2•r^5 + K3•r^7 …………………. (4.1) (Lopez et al., 2019). 
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Table 4.2: Spy camera radius with the corresponding radial distortion according to formula (4.1). 

Radius (mm) Radial distortion dr (microns) 

0.00 0.0 
0.50 -84. 
1.00 -162.1 
1.50 -226.3 
2.00 -268.3 
2.50 -277.9 
3.00 -241.5 
3.50 -141.5 
4.00 45 
4.50 351.6 
5.00 817.2 
5.50 1497.2 

  

According to Figure 4.3 we can notice that the distortion of the lens starts after a 4mm radius (the 

red line). This value indicates the limitation of the lens distance for close-range photogrammetry. 

In conclusion, this camera will not be suitable for this research due to the high range of distortion. 

The analysis of these cameras addresses Objective 1 of this research which requires choice of the 

most accurate digital video camera available for use in this research.  

 

 
 
 

Figure 4.5 : Radial distortion curve for Spy camera. 
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4.2.2.2 JVC digital camera calibration data results  

The second type of digital video camera used in this research is JVC GZ-HD260, specifications in 

Table 4.3. 

 
Table 4.3: JVC GZ-HD260 video camera specification (http://everio.jvc.com/) 

Internal storage media 120GB HDD 

Memory card slot microSD/SDHC 

Image sensor 
1/4" 3.32M CMOS 
(back-illuminated) 

Full HD 1920x1080 recording  
1080/60P output  

HDMI® 
(V.1.3 with x.v.Color™)  

24Mbps high bit rate recording  

Zoom ratios 

Optical 30x 

Dynamic  

Digital 200x 
 

This camera has better specifications than the previous Spy camera. it has a larger value of focal 

length. Calibration parameters are shown in Figure 4.6 (a) and (b). 
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Figure 4.6: (a) Calibration parameters for JVC GZ-HD260 digital video camera as appears in 
iWitnessPRO, (b) Radial distortion grid for JVC GZ-HD260 digital video camera as 
appears in iWitnessPRO. 

To check the value of this camera, we repeated the procedure and calculations used for the Spy 

camera in Section 4.3.2.1. Table 4.5 shows the calibration parameters of the JVC digital video 

camera.  
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Table 4.4: Calibration parameters for JVC GZ-HD260 digital video camera 

No. Parameter name Symbol Value 
1.  Principal distance C 12.2477mm 

2.  Principal point offset in x-image coordinate Xp -0.1787mm 

3.  Principal point offset in y-image coordinate Yp -0.0700mm 

4.  3rd-order term of radial distortion correction K1 1.57621e-03 

5.  5th-order term of radial distortion correction K2 1.74659e-05 

6.  7th-order term of radial distortion correction K3 -6.82840e-07 

7.  Coefficient of decentering distortion P1 5.6968e-06 

8.  Coefficient of decentering distortion P2 -4.1476e-05 

9.  No significance differential scaling present B1 0.0000e+00 

10.  No significance non-orthogonality present b 0.0000e+00 

Using the formula (4.2), we can obtain the radial distortion factor dr in microns as in Table 4.6. For 

principal distance c, radial distortion correction dr (microns) is given for any radial distance r (mm) 

as:  dr = K1•r^3 + K2•r^5 + K3•r^7………… (4.2) 

Table 4.5: Radial distortion correction parameter for JVC GZ-HD260 digital video camera 

Radius (mm) Radial distortion dr (microns) 
0.00 0.0 
0.50 0.2 
1.00 1.6 
1.50 5.4 
2.00 13.1 
2.50 25.9 
3.00 45.3 
3.50 72.4 
4.00 107.6 
4.50 150.3 
5.00 198.3 
5.50 246.2 
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From Figure 4.7, the red line indicates the maximum radial distance encountered in the calibration. 

This limit is above 5 mm which is higher than the Spy camera which indicates that this camera is 

suitable for testing the individuals. However, this camera has limited memory and cannot record for 

a long time. Also, the distortion grid shows an area of distortion which affects the accuracy of the 

measurements when we analyse the footage.  

4.2.2.3 Calibration results of closed-circuit television (CCTV ) camera 

This is the most common type of camera used to record in public places. These analogue cameras 

use a digital video recorder to transfer and store footage on a hard disk. UNIDEN CCTV GDVR 

10440 cameras were used in this research and its calibration parameters are shown in Figure 4.8 

(a) and (b).  

 

Figure 4.7: Radial distortion parameter plot for JVC GZ-HD260 digital video, 
redline after 5mm. 
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For this camera, we can see the low value of focal length in Figure 4.8 (b). Also, the distortion 

grid (Figure 4.8 (b)) shows a high range of distortion (the black area). To calculate the distortion 

factor (dr), we used the same process as the previous cameras. Table 4.6 shows the parameters of 

radius and radial distortion factor (dr). For ’balanced’ principal distance cb, radial distortion 

correction dr (microns) is given for any radial distance r (mm) as: 

dr = K0•r + K1•r^3 + K2•r^5 + K3•r^7……..….. (4.3). 

 

 

 

 

Figure 4.8: (a) UNIDEN cctv calibration parameters as resulted with iWitnessPRO, 
(b) UNIDEN cctv distortion grid. 
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Table 4.6: Radial distortion correction parameter for UNIDEN CCTV digital video camera. 
Radius (mm) Radial distortion dr (microns) 

0.00 0.0 
0.50 -66.4 
1.00 -126.6 
1.50 -174.4 
2.00 -203.2 

T3.00 -173.6 
3.50 -98.3 
4.00 30.6 
4.50 225.1 
5.00 498.7 
5.50 867.4 

 

From Table 4.6, we can obtain a plot showing the distortion range of the cameras as shown in 
Figure 4.9. 

 
 
According to Figure 4.9, the red line indicates that the maximum radial distance encountered in the 

calibration is located at 4mm which indicates a high range of lens distortion and low resolution 

which has consequences for human identification using these types of cameras. 

 

 

 
 

Figure 4.9: Radial distortion plot for UNIDN CCTV cameras. 
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4.2.2.4 Calibration results of Panasonic Lumix DMC-FZ300 digital video camera 

Data from this camera have been used to analyse subjects’ photogrammetry data for human 

identification. The specifications of this camera is shown in Table 4.7.  

Table 4.7: Specifications of Panasonic Lumix DMC-FZ300 digital camera used to collect 
subjects’ data 
Specification Dimensions  

Focal length (equiv.) 25–600 mm 
Max resolution 4000 x 3000 

Effective pixels 12 megapixels 

Videography resolutions 
3840 x 2160 (30p, 24p), 1920 x 1080 (60p, 60i, 30p, 24p), 

1280 x 720 (30p), 640 x 480 (30p) 

Storage types SD/SDHC/SDXC card 

  
This camera has a high value of focal length (25-600) mm as shown in Table 4.8. It can record a 4K 

video streaming which means a video with resolution (4000x3000) pixel /cm2. These cameras have 

limited battery power and limited memory size. We can solve this by connecting a high capacity 

external hard drive such as 4 terabytes (4TB) with a direct connection to a power source. The 

calibration parameters for the Panasonic cameras were obtained from iWitnessPRO and after 

successful calibration are shown in Figure 4.10.  Figure 4.9 indicates the calibration parameters for 

the highest resolution (4000x3000) p/cm2. This resolution allows a successful calibration with high 

resolution and low lens distortion as shown in Figure 4.11. 
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Figure 4.11: Radial distortion grid for Panasonic Lumix DMC-FZ300 after calibration using 

iWitnessPRO. 

