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ABSTRACT

The reduced major axis (RMA) method is widely used in many disciplines as a
solution to errors in variables regression model, although it lacks efficiency. This
paper provides an alternative view on the RMA estimator. Moreover, it intro-
duces a new estimator to fit regression line when both variables are subject to
measurement errors. The proposed weighted RMA (WR) estimator is derived
based on the mathematical relationship between the vertical and orthogonal dis-
tances of the observed points and the regression line. Compared to the RMA
and OLS-bisector estimators the proposed WR estimator is less sensitive to the
variation of the ratio of error variances (). The simulation results show that the
WR estimator is more consistent and efficient than the RMA and OLS-hisector
estimators.
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1 Introduction

The reduced major axis (RMA) method is widely used in many disciplines, and it has
received much attention from the experts and some have suggested that it is more useful
than other methods to deal with the measurement error model (ef Sprent and Dolby, 1980;
Smith, 2009; Ludbrook, 2010).

The RMA estimator was suggested as a solution to the likelihood equations in the case
of the normal functional model when there is no additional information (ef Cheng and Van
Ness, 1999, p. 43). This estimator is constructed based on the geometric mean of the
ordinary least squares (OLS) estimator for the regression of y on z and the reciprocal of
that of z on y. Halfon {1985) and Draper and Yang (1997) pointed out that the RMA
estimator minimizes the vertical and horizontal distances between the observed points and
the regression line. lsobe et al. (1990) examined five different estimators, and pointed out
that the OLS bisector (OLS-b) estimator is the best method to use, when there is no basis
to distinguish between the explanatory and response variables.

Let = be the chservable or manifest explanatory variable, and let £ be the true or latent
explanatory variable. Similarly let 7 be the true value of the response variable and y be the
manifest response variable.
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If the lotent variables §; and n; are measured without error, then the simple linear
regression model without ME is expressed as

ni=08+ 5 +e, J=12...n (L1)

where e is the equation error. If there is ME in both explanatory and response variables,
we can define the manifest variables as

;=& +uy, and y; =1 +7; j=LlL2....n (1.2)

where 1; is the jth realisation of the lafent response variable, £; is the jth value of the
latent explanatory variable, 7; is the ME in the response variable and u; is the ME in the
explanatory variable. It is assumed that,

75~ N(0.02), u; ~ N(0,62), cov(u, 7) =0, and cov(u,e) = 0. 1.3
J { T d u

Note the ME in the response variable 7; can be absorbed in the equation error € which may
be expressed as e; = 7; + €;. The simple regression model with ME in both variables and
equation error € is expressed as

v =fBo+ 5z +v5. j=1.2...n. (1.4)
where v; = e; — Biu;. and cov{u.e) =0, then
ol =al + Gl (1.3)

Note that the OLS method is not valid here, because the variables z; and v; in equation
(1.4) are not independent.

There is a common recommendation to use the RMA estimator for the ME model, but
without enough justifications (Smith, 2009). Jolicoeur (1975) stated that it is difficult to
interpret the meaning of the slope of the RMA regression. However, the common believe
is that the RMA estimator minimizes the vertical and horizontal distances between the
observed points and the fitted line (cf Halfon, 1985; Draper and Yang, 1997). But it is
not guite true, because it could be demonstrated that the RMA estimator minimizes the
orthogonal error of the observed points with the unfitted regression line instead of the fitted
regression line.

Sections 2 and 3 provide the RMA estimator and alternative way of deriving this esti-
mator. The proposed estimator weighted reduced major axis estimator (WR) is introduced
in Section 3. The simulation studies are conducted to compare the performances of the pro-
posed estimator with the RMA, OLS-b, and OLS estimators in Section 4. Some concluding
remarks are included in Sections 5.

2 Reduced major axis estimator
The RMA estimator of the slope parameter is the geometric mean of the slope of y on x
regression line, and the reciprocal of the slope of 2 on y regression line, where z and y both

are random (sec Leng et al. 2007). It is given by

Bir = sgn(SP,,) /S, 555" = sgn(Spzy) S, 57" .
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where 5.5; = 2?=1{rj -z)?, 58, = z;=1{yj —§)% 5Py, = z;?=1{xj —Z)(y; — ). and S,
and S, are the standard deviations of y and x respectively.

