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Abstract

The present study is mainly concerned with the development and application of

simple, efficient and accurate finite element models for geometrically linear and

nonlinear analysis of composite plates/shells. It is also demonstrated that the

developed approach can be extended for analysis of functionally graded material

(FGM) structures as well as coupled electric-structural piezoelectric systems.

The primary goal is achieved through the development of two novel four-node

displacement-based C0 quadrilateral flat elements, one with fictional drilling DOFs

(MISQ20) and one with actual drilling DOFs (MISQ24) within the framework

of the first-order shear deformation theory (FSDT). The developed elements are

based on the incorporation of the strain smoothing technique of the stabilized con-

forming nodal integration (SCNI) mesh-free method into the four-node quadrilat-

eral finite elements. The most distinguishing feature of the present elements is the

evaluation of membrane, bending and geometric stiffness matrices by integration

along the boundary of smoothing elements. It is observed that this assumed strain

smoothing technique can yield more accurate solutions even with badly shaped

elements or coarse discretization and reduce computational time when compared

with domain integration approach. To accommodate small strain geometric non-

linearity with large deformations, the von-Karman’s large deflection theory and

the total Lagrangian approach are employed to formulate the present elements

for geometrically nonlinear analysis. The present formulation is therefore applica-

ble to moderately thick and thin plate/shell configurations, involving isotropic or

composite material properties, with improved solutions in a wide range of geomet-

rically linear and nonlinear problems. Extensive numerical verification is carried

out with a set of demanding benchmark problems and the present results are
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compared with analytical, experimental and numerical solutions in the literature.

The comparative study does show the validity as well as the high-performance of

the developed finite element models for laminated composite structures. The de-

veloped approach also performs very well in the analysis of FGM plate structures

under thermo-mechanical loading.

The analysis of coupled mechanical-electrical behaviours of piezoelectric prob-

lems is accomplished by the normalization of both mechanical strains and electric

potential fields using the smoothing constant function of the SCNI. Two novel

piezoelectric elements for linear static and free vibration analysis of planar piezo-

electric structures are proposed. The first one, the cell-based element (SPQ4),

is based on the subdivision of original quadrilateral finite elements into smooth-

ing cells. The second one, the node-based element (NSPE-T3 or NSPE-Q4), is

created by transforming a triangular or quadrilateral mesh into a mesh of new

smoothing cells associated with each of the nodes of the original mesh. The relia-

bility and accuracy of the proposed formulations are demonstrated through various

favourable comparisons with other existing elements and analytic solutions. The

present models are attractive for coupled multifield problems owing to the follow-

ing properties: (i) very good accuracy, (ii) insensitivity to mesh distortion, and

(iii) simplicity of formulation.
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Chapter 1

Introduction

The goal of this chapter is to establish a motivation for the study of composite

laminated plate/shell structures and outline the contributions and improvements

that can be derived from the new development of the assumed strain smoothing

technology. The chapter begins by presenting a survey of some popular methodolo-

gies for laminated composite plate/shell from classical to higher-order equivalent

single-layer (ESL) theories and the layer-wise (LW) theories. This is an impor-

tant step in obtaining a reasonable theory, the ESL first-order shear deformation

theory (FSDT), before a literature review of plate/shell finite elements based on

the FSDT is introduced. The motivation and objective of the present study is

then given, followed by the outline of the dissertation. Finally, the contributions

of the research to the literature are summarised.

1.1 General aspects

Fibre-reinforced composite materials have been widely used in various engineering

applications such as spacecrafts, aircrafts, vehicles, building and smart highways

(i.e. civil infrastructure applications) as well as sport equipment and medical

prosthetics. Laminated composite structures consist of two or several layers of

different fibre-reinforced laminas stacked together to achieve desired structural

properties (e.g. stiffness, strength, wear resistance, damping, etc.). Through the

variations of the lamina thickness, lamina material properties, fibre orientations
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and stacking sequences, manufacturers can produce properties that exactly fit the

requirements of a particular structure for a particular purpose (Reddy, 2004b).

Composite materials exhibit high strength-to-weight and stiffness-to-weight ratios,

excellent resistance to corrosive substances and potentially high overall durability

which make them ideally suited for use in weight-sensitive structures, especially

in space applications. The extensive use of laminated composites in various types

of plate and shell lead to considerable interests of the scientific and engineering

communities in the field of modelling, analysis and design of composite plate and

shell structures. Accurate prediction of structural response characteristics and as-

sessments are often challenging problems for the analysis of laminated composites

due to the anisotropic structural behaviour and the presence of various types of

complicated constituent couplings (Reddy, 2004b). A number of methodologies

for the analysis of laminated composite plates and shells have been developed

with various degrees of success. These theories can be broadly classified into two

main categories: (1) the equivalent single-layer (ESL) theories derived from the

3D elasticity theory in which a heterogeneous laminate is treated as an equivalent

single layer with a complex constitutive behaviour and (2) the layer-wise (LW)

theories where each lamina is treated individually with its own identity. The two

categories are briefly illustrated in Figure 1.1.

Equivalent Single-Layer (ESL)

Layer-Wise (LW)

Real Laminate

Figure 1.1: Schematic modelling of laminate structures in equivalent single-layer

or layer-wise theories.

Among the two approaches mentioned above, the ESL theories have been used ex-
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tensively owing to the advantages of simplicity in modelling and formulation, and

low computational costs. In addition, the ESL models often provide a sufficiently

accurate description of global response for thin to moderately thick laminates. In

the context of the ESL theories, there are commonly three classes: the classical

laminated plate theory (CLPT), the first-order shear deformation theory (FSDT)

and the higher-order shear deformation theories (HSDT). Within each class, sev-

eral modified versions have been developed to fulfill specific needs, especially for

the HSDT. In the following, a representative of each theory is briefly summarized

with a focus on the kinematic assumptions and its implementation.

The classical laminated plate theory (CLPT)

The classical laminated plate theory (CLPT) is the simplest one among the ESL

theories which neglects the shear deformations. It is based on the Kirchhoff hy-

pothesis that straight lines normal to the undeformed mid-surface remain straight

and normal to the deformed mid-surface and do not undergo stretching in thick-

ness direction. These assumptions imply the vanishing of both transverse shear

and transverse normal strains. In this theory (see Figure 1.2), the displacement

field is:

u(x, y, z) = u0(x, y)− zw0,x,

v(x, y, z) = v0(x, y)− zw0,y, (1.1)

w(x, y, z) = w0(x, y),

where (u0, v0, w0) are the displacements of a point on the mid-surface and z is

the distance from the mid-surface to the point considered. From Equation (1.1)

it is apparent that the displacement field is C1−continuous since the strains are

functions of the second order derivatives of w. The CPLT only yields satisfac-

tory results for thin isotropic and laminated plates/shells. Conversion of the

CLPT to finite element formulation are more numerically inconvenient with the

C1−continuity requirement as they necessitate the use of cubic Hermite interpola-

tion function for the transverse deflection while linear Lagrange polynomials may

be used for other displacements.