 

Figure 4.10: Panasonic calibration parameters. 
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Calculation of radial distortion factor (rd) according to equation 4.4 is shown in Table 4.8. 

given for any radial distance r (mm) as: 

dr = K0•r + K1•r^3 + K2•r^5 + K3•r^7………… (4.4) 

 

Table 4.8: Radial correction parameters calculated using equation 4.4 for the Panasonic digital 
camera 

Radius (mm) Radial distortion dr (microns) 
0.00 0.0 
0.50 -3.7 
1.00 -7.4 
1.50 -10.6 
2.00 -12.5 
2.50 -12.3 
3.00 -9.1 
3.50 -3.6 
4.00 0.8 
4.50 -5.3 
5.00 -39.6 
5.50 -133.6 

 

The distortion limit is the highest in this camera which indicates the low value of the distortion, see 

Figure 4.12. From all of the above, we could choose the Panasonic video camera because it has the 

lowest lens distortion, high resolution, and less blurry picture with dynamic video streaming. This 

addresses Objective 1 in this research. 

 

Figure 4.12: Radial distortion plot for Panasonic DMC-FZ300 video camera. 
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4.3 Photogrammetry results 

In this part, we discuss the data obtained from the 23 subjects. We discuss the results obtained from 

each parameter as shown in Table 3.2. The photogrammetry measures were applied to 23 subjects; 

each was tested 10 times, so we will show 230 results. The entire results are shown in the appendix 

of this thesis. We show results for the average of the 10 results of each subject. 

 The statistical analysis used to obtain the similarities and differences between groups (between 

individuals) and within groups (same subjects with 10 trials) is the ANOVA calculation. The 

significance factor (p) value indicates whether there are similarities or differences (Yigit and 

Mendes, 2018). We put a standard value of 0.005 as a threshold value, if the (p) value is less than 

the threshold, then the value is significance and there is a high difference between the group of 

subjects. When the (p) value is larger than 0.005 (threshold), that means the value is insignificance 

and the individuals have similarities with the measured factor. We can see the insignificance value 

for the within group (i.e between the trials of the same subjects).  

Using iWitnessPRO, we identified the 3-D coordinates (x, y, z) of the target points that were 

virtually located on the lower limb of the subjects. If the digital video camera filming the subjects’ 

gait was well-calibrated, a true scale model is obtained (Gong et al., 2020). In the next section, we 

will show the results for each parameter with the ANOVA analysis.  

 Calculation of photogrammetry three dimensions measurements at 

heel-down stage 

In this part, 3-D measurements were applied at the heel-down posture. Five Panasonic DMC-Fz300 

cameras recorded simultaneously. For 3D measurements, only two photos are needed to create 3-D 

model. For this stage, three factors were measured for the 23 subjects, knee-inner ankle joint 

distance, knee-outer ankle joint distance and knee angle. First, we will show the knee-inner ankle 

joint distance for the subjects and the ANOVA analysis for this data.  

 
4.3.1.1 Knee-inner ankle joint 3D distance data with ANOVA analysis 

The data obtained for this position used two cameras, Camera 1 and Camera 3 simultaneously. As 

shown in figure 4.12 . 
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Figure 4.13 : 3-D modelling showing the distribution of Panasonic video cameras. 
Blue mat refers to RS scan foot pressure mat. 
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Table 4.9: ANOVA analysis knee-inner ankle joint distance (mm) with standard deviation at 
heel-down stage 

Subjects 
Number 
of trials 

Mean 
(mm) 

Std. 
deviation 

Std. 
error 

Mini-
mum 
(mm( 

Maxi-
mum  
(mm) 

1.  10 453.7949 1.08532 .34321 452.59 455.87 

2.  10 419.6545 .86091 .27224 418.78 420.96 

3.  10 400.5754 .73664 .23295 399.16 401.34 

4.  10 396.4811 .47801 .15116 395.88 396.97 

5.  10 427.2943 .86091 .27224 426.42 428.60 

6.  10 392.9907 .73000 .23085 391.52 393.70 

7.  10 373.9626 .95136 .30085 372.98 375.16 

8.  10 364.5796 .89852 .28414 363.16 365.34 

9.  10 389.4462 .95136 .30085 388.25 390.43 

10.  10 405.4765 .86091 .27224 404.60 406.79 

11.  10 409.0781 .80531 .25466 407.88 410.06 

12.  10 415.5143 .88696 .28048 414.43 416.60 

13.  10 386.3974 1.03539 .32742 384.98 388.25 

14.  10 441.7987 1.30485 .41263 439.51 443.86 

15.  10 459.0235 1.30664 .41320 456.95 461.32 

16.  10 430.5583 1.00293 .31715 429.69 431.87 

17.  10 359.5694 1.15617 .36561 357.71 360.99 

18.  10 414.1265 4.02355 1.21315 411.15 422.06 

19.  10 378.7576 .89852 .28414 377.34 379.52 

20.  10 383.7781 1.30664 .41320 381.70 386.07 

21.  10 444.9546 .89112 .28180 443.86 446.05 

22.  10 433.8325 .69026 .21828 432.96 435.14 

23.  10 368.6178 .89112 .28180 367.53 369.71 

Total 230 406.5660 28.43081 1.87061 357.71 461.32 
 
 
 
Table 4.10 shows the mean and standard deviation for the inner ankle joint to the knee at initial 

contact for the twenty three subjects. It also shows the standard deviation for each subject with the 

minimum and maximum value of each test. The standard deviation shows how the minimum and 
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maximum values of a sample vary from the average. From Table 4.10, we can see the standard 

deviation varies from 0.2 to 1.3. This indicates that the photogrammetry measurements of the 

subjects for every 10 trials are close to each other. Table 4.10 shows the one-way ANOVA 

calculation with the factors described in Section 3.4.3 The value of the p factor shows there is a 

significance difference between the group of individuals with a value of 0.001 (~0) and that there 

is no significance within groups. This means, for the 10 trials of the same subject, the measurement 

value is almost the same.  From the above, we can use this distance factor as one of the human 

identification factors. These calculations represent Objective 2 of this research. 

 

 

Figure 4.14 shows the mean value of the knee-inner ankle joint value for every recruit with the 

standard deviation at each point. From this graph, we can see the difference of the recruit’s values 

which refers to the significance of this factor.  

 

 

 

 

 

 

Table 4.10: ANOVA analysis of Knee_inner_joint_Ankle_Heel_down_distance_(mm)               
showing the significance value 

 Sum of squares df 
Mean 
square 

F 
Similarity 

Significance factor 
Between 
groups 

185568.235 22 8434.920 5109.862 0.001 

Within 
groups 

343.348 208 1.651  1.000 

Total 185911.583 230    
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4.3.1.2 Knee-outer ankle joint 3D distance data with ANOVA analysis 

Using the same procedure as above, the 3D distance of the knee-outer ankle joint was calculated, 

see Figure 4.14 (a) and (b From the result obtained, we see that the outer ankle joint distance to the 

knee is different from the inner ankle joint to the same knee. This indicates that there is a small 3D 

deviation of the knee. 

 

Figure 4.14: Knee-inner ankle joint 3D distance in (mm) at the heel-
down stage. 



 
 

 
110 

 

 

Figure 4.15: Measuring a 3D knee-ankle joint distance; (a) Knee-inner ankle joint, (b) Knee-outer 
ankle joint. 

