
A Privacy-Preserving Access Control Scheme
with Verifiable and Outsourcing Capabilities in

Fog-Cloud Computing

Zhen Cheng1, Jiale Zhang1, Hongyan Qian1, Mingrong Xiang2, and Di Wu3

1 College of Computer Science and Technology, Nanjing University of Aeronautics
and Astronautics, Nanjing 211106, China
{czheng, jlzhang, qhy98}@nuaa.edu.cn

2 Faculty of Science, Engineering and Built Environment, Deakin University,
Melbourne, VIC 3216, Australia

mxiang@deakin.edu.au
3 School of Computer Science, Centre for Artifical Intelligence, University of

Technology Sydney, Sydney, NSW 2007, Australia
Di.Wu@uts.edu.au

Abstract. Fog computing is a distribution system architecture which
uses edge devices to provide computation, storage, and sharing at the
edge of the network as an extension of cloud computing architecture,
where the potential network traffic jams can be resolved. Whereas, the
untrustworthy edge devices which contribute the computing resources
may lead to data security and privacy-preserving issues. To address se-
curity issues and achieve fine-grained access control to protect privacy of
users, ciphertext-policy attribute-based encryption (CP-ABE) mechanis-
m has been well-explored, where data owners obtain flexible access policy
to share data between users. However, the major drawback of CP-ABE
system is heavy computational cost due to the complicated cryptograph-
ic operations. To tackle this problem, we propose a privacy-preserving
access control (PPAC) scheme and the contributions are tri-folded: 1)
we introduce outsourcing capability in fog-cloud computing (FCC) envi-
ronment; 2) the outsource verification mechanism has been considered to
guarantee the third party execute the algorithm correctly; 3) we design
a partiality hidden method to protect the privacy information embedded
in the access structures. The experimental results show that our pro-
posed PPAC is efficient, economical and suitable for mobile devices with
limited resources.

Keywords: Fog-cloud computing · Attribute-based encryption · Privacy-
preserving · Access Control.

1 Introduction

With the high demand of data storage and sharing in the Internet of Things
(IoT), cloud computing has become solution regard to its ability to make all of

2 Zhen Cheng et al.

the connected devices work together and store the unprecedented amount of da-
ta [1]. However, transferring huge amount of data from IoT devices to the cloud
server is not only adding latency of the data transportation, but also consumes
constrained network resources. For example, vehicles in the autonomous vehicle
network might produce gigabytes data in one second, where shorter response
time could help the vehicle to avoid the accident [2]. In order to transport large
amount of data and reduce the response time, fog computing has been proposed
as a promising solution to mitigate the limitation of IoT devices with constrained
resources. As an extension of cloud computing, fog computing offloads the com-
munication and computation burden of the network by processing data near the
sources of data [3]. However, the security and privacy issues still present practi-
cal concerns for fog computing, where the cloud server can not be fully trusted
and the edge devices are untrustworthy as well [4]. Therefore, the purpose of this
work is to achieve lightweight and privacy-preserving access control in fog-cloud
computing (FCC) by outsourcing partial cryptosystem computations to the fog
and cloud servers.

The notion of attribute-based encryption (ABE) was first introduced by Sa-
hai and Waters based on fuzzy identity encryption [5]. Furthermore, Goyal et al.
proposed the key-policy attribute-based encryption (KP-ABE) scheme [6] and
Bethencourt et al. present ciphertext-policy attribute-based encryption (CP-
APE) construction methods [7]. Subsequently, a large number of ABE schemes
were proposed [8–12], which add different functions on original ABE, such as ci-
phertext auditing and privacy protecting. Due to the heavy computation cost for
the encryption and decryption phases, a new method of outsourcing decryption
of ABE was proposed by Green et al [13]. However, since the proxy server cannot
be fully trusted, verifiable outsourced computation is required. The technique
proposed in [14, 15] can be used to outsource the operations of decryption in
ABE systems, because the verification mechanism is considered along with out-
sourcing ABE schemes. Recently, [16,17] demonstrate that the ABE scheme can
be applied to fog computing environment to solve the secure storage problem.
However, these solutions still have security and privacy problems: preventing to
the untrustworthy third party from learning private information and ensuring
the correctness of results returned by the untrustworthy third party.