The first-order shear deformation theory (FSDT)

The first-order shear deformation theory (FSDT), also known as the Reissner-
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Figure 1.2: Kinematics of deformation in various ESL theories

Mindlin theory, can be considered as an improvement over the CLPT. This is

achieved by including the effects of the transverse strains in the kinematic assump-

tions neglected in the CLPT. Like the CLPT it disregards the effect of transverse

normal strains, however, it accounts for transverse shear strain by allowing the

normal to rotate. The transverse shear strain is assumed to be constant across

the thickness. The displacement field in this theory is:

u(x, y, z) = u0(x, y) + zθx,

v(x, y, z) = v0(x, y) + zθy, (1.2)

w(x, y, z) = w0(x, y).

where θx, θy denote the rotations of the transverse normal about the y− and

x−axis, respectively (see Figure 1.2).

The FSDT is simpler to implement than the CLPT since displacement field does

not contain any derivatives and thereby is C0−continuous. It also gives better

results than those of the CLPT as the transverse shear strains are included. How-

ever, the method requires the use of problem-dependent shear correction factors

(SCFs).
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The higher-order shear deformation theory (HSDT)

To circumvent some of the limitations in the CLPT and the FSDT, several ESL

higher-order shear deformation theories (HSDT) have been developed. Such the-

ories account for parabolic or higher powers distribution of the transverse shear

strain, correct cross-section warping and do not requires SCFs. One of the more

effective methods is the third-order shear deformation theory (TSDT) of Reddy

with minimum possible displacement parameters. It is based on the displacement

field (see Figure 1.2) as follows.

u(x, y, z) = u0(x, y) + zθx + z3

(
− 4

3h2

)
(θx + w0,x) ,

v(x, y, z) = v0(x, y) + zθy + z3

(
− 4

3h2

)
(θy + w0,y) , (1.3)

w(x, y, z) = w0(x, y).

The TSDT provides only a slight increase in accuracy relative to the FSDT solu-

tion but a drastic increase in computational effort due to additional components

in the formula (Reddy, 2004b). In addition, it also requires C1− continuity in

the displacements which complicates the derivation of generalized finite element

formulations as seen over the years (Yang et al., 2000). Therefore the HSDT have

little practical applications as compared with the FSDT.

A brief review of various ESL theories mentioned above shows how the FSDT

with transverse extensibility gives the best compromise between numerical accu-

racy, simplicity and computational burden for a wide range of plate/shell prob-

lems. Firstly, the FSDT models give better results than those based on the

CLPT as the transverse shear strains are included in the formulations. Secondly,

the FSDT–based element is easier to implement than the CLPT one since only

C0−continuity for all generalized displacement fields is required. This is in con-

trast with the C1−continuity of Kirchhoff elements based on the CLPT which

are more numerically inconvenient as they involve second partial derivatives of

the interpolation functions. Furthermore, C1−continuity element can neither ac-

count for all rigid body modes of a curved element (Cantin and Clough, 1968)

nor cope with distorted meshes since the constant curvature criterion could be

violated (Zienkiewicz, 1977). As compared with the HSDT, the FSDT is simpler,

less expensive and can be implemented in a very straight-forward manner. Last
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but not least, experience showed that the HSDT do not contribute considerably

to solution accuracy (Jensen et al., 2002) and still require C1−continuity. A more

comprehensive review of the recent literature and comparison of theories can be

found in Ghugal and Shimpi (2002) and Reddy and Arciniega (2004), for example.

In conclusion, low-order elements (C0−element) based on the FSDT are simple

to implement for modelling very complex plate/shell structures and underpin the

most economical computational approach for nonlinear analysis. However, the

primary difficulty of standard low-order elements based on the FSDT is that they

are too stiff and suffer from shear locking in analysis of thin plate/shell structures.

Many techniques have been proposed over the years to overcome these drawbacks

with various degrees of success. A brief review of the relevant literature on the

developments of C0−elements based on the FSDT is discussed in the following

section.

1.2 A brief review of recent plate/shell finite el-

ements based on the FSDT

For many years, the development of elements based on the FSDT (Mindlin-

Reissner theory) has attracted the attention of many researchers. Various ap-

proaches can be found in the literature (Bathe, 1996; Xiang et al., 1996; Zienkiewicz

and Taylor, 2000; Xiang and Reddy, 2003; Xiang and Zhang, 2005, etc.). New

models are being proposed in very recent works (Cen et al., 2006; Kim et al., 2007;

Mai-Duy et al., 2007, etc.). These efforts make the FSDT more convenient and

reasonable in practical applications.

During the past 40 years, many researchers have made significant contributions

to the development of simple and efficient low-order elements based on the FSDT

which is primarily for simplicity in mesh generation and robustness in complex

nonlinear problems. The major problem of low-order elements is the appearance

of shear-locking as the thickness-to-span ratio of the plate becomes too small (e.g.

h/a < 1/50). Many techniques have been proposed to overcome this phenomenon

with various degrees of success. There is a vast amount of literature on this sub-
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ject which is impossible to list altogether and only the most prominent works

are cited here. The first significant attempts started with the application of re-

duced or selective reduced integration techniques proposed by Zienkiewicz et al.

(1971) and Hughes et al. (Hughes et al., 1977, 1978; Malkus and Hughes, 1978).

However, for elements based on these techniques, it was found that in certain

cases, extra zero energy modes may exist, which are caused by rank deficiency

and hence these elements are not effective for thin-plate situation. Subsequently,

remedies were provided by Hughes and Tezduar (1981) with a scheme motivated

by the work of MacNeal (1978) where the rank deficiency was corrected by us-

ing 2 × 2 quadrature and the interpolation of the transverse shear was refined.

However, these schemes resulted in the loss of the attractiveness of one-point

quadrature integration. Another approach with one-point quadrature integration

was the stabilization procedure by Belytschko et al. (1981) and Belytschko and

Tsay (1983). Working along similar lines, some of the mixed/hybrid elements

based on the FSDT, such as the shear-flexible element by Wilt et al. (1990) and

the shear-locking-free element by Auricchio and Sacco (1999), seem to be effi-

cient in removing shear-locking. However, their complex formulation and high

computational cost render their usage less attractive in practical applications.

MacNeal (1982) developed a new concept called assumed natural strain (ANS)

method. In this approach the shear strains are computed via kinematic variables

at discrete collocation points of the element other than the nodes. Based on this

concept, many successful models were then proposed, including the mixed inter-

polation tensorial component elements proposed by Bathe’s group (Dvorkin and

Bathe, 1984; Bathe and Dvorkin, 1985; Brezzi et al., 1989), the linked interpolation

elements by Zienkiewicz’s group (Zienkiewicz et al., 1993; Taylor and Auricchio,

1993), the discrete shear elements (Batoz and Lardeur, 1989; Lardeur and Batoz,

1989) which, in the limit of thin plates/shells, approach the famous discrete Kirch-

hoff elements DKT (Batoz et al., 1980) and DKQ (Batoz and Tahar, 1982), the

discrete Kirchhoff-Mindlin elements DKMQ (Katili, 1993a) and DKMT proposed

by Katili (1993b), etc. More details and reviews on the developmental history of

this topic can be found in references (Yang et al., 2000; Ayad and Rigolot, 2002;

Gal and Levy, 2006).

In parallel with the above developments, several recent formulations use displace-
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ment function of the Timoshenko’s beam to develop locking-free plate elements.

Ibrahimbegovic (1992, 1993) first used Timoshenko’s beam formulas to approx-

imate the kinematic variables and shear strains along element sides and then

developed three thin-thick plate elements PQ1, PQ2, PQ3 using the mixed in-

terpolation method. Soh, Cen and Long used another set of Timoshenko’s beam

formulas to present a 12-DOF quadrilateral element, ARS-Q12 (Soh et al., 2001),

and a 9-DOF triangular element, ARS-T9 (Soh et al., 1999) with a scheme similar

to those of DKT and DKQ elements. Based on the element ARS-Q12, Cen et al.