 

According to Govsa et al. (2020) the lower limb is unidentical while moving. This explains the 

difference between the 3D distances of the knee to the inner and outer joint ankle as shown in Figure 

4.15. Table 4.11 shows the data from 23 subjects and 10 trials for every subject. Table 4.11 shows 

the ANOVA analysis for the knee-outer ankle joint. For this parameter, the significance of the 

similarity between individuals’ measurements was very small, i.e. everyone’s measurements were 

very different from the others. However, within groups the significance of similarity within 

individuals’ measurements was very high, i.e. everyone’s measurements are uniquely different 

compared to the others. 
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Table 4.11: ANOVA analysis knee-outer ankle joint distance (mm) with standard deviation at 
heel-down stage 

Subjects Number of 
trials 

Mean 
(mm) 

Std. 
deviation 

Std. error Mini-
mum 
(mm) 

Maxi-
mum    
(mm) 

1.  10 455.9685 2.12137 .67084 453.26 459.29 

2.  10 422.2005 1.86219 .58888 419.09 425.12 

3.  10 413.9040 .94087 .29753 412.05 415.07 

4.  10 353.9690 1.21819 .38523 352.23 356.21 

5.  10 430.4674 2.52949 .79989 426.54 433.59 

6.  10 366.2220 3.79601 1.20040 360.80 370.85 

7.  10 326.7580 2.61996 .82850 322.38 330.34 

8.  10 402.7035 4.04921 1.28047 395.97 408.03 

9.  10 370.5380 3.15345 .99721 366.16 376.11 

10.  10 380.7865 2.73700 .86552 377.11 384.07 

11.  10 345.1170 3.00381 .94989 340.70 349.74 

12.  10 345.1170 3.00381 .94989 340.70 349.74 

13.  10 370.9455 1.86219 .58888 366.83 372.86 

14.  10 396.8745 2.93770 .92898 392.96 401.00 

15.  10 409.1131 .69416 .21951 408.03 409.98 

16.  10 392.6183 .91751 .29014 391.82 393.82 

17.  10 321.0726 1.03308 .32669 319.41 322.34 

18.  10 369.7915 3.59151 1.08288 367.14 376.87 

19.  10 345.7213 .81800 .25868 344.43 346.42 

20.  10 349.2622 .64204 .20303 348.07 350.06 

21.  10 405.7476 .81127 .25655 404.75 406.74 

22.  10 387.7782 .61677 .19504 387.00 388.95 

23.  10 335.4688 .81127 .25655 334.48 336.46 

Total 231 378.1439 34.77043 2.28773 319.41 459.29 
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Table 4.12 below shows the ANOVA analysis of the outer ankle joint to knee distance. The 

similarity significance value is too small (0.001) between the group of subjects. This means this 

factor could help with suspect identification and we will add this parameter to the list of 

identification parameters shown in Table 3.2. However, within groups, this means that similarities 

for the subjects’ trials is very high (1.000), indicating that the subjects had no similarity for this 

parameter. 

Table 4.12: ANOVA analysis of Knee_outer_joint_ankle_at Heel_down_distance_(mm) showing 
the significance value 

 
Figure 4.16 indicates the averages values of knee-outer ankle joint 3-D distance in (mm) at the heel-

down stage for the 23 subjects. Each point on the graph shows the standard deviation for each 

measurement. For the heel-down phase, Figure 4.17 shows the variation of inner and outer ankle 

joints to knee distances for the 23 subjects. There is a slight difference between the two values. 

These differences are shown in the figure which is the outer ankle joint-knee distance larger than 

the inner joint distance. On the other hand, some subjects have an inner joint measurement to the 

knee less than the outer measure.  

 
Sum of 
squares 

df 
Mean 
square 

F 
Similarity 

Significance factor 
Between 
groups 

276972.598 22 12589.664 2395.024 0.001 

Within 
groups 

1093.371 208 5.257  1.000 

Total 278065.969 230    
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Figure 4.16: Knee-outer ankle joint 3D distance in(mm) at the heel-down stage. 

 
 

 
 

 Calculation of 3-D photogrammetry measurements at mid-stance 

phase 

The measurements used in this stage are more reliable as the walking speed is more stable (Yang et 

al., 2014a). The photos captured for each subject's gait at this stage was less blurry than the other 

captured moving photos because the foot is stable. The RSSCAN foot scan mat used in this research 

Figure 4.5: Knee-inner and outer joint ankle at heel down stage.  
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has a length of 2 m as shown in the device specification in Chapter 3. Subjects can walk three steps 

on this mat and some can walk four steps. Data was extracted and analysed for the right second step 

as the second step is more stable (Govsa et al., 2020). In this part, each of the 23 subjects walked 

10 trials.  

We analysed 25 parameters to find the most significance factors that could be used in human 

identification. We isolated the factors that had a low value of similarities significance (less than the 

threshold value of 0.005). These factors are shown in the Figure 4.18. The significance 

photogrammetry parameters for the mid-stance were the same as the heel-down parameters as well 

as the knee angle, the front foot-knee distance and rear foot distance. 

 

 
 

4.3.2.1 Calculation of knee-inner ankle joint 3-D dimensions distance parameter at 

midstance stage 

Results extracted for this parameter show a very low similarity significance factor using the 

ANOVA calculation. After testing the 23 subjects with 20 trials for each subject. Ten trials started 

with the right foot and the second ten trials started with the left foot. Table 4.14 shows the ANOVA 

Figure 4.6: 3-D distance parameters at mid-stance stage. 
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calculation for the 10 trials starting with the left foot. The measurements were applied for the mid-

stance of the second step which is the right foot. The second step is more stable than the first (Govsa 

et al., 2020). We can see the low values of the standard deviation. Table 4.13 show the significance 

factor of similarity for subjects in both cases between groups and within a group. The difference 

between the two groups was explained in Section 4.3.1.2.  
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Table 4.13: ANOVA analysis knee-inner ankle joint distance (mm) with standard deviation at 
mid-stance stage 

According to Table 4.14, the similarity significance factor between groups is 0.001. This means 

that, for the 23 subjects, the average value of the knee-inner ankle joint 3-D measurements is 

different from each subject of the subjects group. If the value is 0.001 this means there is a small 

overlap in the standard deviation (which can be neglected). 

Subjects 
Number 
of trials 

Mean 
Std. 

deviation 
Std. 
error 

Minimum Maximum 

1.  10 444.8941 1.06324 .33623 443.72 446.93 

2.  10 411.4282 .84340 .26671 410.57 412.71 

3.  10 392.7172 .72165 .22821 391.33 393.47 

4.  10 388.7077 .46809 .14802 388.12 389.19 

5.  10 418.9126 .84340 .26671 418.06 420.20 

6.  10 385.2862 .71502 .22611 383.84 385.98 

7.  10 366.6287 .93619 .29605 365.67 367.80 

8.  10 357.4336 .88024 .27836 356.04 358.18 

9.  10 381.8113 .93619 .29605 380.64 382.77 

10.  10 397.5286 .84340 .26671 396.67 398.81 

11.  10 401.0569 .78893 .24948 399.88 402.02 

12.  10 407.3652 .87300 .27607 406.30 408.43 

13.  10 378.8176 1.01433 .32076 377.43 380.64 

14.  10 433.1329 1.28007 .40479 430.89 435.16 

15.  10 450.0263 1.28007 .40479 447.99 452.27 

16.  10 422.1202 .98253 .31070 421.26 423.40 

17.  10 352.5152 1.13266 .35818 350.70 353.91 

18.  10 406.0044 3.94565 1.18966 403.09 413.78 

19.  10 371.3332 .88024 .27836 369.94 372.08 

20.  10 376.2515 1.28007 .40479 374.22 378.50 

21.  10 436.2336 .87300 .27607 435.16 437.30 

22.  10 425.3278 .67622 .21384 424.47 426.61 

23.  10 361.3896 .87300 .27607 360.32 362.46 

Total 231 398.5941 27.87379 1.83396 350.70 452.27 
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Table 4.14: ANOVA calculation for Knee to Inner-Joint_Ankle_Mid-stance 

 Sum of 
squares 

df Mean 
square 

F Similarity 
Significance factor  

Between 
groups 

178367.957 22 8107.634 5109.106 0.001 

Within groups 330.075 208 1.587  1.000 

Total 178698.032 230    

 
 
Figure 4.19 below shows the standard deviation of the average value for this parameter. We can 
see the small value of the standard deviations and no overlaps between each other. 

 

 
 

4.3.2.2 Calculation of knee-outer ankle joint 3-D distance parameter at mid-stance stage 

Another vital parameter that could used in human identification is the knee to outer ankle joint 3-D 

measurements. Table 4.16 shows the mean value of the 3-D measurements of these parameters.  

Table 4.15 gives the ANOVA analysis knee-outer ankle joint distance (mm) with standard deviation 

at Midstance stage. 

