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ABSTRACT: The performance-based optimization (PBO) method has recently been 

developed for topology design of continuum structures with stress, displacement and mean 

compliance constraints. The PBO method incorporates the finite element analysis, modern 

structural optimization theory and performance-based design concepts into a single scheme to 

automatically generate optimal designs of continuum structures. Performance indices are used 

to monitor the performance optimization history of topologies while performance-based 

optimality criteria are employed to identify the optimum from the optimization process. The 

performance characteristics of a structure in an optimization process are fully captured. The 

PBO technique allows the designer to tailor the design to a specific performance level 

required by the owner. This paper reviews the state-of-the-art development of automated 

performance-based optimal design techniques for topology design of continuum structures. 

Several practical design examples are provided to demonstrate the effectiveness and validity 

of the PBO technology as an advanced design tool. 
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1. INTRODUCTION 

 

Performance-based design is a developing technology, which allows the designer to tailor a 

structure to a specific performance level required by the owner. In this design methodology, 

structural design criteria are expressed in terms of achieving performance objectives. There 

are usually multiple performance objectives that must be considered by the structural designer 

when designing a structure. The main performance objectives are functionality, serviceability, 

strength and economy. The cost performance (economy) of a structure, which is of great 

importance to the owner, has a significant effect on the final design of the structure. The cost 

of a structure including the initial cost and cost of maintenance is significantly influenced by 

the structural form, materials used and construction methods. One of the challenges in 

performance-based design is to develop optimal design tools that can be used by structural 

designers to achieve cost-effective and high performance structures. The performance-based 

optimal design of frame structures has been reported by researchers (Ganzerli et al. 2000; 

Foley and Schinler 2003; Gong et al. 2005; Zou and Chan 2005; Liu et al. 2005; Xu et al. 

2006; Fragiadakis et al. 2006). It is recognized that topology optimization of structures offers 

more material savings than shape and sizing optimization.  

 

Topology optimization of continuum structures has gained popularity in structural 

optimization in recent years. Many innovative optimization methods and algorithms have 

been developed and reported in the literature. Haftka and Grandhi (1986) reviewed methods 

for structural shape optimization. Rozvany et al. (1995) presented a comprehensive survey on 

the layout optimization of structures. Recently, Eschenauer and Olhoff (2001) provided a 

review on topology optimization of continuum structures. The publications of several 

advanced textbooks on topology optimization of continuum structures indicate the mature of 
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these topology optimization techniques (Bendsøe 1995; Xie and Steven 1997; Seireg and 

Rodriguez 1997; Mattheck 1998; Hassani and Hinton 1999; Bendsøe and Sigmund 2003; 

Liang 2005).  

 

In 1988, Bendsøe and Kikuchi (1988) developed a homogenization-based optimization 

(HBO) method for topology design of continuum structures. Since then, extensive studies on 

the HBO method have been reported in the literature (Suzuki and Kikuchi 1991; Díaz and 

Bendsøe 1992; Tenek and Hagiwara 1993; Bendsøe et al. 1995; Hassani and Hinton 1999; 

Krog and Olhoff 1999; Bendsøe and Sigmund 2003). The HBO method treats topology 

optimization of a continuum structure as a material redistribution problem in the structure 

made of composite material with microstructures. The effective material properties of the 

composite material are computed using the homogenization theory. The material volume is 

used in the HBO method as a constraint.  

 

The density-based optimization (DBO) method has been developed as an alternative to the 

topology optimization of continuum structures (Bendsøe 1989; Mlejnek and Schirrmacher 

1993; Yang and Chuang 1994; Ramm et al. 1994; Yang 1997; Sigmund 2001). The DBO 

method assumes that material properties are constant within each finite element whose 

relative densities are treated as design variables. The effective material properties are 

computed by the relative material density raised to some power times the material properties 

of the solid material. The power law approach must be combined with perimeter constraints, 

gradient constraints or filtering techniques to ensure the existence of solutions (Sigmund 

2001). Gea (1996) presented a microstructure-based design domain method, which employs a 

closed-form expression for the effective Young’s modulus and shear modulus in terms of 

phase properties and volume fractions.  
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In the absence of effective topology optimization techniques, structural systems are 

traditionally developed based on the designer’s experience and intuition that often leads to 

oversized designs. To improve the design, underutilized material should be removed from the 

structure. The material removal concept has been employed in several topology optimization 

techniques for continuum structures (Rodriguez and Seireg 1985; Atrek 1989; Rozvany et al. 