To tackle the above problems, we propose a verifiable and outsourced ABE
mechanism, which not only protects data privacy, fine-grained access control
and brings verifiability to the outsourced computation, but also reduces the
computation cost. The contributions can be summarized as follows:

– A lightweight access control model in FCC: We first propose a novel
lightweight ABE system to outsource the computation of both encryption
and decryption procedure. As a result, most of the complicated cryptographic
operations can be outsourced to the fog or cloud servers.

– A verifiable mechanism for outsourcing capability: In order to avoid
the incorrect results from cloud servers, we present a concrete verification
mechanism for outsourced computation capability.

Privacy-Preserving Access Control in Fog-Cloud Computing 3

– A partially hidden access structure: To protect the private informa-
tion embedded in the access structures, we further design a partially hidden
method along with the outsourced ABE system. In the proposed system, the
attributes are hidden from the users whose private key does not satisfy the
access structure.

The rest of this paper are organized as follows. In Section 2, we briefly in-
troduce the basic knowledge of attribute-based encryption method. The sys-
tem model is presented in Section 3, and the construction of proposed privacy-
preserving access control scheme is detailed in Section 4. Extensive experimental
evaluation is conducted in Section 5. Finally, Section 6 gives the conclusion.

2 Preliminaries

In this section, we briefly revisit the basic definition of bilinear groups, CP-ABE
scheme, access structure, and the linear secret sharing schemes (LSSS).

2.1 Bilinear Maps

Let an algorithm that inputs a security parameter λ and outputs a tuple (q,G,GT , e),
where G and GT are two multiplicative cyclic groups of prime order q. The bi-
linear map e : G×G→ GT fulfills the following properties:

– Bilinearity: e(ga, gb) = e(g, g)ab for all g ∈ G, a, b ∈ Z∗q .
– Non-degeneracy: There exist e(g, g) 6= 1 such that g ∈ G.
– Computable: There is an efficient algorithm to compute e, for all g ∈ G.

2.2 CP-ABE

CP-ABE scheme is consisted of the following four algorithms:

– Setup (λ,U): The setup algorithm inputs security parameter λ and universe
description U . It outputs the public parameters PK and master key MSK.

– KeyGen (PK,MSK,S): The key generation algorithm takes as inputs the
PK, the master key MSK, and a set of attributes S. It outputs the private
key SK.

– Encrypt (PK,M,A): The encryption algorithm takes as input the PK, the
message M , and an access structure A. It outputs the ciphertext CT .

– Decrypt (SK,CT): The decryption algorithm takes as inputs the private
key SK with attribute set S. If S can satisfy the access structure A, it
outputs the message M . Otherwise, it outputs ⊥.

2.3 Access Structure

Let {P1, P2, · · · , Pn} is a collection of attributes, we say A ∈ 2{P1,P2,··· ,Pn} is a
monotone selection attribute set if ∀B: B ∈ A and B ⊆ C then C ∈ A. The
monotone access structure A is a non-empty subsets of {P1, P2, · · · , Pn}, i.e.,
A ∈ 2{P1,P2,··· ,Pn} \ {∅}.

4 Zhen Cheng et al.

2.4 Linear Secret Sharing Schemes

A secret sharing scheme Π over a set of parties is called linear over Zq. The
definitions are shown below:

– Assuming there are some shares among different parties from a vector over
Zq.

– There exists a matrix M with ` rows and n columns called the share-
generating matrix for Π. A function ρ which maps each row of the matrix
to an associated party (for i = 1, · · · , `), where ρ(i) is the party associated
with row i.

– When we consider the column vector v = (s, r2, · · · , rn), where s ∈ Zq is the
secret to be shared, and (r2, · · · , rn) ∈ Zq are randomly selected numbers,
then Mv is the vector of ` shares of the secret s according to Π. Note that
the share (Mv)i belongs to party ρ(i).

