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A B S T R A C T

Federated Learning (FL) is currently one of the most popular technologies in the field of Artificial Intelligence
(AI) due to its collaborative learning and ability to preserve client privacy. However, it faces challenges such as
non-identically and non-independently distributed (non-IID) data with imbalanced labels among local clients.
To address these limitations, the research community has explored various approaches such as using local
model parameters, federated generative adversarial learning, and federated representation learning. In our
study, we propose a novel Clustered FedStack framework based on the previously published Stacked Federated
Learning (FedStack) framework. Here, the local clients send their model predictions and output layer weights
to a server, which then builds a robust global model. This global model clusters the local clients based on their
output layer weights using a clustering mechanism. We adopt three clustering mechanisms, namely K-Means,
Agglomerative, and Gaussian Mixture Models, into the framework and evaluate their performance. Bayesian
Information Criterion (BIC) is used with the maximum likelihood function to determine the number of clusters.
Our results show that Clustered FedStack models outperform baseline models with clustering mechanisms. To
estimate the convergence of our proposed framework, we use Cyclical learning rates.
1. Introduction

As AI techniques have matured, a vast amount of human data is
being generated every second around the world. To manage this huge
data, technology giant Google introduced a mechanism that trains a
machine learning (ML) algorithm across multiple decentralized de-
vices or servers without exchanging their local data samples. This is
called Federated Learning (FL), which is also known as collaborative
learning [1]. FL overcomes the issues of data privacy that exist in
traditional centralized learning techniques where all device or server
data is merged for analysis [2]. FL has garnered significant attention
since its introduction by Google as a ML technique for predicting users’
input from Gboard (a keypad) on Android devices. This technique has
been widely adopted in communication, engineering, and healthcare.
However, medical institutes in particular possess a vast amount of
patient data that may not be sufficient to train ML or deep learning
models, and may even be biased due to a lack of data diversity. FL
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addresses this issue through its collaborative learning approach, where
local models trained in each medical institute share their model weights
with a global model stored in a shared server [3]. This maintains
data privacy, as the institute’s data remains within its premises. The
process can be used at the patient level to monitor their health status by
predicting vital signs, such as heart rate and breathing, and classifying
their physical activities. It enables personalized patient monitoring with
enhanced data privacy.

A heterogeneous stacked FL, FedStack, was proposed by Shaik
et al. [4] to overcome the problems of the traditional FL approach,
while enabling personalized monitoring of patients’ physical actions.
The authors achieved state-of-the-art performances using different deep
learning models as part of local and global clients. The FedStack
approach is confined to building the global model by stacking local
clients’ predictions heterogeneously and allowing local clients to have
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different architectural models. However, it has a limitation of non-
identically and independently distributed (non-IID) data, where the
local clients’ data distributions may be different. This can be addressed
by allowing the global model to group the local clients based on their
deep learning model output weights. To avoid any bias in grouping the
local clients, unsupervised clustering methods can be adopted.

This study proposes a novel Clustered-FedStack framework to over-
come FL’s non-IID data challenge [5]. All models trained on local clients
pass their predictions and output layer weights to the server, which
builds a global server model based on the predictions received from the
local models. Later, the global server model clusters local client models
with output layer weights received and creates intermediate clustered
models between local clients and the server. In this unsupervised
process, the server model computes the cosine distance matrix among
the local model output layer weights. To determine the number of
clusters in this process, the BIC technique is adopted and maximum
likelihood estimation is applied to the local model weights in the
server. Three types of clustering techniques: centroid-based (k-Means),
hierarchical (Agglomerative), and distribution-based (Gaussian Mixture
Model) techniques are deployed. Cyclical learning rates are applied to
estimate the convergence of the clustered models.

The proposed framework is evaluated with a human activity recog-
nition (HAR) task using the publicly available sensor-based PPG-DALiA
dataset [6]. The results show that clustered models have state-of-the-art
performance in classifying human activities with the sensor data of 15
subjects. The performance of the clustered FedStack model is compared
with four clustered FL baseline models, and the proposed model has
outperformed the baseline models in all classification metrics. More-
over, the proposed framework can be scalable to Natural Language
Processing (NLP) tasks. This has been evaluated on the drug review
dataset [7], where the intermediate clustered models performed better
and could handle a huge number of local clients with non-IID data
to achieve superconvergence. Thus, the proposed clustered FedStack
framework can group local clients and overcome the non-IID challenge
in FL. The contributions of the present study include the following:

• A novel Clustered-FedStack framework is proposed to group local
clients in an unsupervised approach and overcome the non-IID
challenge in FL.