1992; Xie and Steven 1993). Without element elimination, Mattheck and Burkhardt (1990) 

and Baumgartner et al. (1992) proposed a soft kill optimization (SKO) method that uses the 

Young’s modulus to represent the effective stress of elements in the structure. The 

optimization technique developed by Xie and Steven (1993) is called evolutionary structural 

optimization (ESO). In the ESO method, inefficient finite elements identified by the 

sensitivity numbers are slowly removed from the structures to produce optimal designs. Since 

1993, extensive studies on ESO have been published in the literature (Xie and Steven 1994; 

Hinton and Sienz 1995; Chu et al. 1996; Xie and Steven 1997; Sienz and Hinton 1997; Guan 

et al. 1999; Kim et al. 2000; Rong et al. 2000; Li et al. 2001a; Steven et al. 2002; Li et al. 

2003). The ESO technique was extended to a bi-directional evolutionary structural 

optimization (BESO) method, which allows for elements to be removed from the structure as 

well as to be added to the structure (Querin et al. 1998; Yang et al. 1999).  

 

The challenge in topology optimization of continuum structures is to incorporate an 

appropriate termination criterion in optimization algorithms to determine the optimum. 

Although the material volume or iteration number can be used as a termination criterion in 

topology optimization of continuum structures, the final solution may vary with the material 

volume fraction or the iteration number. Zhou and Rozvany (2001) reported that continuum 

topology optimization procedures will give wrong results if no extended optimality criteria 

such as performance-based optimality criteria are used in the optimization algorithms. 
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Recently, the performance-based optimization (PBO) method has been developed for 

topology design of continuum structures by Liang et al. (1999a, 2000a), Liang (2001a) and 

Liang and Steven (2002). Performance indices and performance-based optimality criteria 

were proposed and incorporated in PBO algorithms to identify the optimum from an 

optimization process. The PBO method allows the designer to tailor a design to a specific 

performance level while practical design requirements are taken into account. This paper 

presents the state-of-the-art review of recent advances in the theory and applications of the 

PBO method. The PBO technique for continuum structures with stress, displacement and 

mean compliance constraints is reviewed. The element removal criteria, checkerboard 

patterns, performance indices, performance-based optimization criteria, performance 

optimization procedure and practical applications are described. Examples are provided to 

demonstrate the practical applications of the PBO technique to structural design problems.  

 

2. PERFORMANCE OBJECTIVES 

 

In performance-based optimal design, the design of a structure must satisfy the strength, 

serviceability and cost performance requirements. The strength and serviceability design 

criteria require that the stress within the structure and its deformation must be within 

acceptable performance levels, which are measured by limiting values specified in design 

codes. In the PBO method, the weight of a structure is used as the performance objective and 

stresses, displacements and mean compliance are treated as performance-based constraints. 

The goal of the performance-based optimization is to minimize the weight of a structure while 

maintaining its stress or displacements or mean compliance within limiting values. The mean 

compliance (strain energy) of a structure is usually used as an inverse measure of the overall 
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stiffness of the structure. The optimization problems can be stated in mathematical forms as 

follows: 
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where W is the total weight of the structure, ew is the weight of the eth element, t is the 

thickness of all elements, L
t is the lower bound on the element thickness, U

t  is upper bound 

on the element thickness, N is the total number of elements, maxσ is the maximum von Mises 

stress of an element in the structure under applied loads, ∗σ is the maximum allowable stress, 

ju  is the absolute value of the jth constrained displacement, ∗
ju  is the prescribed limit of ju , 

m is the total number of displacement constraints, C  is the absolute value of the mean 

compliance of the structure, ∗
C  is the prescribed limit of C . It should be noted that the 

thickness of a continuum structure has a significant effect on the weight of the structure and 

must be specified by the designer in practice. As a result, the element thickness is treated as 

one of the design variables. However, only uniform sizing of the element thickness is 

considered here to simplify the optimization problem. 

 

3. ELEMENT REMOVAL CRITERIA 

 

3.1 Stress Constraints 
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The nature of material distribution in an optimized structure depends on the type of constraint. 