3 System Model

3.1 Overview of Basic Outsourcing CP-ABE Scheme

Secret KeyAccess Request

Partially Decrypted
CT

Cloud Server

Data Owner

ABE CT

Data User

plaintext

Transformation Key

Decrypted

Authority

Fig. 1. The framework of ABE with outsourced decryption in cloud computing

In the conventional outsourced CP-ABE scheme [3], there exists a fully trusted
authority to assign two types of keys for the data users and cloud server. One is
the user’s private key, called SK, which can be used to decrypt the ciphertext
requested from the central server. Another is the corresponding transformation

Privacy-Preserving Access Control in Fog-Cloud Computing 5

key TK used to construct the outsourcing part of ciphertexts. The whole work-
flow of basic outsourced CP-ABE scheme in the cloud computing scenario is
shown in Fig. 1. At first, the data owner encrypts his private data by using ABE
scheme and sends the ciphertext to the cloud center for storage. Once receive the
access request from the data user whose attributes satisfy the access policy, the
cloud server converts the original ABE ciphertext into a simple ElGamal-form
ciphertext by using TK. Then, this ElGamal-form ciphertext will be sent to the
data user. Note that this ElGamal-form ciphertext is encrypted under the user’s
private key SK for the same message. At last, the data user can obtain the
plaintext by a simple operation based on the secret key SK.

In our work, we mainly focus on the following issues over the basic outsourced
CP-ABE scheme in the cloud computing scenario:

– Although conventional outsourced ABE scheme can shift part of decryption
operations to the third party, the encryption step still brings the heavy
computation costs, which will consume a lot of resources of IoT device and
waste the network bandwidth.

– The correctness of the ciphertext which partially decrypted in the cloud
computing center cannot be guaranteed. Some cloud servers may become
”lazy” to save the overhead of bandwidth and resource, which will return
”fake results” to the real ones.

– The access structures embedded in the ciphertext usually contain private
information of data owner, that sensitive information could be disclosed by
the untrusted data user.

3.2 Our Proposed PPAC Framework

To solve the aforementioned challenge, we take both verification and privacy into
consideration and propose a privacy-preserving access control scheme with veri-
fiable and outsourced capabilities in fog-cloud computing, named PPAC. Similar
to the outsourced decryption mechanism, the data owner can also outsource the
encryption to the fog server and verifies the correctness of the results returned
by the fog server. Moreover, the embedded access structure is partially hidden
from the data user whose private keys do not satisfy the access policy.

As depicted in Fig.2, the whole access control system consists of five entities:
authority, cloud server, fog servers, data owners, and data users.

– Authority: The authority is a fully trusted entity whose duty is to bootstrap
the whole system and generates key materials associated with access control
policies.

– Cloud: The cloud is the central server for data storage and sharing. Its
duty is to collect all the users’ data from fog servers and further make some
analytics.

– Fog servers: It mainly provides the data users with the computing and
storing function on the edge network to reduce the delay and improve the
service quality.

6 Zhen Cheng et al.

MOVE

Fog2Fog3

Encryption

 &verify

Fog1

Central Server

 Cloud
storage

Decryption

request
Decryption

request

Data

request
receive

Fog

User

Fig. 2. Overview of proposed privacy-preserving access control system

– Data owners: In the fog-cloud model, IoT devices such as smart-phones,
wearable devices, smart home appliances and etc., which gather data nearby
and uploads them in an encrypted form. However, IoT devices with limited
resources can only bear lightweight operations.

– Data users: Data users play a role with data consumers who can request
private data stored in the cloud. They also cannot accept the heavy compu-
tation costs and a long-delayed response due to its resources-constraint.

4 Construction of Proposed PPAC

In this section, we present the concrete PPAC scheme with verifiable and out-
sourcing capabilities which consists of eight algorithms. Note that the algorithms
of Setup, KeyGen, and GenTK.out are performed on a certain trusted authority.

4.1 Algorithms in PPAC Scheme

1. Setup (λ,U)→ (PK,MSK): On input a security parameter and an attribute
universe description U = 1, 2....`. It outputs public parameters PK and a master
key MSK. The setup algorithm works as follows:

Privacy-Preserving Access Control in Fog-Cloud Computing 7

– Chooses a bilinear map D = (p,G,GT , e), where p is the prime order of the
groups G and GT . Then, it chooses three random generators (g, h, u) and
one exponent α ∈ Zp.

– Chooses a collision-resistant hash function H : {0, 1}∗ → Z∗p and adopts the
key derivation function (KDF1) [18], where the length of function output is
defined as L = |key|+ |p| and p is the prime order.

– Publishes the public parameters as PK = {D, e(g, g)α, g, h, u,H,L,KDF1},
and the corresponding master key can be formed as MSK = (PK,α).