In the literature, the RMA regression is also known as the standardized major axis (see
Warton et al. 2006), and geometric mean estimator, or the line of organic correlation (cf
Tessier, 1948, Kermack and Haldane, 1950, Ricker, 1973). In physics it is known as a type
of standard weighting model (see Machonald and Thompson, 1992), while the astronomers
call it as Strémberg’s impartial line (see Feigelson and Babu, 1992).

A host of recent publications indicate that using the RMA is necessary and sufficient to
fit the straight line when both the response and explanatory variables are subject to errors
(see for example Levinton and Allen, 2003, Zimmerman et al, 2005, Sladek et al, 2006, and
Vineent and Lailvaux, 2006). Jolicoeur (1975) and Spernt and Dolby (1980) pointed out
that the RMA estimator is unbiased if and only if

A=81.

where A = (¢2o?) is the ratio of error variances. But several other studies indicate that
this assumption is unrealistic (ef Sprent and Dolby, 1980). Another competing estimator
preferred by many authors is OLS-bisector (OLS-b) estimator (see e.g Isobe et al. 1990)

which is given by
Brors—s = (B1+82)"" | BB — 1+ *.v-“i{l + 821+ 42)
where 3y = §,.572, and B, = §257).

3 Theoretical analysis

In the regression analysis with ME in both variables it is crucial to note the difference
between the distance of the observed point from the fitted line, unfitted line, and unobserved
point. Although, many authors use distance between the observed point and regression line
without being specific about the fitted or unfitted lines. This issue is erucial when there is
ME in both variables. The mathematical relationship between the vertical and orthogonal
distances of the observed points and the fitted regression line is explained below. The fitted
line of the true model (without equation error and ME) is given by

ni=bBo+ At i=12...n (1)

Let (. y;) be the observed point and (z;.¢;) be its reflection about the fitted line (3.1),
then

z; =r 00820 + (y; — Bp)sin2¢, and ¢; = x;sin 2y — (y; — Bo) eos 24 + Fo, (3.2)

where ¢ = tan~' ;. and &y, and 3, are the regression parameters. For details on reflection of
points please see Vaisman (1997, p. 164-169). Let the relationships between the orthogonal
and vertical distance of the observed point (z;,y;) be explained in the context of (a) fitted
line, (n; = Bo+ B1£;). based on the latent variables and (b) unfitted line (y; = Bor + Biz2;).
based on the manifest variables.
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There are potentially two orthogonal distances of any observed point, one from the fitted
line (here represented by T) and the other from the unfitted line (Ox). In principle, the
RMA method should minimise T, but in practice it minimises Oz. Figure 1 shows the
reflection of A = (z;,y;) about the fitted line €' = (z;,¢;) with the orthogonal distance
T = AB, and the reflection of A = (z;,y;) about the unfitted line F = (z3.y7) with the
orthogonal distance Oz = AD.

(a) Fitted line.

It is well known from the properties of the reflection process that the reflection line
(which is the fitted line) is & bisector and orthogonal on the distanee between the observed
point (z, y;) and its reflection point (z;, ¢;). Then the half of the square distance between
the observed point (25, y;) and its reflection point (z;, ¢;) will equal the orthogonal square
distance {T?) between the observed point (2;.y;) and the fitted line. It is given by

4T5 = (g5 —25) + (¢ —yy)% (3.3)

Then from (3.1), (3.2), and (3.3) the square orthogonal distance (T7) is given by

1
T2 = 1 [(2258in%Y + y;8in2y — Bosin2y)? + (z;8in2¢ — 2y;c08°Y + 280cos’Y)? |
. siny
Since z; =& +u; ,y; =n;+¢e; and 3 = -
FTSTY Y= TE LT Cosv
T?— = E[{—ersuqz?,-,' + 81§;8in2y: + ejsmi?wjz + (z;8in29 — ?Blﬁjcoszw - 263,-50321;;)2]

= ulsin®y — uje;sin2y + €l cos’y.
Then E(Y3) = E(u})sin®y + E(€} )cos™y.