(2002) added a bilinear in-plane displacement field of the mid-plane to build a

4-node 20-DOF quadrilateral element CTMQ20. Some elements were later devel-

oped based on the same Timoshenko’s beam function method such as the 9-DOF

triangular element RDKTM (Chen and Cheung, 2001), the 20-DOF quadrilateral

Mindlin plate element RDKQM (Chen and Cheung, 2000), the refined 15-DOF

triangular Mindlin plate element RDTMLC (Ge and Chen, 2002), the 20-DOF

and 24-DOF quadrilateral elements RDKQ-L20 and RDKQ-L24 (Zhang and Kim,

2004, 2006). Other surveys about shear deformable plate and shell finite elements

can be found in recent detailed reviews of Gal and Levy (2006) and Zhang and

Yang (2009), for example.

In addition to the shear-locking problem, existing FSDT-based elements also suffer

from other drawbacks, including low accuracy due to mesh coarseness, element

distortion, asymmetry of laminates (coupling effect) and high E1(longitudinal) to

E2(transverse) modulus ratio. Therefore, developments in these specific areas are

very desirable.

1.3 Motivation and Objectives

It is well-known that many useful techniques of mesh-free methods have been

recently developed to avoid problems related to element distortion encountered in

finite element method (FEM). In these methods, mesh generation is not required

to discretize the problem domain and the field variables are approximated by a

set of scattered nodes within the problem domain as well as on the boundaries. A

comprehensive review of the recent literature of mesh-free methods can be found

in Belytschko et al. (1996) and Li and Liu (2002).
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One of developed mesh-free techniques is the nodal integration proposed by Beissel

and Belytschko (1996) and Bonet and Kulasegaram (1999) to remove background

meshes for the integration of the Element Free Galerkin (EFG) method. However,

direct nodal integration usually leads to numerical instability and low accuracy

due to the violation of the integration constraints (IC) in Galerkin approxima-

tion. In order to meet the IC, Chen and co-workers (Chen et al., 2001; Wang

and Chen, 2004; Wang et al., 2006) introduced a stabilized conforming nodal

integration (SCNI) using an assumed strain smoothing (ASS) method for the

Galerkin mesh-free approximation which yielded a highly efficient, more accurate

and convergent method. The SCNI was then extended to the natural element

method (NEM) by Yoo et al. (2004). In mesh-free methods based on the stabi-

lized nodal integration, the entire domain is discretized into cells defined by the

field nodes, for example the cells of a Voronoi diagram (Chen et al., 2001; Wang

and Chen, 2007). The ASS operation is then applied to compute nodal strains as

the spatial average of the original strain field. This technique eliminates spurious

modes by evaluating derivatives of mesh-free shape functions at nodes and nu-

merical integration is performed along the boundaries of each cell. Based on the

SCNI approach, Liu’s group formulated the linearly conforming point interpola-

tion method (LC-PIM) (Liu and Zhang, 2008) and the linearly conforming radial

point interpolation method (LC-RPIM) (Zhao et al., 2008).

Although mesh-free methods have good accuracy and high convergence rate, the

complex approximation space increases the computational cost for numerical in-

tegrations. Recently, the application of the SCNI in the existing FEM for two-

dimensional elasticity problems was presented by Liu et al. (Liu, Nguyen, Dai

and Lam, 2007; Liu, Dai and Nguyen, 2007) as a new smoothed finite element

method (SFEM). It is found that the SFEM achieves more accurate results and

higher convergence rate as compared with the non-smoothed FEM.

Inspired by the above strengths of the SCNI, this research will result in a further

development of the SCNI technique and its incorporation into the conventional

FEM will result in a simple, efficient and reliable computational model for analysis

of laminated composite structures. Specifically, the objective of this research is to

develop a family of novel and robust quadrilateral low-order displacement-based

finite elements for numerical analysis of both isotropic and anisotropic plate/shell
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structures that meet the following requirements:

• good bending behaviour

• free from membrane/shear locking in the limit of thin plates/shells without

any spurious zeros energy modes

• insensitivity to extreme shape distortion

• good accuracy even with coarse mesh

• simple formulation and straightforward implementation of linear/nonlinear

constitutive laws

• efficiency and reliability for linear and geometrically nonlinear analysis of

thin to moderately thick composite plates/shell structures

The developed elements must handle laminated composite plate/shell structures

with a large number of layers efficiently. Performance and accuracy comparisons

between existing and the ‘novel’ element formulations are required in order to re-

veal advantages and limitations of the new elements. Furthermore, an extension of

the applicability of the developed method is sought for coupled electric-structural

piezoelectric systems.

To construct elements that fulfill the above requirements, the element formula-

tion is based on the ASS technique of the SCNI mesh-free method which can

achieve more accurate results in comparison with the corresponding standard

FEM, without increasing the modeling and computational efforts. The signif-

icant distinguishing character of the novel elements is that the membrane, the

bending and the geometric stiffness matrices are calculated via integration on the

boundaries of the smoothing cells. This boundary integration contributes to the

preservation of high accuracy of the method even with coarse mesh or when el-

ements are extremely distorted (e.g. when two nodes are collapsed into one so

that a quadrilateral becomes a triangle). Domain discretization is therefore more

flexible than in the case of the standard FEM. Membrane, bending and geometric

field gradients are also computed directly from shape functions themselves using

the proposed method. Furthermore, these good features are acquired without

increasing the number of field nodes and computational costs. The changes to
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existing finite element codes are small and it can be easily implemented into FEM

packages.

1.4 Outline of the dissertation

The thesis is divided into seven chapters including the Introduction and it is

organized as follows.

• Chapter 2 presents an overview of some formulations of finite elements such

as membrane, plate bending and flat shell elements that are to be employed

in the developed procedures. This chapter also contains the assumed strain

smoothing operation for developing new elements.

• Chapter 3 describes the development of two novel quadrilateral 4-node plate

bending elements based on the ASS of the SCNI within the context of the

FSDT and their implementations for analysis of laminated composite plates.

An exhaustive set of numerical examples is then presented in order to cover,

as effectively as possible, all relevant parameters, including geometries, mesh

distortion levels and boundary conditions available. The selected examples

also serve to show both the convergence and prediction capabilities of the

developed elements in linear static, free vibration and buckling analysis of

composite plate structures.

• Chapter 4 deals with the development of two quadrilateral flat shell elements

based on two developed plate bending elements which are derived in Chap-

ter 3. The verification and investigation of the flat shell models are then

carried out in several benchmark problems including bending, dynamic and

buckling analysis.

• Chapter 5 is to concentrate on the geometrically nonlinear analysis of plate

and shell structures based on two developed elements derived in Chapter 3

and Chapter 4.

• Chapter 6 is to further develop the ASS technique for the analysis of cou-

pling between mechanical and electrical behaviors of piezoelectric systems.
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Two techniques for constructing novel elements are reported. The first one,

the cell-based element, is based on the subdivision of original quadrilateral

finite elements into smoothing cells. The second one, the node-based ele-

ment, is created by transforming a triangular or quadrilateral mesh into a

mesh of new smoothing cells associated with each of the nodes of the orig-

inal mesh. Numerical studies and comparison between two methods and

other numerical/analytic solutions in the literature are also carried out and

investigated.