2. KeyGen (PK,MSK,S) → (SK): On input public parameters PK, the
master secret key MSK and a set of attributes S = {A1, · · · , An}. It outputs a
private key SK associated with S. The algorithm works as follows:

– Generates a set of random values (r, r1, · · · , rk) ∈ Zp.
– Computes k0 = gαur, and k1 = gr.
– For all i ∈ [1, k], calculates ki,2 = gri and ki,3 = (uhAi)ri .
– Then, it sets the private key as SK = (S, PK, k0, k1, {ki,2, ki,3}i∈[1,k]).
– Sends the private key SK to the data owners.

3. GenTK.out (SK) → (TK,RK): On input a private key SK, it outputs a
transfer key TK and a corresponding retrieval key RK. The algorithm works as
follows:

– Randomly chooses a number τ ∈ Z∗p.
– Computes k0

′ = uα/τur/τ , k1
′ = gr/τ , ki,2

′ = gri/τ , and ki,3
′ = (uhAi)ri/τ .

Then, it sets the transfer key as TK = (S, PK, k0
′, k1

′,
{
ki,2
′, ki,3

′}
i∈[1,k])

and the related retrieval key can be formed as RK = (TK, τ).
– Sends the retrieval key RK to the data users.

Note that, the aforementioned three algorithms (i.e., Setup, KeyGen, and Gen-
TK.out) are all executed at the authority side.
4. Encrypt.out1 (PK,N) → (IT1): This algorithm is performed by the fog1.
On input public parameters PK and maximum bound of N rows in any LSSS
access structure, it outputs a intermediate ciphertext IT1. The algorithm works
as follows:

– Chooses three random numbers (xi
′, yi
′, λi

′) ∈ Zp, where i ∈ [1, N] and

computes Ci,1
′ = uλi

′
and Ci,2

′ = (uhxi
′
)yi

′
.

– Randomly picks s′ ∈ Zp and computes C0
′ = gs

′
. Then, the intermediate

ciphertext can be formed as IT1 = (s′, C0
′,
{
xi
′, yi
′, λi

′, Ci,1
′, Ci,2

′}
i∈[1,k]).

– Sends IT1 to the data owner for consolidation and creates a replica for the
storage in cloud center.

5. Encrypt.out2 (PK,N)→ (IT2): This algorithm is executed by the fog2. On
input public parameters PK and a maximum bound of N rows in any LSSS
access structure, it outputs a intermediate ciphertext IT2. The algorithm works
as follows:

8 Zhen Cheng et al.

– Picks three random exponent (xi
′′, yi

′′, λi
′′) ∈ Zp, where i ∈ [1, n] and cal-

culates Ci,1
′′ = uλi

′′
and Ci,2

′′ = (uhxi
′′
)yi

′′
.

– Randomly picks s′′ ∈ Zp and computes C0
′′ = gs

′′
. Then, the intermediate

ciphertext is IT2 = (s′′, C0
′′,
{
xi
′′, yi

′′, λi
′′, Ci,1

′′, Ci,2
′′}

i∈[1,k]).

– Returns IT2 to the data owner for consolidation and send a copy to the cloud
center for storage.

6. Encrypt.owner (PK, IT1, IT2, A, ρ, τ) → (CT, key): It is performed by the
data owners. On inputs public parameters PK and two intermediate ciphertexts
IT1, IT2 and an access structure (A, ρ, τ), where A is an λ × n matrix, ρ is
a map from each row Ai of A to an attribute name, and τ is a set consists
of
{
τρ(1), · · · , τρ(λ)

}
and τρ(i) is the value of attribute ρ(i) calculated from the

access policy. At last, the algorithm outputs the ciphertext CT and keeps key
locally. The algorithm works as follows:

– Adopts a collision-resistant hash function H : {0, 1}∗ → Z∗p and recomputes

s = s′ + s′′ and C0 = C0
′ · C0

′′ = gs
′+s′′ , where key = e(g, g)αs.

– Recomputes the parameters λi = λi
′+λi

′′, yi = yi
′+yi

′′, and xi = xi
′+xi

′′.
Then, calculates Ci,1 = Ci,1

′ ·Ci,1′′ = uλi and Ci,2 = Ci,2
′ ·Ci,2′′ = (uhxi)yi .