A different type of constraint leads to different optimal topology (Liang et al. 1999a). The 

stress constraint considered in the PBO method is to maintain the maximum von Mises stress 

in the optimal design within an acceptable stress limit. The finite element analysis of a 

continuum structure indicates that the stress distribution within the structure is not uniform 

and some of the elements are not effective in transferring loads. These lowly stressed 

elements should be removed from the design domain to improve its efficiency. Element 

removal criteria can be expressed by (Liang et al. 1999a, 1999b).  
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d

jei R σσ <                                                         (6) 

 

where ei ,σ  is the von Mises stress of the eth element at the ith iteration, max,iσ is the maximum 

von Mises stress of an element in the structure at the ith iteration and d

jR  is the deletion ratio 

of elements at the jth steady state. All elements that satisfy Eq. (6) are removed from the 

structure. The cycle of the finite element analysis and the element removal is repeated by 

using the same d

jR  until no more elements can be removed from the structure at the current 

state. In order to continue the optimization process, the element removal ratio d

jR  is increased 

by an incremental removal ratio ( d

iR ). The element deletion ratio can be expressed by  

 

d

i
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j RjRR )1(0 −+=          (j = 1, 2, 3, 4,…)                   (7) 

 

where d
R0  is the initial deletion ratio of elements. The optimal topology of a continuum 

structure under one load case can be iteratively generated by using element removal criteria 

described in Eq. (6). For structures subject to multiple load cases, only those elements that 



 8 

satisfy Eq. (6) for all load cases are removed from the design domain at each iteration. This 

criterion leads to an optimal design that can perform the required function under all load 

cases.  

 

3.2 Displacement Constraints 

 

In order to measure the effect of element elimination on the performance of a structure, virtual 

unit loads are applied to the degree of freedom of constrained displacements. The sensitivity 

analysis indicates that the change in the constrained displacement due to the elimination of the 

eth element can be calculated approximately by the virtual strain energy of the eth element 

(Liang et al. 2000a). Considering two elements with the same virtual strain energy, 

eliminating the element with a larger weight will result in a lighter design while changes in 

specific displacements are the same.  Therefore, in order to obtain the most efficient design, 

the virtual strain energy per unit weight of an element, which is defined as the virtual strain 

energy density (VSED) of the element, should be used as element removal criteria. The 

virtual strain energy density of the eth element is denoted as (Xie and Steven 1997) 

 

eeeeje wuku /}]{[}{ T=ψ                                                     (8) 

 

where }{ eju is the nodal displacement vector of the eth element under the virtual unit loads, 

}{ eu is the displacement vector of the eth element under real loads and ][ ek is the stiffness 

matrix of the eth element. The virtual strain energy densities of elements can be calculated at 

the element level from the results of the finite element analysis. To achieve the performance 

objective, it is obvious that elements with the lowest virtual strain energy densities should be 

systematically eliminated from a continuum design domain being optimized. For a structure 
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subject to multiple displacement constraints under multiple load cases, the virtual strain 

energy density of the eth element can be evaluated by using the weighted average approach as 
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where the weighting parameter jβ  is defined as *
/

l

j

l

j uu , which is the ratio of the jth 

constrained displacement to the prescribed limit under the lth load case, and p is the total 

number of load cases. It is noted that the absolute values of displacements are used in Eq. (9).  

 

3.3 Mean Compliance Constraints 

 

Sensitivity analysis on structures with mean compliance constraints indicates that the change 

in the strain energy of a continuum structure due to the removal of the eth element can be 

approximately evaluated by the strain energy of the eth element (Liang and Steven 2002). As 

a result, the strain energy density of an element can be used as a measure of element 

contribution to the overall stiffness performance of a structure, and is denoted as 
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1 T=γ                                                (10) 

 

To achieve the maximum stiffness designs, it is obvious that a small number of elements with 

the lowest strain energy densities should be systematically removed from a structure. In the 

PBO algorithms, a loop is used to count elements with the lowest strain energy densities until 

they made up the specified amount that is the element removal ratio times the total number of 

elements in the initial design domain. The element removal ratio (R) for each iteration is 
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defined as the ratio of the number of elements to be removed to the total number of elements 

in the initial structure. The element removal ratio is not changed in the whole optimization 

process. Tested examples indicated that the element removal ratio of 1-2% can be used to 

obtain smooth solutions. 

 

4. CHECKERBOARD PATTERNS 

 

Checkerboard patterns commonly appear in the optimized topologies of continuum structures 

produced by numerical optimization techniques. Checkerboard patterns are not optimal 

material distribution patterns, but are numerical anomalies, which are caused by the errors in 

the displacement-based finite element formulation (Díaz and Sigmund 1995; Jog and Haber 

1996; Sigmund and Petersson 1998). The presence of checkerboard patterns leads to difficulty 

in interpreting and manufacturing optimal structures. It is desirable to suppress the formation 

of checkerboard patterns in continuum topology optimization.  