Figure 4.7: Scatter plot of knee-inner ankle joint mean distance (mm) with 
standard deviation at mid-stance stage. 
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Table 4.15: The mean value of the 3-D measurements of knee-outer ankle joint parameters   

Subjects 
Number 
of trials 

Mean 
Std. 

deviation 
Std. 
error 

Mini-
mum 

Maxi-
mum 

1.  10 447.1000 1.28668 .40689 445.00 449.00 

2.  10 408.7000 1.94651 .61554 405.00 411.00 

3.  10 381.4000 .84327 .26667 380.00 383.00 

4.  10 384.6000 1.07497 .33993 383.00 387.00 

5.  10 417.4000 .96609 .30551 416.00 419.00 

6.  10 374.2000 1.87380 .59255 371.00 376.00 

7.  10 350.1000 1.37032 .43333 348.00 352.00 

8.  10 344.4000 1.26491 .40000 342.00 346.00 

9.  10 376.8000 1.13529 .35901 375.00 378.00 

10.  10 394.9000 1.59513 .50442 393.00 398.00 

11.  10 394.5000 1.17851 .37268 392.00 396.00 

12.  10 414.2000 .78881 .24944 413.00 415.00 

13.  10 367.9000 1.19722 .37859 366.00 370.00 

14.  10 428.8046 1.26647 .40049 426.58 430.81 

15.  10 445.5228 1.26821 .40104 443.51 447.75 

16.  10 426.7593 .99408 .31436 425.89 428.06 

17.  10 348.9938 1.12217 .35486 347.19 350.37 

18.  10 402.2350 3.99079 1.26200 399.06 409.64 

19.  10 375.7870 .89147 .28191 374.38 376.54 

20.  10 380.3918 1.29512 .40955 378.34 382.66 

21.  10 441.0285 .88326 .27931 439.95 442.11 

22.  10 421.4981 .67064 .21207 420.65 422.77 

23.  10 364.6425 .88151 .27876 363.56 365.72 

Total 230 395.2984 30.55512 2.01474 342.00 449.00 

The values of the standard deviation are higher than the last parameters shown in Table 4.15, but 

are still small according to the normal values. Also, according to Table 4.16, the ANOVA 

calculation shows the similarity significance factor to be very small (0.001) which indicates that 

this factor is useful in human identification.  
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Table 4.16: ANOVA Knee_outer_Joint_Ankle_Mid-stance 
 

 Sum of squares df Mean square F Sig. 

Between groups 213362.533 22 9698.297 4610.954 0.000 

Within groups 435.387 207 2.103  1.000 

Total 213797.919 229    

 
According to Figure 4.20, the standard deviation is small which means small variations of the 

average value of the knee-outer ankle joint 3-D distance parameter. The small variations of the 

standard deviations reduced the overlap values of the average of these parameters. This reduction 

leads to the similarity significance factor being small. This could help this parameter (knee-outer 

ankle joint measurement) to be a valuable factor for human identification or suspect from 

perpetrator recognition. 

Figure 4.21 show the average 3-D distance measurements for the knee-inner and outer ankle joint 

at the mid-stance phase. The differences between the two factors indicate that there are non-identical 

measurements for the body during gait (Govsa et al., 2020). The outer ankle joint-knee distance 

measure is larger than the inner ankle joint-knee value for some subjects. On the other hand, for 

Figure 4.20: SPSS graph knee-outer ankle joint mean distance (mm) plot 
with standard deviation at mid-stance stage. 
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some other subjects, the inner ankle joint-knee is less than the other value. This variation belongs 

to the variations of knee angle and ankle angle during gait.  

 

 
4.3.2.3 Calculation of knee-angle in 3-D measurements at mid-stance phase  

There is another factor that helps with person identification is the knee angle using the mid-stance 

phase.  The calculation of the three dimensions of knee kinematics varies between humans but it 

not difference between the right and left leg (Clément et al., 2018). This variation of the knee angle 

measurement has motivated researchers to use this factor in human identification (Favre et al., 

2008). The calculation of knee angle in 3-D space using two vectors is on the thigh and shank 

segments (Favre et al., 2008;Hanley et al., 2018). The results obtained from the 23 subjects in this 

research are shown in Table 4.17 below. From the results in Tables 4.17 and 4.18, we can see that 

the 3-D knee angle could be used in human identification. From Table 4.18, we can see that the 

similarity significance value is too low between the subjects. However, this factor is too high when 

we calculate the same subjects for the ten trials.  

Figure 4.21: Knee to inner and outer ankle joint 3-D distance average parameters at 

mid-stance stage. On the x axis, “SUBJECTS” is sitting on the 

numbers 
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This indicates that this factor could be used as an identification factor for suspects from perpetrators. 

Table 4.18 indicates that the similarity significance factor is the same as previous factors; that the 

(p) value from Table 4.18 is 0.001 between the group of subjects while this factor has a high value 

if we compare within same subjects. The standard deviation shown in Figure 4.22 is small in value 

indicating that the variation of data extracted from each recruit for the 10 trials is small. At the end 

of this factor analysis, we will move to another photogrammetry factor, the toe-off phase.  

Table 4.17: 3-D knee angle at mid-stance phase with a standard deviation 

Subjects 
Number 
of trials 

Mean(mm) 
Std. 

deviation 
Std. 
error 

Min(mm) Max(mm) 

1.  10 56.1000 .73786 .23333 55.00 57.00 
2.  10 35.1000 .73786 .23333 34.00 36.00 
3.  10 52.8000 .63246 .20000 52.00 54.00 
4.  10 27.6000 .51640 .16330 27.00 28.00 
5.  10 36.5000 .52705 .16667 36.00 37.00 
6.  10 47.5000 .52705 .16667 47.00 48.00 
7.  10 41.9000 .87560 .27689 41.00 43.00 
8.  10 44.3000 .67495 .21344 43.00 45.00 
9.  10 46.8000 .78881 .24944 46.00 48.00 
10.  10 38.1000 .73786 .23333 37.00 39.00 
11.  10 54.1000 .87560 .27689 53.00 55.00 
12.  10 31.1000 .73786 .23333 30.00 32.00 
13.  10 59.7000 .67495 .21344 59.00 61.00 
14.  10 42.8000 .78881 .24944 42.00 44.00 
15.  10 62.2000 .78881 .24944 61.00 63.00 
16.  10 54.8000 1.03280 .32660 53.00 56.00 
17.  10 29.5000 1.08012 .34157 28.00 31.00 
18.  10 58.0909 .70065 .21125 57.00 59.00 
19.  10 40.1000 .73786 .23333 39.00 41.00 
20.  10 62.3000 .82327 .26034 61.00 63.00 
21.  10 42.0000 .94281 .29814 41.00 44.00 
22.  10 57.8000 .78881 .24944 57.00 59.00 
23.  10 45.2000 .78881 .24944 44.00 46.00 

Total 231 46.4156 10.43450 .68654 27.00 63.00 



 
 

 
122 

 

Table 4.18: ANOVA analysis for 3-D knee angle at mid-stance phase 

 Sum of squares df Mean square F Sig. 

Between groups 24917.495 22 1132.613 1890.581 0.002 

Within groups 124.609 208 .599  1.000 

Total 25042.104 230    

 

 
Figure 4.22: Analysis for 3-D knee angle at mid-stance phase. Average angle values showing the 

standard deviations. 

 Calculation of 3-Dphotogrammetry measurements at toe-off phase 

In this section, we will describe the two 3-D distances of this stage (knee-inner ankle joint) and 

(knee-outer ankle joint) in one paragraph. Tables 4.20 and 4.21 show the average 3-D distances for 

these two factors. Tables 4.21 and 4.22 show the ANOVA analysis and the similarity significance 

value between the group of subjects and within the same recruit. According to Figure 4.23, There 

are variations in the two factors as shown in blue and orange. The two factors shown in Figure 4.23 

indicate that some subjects have a larger distance from the knee-inner ankle joint than the outer 

ankle joint, while the other subjects have the opposite. These differences are because of the 

deviation of the knee and ankle during the toe-off phase. From Tables 4.19 and 4.20, the standard 

deviation of subjects is larger than its value at the mid-stance stage. This points to a variation in the 
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3-D distance measurments of the knee-inner and outer ankle joint for the subjects in each trial. The 

similarity significance factors data  in Tables 4.21 and 4.22 show the 3D measure of the knee to 

interior ankle at the heel-down phase of gait while Table VI shows the group comparison for the 

trial. The overall standard derivation for the trial was ±1.4mm. The individual group comparison 

statistics at P=0.05 and DF of 207 as 1.000 while the between group result at DF of 22 was ≥0.001. 