– Randomly chooses v2, · · · , vn ∈ Zp, denotes a vector as V = (s, v2, · · · , vn)T

and computes another vector of shares of s as (b1, · · · , bλ) = M ·V . For i = 1
to λ, it computes Ci,3 = bi − λi, Ci,4 = ρ(i)yi − xiyi, and Ci,5 = −yi.

– Generates a new key SSK with the key derivation function and computes
KDF1(key, L) = ssk||d, ĉ = uH(ssk)vH(d), where d is the length of SSK.
Here, we add a Pedersen commitment ĉ to achieve the verification of the
outsourced computation.

– Randomly chooses t′ ∈ Zp and computes F = e(g, g)αt
′
.

– Picks a set of random values v2
′, · · · , vn′ ∈ Zp, denotes a vector V ′ =

(t′, v2
′, · · · , vn′) and computes another vector of shares of t′ as b1

′, · · · , bλ′ =
M · V ′. Then, Ci,3

′ = bi
′ − λi. At last, it sets the ciphertext as CT1 =

(M,ρ,C0, ĉ,
{
Ci,1, Ci,2, Ci,3, Ci,3

′, Ci,4
′, Ci,5

′}
i∈[1,λ]).

Note that each attribute consists of an attribute value and an attribute name.
If the attribute set does not satisfy the access structure, the attribute value in
the access structure is hidden, while the attribute name can be broadcast. The
role of CT2 is to help the user who satisfies the access structure to decide which
attribute set satisfies the access structure and further prevent the cloud from
getting too much information during decryption. The scheme can partially hide
the access structure to the cloud center and fog server.
7. Transform.out (TK,CT)→ CT ′: This algorithm is performed by the cloud
server. On inputs a conversion key TK and the ciphertext CT , it outputs a
transformed ciphertext CT ′. We define L to be the smallest set of subsets that
satisfy the access structure (M,ρ). When received a ciphertext CT and a con-
version key TK for attribute sets S from the data users, the cloud server first
checks whether the user’s attributes meet the smallest set of subsets L. The
algorithm works as follows:

Privacy-Preserving Access Control in Fog-Cloud Computing 9

– Checks whether there exists an I ∈ L that satisfies:

F =
e(C0, k0

′)

e(u
∑
i∈I C

′
i,3wi , k1

′) ·
∏
i∈I(e(Ci,1, k1

′)e(Ci,2hCi,4 , k1
′)e(gCi,5 , ki,3))wi

(1)
where

∑
i∈I wiMi = (1, 0, · · · , 0). If there is no member of L that satisfies

this equation, it outputs ⊥. Otherwise, we calculate the encapsulated key as:

e(C0, k0
′)

e(u
∑
i∈I Ci,3wi , k1

′) ·
∏
i∈I(e(Ci,1, k1

′)e(Ci,2hCi,4 , k1
′)e(gCi,5 , ki,3))wi

=
e(gs, gα/τ)e(gs, ur/τ)

e(u
∑
i∈I(bi−λi)wi , gr/τ)e(uλi , gr/τ)

wi

=
e(gs, gα/τ)e(gs, ur/τ)

e(us, gr/τ)
= e(g, g)αs/τ

(2)

– It sets the transformed ciphertext as CT ′ = (e(g, g)αs/τ , T ′ = ĉ,M, ρ) and
sends the CT ′ to the data users.

8. Decrypt.user (RK,CT,CT ′)→ m: This algorithm is executed by the data
users. On input a retrieval key RK, a ciphertext CT and a transformed cipher-
text CT ′, it outputs ⊥ when T ′ 6= ĉ. Otherwise, it outputs key = (key′)τ =
e(g, g)αs. In this situation, it is necessary to check the correctness of the de-
cryption results returned by the cloud server. We take the method of adding a
verification message(Pedersen commitment ĉ) in the encryption process. When
the data user requests data from the cloud server, if the attribute set meets the
access structure, the cloud will send ciphertext to the data user, because the
cloud does not need to do any calculation in this process, so there is no reason
for cloud server sends a false ciphertext. Then, the data user requests the cloud
server for the partially decrypt ciphertext. The Pedersen commitment ĉ of the
decrypted ciphertext is compared with the verification information T ′ in the

original ciphertext by the user. If T ′ = ĉ, it computes m = m·e(g,g)αs
e(g,g)αs .