 

Several methods for preventing the formation of checkerboard patterns have been suggested 

by researchers. Jog and Haber (1996) reported that either using higher order finite elements or 

modifying the functional of a finite element model could suppress the formation of 

checkerboard patterns in optimal topologies of continuum structures. However, the use of 

higher order elements will significantly increase the computational cost because of the 

increase in the degrees of freedom of the structure. Beckers (1999) used the perimeter 

constraint imposed on the boundary of a continuum structure to prevent checkerboard patterns 

from formation in optimal topologies. Sigmund and Petersson (1998) proposed a filtering 

technique based on an image process to eliminate checkerboard patterns and mesh 

dependency in continuum topology optimization. The filtering technique treats the discretized 
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continuum structure as a digital image and the weighted average of strain energies over 

neighboring elements is used to produce a checkerboard free image. The density redistribution 

method suggested by Youn and Park (1997) is shown to be effective in eliminating 

checkerboard patterns from optimal designs. Fujii and Kikuchi (2000) incorporated a gravity 

control scheme into the HBO method to generate checkerboard pattern free designs. Zhou et 

al. (2001) proposed a density slop control algorithm for checkerboard patterns and direct 

member size control. A simple smoothing scheme in terms of the surrounding elements’ 

reference factors for eliminating checkerboard patterns in ESO was presented by Li et al. 

(2001b). 

 

Checkerboard patterns are also observed in optimal topologies and shapes generated by the 

PBO techniques when four-node finite elements are used in the finite element analysis. This is 

mainly due to the instability of four-node elements. The use of higher order elements such as 

eight-node elements in the PBO method can effectively suppress the formation of 

checkerboard patterns. However, the computational cost will significantly increase especially 

for practical structures, which are simulated using very fine finite elements. A simple 

checkerboard suppression algorithm has been implemented in the PBO method (Liang and 

Steven 2002). For continuum structures subject to mean compliance constraints, the nodal 

strain energy densities of an element are calculated by averaging the strain energy densities of 

neighboring elements as follows 
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in which ndζ  is the nodal strain energy density and M is the number of elements that connect 

to that node. The strain energy density of each element can be recalculated from the nodal 

strain energy densities at the nodes of the element as 
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where eζ  is the recalculated strain energy density of the eth element and Q is the number of 

nodes in the element. Element removal criteria are now based on the recalculated strain 

energy densities of elements. It has been observed that the strain energy density redistribution 

scheme can effectively suppress the formation of checkerboard patterns in performance-based 

topology optimization. For structures subject to displacement constraints, the virtual strain 

energy densities of elements are used in Eqs. (11) and (12) (Liang 2005). 

 

5. PERFORMANCE INDICES 

 

The strength and stiffness of a two-dimensional continuum structure depends on its thickness 

assigned to the initial design domain. This implies that satisfying the stress or displacement 

constraints does not guarantee an optimum. In the PBO method, inefficient elements are 

gradually eliminated from a continuum structure to improve topology performance. In order 

to evaluate the performance of resulting topologies, performance indices are needed. 

Performance indices were used to assist the selection of materials, sectional shapes and the 

layouts of truss structures (Ashby 1992; Burgess 1998). The scaling design concept was used 

in structural optimization to obtain the best feasible constrained design for trusses (Kirsch 

1982). The advantages of scaling the design are that it can monitor the history of the weight 
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reduction after each iteration and pick the most active constraints. This method can be applied 

to structural optimization when the stiffness matrix of a structure is a linear function of design 

variables. The scaling design concept has been utilized to develop a set of performance 

indices for evaluating the performance of continuum structures by Liang et al. (1999a, 2000a), 

Liang et al. (2001a) and Liang and Steven (2002). The continuum structure is scaled with 

respect to the most active constraint at each iteration in an optimization process by changing 

its thickness. These performance indices have been incorporated in the PBO algorithms to 

monitor the performance optimization history of resulting topologies in the optimization 

process.  