• Chapter 7 gives the closure of the present work. It starts with a summary of

the study, followed by concluding remarks and some suggestions for future

development of the research.

1.5 Main contributions of the research

According to the best of the author’s knowledge, the current research has con-

tributed to the advancement of knowledge in the following aspects.

• Introduce for the first time the assumed strain smoothing technique to

displacement-based four-node plate/shell finite element model to mitigate

the effect of mesh distortion and to enhance accuracy. This results in two

novel simple and effective low-order quadrilateral flat elements for modeling

general plate and shell structures which could not only be easily adapted

to a particular material type (i.e. composite laminates, isotropic materials)

but also improve model accuracy and alleviate the numerical instabilities.

• Demonstrate a wide range of engineering applications of the developed

plate/shell elements in structural analysis with various geometric shapes

(rectangular, triangular, skew, circular plates; cylindrical, spherical, hyper-

bolic paraboloid shells, etc.) as well as different type of materials (isotropic,

laminated composite and functionally grade material).

• Provide a definitive and better understanding of the effect of modulus ratios

(E1/E2), fibre orientations, different mixed boundary conditions, span-to-

thickness ratios and lay-up sequences (i.e. cross-ply, angle-ply, symmet-
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ric/unsymmetric laminates) on the behaviour of laminated composite struc-

tures in different regimes, including bending, free vibration and buckling

analysis.

• Enhance the capabilities of low-order flat elements to perform efficient ge-

ometrically nonlinear analysis of isotropic homogenous material as well as

composite laminated plate/shell structures with mesh distortion.

• Develop and extend the use of the assumed strain smoothing method for

static and dynamic analysis of electrical-mechanical coupling of piezoelectric

structures. This provides two types of new piezoelectric elements, the first

one is the cell-based and the other the node-based element.

This research has led to the development of a new finite element model for general

laminated composite structures. The simplicity and high performance of this

approach would lead to future applications, including limit analysis/plasticity

(Vaziri et al., 1992; Corradi and Vena, 2003), impact/damage behaviour (Vaziri

et al., 1996), fracture mechanics and delamination growth (Falzon et al., 1999;

Wagner et al., 2001) in composite structures.
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Chapter 2

Overview of Finite Element

Formulations

In this chapter, some basic finite element formulations which are used in the

present study, are briefly described. The chapter provides an overview of the

finite element formulations for membrane, plate bending and flat shell elements,

followed by an outline of the assumed strain smoothing technique.

2.1 Membrane elements

Two membrane finite element formulations are used in this work. The first is the

traditional isoparametric quadrilateral membrane element which neglects in-plane

rotations. The second is the membrane element with in-plane (drilling) rotations

that is investigated by Ibrahimbegovic et al. (1990). A brief review of the two

elements is presented in the following sub-sections.

2.1.1 Isoparametric quadrilateral membrane element

In this section, the finite element formulations of the isoparametric quadrilateral

membrane element is briefly reviewed for plane stress problems. The four node

quadrilateral element has two degrees of freedom per node as shown in Figure 2.1



2.1. Membrane elements 15

Figure 2.1: A 4-node isoparametric quadrilateral element.

The approximation of in-plane x and y displacements are defined by the following

equations.

u =
4∑

i=1

Ni(ξ, η)ui,

v =
4∑

i=1

Ni(ξ, η)vi,

(2.1)

where Ni = 1
4
(1 + ξiξ)(1 + ηiη) denotes the element shape function.

The discrete strain field is obtained by derivatives of the displacement as

εm =





εx

εy

γxy





= ∇su =




∂
∂x

0

0 ∂
∂y

∂
∂y

∂
∂x


u = Bmq =

4∑
i=1

Bmiqi, (2.2)

where u = [u v]T , qi = [ui vi]
T is the nodal displacement vector and Bm is the

gradient matrix

Bmi =




Ni,x 0

0 Ni,y

Ni,y Ni,x


 . (2.3)

By assuming a linear elastic isotropic material, stresses can be obtained as

σm =





σx

σy

τxy





=
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2




︸ ︷︷ ︸
Dm

εm = Dmεm. (2.4)
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The total potential energy Πm of the element with body force fb is given as

Πm =
1

2

∫

Ω

εT
mDmεmdΩ−

∫

Ω

qTbdΩ. (2.5)

Minimization of Equation (2.5) results in the element membrane stiffness matrix

as

Kmem =

∫

Ω

BT
mDmBmdΩ. (2.6)

and the vector of nodal forces as

f =

∫

Ω

NT fbdΩ. (2.7)

2.1.2 Quadrilateral membrane element with drilling de-

grees of freedom

The 4-node membrane element with drilling DOFs (Figure 2.2) is derived by

combining the in-plane displacements using Allman-type interpolation functions

(Allman, 1984) and the standard bilinear independent normal (drilling) rotation

fields. Details of the formulation can be found in the original reference (Ibrahim-

begovic et al., 1990) and only a brief review is presented here.

Figure 2.2: A 4-node quadrilateral element with drilling degrees of freedom

The independent rotation field is interpolated as follows.

θz =
4∑

i=1

Ni(ξ, η)θzi, (2.8)
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and the in-plane displacement fields are approximated by the Allman-type inter-

polation

u =


 u

v


 =

4∑
i=1

Ni(ξ, η)


 ui

vi


 +

lij
8

8∑

k=5

Nk(ξ, η)(θzj − θzi)nij, (2.9)

where lij and nij are the length and the unit outward vector normal to the element

side associated with the corner nodes i and j, for example

nij =





n1

n2



 =





cos αij

sin αij



 =





yij

lij

xij

lij



 , lij = (x2

ij + y2
ij)

1/2, (2.10)

and the ordered triplets (k, i, j) are given by (5, 1, 2), (6, 2, 3), (7, 3, 4), (8, 4, 1)

and

xij = xj − xi, yij = yj − yi, (2.11)

Ni(ξ, η) = 1
4
(1 + ξiξ)(1 + ηiη) i = 1, 2, 3, 4 (2.12)

Nk(ξ, η) = 1
2
(1− ξ2)(1 + ηkη) k = 5, 7 (2.13)

Nk(ξ, η) = 1
2
(1 + ξkξ)(1− η2) k = 6, 8. (2.14)

Substituting Equation (2.10) into Equation (2.9) the approximation of in-plane

fields can be rewritten as

u =


 u

v


 =

4∑
i=1

Ni(ξ, η)


 ui

vi


 +

1

8

8∑

k=5

Nk(ξ, η)(θzj − θzi)


 yij

xij


 (2.15)

The linear strain matrix is then given by

εm = symm∇u =
4∑

i=1

Bmiqi, (2.16)

where qi = [ui vi θzi]
T is the nodal vector and the gradient matrix Bmi has the

following form

Bmi =




Ni,x 0 Nxi,x

0 Ni,y Nyi,y

Ni,y Ni,x Nxi,y + Nyi,x


 . (2.17)

in which Nx, Ny are Allman’s incompatible shape functions defined as

Nxi =
1

8
(yijNl − yikNm), (2.18)

Nyi =
1

8
(xijNl − xikNm). (2.19)
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The above indices i, j, k, l, m can be expressed in a Matlab-like definition as

follows.

i = 1, 2, 3, 4; m = i + 4; l = m− 1 + 4 ∗ floor(1/i);

k = mod(m, 4) + 1; j = l − 4. (2.20)

where floor(x) rounds the elements of x to the nearest integers towards minus

infinity and mod(x, y) is the modulus after division of x by y.