• Improved personalized modeling in FL by building intermedi-
ate clustered models between the global server model and local
clients.

• Achievement of superconvergence of all clustered-FedStack mod-
els using Cyclical learning rates.

• A Clustered-FedStack approach that proves scalable for Natural
Language Processing (NLP) tasks, effectively handling a high
number of local clients with non-IID data.

Section 2 presents related works on FL and different aggregating
echniques developed. Section 3 presents the formulation of the re-
earch problem and the proposed Clustered-FedStack framework. In
ection 4, the proposed framework is evaluated in HAR and the results
re discussed. The framework optimization with Cyclical learning rates
s also presented in Section 4. In Section 5, we evaluate the scalability
f the proposed framework using a NLP dataset. Section 6 concludes
he paper.

. Related works

Numerous studies have explored the aggregation of local model
arameters in FL and passed them to the global model on the server.
ne of the first proposed aggregation techniques in FL is the Federated
veraging (FedAvg) algorithm, which uses the average function to
ggregate local model weights and generate new weights to feed to
he global model [8]. However, the FedAvg technique cannot optimize
122

odels if a client has a heterogeneous data distribution. To combat this,
Arivazhagan et al. [9] proposed FedPer, which has two layers: a base
layer and a personalization layer. FedAvg trains the base layers, while
the personalization layers are trained with stochastic gradient descent,
helping to mitigate the ill effects of statistical heterogeneity. Wang
et al. [10] proposed Federated Matched Averaging (FedMA), which is
a layer-wise approach that matches and merges nodes with the same
weights, trains them independently, and communicates the layers to
the global model.

Osmani et al. [11] proposed a multi-level FL system for HAR, which
includes a reconciliation step based on FL aggregation techniques such
as FedAvg or Federated Normalized Averaging. Xiao et al. [12] pro-
posed another FL system for HAR with enhanced feature extractions.
They designed a Perceptive Extraction Network (PEN) with two net-
works: a featured network based on the convolutional block to ex-
tract local features, and a relation network based on Long Short-
Term Memory (LSTM) and an attention mechanism to mine global
relationships. Pang et al. [13] proposed a rule-based collaborative
framework (CloREF) that allows local clients to use heterogeneous local
models. Tian et al. [14] discussed the limitations of traditional FL
methods in heterogeneous IoT systems and proposed a novel Weight
Similarity-based Client Clustering (WSCC) approach to address the non-
IID challenge in FL. The WSCC approach involves splitting clients
into different groups based on their data set distributions using an
affinity-propagation-based method. Their proposed approach outper-
formed existing FL schemes under different non-IID settings, achieving
up to 20% improvements in accuracy without requiring extra data
transmissions or additional models.

Federated Learning in HAR The increasing use of electronic as-
sistive health applications such as smartwatches and activity trackers
has led to the emergence of pervasive or ubiquitous computing, where
devices can seamlessly exchange data with each other [15]. Although
this has the advantage of real-time tracking of human health changes, it
is vulnerable to security breaches that compromise data privacy [16].
The advancement of AI techniques as a whole is contributing to the
massive amount of human data being generated worldwide every sec-
ond. To handle such enormous data, Google introduced FL, which trains
a ML algorithm across decentralized devices or servers without ex-
changing their local data samples. FL overcomes the data privacy issues
associated with traditional centralized learning techniques, where all
device and/or server data is merged for analysis [1]. Sannara et al. [17]
evaluated the performance of FL aggregation techniques like Feder-
ated Averaging (FedAvg), Federated Learning with Matched Averaging
(FedMa), and Federated Personalization Layer (FedPer) against central-
ized training techniques. They used the CNN model to classify eight
physical activities. Zhao et al. [18] designed an activity recognition
system based on semi-supervised FL. Ouyang et al. [19] proposed the
ClusterFL approach, which exploits the similarity of users’ data to
minimize the empirical loss of trained models. This improved Federated
model accuracy and communication efficiency between local models
and global models.