 

For continuum structures with stress constraints, the stress-based performance index is 

defined by (Liang et al. 1999a) 
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where max,0σ  is the maximum von Mises stress of an element in the initial structure under the 

applied loads, max,iσ is the maximum von Mises stress of an element in the current structure at 

the ith iteration, 0W  is the actual weight of the initial structure, and iW  is the actual weight of 

the current structure at the ith iteration. It can be seen from Eq. (13) that the stress-based 

performance index is a dimensionless number, which measures the performance of a 

structural topology in terms of material efficiency (the weight of the structure) and structural 

response (the maximum stress within the structure). The performance index formula is 

independent of the scale of the loads and the structure. 
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For plane stress continuum structures, the displacement-based performance index is expressed 

by (Liang et al. 2000a) 
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where ju0  is the absolute value of the most critical constrained displacement in the initial 

structure under applied loads, iju  is the absolute value of the most critical constrained 

displacement in the current structure at the ith iteration under applied loads. The 

displacement-based performance index for a plate in bending is determined by (Liang et al. 

2001a)  
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It can be seen from Eqs. (14) and (15) that displacement-based performance indices measure 

the performance of a structural topology in terms of material efficiency in resisting 

deformations.  

 

For plane stress continuum structures with mean compliance constraints, the energy-based 

performance index can be expressed by (Liang and Steven 2002) 
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where 0C  is the absolute value of the strain energy of the initial structure under applied loads, 

and iC  is the absolute value of the strain energy of the current structure under applied loads at 

the ith iteration. The energy-based performance index for plates in bending is expressed by 

(Liang and Steven 2002) 
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It can be seen from Eqs. (16) and (17) that energy-based performance indices measure the 

performance of a structural topology in terms of material efficiency and the overall stiffness 

of the structure. For structures subject to multiple load cases, the performance index of a 

structure at each iteration can be calculated by using the response parameter of the structure 

under the most critical load case in the optimization process as suggested by Liang and Steven 

(2002). 

 

Performance indices are useful tools in topology optimization of continuum structures. They 

can be used to evaluate the performance of optimized designs for continuum structures. In 

addition, they can be used to monitor the performance optimization history of topologies 

generated in an optimization process. Moreover, they can be used to assist the selection of 

topologies in structural design when esthetic and construction requirements are taken into 

account (Liang and Steven 2002). Furthermore, they can be used to compare the performance 

of optimal topologies produced by any continuum topology optimization methods (Liang et 

al. 1999a; Liang et al. 2000a).  

 

6. PERFORMANCE-BASED OPTIMALITY CRITERIA 
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By gradually eliminating lowly stressed or lowly strained elements from a continuum design 

domain, the distribution of element stresses or strain energy densities within the resulting 

structure will consequently become more and more uniform. The fully stressed design and the 

uniform strain energy density distribution have been used as optimality conditions in 

structural optimization. However, the uniform condition of stresses/strain energy densities in 

a continuum structure may not be achieved even if the constraint has been violated. This 

means that a minimum-weight design with acceptable performance levels is not necessarily a 

structure in which the distribution of element stresses/strain energy densities is absolutely 

uniform. Therefore, the uniformity of element stresses/strain energy densities cannot be 

incorporated in continuum topology optimization methods as a termination condition to 

identify the optimum. Performance-based optimality criteria have been proposed for 

identifying the optimum from an optimization process by Liang et al. (2000a, 2000b) and 

Liang (2001a) and Liang and Steven (2002). 

 

Performance-based optimality criteria (PBOC) are the maximization of the performance 

index: 

 









=

i

n

W

W
PI 0 maximize α                                                     (18) 

 

where α is the ratio of the response parameter (stress/displacement/strain energy) in the initial 

structure to the response parameter in the current structure and n is the exponent, which is 

equal to 1.0 for plane stress continuum structures and 
3

1
 for plates in bending. The PBOC 

mean that the optimal topology or shape of a continuum structure under applied loads is 

achieved when the product of its associated structural response parameter and material 
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consumption is a minimum. The optimal topology obtained represents an efficient load-

carrying mechanism within the design domain. The performance index can be employed to 

monitor the optimization process so that the optimum can be identified from the performance 

index history. Rozvany et al. (2002) realized that traditional optimality criteria are not 

adequate for continuum structures so that they used extended optimality criteria in continuum 

topology optimization. As reported by Setoodeh et al. (2005), the extended optimality criteria 

are similar to the PBOC proposed by Liang et al. (2000a) and Liang and Steven (2002). 

 

7. PERFORMANCE OPTIMIZATION PROCEDURE 

 

The PBO technique utilizes the finite element analysis (FEA) method as a modeling and 

computational tool. The stresses or strain energy densities of elements can be calculated from 

the results of finite element analyses. Lowly stressed/strained elements are identified as 

inefficient elements for elimination. The performance of a structure can be improved by 

gradually eliminating inefficient elements from the structure. The process of FEA, 

performance evaluation and element removal is repeated until the performance of the 

structure is maximized. The flowchart of the performance optimization procedure is depicted 

in Figure 1. The optimization procedure is also summarized as follows: 

 

(1) Model the initial continuum structure with fine finite elements.  