Furthermore, the skew-symmetric part of the strain tensor (εsk) can be expressed

as

εsk = skew∇u =
4∑

i=1

biqi + θz, (2.21)

where

bi =




−1
2
Ni,y

1
2
Ni,x

1
16

(−yijNl,y + yikNm,y + xijNl,x − xikNm,x)−Ni


 , (2.22)

and the indices i, j, k, l, m are defined by Equation (2.20).

The variational formulation suggested by Hughes and Brezzi (1989) is described

as

Πγ =
1

2

∫

Ω

εT
mDmεmdΩ +

1

2
γ

∫

Ω

(εsk − θz)
2dΩ−

∫

Ω

qT fbdΩ. (2.23)

Minimization of Equation (2.23) results in the element membrane stiffness matrix

Kmem , which is the sum of matrix Km and a penalty matrix Pγ as follows.

Kmem = Km + Pγ =

∫

Ω

BT
mDmBmdΩ + γ

∫

Ω

bTbdΩ. (2.24)

The positive penalty parameter γ in Equation (2.24) is problem dependent. For

isotropic elasticity, the formulation is reported to be insensitive to the value of γ

which is taken as the shear modulus value (γ = G) (Hughes et al., 1989; Ibrahim-

begovic et al., 1990). However, many recent numerical studies showed that the

smaller value of γ (i.e. value of γ/G between 1/10000 and 1) appeared to give more

accurate solutions (Long, Geyer and Groenwold, 2006; Liu et al., 2000; Pimpinelli,

2004). In this study, γ/G = 1/1000 is used. The vector of nodal forces in this

case is the same as in Equation (2.7).
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2.2 Shear deformable plate bending element

In this section, a four-node plate bending element based on the Mindlin-Reissner

theory is derived. The element is shown in Figure 2.3. Each node of the element

possesses three degrees of freedom (DOFs), namely the transverse displacement

w in the z−direction, and the inplane rotations θx, θy about the y−axis, x−axis

respectively.

Figure 2.3: A 4-node quadrilateral plate bending element

The displacement field u of the plate is interpolated as

u = [w θx θy]
T =

4∑
i=1

Niqi, (2.25)

where Ni is the bilinear shape function as in Equation (2.12) and qi = [wi θxi θyi]

is the nodal displacement vector of the element.

The corresponding approximation of strains is given by

εb =





εx

εy

γxy





=




θx,x

θy,y

θx,y + θy,x


 = Bbq, (2.26)

γ =





γxz

γyz



 = Bsq, (2.27)



2.2. Shear deformable plate bending element 20

where

Bbi =




0 Ni,x 0

0 0 Ni,y

0 Ni,y Ni,x


 , (2.28)

Bsi =


 Ni,x Ni 0

Ni,y 0 Ni


 . (2.29)

The linear elastic stress-strain relations in bending are defined for a homogeneous,

isotropic material as

σb =





σx

σy

τxy





=
E

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2


 εb, (2.30)

while the linear elastic stress-strain relations in transverse shear are defined as

σs =





τxz

τyz



 =

E

2(1 + ν)


 1 0

0 1


 γ. (2.31)

The total potential energy Πp of the plate, with the transverse loading per unit

area p, is given as

Πp =
1

2

∫

Ω

∫ h/2

−h/2

σT
b εbdzdΩ +

ks

2

∫

Ω

∫ h/2

−h/2

σT
s γdzdΩ−

∫

Ω

pwdΩ. (2.32)

where ks = 5/6 is a shear correction factor.

Substitution of the constitutive relations for both bending and shear components

from Equation (2.26) to Equation (2.31) into Equation (2.32) yields

Πp =
1

2

∫

Ω

εT
b DbεbdΩ +

ks

2

∫

Ω

γTDsγdΩ−
∫

Ω

pwdΩ, (2.33)

where Db, Ds are material rigidity matrices for the bending and shear, respec-

tively, which are given as

Db =
Eh3

12(1− ν2)




1 ν 0

ν 1 0

0 0 1−ν
2


 , (2.34)

Ds =
Eh

2(1 + ν)


 1 0

0 1


 . (2.35)
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Equilibrium requires that Πp is stationary, i.e., δΠp = 0. This results in the

element stiffness matrix as follows

Kp =

∫

Ω

BT
b DbBbdΩ

︸ ︷︷ ︸
Kb

+ ks

∫

Ω

BT
s DsBs

︸ ︷︷ ︸
Ks

= Kb + Ks, (2.36)

and the vector of nodal forces is obtained as

f =

∫

Ω

NT pdΩ. (2.37)

2.3 Flat shell element

The plate bending and membrane elements presented in the above sections can

be combined to form a four-node shell element as shown in Figure 2.4.

Figure 2.4: A 4-node quadrilateral flat shell element

When all nodes of the flat shell element are placed in the mid-thickness plane of

the shell, the stiffness matrix of a shell element can be formed by combining the

plate stiffness and membrane stiffness obtained independently as follows.

Kflat =


 Kmem 0

0 Kp


 . (2.38)

For some shells with double curvature, it may not be possible to have four nodes of

the flat shell element on the same plane (warped geometries) and the flat element

stiffness must be modified before transformation to the global reference system

by using the rigid link correction suggested by Taylor (1987). For the rigid link

correction, the mean plane is formed by connecting central points of each side
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and distances between the mean plane and each node are taken to be the same

(|zi| = h). Then, the following displacement transformation equation at each

node i is employed to transform the nodal variables to the projected flat element

variables:

q′i =





u′i

v′i

w′
i

θ′xi

θ′yi

θ′zi





=




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 zi 0 1 0 0

−zi 0 0 0 1 0

0 0 0 0 0 1








ui

vi

wi

θxi

θyi

θzi





= Wiqi, (2.39)

where W is the projection matrix and zi defines the warpage offset at each node

i perpendicular to the flat mean plane as shown in Figure 2.5.

Figure 2.5: The projection of a warped shell element into a flat mean plane

The local element stiffness matrix, considering the warping effects, is obtained as

follows.

Klocal = WKflatW
T . (2.40)

Then the element stiffness in the global reference system Kglobal is obtained via

the rotation matrix R

Kglobal = RTKlocalR. (2.41)
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in which

R =




T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T




, T =




t11 t12 t13 0 0 0

t21 t22 t23 0 0 0

t31 t32 t33 0 0 0

0 0 0 t11 t12 t13

0 0 0 t21 t22 t23

0 0 0 t31 t32 t33




(2.42)

where tij is the direction cosine between the local axis xi and the global axis Xj.

It is noted that when an isoparametric membrane element is used as a part of

the flat shell element, there is no stiffness associated with the rotation degree

of freedom θz. This lack of stiffness lead to singularity in the global stiffness

matrix when all the elements are coplanar. A simple method for remedying this

singularity is to insert a small fictitious stiffness to each drilling degree of freedom

(Zienkiewicz and Taylor, 2000). This is done by simply replacing the null values of

the stiffness corresponding to the drilling degree of freedom by a value of 1/1000

of the largest diagonal term of the element stiffness matrix. The stiffness matrix

at each node of the shell element can thus be represented as follows.