Figure 4.22 shows the scatter plot of the 3-D measurements. The figure shows that the measurement 

error of one individual (Subject 18) was notably larger and this was because this subject had 11 

trials instead of 10 however, the value kept showing its unique location in the overall scatter plot. 

Again, the value of all 23 measurements of the randomly selected individual was unrelated spatially.   

Table 4.19:  ANOVA analysis knee-inner ankle joint distance (mm) with standard deviation at 
toe-off stage 

Subjects 
Number 
of trials 

Mean 
Std. 

deviation 
Std. error Minimum Maximum 

1-  10 509.7646 1.46459 .46314 507.37 511.93 
2-  10 465.9838 2.21915 .70176 461.76 468.61 
3-  10 431.2202 .91371 .28894 430.08 432.19 
4-  10 438.5046 1.22804 .38834 436.68 441.25 
5-  10 475.9026 1.09851 .34738 474.31 477.72 
6-  10 426.6494 2.13558 .67533 423.00 428.70 
7-  10 399.1702 1.56545 .49504 396.77 401.34 
8-  10 392.6709 1.44268 .45621 389.94 394.50 
9-  10 429.6130 1.29302 .40889 427.56 430.98 
10-  10 450.2478 1.81986 .57549 448.08 453.78 
11-  10 449.7931 1.34369 .42491 446.95 451.51 
12-  10 472.2525 .90114 .28496 470.88 473.17 
13-  9 419.4524 1.44502 .48167 417.30 421.86 
14-  10 488.9091 1.44422 .45670 486.37 491.19 
15-  10 507.1226 1.27403 .40288 505.12 509.30 
16-  10 486.5784 1.13755 .35972 485.59 488.06 
17-  10 397.9091 1.28139 .40521 395.85 399.48 
18-  11 458.2816 4.45052 1.34188 454.99 467.05 
19-  10 428.4560 1.01427 .32074 426.85 429.32 
20-  10 433.7088 1.47497 .46643 431.37 436.30 
21-  10 502.8464 1.00592 .31810 501.61 504.08 
22-  10 480.5741 .76502 .24192 479.61 482.03 
23-  10 415.7440 1.00592 .31810 414.51 416.98 

Total 230 450.6625 34.79877 2.29456 389.94 511.93 
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Table 4.20: ANOVA analysis knee-outer ankle joint distance (mm) with standard deviation at 
toe-off stage. 

Subjects 
Number 
of trials 

Mean 
Std. 

deviation 
Std. 
error 

Minimum(mm) Maximum(mm) 

1-  10 510.2315 2.37397 .75071 507.20 513.95 

2-  10 472.4463 2.08389 .65898 468.96 475.71 

3-  10 461.1992 2.14968 .67979 457.72 464.46 

4-  10 394.5919 2.78802 .88165 389.69 398.60 

5-  10 481.6937 2.83231 .89565 477.30 485.19 

6-  10 409.8058 4.24833 1.34344 403.74 414.98 

7-  10 365.6444 2.93183 .92713 360.74 369.65 

8-  10 450.6269 4.53213 1.43318 443.09 456.59 

9-  10 414.6343 3.52918 1.11603 409.73 420.87 

10-  10 426.1029 3.06214 .96833 421.99 429.77 

11-  10 386.1882 3.36052 1.06269 381.24 391.36 

12-  10 386.1882 3.36052 1.06269 381.24 391.36 

13-  10 415.0919 2.08423 .65909 410.48 417.23 

14-  10 444.1054 3.28655 1.03930 439.72 448.72 

15-  10 458.6557 1.30646 .41314 456.59 460.95 

16-  10 439.3418 1.02829 .32517 438.45 440.68 

17-  10 359.2807 1.15713 .36592 357.42 360.70 

18-  10 414.0971 4.10594 1.29841 410.83 421.72 

19-  10 386.8629 .91732 .29008 385.42 387.64 

20-  10 391.6064 1.33045 .42072 389.49 393.94 

21-  10 454.0309 .90910 .28748 452.92 455.14 

22-  10 433.9225 .68885 .21783 433.05 435.24 

23-  10 375.3909 .90452 .28604 374.28 376.50 

Total 230 423.1191 38.95723 2.56876 357.42 513.95 
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Table 4.21: ANOVA analysis for the Knee_Inner_Joint_Ankle at Toe-off_stage 

 

 
Table 4.22:  ANOVA analysis for the Knee_outer_Joint_Ankle at Toe-off_stage 

 
Sum of 
squares 

df 
Mean 
square 

 Similarity significance factor 

Between 
groups 

346079.919 22 15730.905  0.001 

Within groups 1465.512 207 7.080  1.000 

Total 347545.430 229    

 
 

 
Figure 4.23: Variation of two factor distances (knee-inner and outer ankle joint). 

 

 
Sum of 
squares 

df 
Mean 
square 

Similarity significance factor 

Between groups 276735.813 22 12578.901 0.001 

Within groups 572.720 207 2.767 1.000 

Total 277308.534 229   
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4.4  Data results and analysis of the footprint using RSSCAN 

International platform 

In this section, we will describe the data collected for the 23 subjects during their walking trials on 

the RSSCAN platform as discussed in Section 3.5. The data collected using this technique is 

synchronised with the photogrammetry technique used in this research. In this part, five different 

identification parameters are extracted using Foot Scan version 7. Many parameters were tested for 

use as valid identification factors, but the similarity factor calculated using SPSS ANOVA analysis 

was very high. However, these five parameters were the most significance value that can be used in 

human identification. As mentioned in Section 3.5, the five identification parameters are:  

1- Force (KN): This parameter is the sum of force in Kilo Newton for the foot from initial 

contact to the toe-off posture 

2- Force distance (mm):  The RSSCAN Platform recording data during gait. In each recorded 

frame, the coordinates of each frame are obtained by calculating the distance between each 

frame (point), we can calculate the total length 

3- Temporal parameter (ms): Calculations of gait cycle time in (ms) for subjects with all trials  

4- Spatial parameter (mm): Calculation of gait cycle length in (mm) for the subjects and 

normalised with ambulation time and total pressure of step for each individual 

5- Total foot pressure data (N/m2): Calculation of the sum of foot pressure from initial contact 

to shoe-off for each subject and connected with ambulation time and gait cycle to obtain 

new results.  

 

 Calculating of the Ground Reaction Force (GRF) of a foot during 

walking 

In this part, we calculate the Ground Reaction Force (GRF) of the subjects from initial contact (heel-

down) to the final contact (toe-off) for the right step. The values are extracted in KN (Table 4.23). 
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Table 4.23: Calculating foot force of one recruit for one step, value shown for each frame. 

Frame ms X Y Force (N) 
1.  0 6.36 21.7 71 

2.  7.94 4.37 22.33 140 

3.  15.87 1.24 27.52 193 

4.  23.81 -1.31 33.12 245 

5.  31.74 -2.06 39.03 318 

6.  39.68 -1.92 43.91 393 

7.  47.61 -0.92 48.98 469 

8.  55.55 0.52 54.79 530 

9.  63.49 2.74 61.11 575 

10.  71.42 4.92 67.51 611 

11.  79.36 6.71 73.65 635 

12.  87.29 7.84 79.33 657 

13.  95.23 8.6 84.96 676 

14.  103.16 8.9 89.42 699 

15.  111.1 9.11 93.29 720 

16.  119.04 9.16 96.61 743 

17.  126.97 8.96 99.45 765 

18.  134.91 8.66 101.89 782 

19.  142.84 8.38 104.04 795 

20.  150.78 8.14 105.66 805 

21.  158.71 7.89 106.88 813 

22.  161.65 7.56 107.45 819 

23.  167.67 8.56 108.56 827 

Sum    55514 
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The total force value shown in Table 4.24 is 55514 N (5.5 KN). This value represents the force at 

each frame starting from Frame 1 at heel-down and ends with Frame 90 at the toe-off stage. The 

number of frames vary for each recruit depending on the length of the foot. Table 4.24 shows the 

average value of the total foot force with the corresponding standard deviation (Std) and the standard 

error. The similarity factor shown in Table 4.25 is 0.001 between a group of subjects which indicates 

that this similarity factor is significance while being too high within the group of subjects.  
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Table 4.24: Indicates that this similarity factor is significance while s too high within the group 

of subjects.  