Local clients may have different data distributions, demographics,
and model architectures. Passing all the local clients’ parameters to
build a robust global server model poses challenges such as label
imbalance and non-IID. To identify hidden patterns or relationships
among the local clients and overcome these challenges, unsupervised
clustering techniques can be adopted to improve personalized learning
in FL. This study proposes a clustered FL framework to overcome these
identified challenges.

3. Methodology

To accommodate heterogeneous architectural models for local
clients, we adopt the previously published FedStack framework by
Shaik et al. [4]. This study extends the FedStack framework to the
clustered-FedStack framework, facilitating the creation of heteroge-
neous multi-global FL models by clustering individual subjects with

local models.
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Fig. 1. Clustered FedStack model.

3.1. Research problem

In this study, the research problem is to overcome the non-IID data
challenge in a FL environment. Let 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑁} be the set of
subjects, where the data is non-IID. The objective is to divide subjects
𝑆 into 𝑀 clusters 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑀}, where each cluster 𝑐𝑚 is a subset
of subjects 𝑆, 𝑐𝑚 ⊆ 𝑆. For each cluster 𝑐𝑚, there exists a local model 𝑙𝑚
that can be heterogeneous according to the subject’s convenience. The
predictions 𝑝𝑚 from local models and their corresponding output layer
weights are passed to a global model server 𝑔. The training process for
the global model 𝑔 is shown in Eq. (1).

train(𝑔) ←
𝑀
∑

𝑚=1
𝑐𝑚 ←

𝑀
∑

𝑚=1
𝑙𝑚(𝑝𝑚) (1)

where: train(𝑔) refers to the training process for the Global Model 𝑔
using local model predictions of cluster 𝑐𝑚, and 𝑙𝑚(𝑝𝑚) represents the
local model 𝑙𝑚 and its predictions 𝑝𝑚 for each subject in the cluster 𝑐𝑚.

3.2. Clustered-FedStack framework

In the Clustered-FedStack framework, local clients train their mod-
els on private data and then forward their model predictions 𝑝 and
output layer weights 𝑄 to the global server model 𝑔 for training, as
shown in Fig. 1. The figure’s arrow numbers indicate the framework
execution order. After receiving the local model predictions and out-
put layer weights, the global server model determines the number of
clusters using the BIC score. It then clusters the local clients based on
their output layer weights. For each label 𝑖 in local model training, an
output neuron without a successor is configured to gather the computed
and accumulated values from the local model’s input and hidden layers.
The output neuron value 𝑞𝑖 is calculated using Eq. (2), with inputs 𝑥𝑖,
weights 𝑤𝑖, and bias 𝑏 for a local model 𝑙𝑛. By computing all output
neuron values, the local model 𝑙𝑛 predictions 𝑝 can be estimated using
Eq. (3).

𝑞𝑖 = 𝑙𝑛(𝑏, 𝑥𝑖, 𝑤𝑖) (2)

𝑝 = 𝑙𝑛(𝑏 +
𝑛
∑

𝑖=1
𝑥𝑖 ⋅𝑤𝑖) (3)

Output neuron values for each local model 𝑙𝑛 are consolidated into
a single set 𝑄 using Eq. (4). This procedure is repeated for all local
models based on their output layer values, forming a large set  as
defined in Eq. (5).

𝑄 = {𝑞1, 𝑞2, 𝑞3,… , 𝑞𝑛} (4)

 = {𝑄 ,𝑄 ,… , 𝑄 } (5)
123

𝑙1 𝑙2 𝑙𝑛
3.2.1. Clustering technique
Given the set  from Eq. (5), where each element of the set

represents the values of a local model’s 𝑙𝑛 output layer, the goal is to
divide  into 𝑘 clusters, where 𝑘 ≤ 𝑛, represented by 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑘}.
There are various techniques that can be applied to clustering, includ-
ing centroid-based, hierarchical, and distribution-based methods. The
general objective of these methods is to minimize the within-cluster
sum of squared differences or a related measure of dissimilarity, as
described in Eq. (6). The notation arg min𝐶 refers to finding the set
of clusters 𝐶 that minimizes the following expression, where the ‘‘arg
min’’ stands for the argument of the minimum, i.e., the specific value
of the variable that results in the lowest possible value of the given
function.

arg min
𝐶

( 𝑘
∑

𝑖=1

∑

𝑥∈𝐶𝑖

‖𝑥 − 𝑐𝑖‖
2

)

(6)

Here, 𝐶 represents the set of clusters, 𝑥 is a data point, and 𝑐𝑖 is
the representative point, such as a centroid. The term ‖ ⋅ ‖ represents a
distance measure.