Ki =




[Kmem]2×2 02×3 0

03×2 [Kp]3×3 0

0 0 10−3max(Ki,i)


 (2.43)

2.4 Assumed strain smoothing technique

An assumed strain smoothing method that meets integration constraints was

proposed by Chen et al. (2001) as a stabilization of direct nodal integration

in Galerkin mesh-free methods. This method avoids evaluating derivatives of

mesh-free shape functions at nodes by performing numerical integration along the

boundaries of each cell and thus eliminates spurious modes. Consider a domain

Ω discretized by a set of nodes, ΩL denotes the representative domain of a node

xL. The strain smoothing at an arbitrary point xL is defined as

ε̃ij(xL) =

∫

ΩL

εij(x)Φ(x− xL)dΩ, (2.44)
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where εij is the strain obtained from displacement compatibility condition and Φ

is a smoothing function that satisfies the following properties (Chen et al., 2001;

Yoo et al., 2004)

Φ ≥ 0 and
∫
ΩL

ΦdΩ = 1. (2.45)

For simplicity, Φ is chosen as a piecewise constant function

Φ(x− xL) =





1/AL x ∈ ΩL,

0 x /∈ ΩL.
(2.46)

in which AL =
∫
ΩL

dΩ is the area of the representative domain of node L

Substituting Φ into Equation (2.44) and applying the divergence theorem, the

following equation is obtained

ε̃ij(xL) =
1

2AL

∫

ΩL

(
∂ui

∂xj

+
∂uj

∂xi

)
dΩ =

1

2AL

∫

ΓL

(uinj + ujni)dΓ, (2.47)

where ΓL is the boundary of the representative domain of node L and n is the

unit outward vector normal to the boundary ΓL.

Equation (2.47) forms the basis of strain smoothing stabilization for Galerkin

mesh-free method that leads to the fulfilment of integration constraints in nodal

integration as demonstrated in Chen et al. (2001); Wang and Chen (2007). This

strain smoothing approximation is introduced for the first time into a standard

2D elastic finite element method via an assumed strain technique by Liu, Dai and

Nguyen (2007). The strain smoothing technique can be considered as a constraint

weakening method to avoid numerical over-stiffening of the elements. One of the

advantages of the strain smoothing approach is that the numerical integration to

obtain the element stiffness matrix can be performed (partly) on cell boundaries.

This method can be advantageous in problems involving softening materials where

mesh dependencies are involved only if a suitable number of smoothing cells is

chosen for each element. More details on the effect of the number of smoothing

cells in an element on accuracy can be found in the original paper of Liu, Dai

and Nguyen (2007). Following this idea, the assumed strain smoothing method

is further developed and extended to isotropic/anisotropic plate/shell structures

and piezoelectric solids in this study. The detailed developments and applications

of the assumed strain smoothing finite element method will be presented in the

following chapters.
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Chapter 3

Assumed Strain Smoothing Plate

Finite Elements

This chapter reports the development of two simple but efficient and accurate

four-node displacement-based C0 quadrilateral elements, namely MISQ20 and

MISQ24, for modelling of laminated composite plate structures. The developed el-

ements are based on the assumed strain smoothing (ASS) finite element technique

within the framework of the FSDT. The most important feature of the present

ASS method is the method of evaluation of membrane, bending and geometric

stiffness matrices based on integration along the boundary of smoothing elements,

which can give more accurate numerical integration even with badly-shaped el-

ements and reduce computational time when compared with domain integration

techniques. The performance of the new elements is verified and demonstrated

through several benchmark problems and comparative studies with analytic and

other numerical solutions in the literature.

3.1 Introduction

In recent years, the use of laminated composite plates has been expanding rapidly

in many engineering applications including aerospace, marine and civil infrastruc-

ture. Such high level of application has been paralleled by theoretical development
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of simpler and more efficient elements for modelling of these structures. It is well-

known that the first-order shear deformation plate theory (FSDT) is still the

most attractive approach owing to its simplicity, good compromise between nu-

merical accuracy and computational burden. Elements based on FSDT only need

C0−continuity for approximations of displacement fields and are also versatile as

they can be applied in the case of thin to moderately thick plates. However, be-

sides shear locking, currently available FSDT-based elements do not perform well

when their shapes deviate significantly from a squarish form. There is a need for

quadrilateral elements that are able to work well in extremely distorted forms, as

problems coming from real life often involve irregular geometries.

Therefore, the objective of this chapter is to describe a contribution to further

developments in this field, with the introduction and use of strain smoothing tech-

niques of the SCNI mesh-free method into the conventional 4-node quadrilateral

plate finite elements. The main construction steps are as follows: (1) apply the

SCNI as strain smoothing technique for membrane and bending strain fields and

(2) approximate the shear strain field with an independent interpolation scheme

in the natural coordinate system.

Following the above procedure, two new 4-node quadrilateral plate elements de-

noted as MISQ20 and MISQ24 are formed for modelling and analyzing laminated

composite plate structures. The significant distinguishing character of the novel

elements is that the membrane, bending and geometric stiffness matrices are cal-

culated via integration on the boundaries of smoothing cells. This boundary

integration contributes to the preservation of high accuracy of the method even

with coarse mesh or when elements are highly distorted. Domain discretization is

therefore more flexible than in the case of the standard FEM.

This chapter is outlined as follows. First, a brief review of the FSDT is introduced

in Section 3.2. The description of strain smoothing approaches for membrane

strain and curvatures fields together with the assumed natural shear strain of the

element are derived in Section 3.3. Several numerical simulations for static, free

vibration and buckling analysis are investigated from Section 3.4 to Section 3.6

in order to verify and assess the performances of the proposed elements. Finally,

some concluding remarks are presented in Section 3.7
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3.2 First-order shear deformation theory of lam-

inated plates

3.2.1 Governing equations

Consider a laminate consisting of n orthotropic layers with a total thickness h.

The principal material coordinates (xk
1, xk

2, xk
3) of the kth lamina is oriented at

an angle θk to the laminate coordinate as shown in Figure 3.1. The kth layer is

located between the point z = zk−1 and z = zk in the thickness direction and the

xy−plane is taken to be undeformed midsurface of the laminate.

Figure 3.1: Coordinate systems and layer positions defined in a laminate

The first-order shear deformation theory (FSDT) of laminated plates is an ex-

tension of the Reissner-Mindlin theory for homogeneous isotropic thick plates.

The theory takes into account transverse shear strain in the formulation with the

following assumptions (Reddy, 2004b):

• The transverse normals remain straight after deformation but may not be

orthogonal to the midsurface of the plate

• The transverse normals do not experience elongation so that the transverse

strain εz = 0
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• The out-of-plane normal stress σz = 0

• The layers of the composite plate are perfectly bonded

• The material of each layer is linear elastic and orthotropic

In the FSDT, the plate kinematics is governed by the midplane displacement

u0, v0, w0 and the rotation θx, θy

u(x, y, z) = u0(x, y) + zθx,

v(x, y, z) = v0(x, y) + zθy, (3.1)

w(x, y, z) = w0(x, y).

A typical 4-node quadrilateral laminated plate element consisting of n layers with

thickness h is shown in Figure 3.2

Figure 3.2: Undeformed and deformed geometries of an edge of a plate under the

assumptions of the FSDT.