 

 

Subjects 
Number 
of trials 

Mean(mm) 
Std. 

deviation 
Std. 
error 

Minimum(mm) Maximum(mm) 

1.  10 70.96500 .676413 .213901 70.145 72.014 

2.  10 65.63310 .045128 .014271 65.581 65.721 

3.  10 38.50200 .041798 .013218 38.436 38.566 

4.  10 66.63290 .027209 .008604 66.594 66.687 

5.  10 51.33350 .025431 .008042 51.305 51.387 

6.  10 60.61690 .013626 .004309 60.594 60.635 

7.  10 58.55600 .457377 .144635 57.965 59.326 

8.  10 22.02610 .019785 .006256 21.996 22.069 

9.  10 61.55195 .404222 .127826 60.895 62.158 

10.  10 68.55430 .028775 .009100 68.520 68.591 

11.  10 53.12240 .020657 .006532 53.091 53.163 

12.  10 46.58850 .018805 .005947 46.557 46.611 

13.  10 32.48150 .037080 .011726 32.412 32.515 

14.  10 56.28730 0.0152 0.148 54.368 56.147 

15.  10 59.49910 .479611 .151666 58.654 60.254 

16.  10 42.01120 .897703 .283879 40.489 42.954 

17.  10 49.33370 .691551 .218688 47.654 49.874 

18.  10 63.05416 .605899 .182685 62.354 63.959 

19.  10 57.70970 .563515 .178199 57.145 58.654 

20.  10 69.32120 .524024 .165711 68.354 69.851 

21.  10 45.46010 .560000 .177088 44.214 46.354 

22.  10 41.53260 .836025 .264374 40.012 42.365 

23.  10 35.73064 .512328 .162012 35.031 36.684 

Total 230 52.93547 12.842224 .844956 21.996 72.014 
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Table 4.25: ANOVA analysis for foot force_(KN) 

 
Sum of 
squares df 

Mean 
square F 

Similarity 
significance factor  

Between 
groups 

37801.174 22 1718.235 2727.100 0.001 

Within 
groups 

131.052 208 .630 
 1.000 

Total 37932.226 230    
 

The low value of this similarity factor indicates that we can use this parameter for human 

identification. The 23 subjects were tested with their shoes on. We repeated the tests 10 

times for each subject and the subjects wore the same shoes for each test. In a forensic 

case, if we want to check a perpetrator from a suspect and we want to use this parameter, 

the suspect will wear the same shoes as shown in the recording footage. After that, the 

foot force data will be extracted for comparison with the perpetrator. ANOVA analysis 

will show the similarity significance factor which will help to decide if a person is a 

perpetrator or not.  

 

 Calculation and analysis of foot force/pressure distance 

identification factor 

This identification factor is correlated to the Foot force identification factor described 

in Section 4.4.2. In Table 4.26, each frame has a force value and two dimension 

coordinates (x,y). In this section, the calculation of the distance between frames shows 

that it is a significance factor to be used as one of the human identification factors. The 

methodology of this part was described in Section 3.5.2. The distances used in this factor 

are calculated using formula 4.5 below which is mentioned in Chapter 3. 

D=√ ((Xn−Xn-1)2+(Yn−Yn-1)2)……………………….. (4.5) 

Where (x,y) represent the two dimension coordinates of each foot force frame during 

gait and (n) is the number of frames per step. Back to Table 4.21 above, by applying 

equation 4.6 to the coordinates of the frame shown, the total distance is obtained. Table 

4.26 shows the average foot force/pressure distance for the 10 trials for each of the 23 

subjects. Standard deviation (Std) is calculated using SPSS statistics ANOVA analysis, 

as is the standard error. The calculated distances in Table 4.26 represent both foot force 

and foot pressure distance. In this case, force and pressure have the same distance. This 
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is according to equation 4.6 to described in the previous chapter and shown below:           

P=F/A ……………….. (4.6)   

where P is pressure, F is a force in Newton, and A is the area in mm2. 

According to this formula, foot-pressure distance is the same as foot force-distance 

because they have the same frame coordinates. The means distance in Table 4.28 varies 

for each recruit and they correlate with foot length. The low range of the standard 

deviations indicates low variations in measurement for each of the subjects. The low 

value of standard deviation gives a positive sign to use this factor as a human 

identification factor. 
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Table 4.26: Statistical analysis for the foot force-distance with standard deviations 

Subjects 
Number of 

trials 
Mean distance 

(mm) 
Std. 

deviation 
Std. 
error 

Minimum 
(mm) 

Maximum 
(mm) 

1.  10 320.6160 .64529 .20406 319.00 321.16 

2.  10 309.1770 1.67392 .52934 305.87 310.65 

3.  10 261.5370 .66695 .21091 260.41 262.59 

4.  10 255.7540 .57384 .18146 255.12 256.69 

5.  10 281.3080 .70212 .22203 280.06 282.52 

6.  10 295.8500 .68435 .21641 295.14 297.37 

7.  10 302.0070 1.52172 .48121 299.00 305.00 

8.  10 299.7860 .91848 .29045 298.00 301.00 

9.  10 275.8320 .32940 .10417 275.14 276.12 

10.  10 315.7750 .47014 .14867 315.04 316.36 

11.  10 287.8390 .41842 .13232 287.14 288.36 

12.  10 251.0070 2.40590 .76081 249.09 256.00 

13.  10 248.9604 .61302 .19385 247.99 249.65 

14.  10 290.8621 .52222 .16514 290.15 291.58 

15.  10 325.8075 .84176 .26619 324.16 326.98 

16.  10 291.2246 .48445 .15320 290.36 291.85 

17.  10 271.5490 .42302 .13377 270.95 271.98 

18.  10 285.1620 .67490 .21342 284.01 285.89 

19.  10 292.2102 .61414 .19421 290.98 292.98 

20.  10 285.2880 .60050 .18989 284.62 286.32 

21.  10 251.6560 .81911 .25902 250.39 252.96 

22.  10 333.5290 .73137 .23128 332.15 334.65 

23.  10 235.8750 .55997 .17708 235.16 236.84 

Total 230 285.5918 25.80762 1.70170 235.16 334.65 
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Table 4.27: ANOVA analysis for distance_Foot_force_or_Pressure_data with 
similarity significance factor threshold value 0.005 

 Sum of 
squares 

df Mean 
square(mm)s 

F Similarity 
significance factor   

P=0.005 
Between 
groups 

152351.581 22 6925.072 8432.074 0.000 

Within 
groups 

170.004 207 .821  1.000 

Total 152521.585 229    
 
From Figure 4.24, we can see that there is no overlap between each point. Also, the 
standard deviation values are small enough to consider that the measurements are  

 Analysis and normalization data of spatial and temporal 

gait cycle 

In this section, we have two sets of data analysis. The first calculates and analyses the 

gait cycle (mm) for each recruit. The methodology of this part is described in Section 

3.5.3.2. The second part represents the temporal parameters of the gait cycle which is 

the calculation of the ambulation time for one gait cycle. Each set of data is affected by 

walking speed (DiLiberto et al., 2018). In this case, the normalization of these two sets 

of data will create new stable data with walking speed. Normalization will be as follows: 

(Gait cycle / Ambulation time ) X total foot pressure.  

Figure 4.24: Mean values of foot force distance of subjects, each point shows the 
standard deviation. 
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Table 4.28: Statistical analysis of normalized (Gait cycle /Ambulation time) X total foot 
pressure.  