(2) Perform the finite element analysis on the structure. 

(3) Evaluate the performance of the resulting structure using performance indices. 

(4) Calculate the stresses/strain energy densities of elements under each load case. 

(5) Remove a small number of inefficient elements from the design regions.  

(6) Check the continuity of the resulting structure. 

(7) Check the symmetry of the resulting structure 
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(8) Repeat step (2) to (7) until the performance index is less than unity. 

(9) Plot the performance index history and select the optimal design. 

 

In the PBO method, the elimination of a small number of inefficient elements from a structure 

at each iteration may result in singular elements which are disconnected to the continuum 

design domain. A continuity scheme has been implemented in PBO algorithms to avoid the 

discontinuity of the design domain. This scheme assumes that two elements are connected 

together if they have at least one common edge. Any element that is not connected with other 

elements is considered as a singular element, which is removed from the model. 

 

Numerical errors may occur in the calculation of element strain energy densities due to 

approximate concepts adopted in the formulation. This may lead to an unsymmetrical 

structure even if the initial structure has a symmetrical geometry, loading and support 

condition. A scheme for checking the symmetry of resulting structures has been implemented 

in PBO algorithms. Extra elements are removed from the structure to maintain the symmetry 

of the resulting structure under an initially symmetrical condition. 

 

8. PRACTICAL APPLICATIONS 

 

The ultimate goal of the development of optimization techniques is to provide practicing 

design engineers with advanced design tools that can be used in the design of engineering 

structures in practice. The PBO technique has the capacity not only to generate the global 

optimum but also to monitor the performance optimization history of resulting topologies in 

an optimization process. This allows the designer to tailor the design to a specific 

performance level which satisfies the requirements of structural performance, esthetic and 
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construction (Liang 2005). The PBO technique can be used to solve a wide range of structural 

design problems. It can be used to generate optimal topology designs for bracing systems in 

multistory steel framed buildings (Liang et al. 2000c) and strut-and-tie models in structural 

concrete (Liang et al. 2000b, 2001b, 2002). 

 

Strut-and-tie models are rational tools for the design and detailing of structural concrete 

(Marti 1985; Schlaich et al. 1987). However, traditional methods for developing strut-and-tie 

models in structural concrete involve a trial-and-error process. The strut-and-tie model 

developed using these methods is not unique and will vary with the designer’s experience. To 

overcome this problem, the PBO techniques have been developed for automatically 

generating optimal strut-and-tie models for the design and detailing of reinforced and 

prestressed concrete structures (Liang et al. 1999c, 1999d, 2000b, 2001b, 2002; Liang 2006). 

Worked examples on the optimization and detailed design of strut-and-tie models in concrete 

structures were provided by Liang (2005). The development of strut-and-tie models using 

topology optimization techniques has attracted the attentions of other researchers (Ramm et 

al. 1997; Ali and White 2001; Biondini et al. 2001; Guan 2005; Leu et al. 2006; Kwak and 

Noh 2006).  

 

9. DESIGN EXAMPLES 

 

9.1 Topology Design of Bridges 

 

The PBO technique was used to find the optimal topology design for a bridge subject to 

uniformly distributed traffic loads as depicted in Figure 2 (Liang and Steven 2002). The 

bottom supports of the bridge were fixed. The design domain was simulated using 90 ×  30 
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four-node plane stress finite elements. The bridge deck was modeled by two rows of elements 

below the loading level and was treated as a non-design domain. The uniformly distributed 

loading was simulated by applying a 500 kN point load per node. The Young’s modulus of 

material E = 200 GPa, Poisson’s ratio ν  = 0.3 and the thickness of elements t = 300 mm were 

specified in the finite element analysis. The element deletion ratio of 1 per cent was used in 

the optimization process. 

 

The performance characteristic curve for the bridge is presented in Figure 3. The figure shows 

that when inefficient elements were gradually removed from the design domain, the weight of 

the bridge structure was reduced with an increase in its mean compliance. The performance 

index history of the bridge is shown in Figure 4. It can be seen from Figure 4 that when 

underutilized elements were eliminated from the design domain, the performance index of the 

bridge increased from 1.0 to the maximum value of 1.4. After iteration 64, the performance 

index dropped sharply and this indicated that the load transfer mechanism was destroyed by 

further element removal. Therefore, any topology obtained after iteration 64 is not 

recommended as the final design. 