The variancczof T; is given by ¢ = o2sin®y + olcos™y, where E(z; —x;) = E(¢; —y) =0,
and 37 =sin® ¢ cos™2¢, the variance of T; becomes

& 2 i
z 2 2 SIN7Y 2. s 2 2 2 2.
oy = (crz +J”coszi,";) cos“) = (of + Bi oy )cos .
Then the relationship between the variance of the orthogonal distance and the variance of
the vertical distance is given by formula

g% = oleos®y = o2 (1 + F2)7L. (3.4)

Note that both the vertical and orthogonal distances measure the distance between the
observed point (z;.y;) and the fitted line, but it does not measure the distance between the
observed point (z;.y;) and the unobserved point (€4, 7). Under certain assumptions such
as A =1 or 51 =1 the distance between the observed point and the unobserved point is
equal to the double of the orthogonal distance, where the distance between the observed
point and the unobserved point (A) is given by

A% = (25— &)+ (y; —m)? = (3+3),
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Figure 1: Graph of two orthogonal distances (AB = T, and AD = Oz) between the observed
point and the fitted and unfitted lines.

where u;, and e; are the ME in the explanatory and response variables respectively. From
(1.3) the variance of the distance (A) is ¢4 = of + o2. From (1.5) and if A = 1 then

g3 = 202,

(b) Unfitted line.

In order to find the relationship between the observed point (z;.y;) and the unfitted
line we follow the similar procedure as in case (a) except replacing the parameters of the
fitted line, ¥ = tan~'51, 8o, and 51 by the coefficients of the unfitted line (the ME model)
f = tan~'3;, Bog, and 3, respectively. Then we get

z; = mjcosfzf;‘ — (¥ — Boz)sin28, and vl = mj:sin2§ —(y — Bog )c0s20 + Boz.
where (z},y?) is the reflection point of the observed point (z;,y;) about the unfitted line.

The relationship between the sample variance of the orthogonal distance (Oz) and ver-
tical distance (v) is given by

S}, = Sleos?d=S2(1+A)7 (3.5)
Also the relationship between the observed point and unfitted population line becomes
gh, = olcos’=a2(1+55,)7 (3.6)

From (3.4) and (3.6) the relationship between the variances of the orthogonal distance in
cases (a) and (b) is given by

0—%‘ = D—E)r 30321'-';303_29 = Jtz'_)r{l + 312rj£1 + '312)_1' {S'Tj
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Note that in general, 02 < o3, and they are cqual if and only if there is no measurement
error. Therefore, any method that minimizes o3, will not work well, and that is what
is happening with the RMA method. The next section shows that the RMA method is
minimizing o3, rather than o2.

From (3.5) the sum of squares of orthogonal distance (5Sp. ) between the observed point
(2;.y;) and the unfitted line (y; = oz + 5’1rxj), it can derived the RMA estimator can be
derived by different procedures in order to understand its working mechanism as follows:

SSp. = 8S,c080= Z{yj — Boz — Slrmj)2c032§
i=1

i{{yj —§) - Bia(z; — 7)) i ((y; — §)cosd — (z; — 7)sind)?(3.8)
— P

Let Q) = siné: and Qs = coall. Then

SSox = D ((4i—9)Q2— (z;i— 2)Q1)™.

§=1
Differentiating SSp, w.r.t. @ and @», and setting the derivatives to zero, we get

a58, -
50 = 22 (5= )@~ (2 = 2)Q1)(~(z; = 7)) =0.
i=1
aSs -
o = 22 (5= 0@~ (2 - 2)Q1)(y; = 8) =0.
i=1
or equivalently
QISE = QQS‘HI? {39)
Q25; = QiSyz- (3.10)
From (3.9), (3.10) and 3;, = Q,Q5"' we get two estimators of the slope
Bi1 =8,:57% and B =525}, (3.11)

Then the RMA is the geometric mean of the estimators in (3.11), that is,

Birara = sgn{S;z:} V 525—

It is clear that the RMA estimator is derived by minimizing the orthogonal distance between
the observed point (x;.y;) and unfitted line. Hence it does not minimizes the vertical and
horizontal distances between observed points and the fitted line.

Remark: The RMA estimator is based on the minimization of the orthogonal distance
between the observed points and the regression line. Since there are two regression lines,
namely the fitted (latent) and unfitted (manifest) lines, it is essential to clarify the orthogonal
distance between an observed point and either the fitted line or the unfitted line. Obviously
the orthogonal distance of a point from the fitted line is most likely to be different from the
unfitted line.
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4 The weighted RMA estimator

In this section we introduce the weighted RMA (WR) estimator. The proposed estimator
minimises the orthogonal distance between the observed point (z;.y;) and the unfitted
regression line. This estimator is based on the relationship (3.5) between the vertical and
orthogonal distances of the observed points and the unfitted regression line. The proposed
estimator is derived as follow