4.2 Correctness of Batch Verification for Outsourced Encryption

Due to the complexity of fog computing, we consider a scenario where a fog
server might perform only a portion of the computation and return incorrect
results to save computing resources. According to [19], we can use a naive way
to verify the modular exponentiation in some group, i,e,m given (g, x, y), check
that whether gx = y is correct or not. In our work, there exists two types
of ciphertexts: the ciphertext with the same one generator (C0

′ = gs
′
, C0

′′ =
gs

′′
, Ci,1

′ = uλi
′
, Ci,1

′′ = uλi
′′
) and ciphertext with two different generators

(Ci,2
′ = (uhxi

′
)
yi

′

, Ci,2
′′ = (uhxi

′′
)
yi

′′

). Thus, we give the correctness of two-
types of ciphertexts as follows:
[Type-1]:

10 Zhen Cheng et al.

– Given: Let P = |G| be the order of the group G and g is a primitive element
of G. Defining {(x1, y1), · · · , (xn, yn)} with xi ∈ Zp and yi ∈ Zp, as well as
a security parameter k.

– Check: ∀i ∈ [1, · · · , n], yi = gxi .

– Picks a random subset S = (b1, · · · , bn) ∈ {0, 1}k and computes x =
∑n
i=1 xibi

mod p, y =
∏n
i=1 y

bi . If gx = y, returns accept, else reject.

[Type-2]:

– Given: Let P = |G| be the order of the group G and g is a primitive element
of G. Defining {(x1, y1, z1), · · · , (xn, yn, zn)} with (xi, yi) ∈ Zp and zi ∈ G,
as well as a security parameter k.

– Check: ∀i ∈ [1, · · · , n], zi = uxihyi .

– Picks a random subset S = (b1, · · · , bn) ∈ {0, 1}k and computes x =
∑n
i=1 xibi

mod p, y =
∏n
i=1 y

bi , and z =
∏n
i=1 zibi. If uxhy = z, returns accept, else

reject.

4.3 Security Analysis

Here, we give a brief discussion about the security properties of our PPAC
scheme. Note that the cloud and the fog servers are assumed to be semi-trusted
in our security model. In particular, we describe the security problems of the
scheme from the following aspects.
Data confidentiality: First of all, we outsource the encryption to two fog
servers, both of which are run by different operators. Note that there’s no reason
for these two fog servers to collude with each other and reveal the user’s private
key information. Besides, the cloud center cannot get any plaintext information
about the user during the partial decryption process. Finally, when the data is
requested, the data user cannot get any useless information about the plaintexts
unless the attribute set satisfies the access structure.
Data validation: For the outsource verification, we adopt the batch verifica-
tion mechanism to check the correctness of encryption result, which has been
widely used in cryptographic to verify modular exponentiation operations. In
general, the expected error of this method is within our acceptable range. For
the outsourced decryption validation, the key derived function KDF and the
anti-collision hash function have been used to hide the final decryption results
in the ciphertexts, which can protect the privacy of original data. For the user
side decryption phases, the data user can obtain the ciphertexts from the cloud
center only if the user’s attribute set satisfies the access structure. In this way,
the user can get the verification information contained in the correct ciphertext
to verify the results and further ensure the correctness of outsourcing decryption.
Privacy protection: In our proposed PPAC scheme, the attribute values of
the access structure are hidden from the cloud and fog servers while only the
attribute names of the access structure are public. Besides, when the cloud checks
whether the attribute set of the data user satisfies the access structure, the data
user is also unable to know the attribute value in this process, which means

Privacy-Preserving Access Control in Fog-Cloud Computing 11

the data owner’s private information embedded in the access structures can be
protected.

5 Performance Evaluation

5.1 Theoretical Analysis

Computation Cost Comparison : The computation cost of our scheme de-
pend on the number of modular exponentiation and pairing operations. In Table
1, we compare the efficiency of our scheme with the original ABE [5] and the
other two outsourced ABE schemes [13] and [16]. Note that, Ep and P denote
the modular exponentiation and pairing operation, respectively. ω denotes the
attribute set and λ represents the number of rows of the matrix M for LSSS. As
shown in Table 1, our scheme only leaves three exponentiations and a pairing
computation(for hiding access policy) during the encryption phase. The com-
putation cost of our schemes is less than [5] and [13]. The ABE technique [16]
has only three exponentiations, but the outsource server in [16] know the access
structure which may contain sensitive information. Thus, our scheme still be-
haves better. During the decryption phase, the computational costs for the data
user are three exponentiations which less than ABE schemes in [5] and [13].
Therefore, our scheme requires less computation costs compared with above
schemes.