The in-plane strain vector ε = [εx εy γxy]
T can be rewritten as

ε = εm + zεb, (3.2)

where εm is the membrane strain and εb is the bending strain (curvatures), which

are given as follows.
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εm =





εm
x

εm
y

γm
xy





=





u0,x

v0,y

u0,y + v0,x





, (3.3)

εb =





εb
x

εb
y

γb
xy





=





θx,x

θy,y

θx,y + θy,x





. (3.4)

The transverse shear strain vector γ = [γxz γyz]
T is given as

γ =





θx − w,x

θy − w,y



 . (3.5)

The stress-strain relation with respect to global x− and y−axis for the kth(k =

1..n) lamina is expressed as

σ(k) =





σx

σy

τxy





(k)

=




Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66




(k) 



εx

εy

γxy





(k)

= Q̄(k)ε(k), (3.6)

τ (k) =





τxz

τyz





(k)

=


 k2

1Q̄
∗
55 k1k2Q̄

∗
45

k1k2Q̄
∗
45 k2

2Q̄
∗
44




(k) 



γxz

γyz





(k)

= C̄(k)
s γ(k), (3.7)

where k2
1, k2

2 are SCFs and can be estimated by using special methods (Valchoutsis,

1992; Whitney, 1973) for anisotropic plates; Q̄k
ij, Q̄∗k

ij are the elastic constants of

the kth lamina (see Figure 3.1), which are given as

Q̄(k) = TεQ
(k)TT

ε , (3.8)

Q̄∗(k) = TγQ
∗(k)TT

γ , (3.9)

where

Q(k) =




E1

1−ν12ν21

ν12E2

1−ν12ν21
0

ν21E1

1−ν12ν21

E2

1−ν12ν21
0

0 0 G12




(k)

, (3.10)

Q∗(k) =


 G13 0

0 G23




(k)

, (3.11)
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and Tε, Tγ are transformation matrices

Tε =




c2 s2 −2cs

s2 c2 2cs

cs −cs c2 − s2


 , (3.12)

Tγ =


 c −s

s c


 , (3.13)

in which c = cos θ(k), s = sin θ(k).

The equilibrium equations are developed in stress resultant form by considering

the balance of forces and moments on an infinitesimal area of the laminate. Ne-

glecting body moments and surface shearing forces, the equilibrium equations in

the presence of applied transverse force p are given by:

Nx,x + Nxy,y = 0,

Nxy,x + Ny,y = 0,

Qx,x + Qy,y + p(x, y) = 0,

Mx,x + Mxy,y −Qx = 0,

Mxy,x + My,y −Qy = 0.

(3.14)

or more compactly as in the following variational form:∫

Ω

[δεT
mN+δεT

b M + δγTQ− pδw]dΩ = 0, (3.15)

where N = {Nx Ny Nxy} is the in-plane force resultant, Q = {Qx Qy} is the

out-of-plane force resultant and M = {Mx My Mxy} is the out-of-plane moment

resultant (see Figure 3.3). These resultants are defined as acting per unit length

as follows: 



Nx

Ny

Nxy





=

∫ h/2

−h/2





σx

σy

σxy





dz,





Mx

My

Mxy





=

∫ h/2

−h/2





σx

σy

σxy





zdz,





Qx

Qy



 =

∫ h/2

−h/2





τxz

τyz



dz.

(3.16)
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Figure 3.3: Orientation and positive direction of force and moment resultants on

a flat plate element

Substituting Equation (3.2)–(3.7) into Equation (3.16), the following relationship

between the stress resultants and the strains of the laminate is obtained:




Nx

Ny

Nxy





=




A11 A12 A16

A12 A22 A26

A16 A26 A66








εm
x

εm
y

γm
xy





+




B11 B12 B16

B12 B22 B26

B16 B26 B66








εb
x

εb
y

γb
xy





,

(3.17)





Mx

My

Mxy





=




B11 B12 B16

B12 B22 B26

B16 B26 B66








εm
x

εm
y

γm
xy





+




D11 D12 D16

D12 D22 D26

D16 D26 D66








εb
x

εb
y

γb
xy





,

(3.18)





Qx

Qy



 =


 k2

1C̄
0
55 k1k2C̄

0
45

k1k2C̄
0
45 k2

2C̄
0
44








γxz

γyz



 . (3.19)

or more compactly in matrix notation as

σp =





N

M



 =


 A B

B D








εm

εb



 = Cpεp, (3.20)

T =





Qx

Qy



 = Csγ. (3.21)
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where Aij is the extensional stiffness, Dij is the bending stiffness, Bij is the

bending-extension coupling stiffness, which are defined in terms of the lamina

stiffness Q̄
(k)
ij as

Aij =
n∑

k=1

(zk − zk−1)Q̄
k
ij, i, j = 1, 2, 6

Bij =
1

2

n∑

k=1

(z2
k − z2

k−1)Q̄
k
ij, i, j = 1, 2, 6

Dij =
1

3

n∑

k=1

(z3
k − z3

k−1)Q̄
k
ij, i, j = 1, 2, 6

C0
ij =

n∑

k=1

(zk − zk−1)Q̄
∗k
ij , i, j = 4, 5

(3.22)

3.2.2 Finite element formulations

For the static analysis, the total potential energy functional of a laminated plate

under a transverse load p is given as

Πstatic =
1

2

∫

Ω

(εT
mAε+εT

mBεb + εT
b Bεm + εT

b Dεb +γTCsγ)dΩ−
∫

Ω

pwdΩ. (3.23)

For free vibration analysis, the total potential energy functional of a laminated

plate in the context of the FSDT can be expressed as follows.

Πvibration =
1

2

∫

Ω

(εT
mAε+εT

mBεb + εT
b Bεm + εT

b Dεb + γTCsγ)dΩ +
1

2

∫

Ω

uT müdΩ.

(3.24)

For the buckling analysis when the plate is subjected to in-plane pre-buckling

stress σ0 and in the absence of external forces, the potential energy is given by

Πbuckling =
1

2

∫

Ω

(εT
mAε+εT

mBεb + εT
b Bεm + εT

b Dεb +γTCsγ)dΩ+
1

2

∫

Ω

εT
g σ̂0εgdΩ,

(3.25)

where

σ0 =


 σ0

x σ0
xy

σ0
xy σ0

y


 , σ̂0 =




hσ0 0 0

0 h3

12
σ0 0

0 0 h3

12
σ0


 , εg =




w,x 0 0

w,y 0 0

0 θx,x 0

0 θx,y 0

0 0 θy,x

0 0 θy,y




.

(3.26)
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Consider a bounded domain Ω =
ne∑
i=1

Ωe of a composite plate which is discretized

into ne finite elements. The finite element solution u of a displacement-based

4-node quadrilateral model is approximated as

u =





u

v

w

θx

θy





=
4∑

i=1

Niqi, (3.27)

where Ni is the bilinear shape function, qmi = [ui vi]
T , qbi = [wi θxi θyi]

T and

qi = [qmi qbi]
T are the displacement vectors of the element.

The corresponding approximation of membrane, bending, shear and geometric

strains can be expressed in the following form

εm = Bmqm, εb = Bbqb, γ = Bsqb, εg = Bgqb, (3.28)

where

Bmi =




Ni,x 0

0 Ni,y

Ni,y Ni,x


 , Bbi =




0 Ni,x 0

0 0 Ni,y

0 Ni,y Ni,x


 , Bsi =


 Ni,x Ni 0

Ni,y 0 Ni


 ,

(3.29)

Bgi =




Ni,x 0 0

Ni,y 0 0

0 Ni,x 0

0 Ni,y 0

0 0 Ni,x

0 0 Ni,y




. (3.30)

By minimizing Equation (3.23)–(3.25), the finite element formulations of lami-

nated plates can be obtained as follows.