Cosine similarity is utilized to assign each local model’s output
neuron set to a specific cluster, considering the angle between output
neuron sets of two local model 𝑙𝑛 as 𝑄𝑙1 and 𝑄𝑙2 , the cosine similarity
can be estimated using Eq. (7).

𝑆𝐶 (𝑄𝑙1 , 𝑄𝑙2 ) =
𝑄𝑙1 ⋅𝑄𝑙2

‖𝑄𝑙1‖ ‖𝑄𝑙2‖
(7)

3.2.2. Bayesian information criterion
The proposed Clustered-FedStack technique enables the global

server model to access local models’ predictions and layer weights.
However, using an unsupervised method to determine the number of
clusters in local models is challenging. The BIC technique is utilized to
overcome this. BIC calculates its value based on a clustering model ’s
maximum likelihood function 𝑀𝐿, representing the probability that
the layer weights data fits the clustering model [20]. This is shown
in Eq. (8). BIC values balance the maximum likelihood estimation
against the number of model parameters 𝑚𝑝, seeking a model with
the fewest parameters that can accurately explain the data clusters, as
in Eq. (9).

𝑀𝐿() = −2 ln() + 𝑚𝑝 ln(𝑛) (8)

𝐵𝐼𝐶 = −2 ln() + 𝑚𝑝 ln(𝑛) = 𝑀𝐿() (9)

The BIC values for each clustering model are compared with the
minimum BIC value indicating the optimal clustering model. This pro-
cess ensures that the global model converges by configuring a suitable
number of clusters for local models, resulting in a consolidated global
model that represents heterogeneous subject models.

3.3. Clustered-FedStack algorithm

Algorithm 1 presents the proposed Clustered-FedStack process in
detail. Line 1 initializes empty sets to collect output layer weights and
clustered models, and datasets 𝐷 and 𝐷′ for evaluating the global server
model. Lines 2–7 detail the FedStack process, where local client model
predictions and weights are passed to the global server model 𝑔 for
training and testing. Lines 8–10 present the iteration through all local
model weights in 𝑔 to collect their output layer weights. Lines 11–12
detail the determination of the number of clusters to be formed from
the weights 𝑊 set. Line 13 computes the cosine distance among all
the local model weights collected. Lines 14–19 explain the clustering
process for all the local models, based on Lines 11–13.
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Algorithm 1 Proposed Clustered-FedStack Algorithm
Require:

Subjects set 𝑆 = {𝑠1 , 𝑠2 ,… , 𝑠𝑛}
Local AI models 𝑀 = {𝑚1 , 𝑚2 ,… , 𝑚𝑚}
Labels set 𝐾 = {1, 2,… , 𝑘}
Global Server Model 𝑔

nsure: Classification probabilities of labels 𝐾 for each intermediate cluster model 𝐶
1: Initialization:

𝐷: Dataset for training
𝐷′: Unseen Dataset for testing
𝑊 = ∅: Set to collect weights
𝐶𝑀 = ∅: Set for clustered models

2: 𝑠𝑡𝑎𝑐𝑘 =
{

{𝑚𝐾
𝑖 , 𝑚𝑤

𝑖 }, {𝑚𝐾
𝑗 , 𝑚𝑤

𝑗 }, {𝑚𝐾
𝑘 , 𝑚𝑤

𝑘 }
}

; ⊳ Predictions and weights of local AI models
3: for 𝑚 ∈ 𝑀 do
4: 𝑔𝑡𝑟𝑎𝑖𝑛 ← 𝑠𝑡𝑎𝑐𝑘;
5: 𝑔𝑡𝑒𝑠𝑡 ← 𝐷′;
6: end for
7: for 𝑚 ∈ 𝐺(𝑀) do
8: Collect weights of 𝑚: 𝑊 ← {𝑚,𝑤};
9: end for
10: Determine Clusters:
11: Compute BIC scores of 𝐶𝑀 ≥ 𝑀 ;
12: 𝐶𝑀 ← min(BIC);
13: Compute cosine distance among {{𝑚1 , 𝑤1}, {𝑚2 , 𝑤2},… , {𝑚𝑚 , 𝑤𝑚}};
14: Assignment:
15: for c in 𝐶 do
16: 𝑐 ← arg min