 

 
The results data were tested and analysed using ANOVA statistics. The similarity 

significance value obtained was too small compared to other values such as step length. 

From the significance factor shown in Tables 4.29, we can consider this factor as an 

identification factor.  

Subjects 
Number 
of trials 

Mean 
Std. 

deviation 
Std. 
error 

Minimum 
(mm) 

Maximum 
(mm) 

1.  10 3731.6762 18.94366 5.99051 3698.88 3762.00 

2.  10 4347.5000 16.88688 5.34010 4316.00 4366.00 

3.  10 1443.5229 14.45827 4.57211 1425.00 1467.00 

4.  10 865.5198 9.91988 3.13694 852.00 884.89 

5.  10 2659.4532 13.89530 4.39408 2641.00 2684.00 

6.  10 1850.9159 15.30754 4.84067 1823.00 1874.00 

7.  10 2051.2585 24.53748 7.75943 1999.99 2085.00 

8.  10 4232.7000 20.10555 6.35793 4198.00 4258.00 

9.  10 2956.1004 13.76397 4.35255 2932.00 2975.00 

10.  10 3656.9526 15.96961 5.05003 3625.00 3684.00 

11.  10 1757.5092 12.62692 3.99298 1745.00 1784.00 

12.  10 2536.0000 16.16581 5.11208 2511.00 2571.00 

13.  10 2345.3703 19.22233 6.07864 2299.70 2368.00 

14.  10 3434.0000 15.62050 4.93964 3415.00 3456.00 

15.  10 4238.5000 11.24722 3.55668 4216.00 4251.00 

16.  10 952.8000 8.61265 2.72356 936.00 962.00 

17.  10 1967.1000 11.60890 3.67106 1953.00 1984.00 

18.  10 2226.4000 10.83410 3.42604 2211.00 2241.00 

19.  10 3235.4000 14.10437 4.46019 3214.00 3264.00 

20.  10 1536.6000 13.61535 4.30555 1514.00 1561.00 

21.  10 4023.5000 20.75920 6.56464 3985.00 4052.00 

22.  10 2839.7000 15.25378 4.82367 2814.00 2862.00 

23.  10 1652.4000 15.33478 4.84928 1636.00 1687.00 

Total 230 2632.2121 1052.45819 69.39704 852.00 4366.00 
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 Table 4.29: ANOVA analysis of gait cycle normalized ambulation time then multiply 

by total foot pressure  

 
 
The normalized data created a new identification factor that combines three parameters: 

spatial data represented by gait cycle, temporal data represented by ambulation time, 

and foot pressure data represented by the total foot pressure. The combined data of these 

parameters is a new technique to create an authenticated identification factor.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Sum of 
squares 

df Mean 
square 

F significance 

Between 
groups 

2.536E8 22 1.153E7 47346.453 0.001 

Within groups 50398.673 207 243.472  1.000 
Total 2.537E8 229    
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5 CHAPTER 5 

 

5.1  Discussion  

5.1.1 Overview 

This research investigated the following main points: 
 
 

1.  Calculating the most reliable video camera features for human gait 

recording. Identified the most suitable digital video cameras, and the best 

calibration techniques to ensure that accurate data was extracted from the gait 

recordings 

2. Human identification using gait analysis through close-range 

photogrammetry .Demonstrated an innovative alternative methodology to 

extract human identification parameters through the analysis of gait features 

using photogrammetry techniques  

3. New protocol to capture more accurate human gait data using footprint 

features. Demonstrated the effectiveness of the innovative methodology using 

footprint features for human identification. This was proved by extracting the 

footprint features data using the foot force platform  

4. A new technique for human identification . 

Established by correlating the two sets of identification parameters resulting 

from the photogrammetry and footprint approaches and using them as one 

set of data for human identification. 

 

5.2 Human gait analysis using photogrammetry 

The main aim of this research was to develop a new set of human identification 

techniques to measure and analyse human movement for forensic purposes. 

Photogrammetry is mainly based on achieving the best possible camera calibration. 

The calibration of various cameras was explored following a planned procedure as 
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explained in Chapter 3 (methodology chapter). Four types of digital cameras were 

tested for competencies associated with the proposed project. The efficiency and 

suitability of these cameras were tested based on multiple measured parameters such 

as lens distortion, focal length and resolution. First, we calibrated the low-cost small 

size Spy camera. As previously mentioned, the camera had a small lens angle, limited 

memory capacity and a low-resolution recording.  

The calibration results of this spy camera showed that the focal length was 

approximately 7.32 mm. This focal length value is very low and affects footage 

accuracy. The radial distortion at 0.5mm radius was -84 microns, while the maximum 

radial distortion at 5.50 mm radius was 1497.2 microns. According to Fraser (2013), 

positive radial distortion is mostly referred to as pincushion distortion, while negative 

distortion is known as barrel distortion. Also, Chong (2014) pointed that the radial 

distortion magnitude is generally small, and for metric applications, decreases with the 

increase in focal length. Thus, the highest focal length was achieved from the 

calibration process with less maximum distortion leading to better camera accuracy.  

Our results also found that the maximum radial distortion at 5 mm radius was 

198.3microns (12.247 mm focal length) for the JVC digital camera. Despite, these 

positive results obtained from the JVC digital camera in terms of higher focal length 

and less distortion at the same radius of 5mm, the camera has limited memory and less 

recording time and unclear motion capture images. These limitations limit the use of 

these types of digital cameras for the purpose of this research.  

The results obtained from calibrating the CCTV cameras indicated a low value for 

focal length with a high range of distortion at 5 mm radius (867.4 microns), thus 

indicating low resolution making it inappropriate for our research. 

 The results obtained from calibrating the Panasonic Lumix DMC-FZ300 digital video 

camera indicated the best possible radial distortion of -133.6 microns at 5 mm radius. 

This camera had a high focal length range of 25-600mm, and recorded 4k video 

streaming with a resolution of 4000x3000 pixels/cm2. Based on these results, the 

Panasonic Lumix DMC-FZ300 digital video camera was chosen for this research. 

 To support these findings, (Majeed and Chong, 2020a) compared the Dashcam camera 

which has similar specification to the previously mentioned Spy camera with the JVC 

digital camera. They indicated that the JVC digital camera’s maximum distortion was 
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15μm while the Dashcam’s maximum distortion was 200μm. Thus, in comparison, the 

latter has distortions over 13 times larger. (Majeed and Chong, 2020) concluded that 

not having calibrated distortion parameters when using the Dashcam, was particularly 

severe for accurate ground measurement.  

The photogrammetric method used in our research has an advantage in that there is a 

well calibrated digital camera already in place, so the time needed to analyse the 

perpetrator is less than that needed in previous techniques mentioned in the literature. 

Furthermore, there was no need to ascertain the location of the subjects in relation to 

the measuring devices. For example, we measured the set of cardboard (bolted onto 

the floor) with a scale bar which was already known by the software, and compared 

this to an actual physical measurement, and the error was less 2mm. 

 Measurement of stature and bodily proportions has been carried out in numerous 

investigations where surveillance images of perpetrators could be obtained  

(Hoogstrate et al., 2001;Stephan, 2015). However, the methods employed up until now 

are subject to several errors. Usually, images are produced with measuring devices 

such as vertical rulers placed at the same location as the perpetrator. It is important 

that these images are produced by the same video cameras as the ones that captured 

the perpetrator (reverse projection photogrammetry). These images are then overlaid 

using standard image editing. The major problem is identifying when the measuring 

device is placed correctly. Ideally, it has to be placed at exactly the same spot where 

the perpetrator stood in order to result in reliable measurements. This is quite difficult 

and usually a great many images of the ruler are produced, and only trial and error in 

terms of overlaying one image after the other enables one to narrow down the most 

correct superimposition. Likewise, it is very difficult to exactly calculate the error 

produced if the ruler is not overlaid on exactly the spot where the perpetrator stood.  