Table 1. Comparison of computation costs

Schemes KeyGen Enc.user Dec.user Enc.verify Dec.verify Hidding Policy

[3] 2|ω|Ep 2|λ|(Ep + P) 2|λ|(Ep + P) × × ×
[4] 2|ω|Ep (2 + 5|λ|)Ep Ep × X ×
[19] 2|ω|Ep 3Ep 3Ep X X ×
Our 2|ω|Ep 3Ep + P 3Ep X X X

5.2 Experimental Evaluations

Here, we estimate the performance of our proposed PPAC scheme and com-
pare the results with Green’s work [13]. We implement the experiment by using
pairing-based cryptography (PBC) library for a variety of cryptographic oper-
ations and Charm framework [20] for attribute-based encryption method. To
achieve a high-security level, we choose the 224-bit MNT elliptic curve from
the PBC library. The experiments are conducted on Intel(R) Core(TM) i5-8500
3.00GHz CPU with Ubuntu 12.04.1 LTS 64-bit enviroment and using Python
3.4 as programming language.

In order to evaluate the influence of access policies on performance, we set 30
different policies in the form of (a1, · · · , an), where ai represents the attributes

12 Zhen Cheng et al.

and 1 5 n 5 100. As shown in Fig. 3, the running time for outsourced key
generation is about 100-856 ms. Furthermore, from Fig. 4(a) and Fig. 4(b), we
can see that the time for outsourced encryption and decryption are increased
close to linearly with the growth of policy attributes. In Fig. 5(a) and Fig. 5(b),
we further compared the complexity of encryption and decryption on user side.
The results demonstrate that the user side computation time of our proposed
PPAC scheme is a little higher than that of [13]. The reason for this situation is
that the verification function will bring some extra computation cost.

20 40 60 80 100

Number of attributes

0

0.2

0.4

0.6

0.8

1

T
im

e
fo

r
ou

ts
ou

rc
ed

 K
ey

G
en

 (
s)

Fig. 3. Time for outsourced key generation

20 40 60 80 100

Number of attributes

0

0.2

0.4

0.6

0.8

1

T
im

e
fo

r
ou

ts
ou

rc
ed

 e
nc

ry
pt

io
n

(s
)

(a) (encryption)

20 40 60 80 100

Number of attributes

0

1

2

3

4

5

6

T
im

e
fo

r
ou

ts
ou

rc
ed

 d
ec

ry
pt

io
n

(s
)

(b) (decryption)

Fig. 4. Time for outsourced encryption and decryption

Privacy-Preserving Access Control in Fog-Cloud Computing 13

20 40 60 80 100

Number of attributes

0

20

40

60

80

100

T
im

e
fo

r
us

er
 e

nc
ry

pt
io

n
(m

s)
Our scheme
Reference [13]

(a) (1 attacker)

20 40 60 80 100

Number of attributes

0

2

4

6

8

10

T
im

e
fo

r
us

er
 d

ec
ry

pt
io

n
(m

s)

Our scheme
Reference [13]

(b) (3 attackers)

Fig. 5. Encryption and decryption time on user

6 Conclusion

Outsourced attributed-based encryption has performed its advantages on securi-
ty data sharing in cloud computing. In this paper, we proposed a novel CP-ABE
scheme in fog-cloud computing scenario, named PPAC, which contains the ca-
pabilities of verifiable outsourced encryption, decryption, and partially hidden
access structure. The security analytics demonstrate that our presented PPAC
scheme can achieve data confidentiality, data validation, and privacy protection
simultaneously. Experimental results illustrate that PPAC can be effectively ap-
plied to the resource-constraint model devices. For the future, we will focus
on integrating privacy-preserving techniques to machine learning services in the
fog-cloud computing environment.