𝐶

(

∑𝑘
𝑖=1

∑

𝑥∈𝐶𝑖 ||𝑥 − 𝑐𝑖||2
)

;

17: 𝐶𝑀 ← 𝑐;
18: end for
19: Return 𝐶𝑀 ;

Fig. 2. Experimental design of the proposed framework.

. Experiments on clustered FedStack in HAR

Conventional FL methods assume that the data distribution is consis-
ent among all clients [21]. However, this assumption may not be valid
n FL, as data heterogeneity can be present [22]. This limitation forces
lients to have identical data distribution and architectural models
o build global models. FedStack [4] addressed the issue of identical
rchitectural models in FL. The goal of this study is to extend the
edStack framework by introducing intermediate clustered models to
ddress the non-IID challenge in FL.

In this study, the objective is to overcome the non-IID challenge
n FL. To achieve this, the proposed Clustered-FedStack algorithm is
pplied to the domain of human activity recognition, where patients’
hysical activity is classified. The non-IID data distribution of the
ataset used in the experiment is presented. The proposed method-
logy involves passing the output layer weights and predictions of
ocal clients to the global model, which then calculates unsupervised
lustering of the local model layer weights to group the local clients
nd establish clustered intermediate models. The experimental design
s presented in Fig. 2. The evaluation results compare the performance
f the proposed framework to the baseline models and show clustering
esults leading to clustered FedStack models. Furthermore, the con-
ergence of the clustered FedStack models is analyzed using Cyclical
earning rates.

.1. Dataset

The proposed Clustered-FedStack algorithm was evaluated on the
124

AR problem, which involves classifying patients’ physical activity.
Table 1
Non-IID data.

Local
clients

Distribution 1 2 3 4 5 6 7 8

Subject 1 27 724 2800 1148 1380 1648 3556 9420 3016 4756
Subject 2 22 712 2400 1068 1216 1548 3680 4880 2756 5164
Subject 3 26 900 2400 1740 1172 1516 3640 8640 2952 4840
Subject 4 26 528 2280 2092 1312 1900 4028 7580 2376 4960
Subject 5 26 924 2400 1860 1160 1728 3320 9020 2356 5080
Subject 6 11 812 2532 1720 1236 2132 4192 9020 0 0
Subject 7 28 580 2472 1624 1096 2012 4140 9700 2836 4700
Subject 8 23 992 2400 1648 1292 1680 3080 7200 1924 4768
Subject 9 26 212 2400 1932 1140 2216 3820 7368 2356 4980
Subject 10 28 424 2392 1868 1220 1952 3748 8336 4328 4580
Subject 11 28 052 2400 1828 1296 1960 3440 9632 2616 4880
Subject 12 23 680 2408 1936 1120 1920 3560 5840 2116 4780
Subject 13 26 996 2420 1988 1160 1992 3588 8112 2836 4900
Subject 14 25 584 2432 1824 1300 2008 3816 6924 2460 4820
Subject 15 23 504 2444 1676 1416 1620 3140 5760 2636 4812

The PPG-DALiA [6] dataset, which is publicly accessible and cited
in [6], was utilized for this study. This dataset includes physiological
and motion data gathered from 15 participants as they engaged in a di-
verse array of activities, closely mirroring real-life conditions. The data
was collected from both a wrist-worn (Empatica E4) and a chest-worn
(RespiBAN) device, and includes 11 attributes such as 3-Dimensional
(3D) acceleration data, Electrocardiogram (ECG), respiration, Blood
Volume Pulse (BVP), Electrothermal Activity (EDA), and body tempera-
ture. The 3D acceleration data was labeled with eight different physical
activities.