 

The topology optimization history of the bridge is presented in Figure 5. The optimal 

topology generated by the PBO technique shown in Figure 5(c) indicates a well-known tie-

arch bridge structural system that has commonly been used in bridge construction. The 

esthetic issue is often an important consideration in the design of large-scale bridges. The 

performance index can be used to assist the selection of a bridge form that not only has a good 

looking but also possesses high structural performance. The performance index of the optimal 

topology is 1.4 while the topology shown in Figure 5(d) is 1.38. However, the bridge form 
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shown in Figure 5(d) looks better than that of the optimum. Therefore, the topology presented 

in Figure 5(d) shall be used as the final form for the bridge.  

 

9.2 Strut-and-tie models in concrete structures 

 

A simply supported concrete deep beam shown in Figure 6 is to be designed to support a 

concentrated design load of 3000 kN (Liang 2005). The width of the beam was 400 mm. The 

automated PBO technique was employed to develop a strut-and-tie model for the design and 

detailing of this concrete deep beam. The deep beam was modeled using 3066×  four-node 

plane stress elements. The compressive cylinder strength of concrete '

cf  = 32 MPa, Young’s 

modulus of concrete cE  = 28600 MPa, and Poisson’s ratio ν  = 0.15 were specified in the 

finite element analysis. The mean compliance constraint was considered. The element 

removal ratio of 2 per cent was used in the optimization process.  

 

Figure 7 depicts the performance characteristic curve for the concrete deep beam in the 

optimization process. The figure shows that the mean compliance of the concrete deep beam 

increased when lowly strained elements were eliminated from the deep beam. The 

performance of the deep beam in the optimization process was monitored by the performance 

index shown in Figure 8. The maximum performance index was 1.57. After iteration 32, 

however, the performance index decreased sharply because further element elimination 

resulted in the breakdown of the load transfer mechanism in the concrete deep beam.  

 

The optimization history of strut-and-tie model in the concrete deep beam is shown in Figure 

9. It appears from the figure that the load transfer mechanism in the concrete deep beam 

gradually became clear when inefficient elements were systematically eliminated from the 
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model. The optimal topology depicted in Figure 9(d) occurred at iteration 32. The optimal 

structure represents the most efficient load transfer mechanism (strut-and-tie model) in the 

concrete deep beam at the ultimate limit state. The inclined tension tie shown in Figure 9(d) is 

needed to make the forces equilibrium at points B and D as depicted in Figure 10. If steel 

reinforcement is not provided to resist tension force in this tie, the deep beam will crack in 

this region. The optimal topology was transformed to a discrete strut-and-tie model illustrated 

in Figure 10, where the solid lines represent tension ties and the dashed lines represent 

compression struts. A detailed design of this concrete deep beam using the optimal strut-and-

tie model generated by the PBO technique can be found in Liang (2005). 

 

9.3 Bracing systems for multistory steel frames 

 

Figure 11 depicts a 3-bay, 12-story rigid steel frame under revisal lateral loads. The frame 

structure was fixed at points A, B, C and D as shown in Figure 11. The automated PBO 

technique was employed to generate an optimal bracing system for this steel frame. Gravity 

loads were not considered in the optimization of the lateral bracing system. The beam and 

column were modeled using 15 and 9 beam elements respectively with a total of 684 elements 

for the whole frame. The Young’s modulus E = 200 GPa, shear modulus G = 7690 MPa, and 

the material density ρ  = 7850 kg / m
3
 were specified for steel sections. A linear elastic finite 

element analysis was undertaken on the unbraced frame structure. The BHP hot rolled 

standard steel sections were then selected from databases to size the members of the frame 

based on strength performance criteria. Beams were grouped together as having a common 

section for each floor whilst columns were grouped for every two stories. Steel sections 

selected for frame members are given in Liang et al. (2000c). 
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The maximum lateral displacement of the unbraced frame obtained was 618 mm, which 

exceeds the drift limit of H / 400, where H is the total height of the frame. Therefore, a 

continuum structure with a uniform thickness of 25 mm was used to fully brace the frame to 

reduce lateral deflections. The continuum structure was treated as a design domain, which was 

divided into 45 × 108 four-node plane stress elements. The steel frame and the continuum 

structure were connected together at the locations of beams and columns with compatible 

degrees of freedoms. The Young’s modulus E = 200 GPa and Poisson’s ratio ν  = 0.3 were 

used for the continuum design domain. The element removal ratio of 2 per cent was adopted 

in the optimization process.  