The techniques used in our research avoids all of these challenges. We can easily test 

the perpetrator in the same location where the system of cameras is installed. As we 

had five cameras installed, we could spot the same position for the perpetrator and 

suspect accurately because, if one or two cameras failed to spot, we still had three other 

cameras covering the spotting area. Then we used iwitness PRO to obtain 3-D 

measurements for the parameters described in Chapters 3 and 4. The identification 

parameter choice in this part of the study were the knee-inner/outer ankle joint and 3-
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D knee angle for the following gait phase sequence: (1) heel-down, (2) mid-stance and 

(3) toe-off. The specific spots on the knee and the inner/outer ankle joint were chosen 

because this joint is not effected by the change of floor surface and the deviation of 

the foot while walking (Brockett and Chapman, 2016). 

The results were presented according to the gait phase sequences. The three unique 

measures were analysed, and their statistical quality evaluated. First, the between 

group’s (intrasubject variability) and within group’s (intractability, i.e. the variation in 

gait for each test subject) statistical results were analysed to determine measurement 

reliability. Next, the results of the three phases were examined for consistency. To 

evaluate the reliability of these measurements, the mean within a group and between 

significance group scores (P=0.05) were determined, respectively.  

Based on the results of the ANOVA statistical tests, it was apparent that the knee-inner 

ankle joint 3-D measurement accuracy at the heel-down, mid-stance and toe-off phases 

were within 2mm, i.e., the standard deviation for the individual was approximately 

2mm. This accuracy was slightly larger than published human movement for medical 

applications where the knee was exposed (Chong, 2011;Chong et al., 2014). Thus, the 

within group measure variation could be established at a 2mm limit however, three 

standard deviations or 95% CFL was considered a suitable margin of error value. 

Therefore, the 6mm margin of error could be used to determine whether the between 

group variation was within this margin of error requirement. By and large, the 

minimum and maximum values were within the 6mm range. Thus, the knee-inner 

ankle joint 3-D measurements were determined to exhibit high accuracy for gait 

characteristics. 

The between group test showed that there was very small variation in the three 

measurements between randomly selected individuals. This indicated that the knee to 

interior ankle 3-D measurements for all three principal phases could be used to identify 

the perpetrator successfully. Similarly, these three principal phases were very 

important gait characteristic markers for everyone. The statistical tests established an 

important understanding of the accuracy and reliability of the developed advanced 

photogrammetric techniques and the calculated measure as part of the individual gait 

characteristics. The technique developed by Bouchrika (2017) was not appropriate for 

some crime scene video footage, where: (1) the need to set a coordinates system based 
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on the left ankle joint could be missing from video footage; and (2) accurate body 

height was not available. The use of accurate pressure-based gait phase markers was 

precise because: (1) the pressure sensor was very sensitive and (2) timing accuracy 

was very high at 500th of a second. As the result, the developed technique was very 

accurate and highly reliable. Therefore, the developed measurements are more likely 

to survive extensive scrutiny in court. Some other features has been tested and analysed 

such as Knee-front foot distance , Knee-rear foot distance, the and angle of Knee-ankle 

joint-front foot . The outcome of These measurements gives 70-80% accuracy of 

perpetrator identification. By compared to the other results which gives 95% of 

accuracy, the last measures has been neglected. Also, for the foot pressure techniques 

, some features has been tested and calculated such as maximum pressure contact area, 

right stride length ,left stride length and the stance time . These measures give 75-85% 

of the perpetrator identification of the identification accuracy which also been 

neglected from the calculation of this thesis.  
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6 CHAPTER 6 
6.1 Conclusions 

 The measurement of gait characteristics using a photogrammetric technique has been 

carried out in numerous investigations to assist the criminal investigators in identifying 

crime suspects using biomechanical data extracted from static and dynamic gait. 

However, these methods generate many errors, such as the images not produced by the 

same video cameras. Thus, the main aim of this research was to introduce a more 

efficient and reliable technique for the identification of stature and bodily proportions 

of human movement, correlating two sets of identifications parameters from the 

photogrammetry and footprint approaches and use them as one set of data for human 

identification.  

The present work compared the effectiveness of different types of digital cameras. The 

purpose was to select the most suitable digital camera based on calibration results. The 

Panasonic Lumix DMC-FZ300 digital video camera had the best possible radial 

distortion of 133.6 microns at 5mm radius, and had high focal length range of (25-600) 

mm. Three unique measures were studied and analysed, and the statistical analysis 

showed that the standard deviation of measures was approximately 2mm for all 

individuals recruited in this study. For example, the knee to inner/outer ankle 3-D 

measurements was determined to exhibit high accuracy for gait characteristics. 

 The integration of foot pressure/force data and photogrammetry measurements 

resulted in more reliable and accurate data for suspect identification. The data were 

collected and processed at the same time and the subjects were selected randomly from 

a large group of students, which is significant for criminal identification. We conclude 

that this new approach can increase the security of interior and exterior locations such 

as government buildings, banks, etc. It uses low-cost equipment and can be applied to 

individuals wearing any type of shoes or clothes.  

For future work, we recommend using a real-time 3-D coordinate of spotted area for 

easy analysis. Also, for more subject identification factors, we recommend using the 

maximum force/pressure area for the right and left feet. Additional identification 

factors recommended are 3-D distance of the total height of the subject and other 

biometrics measurements such as arm length, angle of arms while walking, and total 

length of legs especially at the mid-stance phase.  
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6.2 Footprint analysis 

Utilizing photogrammetry techniques produced high-quality 3-D measurements such 

as 3-D distances and angles. These were previously explained and analysed in Section 

5.1.2. Joint angle and gait cycle characteristics were frequently used to differential 

between suspects and perpetrators thus, in (Black et al., 2017), gait cycle 

characteristics and joint angles were utilised in an attempt to differentiate between 

suspects and perpetrators of a criminal scene. However, incomplete gait cycles which 

were often collected, made evidential gait analysis challenging. These authors argued 

that perpetrators might have walked differently from the normal walking pattern when 

the crime was committed, which makes later matching of the gait with a suspect 

difficult. 

 In this research, we consider force/pressure measurements which could be exploited 

to identify an individual through gait characteristics recorded under the shoes by the 

RSSCAN system. The foot force under the shoes during gait could be used to provide 

accurate markers. Thus, the same set of gait features could be used for comparing the 

gait measurements between individuals. The markers were identified and formed part 

of the research. 

As depicted by the statistical results of mean, standard deviation, maximum and 

minimum values in the Results chapter, individual recruit’s gait measurements were 

very precise. These gait measurements including force, pressure, and force/pressure 

distance were recorded under the foot in all three phases of gait (heel-down, mid-

Stance and toe-off). These parameters were chosen for human identification because 

they are hard to conceal.  

The highlighted identification parameters for this part of the study were obtained after 

analysing 32 biometric footprint features such as stride length and total gait cycle. The 

results showed that these are the only parameters with a significant value for 

identification. The data were recorded at the same time as the photogrammetry 

measurements were taken, leading to more accurate and reliable data for the 

identification of the suspects. In addition, these measurements were obtained on 

separate days, so they represent individual gait characteristics accurately over all 

periods.  
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The other important statistic is that the measurement value varied between individuals 

hugely, thus providing an excellent range of values for further interpretation. This is 

significant as these individuals were selected randomly from a large group of higher 

degree research students at the university. The results show that the novel measure is 

a significant new discovery of the use of gait characteristics for forensic application. 

The statistical significance of the different measurements was excellent. 

 This measurement is suitable for the identification of a perpetrator from a group of 

suspects. As discussed in the review, this significance satisfies the requirement needed 

for forensic evidence of biometric measures as the research used 23 subjects. The 

group size is small in statistical terms however, it is suitable for an initial study where 

we are trying to determine which gait characteristics measurements are suitable for 

forensic work. Therefore, the next stage is to recruit a larger group. The integration of 

force/pressure and physical dimension measurements has huge potential for finding 

suitable ways to separate a perpetrator from suspects. This provides excellent 

opportunities for crime identification process efficiencies. 
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