4.2. Non-IID data

Table 1 shows the distribution and activity of local clients in a FL
scenario with non-IID data. Each row represents a client, and each
column represents a feature. The ‘‘Distribution’’ column shows the num-
ber of data points available at each client, which varies across clients,
indicating non-IID in the dataset. The remaining columns represent
different activities that are each related to the type of data collected
or the task being performed. For instance, ‘‘Activity 1’’ to ‘‘Activity 8’’
could be different types of sensor readings or behavioral data collected
from different sources. The non-IID nature of this data could potentially
impact the performance of the FL algorithm since the data distribution
across clients is not uniform, and the model may not generalize well
to all clients. Therefore, special attention must be given to handling
the non-IID data in FL, by using the technique of personalized FL to
improve model performance for each client’s unique data distribution.

4.3. Data modeling

In data modeling, three AI models were chosen: Artificial Neural
Networks (ANN), Convolutional Neural Networks (CNN), and Bidi-
rectional Long Short-Term Memory (BiLSTM) models, due to their
state-of-the-art performances in FL works [12] and activity classifica-
tion [23]. Each subject trained with one of the chosen models locally
and passed their predictions and local model output layer weights to
the global server model. The proposed framework clustered the global
model without any private information about local clients, based on the
output layer weights.

4.4. Baseline models

• ClusterFL [19]: A clustering-based FL system for the HAR appli-
cation. The ClusterFL approach captures the intrinsic clustering
relation among local clients and minimizes the training loss.

• FL+HC [24]: A hierarchical clustered FL system to separate clus-
ters of clients based on the similarity of their local updates to the

global server model.
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Fig. 3. Cosine distance among local clients.

Fig. 4. BIC score to determine the number of clusters.

• HypCluster [25]: A hypothesis-based clustering with a stochastic
Expectation-Maximization (EM) algorithm adopted for the FL
approach, where local clients partition into a certain number of
clusters and then the model finds the best hypothesis for each
cluster.

• Dynamic Clustering [26]: A three-phased data clustering algo-
rithm, namely, generative adversarial network-based clustering,
cluster calibration, and cluster division, designed to overcome the
fixed shape of clusters, data privacy breaches, and non-adaptive
numbers of clusters.

4.5. Results analysis

4.5.1. Clustering results
Before clustering, the cosine distance among all 15 local models

trained on clients is calculated to check their similarity in terms of the
models’ output layer weights, as shown in Fig. 3. The matrix heatmap
ranges on a scale from 0 to 0.6 where 0 shows no cosine distance
between the client output layer values, and 0.6 shows the maximum
cosine distance.

The proposed Clustered-FedStack algorithm employed the BIC ap-
proach to calculate the maximum likelihood function on the output
layer weights received from the local client models by the global
server model, as shown in Fig. 1. This process determines the num-
ber of clusters among the 15 local clients. Fig. 4 shows that the
lowest BIC score corresponds to three clusters in the global server
model. After determining the clusters, three clustering techniques were
applied: centroid-based clustering (K-Means) [27], hierarchical cluster-
ing (Agglomerative) [28], and distribution-based clustering (Gaussian
Mixture Model (GMM)) [29]. Fig. 5 shows that K-Means and Ag-
glomerative clustering produced similar groups of local client models,
while GMM clustering grouped all CNN models into the second cluster
and distributed other ANN and BiLSTM models in the first and third
clusters.
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Fig. 5. Clustering results.

4.5.2. Clustered FedStack model performances
After determining the clusters, each cluster of local clients passes

their output layer weights to an intermediate Clustered-FedStack
model, situated between the local clients and the global server model,
as shown in Fig. 1. This approach reduces the load on the global server
model and groups similar local models for more efficient AI results. The
three clustering techniques generate three Clustered-FedStack models
each, and their performance in HAR is shown in Table 2. All nine
Clustered-FedStack intermediate global models generated from the
clustering techniques have performed well in the HAR task. K-Means
and agglomerative clustering, having similar clustering results, showed
similar classification accuracy in HAR. While comparing the results,
the GMM Clustered FedStack models, which are distribution-based,
exhibited slightly better accuracy than the other two clustered models.