 

The performance characteristic curve and the performance index curve for the braced steel 

frame are presented in Figures 12 and 13 respectively. In these curves, the weight of the 

continuum structure was used while the mean compliance of the braced frame was used. It 

appears from Figures 12 and 13 that the element removal resulted in a significant reduction in 

the weight of the continuum structure and the increase in the mean compliance of the braced 

frame.  The optimal topology of the bracing system for the frame is shown in Figure 14(a), 

which provides the structural designer with very useful information on which member of the 

steel frame should be stiffened by resizing. The optimal topology of the bracing system for 

the steel frame can be transformed to a large-scale bracing system depicted in Figure 14(b). 

Since the mean compliance constraint in terms of the lateral drift has not been reached the 

actual limit at the optimum, sizing techniques can be employed to further optimize the braced 

frame using available standard steel sections. This example shows that continuum topology 

optimization is an effective tool for use in the conceptual design of bracing systems for 

multistory steel frameworks (Mijar et al. 1998). Advanced analysis techniques can be used to 
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analyze the bracing steel frame to carry out a final check for its strength and stiffness 

performance (Xu et al. 2006; Gong et al. 2006). 

 

10. CONCLUSIONS 

 

A state-of-the art review of the performance-based optimization techniques for topology 

design of continuum structures subject to stress, displacement and mean compliance 

constraints has been presented in this paper. Element removal criteria for continuum 

structures with performance-based constraints used in the PBO method were described. 

Techniques for suppressing the formation of checkerboard patterns in continuum topology 

optimization were reviewed. The importance of performance indices for monitoring the 

performance optimization history of plane stress continuum structures and plates in bending 

was highlighted. Performance-based optimality criteria have been generalized as the 

maximization of the performance index in an optimization process. A general performance 

optimization procedure was presented. Three design examples were presented to demonstrate 

the efficiency of the PBO technology as a practical performance-based design tool.  

 

The PBO technique incorporates performance indices and performance-based optimality 

criteria into optimization algorithms to monitor the performance optimization history and to 

identify the optimum from an optimization process. The optimization technique allows the 

designer to tailor the design to a specific performance level required by the owner. The PBO 

technique can be used to solve a wide range of structural design problems. It can be used to 

automatically generate optimal strut-and-tie models for the design and detailing of structural 

concrete and optimal bracing systems for multistory steel and composite frames. Developing 

strut-and-tie models in structural concrete members using trial-and-error methods is a time-



 25 

consuming and challenging task for structural designers. The automated PBO technique 

developed overcomes the limitations of trial-and-error methods for developing strut-and-tie 

models and is an efficient design tools for structural designers. It can be used in the 

performance-based design of engineering structures.  
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Figures 

 

Figure 1. Flowchart of performance optimization procedure 

 

 

 
 

 

 

Figure 2. Design domain for a bridge (Liang and Steven 2002) 
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Figure 3. Performance characteristic curve for the bridge (Liang and Steven 2002) 
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Figure 4. Performance index history of the bridge (Liang and Steven 2002) 
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(a) Topology at iteration 20                  (b) Topology at iteration 40 

 

 

      
  

 

                 (c) Optimal topology at iteration 56            (d) Topology at iteration 64 
 

 

Figure 5. Topology optimization history of a tie-arch bridge (Liang and Steven 2002) 

 

 

 

 

 

 
 

 

Figure 6. Simply supported concrete deep beam (Liang 2005) 
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Figure 7. Performance characteristic curve for the concrete deep beam 
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Figure 8. Performance index history of the concrete deep beam 
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(a) Topology at iteration 10                      (b) Topology at iteration 20 
 

 

          
 

  

(c) Topology at iteration 30                     (d) Optimum at iteration 32 

 

Figure 9. Optimization of strut-and-tie model in the concrete deep beam 
 

 

 

 

 

 

 
 

 

Figure 10. Discrete strut-and-tie model in the concrete deep beam (Liang 2005) 
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Figure 11. A 3-bay, 12-story steel frame (Liang et al. 2000c) 
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Figure 12. Performance characteristics of bracing system 
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Figure 13. Performance index history of bracing system (Liang et al. 2000c) 

 

 

                      

 

 

(a) Optimal topology              (b) Discrete bracing system 

 

Figure 14. Optimal bracing system for the 12-story steel frame (Liang et al. 2000c) 

 

 
 

 