Multiply equation (3.9) by S7, and equation (3.10) by Sy, we get

Q15252 = S, S, (4.12)
Q152 = Q25,.52 (4.13)
from equations (4.12) and (4.13) we get
Ql{sgsg + S;rj = ngzsyrsg (4.14)
(S287 +82,)sinf = 285, S2cosd. (4.15)
From (4.14) and (4.15) we define an estimator
. sinf 25,2 S2
Blo_ﬁ_M! (4.16)
which is simplified as follows
X 25252 32 .
Bio = L 26in__ _ w Bir. (4.17)

S2Su + 5,520 (Bi+Be)

where w = Blﬂﬁarl_s_m: and SGLS—m is the mean of the slope of the OLS(y|z) and that of
OLS(z|y), that is, Bors—m = {5‘1ry + 3lyr)/2. Note that the estimators B0, B1anra. and
Blgf_s_mmn are equal if w =1, and 310 is the estimator obtained to minimising the Oz.

It is well known that when oy > 0 the slope of the unfitted line 51 is less than the
true slope 5y of the fitted model. Then the true slope 8, & located between B and f.
estimators. Hence the proposed WR estimator is defined as the mean of 815 and 3. and
is given by

Biwr = {ﬁ1o+31r)/2-

Note that the WR estimator and the other estimators mentioned in this paper are used
when there is no prior information on the error variances. In order to demonstrate that the
performance of WR estimator is better than the RMA, OLS, and OLS-b estimators when A
is known or misspecified, we provide the results of extensive simulation studies in the next
section.

5 Simulation studies

We perform extensive simulations to illustrate that the proposed WR estimator is relatively
unbiased and consistent compared to the RMA, OLS, and OLS-b estimators. It is more
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so when A is large. In this section we compare the WR estimator to the RMA estimator,
OLS and OLS-b estimator for a wide range of values of A (0.1 < X < 19). These studies
demonstrate that the WR estimator is not sensitive to the ratio of error variances A, whereas
the RMA estimator grows larger as the value of A increases. Also the WR estimator preforms
consistently better than the OLS-b, and OLS estimators. The results based on 10, 000
replications of samples size n = 100, Gy = 0, and 8, = 0.6 of normal structural model,
where xz ~ N(0, 100), are presented in the following graphs.

Taie sioge 3, =08
24 T T T T T T T
—— g RMA ?
22k —#—OLEs e
oo OLS e

e e e e s e s e
e 2 4 8 a 10 12 14 18 12 20
3

Figure 2: Plot of the mean slope of four different estimators against 0.08 < A < 19. when
Bo=0, 5 =086.

It is clear from Figure 2 that the values of the OLS-bisector estimator are away from the
true values of 31. The values of the RMA estimator are far above the true values of 5. As
A increases, the RMA estimator appears to grow large. Clearly the proposed WR estimator
is much closer to the true values of 3 than the other three estimators.

Figure 3 gives useful indications about the statistical properties of the estimators. The
measurement error makes the spread of the RMA estimator the highest. While the spread
of the OLS-b estimator appears to be better than that of the RMA estimator, though they
are not small. The OLS estimator is consistently an under estimate of 3,. Moreover, it
is inappropriate for ME models, and hence we do not compare it with the WR estimator.
Sarach and Celik (2011) discussed eight different regression techniques, and pointed out
that the OLS-bisector estimator is nearer to the real value than all other estimators, and
the mean squares error of OLS-bisector is smaller than other estimators. The current study
reveals that the WR estimator is consistently better than the OLS-b estimator in term of
the closeness of 1w to 5.
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Figure 3: Graph of the distribution of the mean slope of four different estimators when
Go=0,81=0.6, and 0.08 < A < 19,

6 Concluding Remarks

This paper proposes a new estimator based on the mathematical relationship between the
vertical and orthogonal distances of the observed points with fitted and unfitted lines. This
estimator is appropriate for fitting straight lines when both variables are subject to mea-
surement errors, especially when there is no basis for distinguishing between response and
explanatory variables. Moreover, the WR estimator is appropriate to the normal structural
model even when A is misspecified. The graphs in Figures 2 and 3 provide clear evidence
that the WR is much closer to the true slope than the other competing estimators. The
values of the proposed estimator are nearer to the real value than the RMA, OLS-b, and
OLS estimators. Therefore, the proposed estimator possesses better statistical proprieties
than the other estimators. Moreover, the new method is stable and works well for different
values of A.
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