References

1. W Shi, J Cao, Q Zhang, Y Li, and L Xu, “Edge computing: Vision and challenges,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646. (2016)

2. K. Zhang, Y. Mao, S. Leng, Y, He, and Y. Zhang, “Mobile-Edge Computing for
Vehicular Networks: A Promising Network Paradigm with Predictive Off-Loading,”
IEEE Vehicular Technology Magazine, vol. 12, no. 2, pp. 36-44. (2017)

3. F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker, “Fog Computing May
Help to Save Energy in Cloud Computing,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 5, pp. 1728-1739. (2016)

4. J. Zhang, B. Chen, Y. Zhao, X. Cheng and F. Hu, “Data Security and Privacy-
Preserving in Edge Computing Paradigm: Survey and Open Issues,” IEEE Access,
vol. 6, pp. 18209-18237. (2018)

5. A. Sahai, B. Waters, “Fuzzy Identity-Based Encryption,” in Proc. Adv. Cryptol
(CRYPTO 2005), pp. 457-473. (2005)

14 Zhen Cheng et al.

6. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully secure
functional encryption: Attribute-based encryption and (hierarchical) inner product
encryption,” in Proc. Adv. Cryptol, pp. 6291. (2010)

7. J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-based en-
cryption,” in Proc. IEEE Symp. Security Privacy (SP 2007), pp. 321334. (2007)

8. K. Yang, X. Jia, “An Efficient and Secure Dynamic Auditing Protocol for Data
Storage in Cloud Computing,” in IEEE Transactions on Parallel and Distributed
Systems, vol. 24, pp. 1717-1726. (2013)

9. Z. Zhou, D. Huang, Z. Wang “Efficient Privacy-Preserving Ciphertext-Policy At-
tribute Based-Encryption and Broadcast Encryption,” in IEEE Transactions on
Computers, vol. 64, pp. 126-138. (2015)

10. S. Hohenberger and B. Waters, “Online/offline Attribute-based encryption,” in
Proc. Public-Key Cryptography (PKC 2014), pp. 293310. (2014)

11. J. Zhou, Z. Cao, X. Dong, and X. Lin, “Tr-mabe: White-box traceable and revo-
cable multi-authority attribute-based encryption and its applications to multi-level
privacy-preserving e-healthcare cloud computing systems,” in IEEE Conference on
Computer Communications (INFOCOM 2015), pp. 23982406. (2015)

12. Y. Rouselakis, B. Waters “Practical constructions and new proof methods for large
universe attribute-based encryption,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS 2013), pp. 463474. (2013)

13. M. Green, S. Hohenberger, B. Waters, “Outsourcing the Decryption of ABE Ci-
phertexts,” in Proc. USENIX Security Symp (USENIX Security 2011). (2011)

14. J. Alderman, C. Janson, C. Cid, and J. Crampton, “Access control in publicly ver-
ifiable outsourced computation,” in 10th ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS 2015), pp. 657-662. (2015)

15. J. Li, X. Huang, J. Li, X. Chen, and Y. Xiang, “Securely outsourcing attribute-
based encryption with checkability,” in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 25, no. 8, pp. 2201-2210. (2014)

16. H. Ma, R. Zhang, Z. Wan, Y. Lu, and S. Lin, “Verifiable and exculpable outsourced
attribute-based encryption for access control in cloud computing,” in EEE Trans-
actions on Dependable and Secure Computing, vol. 14, no. 6, pp. 679-692. (2017)

17. Kaiping Xue, Jianan Hong, Yongjin Ma, David S. L. Wei, Peilin Hong, and Nenghai
Yu, “Fog-Aided Verifable Privacy Preserving Access Control for Latency-Sensitive
Data Sharing in Vehicular Cloud Computing,” in IEEE Network, Volume: 32, pp.
7-13. (2018)

18. H. Krawczyk, “Cryptographic extraction and key derivation: The hkdf scheme,”
in Proc. Adv. Cryptol (CRYPTO 2010), pp. 631-648. (2010)

19. M. Bellare, J. A. Garay, and T. Rabin, “Fast batch verification for modular ex-
ponentiation and digital signatures,” in Proc. Adv. Cryptol (CRYPTO 2007), pp.
74-90. (2007)

20. J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan, M. Green, and
A. D. Rubin, “Charm: A framework for rapidly prototyping cryptosystems,” in J.
Cryptographic Eng., vol. 3, no. 2, pp. 111-128. (2013)