4.5.3. Baseline models comparison
The proposed framework was compared against four other baseline

models in FL approaches with clustering. All models were trained using
3D acceleration data for HAR tasks, and their evaluation results are
presented in Table 3. As K-Means and hierarchical clustering techniques
generate similar clusters from the 15 local client models, the table
shows three clustered models (Clustered FedStack 1, Clustered FedStack
2, Clustered FedStack 3) built based on K-Means and hierarchical
clustering, and three clustered models (Clustered FedStack 7, Clustered
FedStack 8, Clustered FedStack 9) built based on the GMM model. The
Table presents the mean of four metrics: balanced accuracy, precision,
recall, and F1-score in classifying eight activities for six intermedi-
ate clustered models. The proposed approach outperformed all other
baseline models in terms of all the metrics.

4.6. Convergence analysis

The optimization of the proposed Clustered FedStack framework
is estimated using Cyclical learning rates [30] for convergence. The
performance of the intermediate Clustered FedStack models shown in
Fig. 1 is optimized using the Learning Rate (𝛼) of the deep learning
models. In the Cyclical learning rates process, the 𝛼 values are cycled
with an initial learning rate of 0.00001 and a maximum learning
rate of 0.001, and stochastic gradient descent is performed. A scale
function is defined to control the change from the initial learning rate
to the maximal learning rate and back to the initial learning rate. The
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Table 2
Clustered FedStack model accuracy in HAR.

Activity K-Means clusters Agglomerative clusters GMM clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Sitting 0.99 0.96 0.95 0.97 0.99 0.95 0.99 0.99 0.99
Ascending and descending stairs 0.92 0.96 0.94 0.96 0.92 0.94 0.92 0.92 0.92
Table soccer 0.96 0.95 0.95 0.97 0.95 0.95 0.95 0.96 0.97
Cycling 0.94 0.97 0.98 0.95 0.96 0.98 0.96 0.93 0.96
Driving a car 0.89 0.93 0.99 0.89 0.95 0.99 0.95 0.93 0.97
Lunch break 0.87 0.86 0.92 0.87 0.89 0.92 0.9 0.9 0.91
Walking 0.91 0.90 0.89 0.90 0.92 0.89 0.91 0.91 0.92
Working 0.92 0.96 0.95 0.97 0.97 0.95 0.96 0.92 0.97
Table 3
Baseline models comparison.

Model Balanced accuracy Precision Recall F1-Score

ClusterFL [19] 0.93 0.78 0.86 0.82
FL+HC [24] 0.94 0.85 0.89 0.83
HypCluster [25] 0.9 0.65 0.56 0.65
Dynamic clustering [26] 0.92 0.86 0.75 0.76
Clustered FedStack 1 0.98 0.95 0.91 0.93
Clustered FedStack 2 0.96 0.89 0.9 0.89
Clustered FedStack 3 0.94 0.91 0.92 0.91
Clustered FedStack 7 0.95 0.92 0.91 0.91
Clustered FedStack 8 0.98 0.94 0.93 0.93
Clustered FedStack 9 0.97 0.96 0.95 0.95

Fig. 6. Convergence of intermediate Clustered FedStack models on PPG-DALiA under
the Cyclical learning rates.

scale function, a lambda function shown in Eq. (10), scales the initial
amplitude by half with each cycle.

𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 ∶ 1
(2(𝑥−1))

(10)

Fig. 6 presents the convergence curves of six intermediate Clustered
FedStack models from the three clustering techniques proposed in this
study. The intermediate clustered models built based on K-Means and
Agglomerative clustering converge faster than the clustered models
built based on GMM clustering. There is not much difference in the
number of epochs required for each clustered model to converge. All
six models converge in less than 50 epochs. The results show that
the proposed Clustered FedStack framework can be implemented with
centroid-based, hierarchical or distribution-based clustering. The Clus-
tered FedStack models built based on any of these clustering techniques
converge quickly in 50 epochs.

5. Experiments on clustered FedStack scalability in NLP tasks

The scalability of the proposed Clustered FedStack model was rig-
orously assessed through a targeted evaluation. For this purpose, the
drug review dataset [7], containing reviews and ratings, was utilized.
This comprehensive dataset encompasses 3677 distinct drugs and 916
different medical conditions. The aim of this experiment is to classify
drug ratings (1–10) based on input data such as medical conditions. In
alignment with the clustering methodologies proposed in the Clustered
FedStack framework, the GMM clustering was employed to perform
126
Table 4
Clustered FedStack performance in classification of drug ratings.

Model Accuracy Precision Recall F1-Score

ClusterFL 0.92 0.8 0.88 0.82
FL+HC 0.93 0.87 0.91 0.83
HypCluster 0.89 0.66 0.57 0.65
Dynamic clustering 0.91 0.88 0.77 0.76
Clustered FedStack 1 0.99 0.92 0.93 0.91
Clustered FedStack 2 0.98 0.91 0.92 0.91
Clustered FedStack 3 1 0.96 0.95 0.95
Clustered FedStack 4 0.97 0.94 0.93 0.93
Clustered FedStack 5 0.98 0.97 0.94 0.96
Clustered FedStack 6 1 0.97 0.93 0.95
Clustered FedStack 7 0.99 0.98 0.97 0.97
Clustered FedStack 8 0.98 0.97 0.94 0.96
Clustered FedStack 9 0.96 0.93 0.94 0.93
Clustered FedStack 10 0.94 0.93 0.92 0.91

the clustering of 2191 drugs, resulting in 78 unique clusters as shown
in Supplementary Material. The Supplementary Material also includes
information on the cosine distance for 200 local clients (drugs).

The performance comparisons of different clustering models, in-
cluding the top 10 variations of the Clustered FedStack model, are
presented in Table 4. The metrics evaluated include accuracy, precision,
recall, and F1-score for classifying drug ratings. Four baseline models
are included: ClusterFL, FL+HC, HypCluster, and Dynamic Clustering.
Their performances are relatively consistent, with accuracy ranging
from 0.89 to 0.93. The Clustered FedStack models demonstrated supe-
rior performance, with notable improvements in all evaluated metrics.
The accuracy for these variations ranged from 0.94 to a perfect 1,
highlighting the efficiency and robustness of the model. The first five
Clustered FedStack models exhibited particularly impressive results,
achieving almost perfect or perfect accuracy. The precision, recall, and
F1-score also showcased strong consistency and harmony, reflecting the
model’s ability to balance both false positives and false negatives.

These results underscore the scalability and effectiveness of the
Clustered FedStack model across local clients with non-IID data. The
model’s scalability and adaptability are evident, maintaining high levels
of accuracy and F1-scores regardless of the local clients’ variation. This
highlights the Clustered FedStack model’s potential in managing large
and intricate datasets like drug reviews and ratings, validating both its
resilience and relevance to real-world applications.

The convergence of the proposed Clustered FedStack on the drug
review dataset has been assessed, as shown in Fig. 7. The line chart
presents a convergence pattern that denotes accuracy in the 𝑦-axis
across 100 epochs in the 𝑥-axis. The values for Clustered FedStack 1
exhibited consistent growth, starting at 0.7882 and reaching 0.8556
by epoch 40. Similarly, other clustered FedStacks demonstrated a pro-
gressive increase in values across epochs, such as Clustered FedStack 2,
which advanced from 0.5188 to 0.8811, signifying a gradual strength-
ening of the model. These convergence trends shed light on the ef-
ficiency and efficacy of the iterative learning process. Variations in
convergence rates among different stacks were observed, reflecting
the distinct characteristics of each clustered FedStack. These find-
ings suggest a general trend of convergence towards higher values,
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Fig. 7. Convergence of intermediate Clustered FedStack models on drug review dataset
under Cyclical learning rates.

though occasional oscillations and fluctuations were detected in spe-
cific iterations. This in-depth analysis offers valuable insights into the
behavior of clustered FL systems, potentially opening new avenues for
enhanced optimization strategies and a more profound understanding
of convergence mechanisms within distributed ML frameworks.

6. Conclusion

In the present study, a novel framework named Clustered-FedStack
was introduced, designed to cluster local clients within the FL paradigm
based on the weights of their output layers. This methodology was
devised to address the non-IID challenge inherent to FL. It is impor-
tant to acknowledge certain limitations of the proposed framework,
notably its incompatibility with the application on local clients utiliz-
ing conventional Machine Learning models for the training of private
data. Moreover, the global server model’s process of clustering local
clients operates on an unsupervised basis, without access to specific
information about local clients, depending solely on the local model
rather than client demographics. In light of these considerations, future
investigations should aim to develop strategies for the dynamic cluster-
ing of local clients, taking into account meta-information that pertains
to client similarities.
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