For static analysis:

Kq = F, (3.31)
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where K is the global stiffness matrix and F is the load vector, which are given

as follows.

K =

∫

Ω

BT
mABmdΩ

︸ ︷︷ ︸
Km

+

∫

Ω

(BT
mBBb + BT

b BBm)dΩ

︸ ︷︷ ︸
Kmb+KT

mb

+

+

∫

Ω

BT
b DBbdΩ

︸ ︷︷ ︸
Kb

+

∫

Ω

BT
s CsBs

︸ ︷︷ ︸
Ks

dΩ

= Km + Kmb + KT
mb + Kb + Ks, (3.32)

F =

∫

Ω

NTpdΩ. (3.33)

For free vibration analysis:

(K− ω2M)q = 0, (3.34)

where ω is the natural frequency and M is the global mass matrix which is defined

by

M =

∫

Ω

NTmNdΩ, m = ρh




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 h2

12
0

0 0 0 0 h2

12




. (3.35)

For buckling analysis:

(K− λKg)q = 0, (3.36)

where λ is the critical buckling load and Kg is the geometric stiffness matrix which

is defined by

Kg =

∫

Ω

BT
g σ̂0BgdΩ. (3.37)

3.3 Strain smoothing approach for laminated plate

3.3.1 Smoothed membrane strains

The membrane strains at an arbitrary point xC are obtained by using the following

strain smoothing operation

ε̃m(xC) =

∫

ΩC

εm(x)Φ(x− xC)dΩ, (3.38)
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where εm is the membrane strain obtained from displacement compatibility con-

dition as given in Equation (2.2). ΩC is the smoothing cell domain on which

the smoothing operation is performed. Depending on the stability analysis (Liu,

Dai and Nguyen, 2007; Liu, Nguyen, Dai and Lam, 2007), ΩC may be an entire

element or part of an element as shown in Figure 3.4. Φ is a given smoothing

function that satisfies at least unity property
∫
ΩC

ΦdΩ = 1 and, in the present

work, is defined as

Φ(x− xC) =





1/AC x ∈ ΩC ,

0 x /∈ ΩC .
(3.39)

where AC =
∫

ΩC
dΩ is the area of the smoothing cell (subcell).

Substituting Φ into Equation (3.38) and applying the divergence theorem, one

can get the smoothed membrane strain

ε̃m(xC) =
1

2AC

∫

ΩC

(
∂ui

∂xj

+
∂uj

∂xi

)
dΩ =

1

2AC

∫

ΓC

(uinj + ujni)dΓ, (3.40)

where ΓC is the boundary segment of the smoothing cell,

Figure 3.4: Subdivision of elements into nc smoothing cells and the values of

shape functions at nodes in the format (N1, N2, N3, N4).

3.3.1.1 Smoothed isoparametric membrane element

Introducing the finite element approximation of qm = [u v]T from Equation (2.1)

into Equation (3.40) gives

ε̃m(xC) = B̃m(xC)qm, (3.41)



3.3. Strain smoothing approach for laminated plate 36

where

B̃mi(xC) =
1

AC

∫

ΓC




Ninx 0

0 Niny

Niny Ninx


dΓ. (3.42)

If one Gauss point is used to evaluate Equation (3.42) along each line segment of

the boundary ΓC
i of ΩC , Equation (3.42) can be transformed as follows.

B̃mi(xC) =
1

AC

nb∑
m=1




Ni(x
G
m)nx 0

0 Ni(x
G
m)ny

Ni(x
G
m)ny Ni(x

G
m)nx


lCm, (3.43)

where xG
m and lCm are the midpoint (Gauss point) and the length of ΓC

m, respec-

tively; nb is the total number of edges of each smoothing cell (nb = 4 in this

case).

Finally, the smoothed element membrane stiffness matrix can be obtained as

K̃mem = K̃m =

∫

Ω

B̃T
mAB̃mdΩ =

nc∑
C=1

B̃T
mCAB̃mCAC , (3.44)

where nc is the number of smoothing cells chosen to be 2 in this case (Nguyen-Van

et al., 2007a, 2008d).

3.3.1.2 Smoothed membrane element with drilling degrees of freedom

Introducing the finite element approximation of qm = [u v θz]
T into Equa-

tion (3.40) gives

ε̃m(xC) = B̃m(xC)qm, (3.45)

where

qmi = [ui vi θzi]
T , (3.46)

B̃mi(xC) =
1

AC

∫

ΓC




Ninx 0 Nxinx

0 Niny Nyiny

Niny Ninx Nxiny + Nyinx


dΓ. (3.47)
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Applying Gauss integration along each segment of the boundary ΓC of the smooth-

ing domain ΩC , the above equation can be rewritten in algebraic form as

B̃mi(xC) =
1

AC

ns∑
m=1




nG∑
n=1

wnNi(xmn)nx 0 0

0
nG∑
n=1

wnNi(xmn)ny 0

nG∑
n=1

wnNi(xmn)ny

nG∑
n=1

wnNi(xmn)nx 0




+
1

AC

ns∑
m=1




0 0
nG∑
n=1

wnNxi(xmn)nx

0 0
nG∑
n=1

wnNyi(xmn)ny

0 0
nG∑
n=1

wnNxi(xmn)ny +
nG∑
n=1

wnNyi(xmn)nx




(3.48)

where ns is the number of segments of the boundary ΓC (ns = 4 in this case),

nG the number of Gauss integration points, xmn the Gauss points and wn the

corresponding weighting coefficients. The first term in Equation (3.48), which re-

lates to the in-plane translations is approximated by bilinear shape functions, and

therefore is evaluated by one Gauss point (nG = 1). The second term, associated

with the in-plane rotations, is approximated by quadratic shape functions, and

therefore is computed using two Gauss points (nG = 2).

The smoothed membrane element stiffness matrix can be obtained as

K̃mem = K̃m + Pγ =
∫
Ω
B̃T

mAB̃mdΩ + γ
∫
Ω
bTbdΩ

=
nc∑

C=1

B̃T
mCAB̃mCAC + γ

∫
Ω
bTbdΩ, (3.49)

in which nc is the number of smoothing cells. To avoid numerically over-stiffening

the membrane, one smoothing cell (nc = 1) is used in the present formulation.

Higher numbers of smoothing cells will lead to stiffer solutions and the accuracy

may not be enhanced considerably. The penalty matrix Pγ is integrated using a 1–

point Gauss quadrature to suppress a spurious, zero-energy mode associated with

the drilling DOFs. The positive penalty parameter γ is chosen as γ/G12 = 1/1000

in the study.
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3.3.2 Smoothed bending strains of the element

Similarly, by using the same constant smoothing function Φ for membrane strain,

the smoothed bending strain can be obtained as follows

ε̃b(xC) =

∫

ΩC

εb(x)Φ(x− xC)dΩ =
1

2AC

∫

ΓC

(θinj + θjni)dΓ. (3.50)

Then the relationship between the smoothed bending strain field and the nodal

displacement is rewritten as

ε̃b(xC) = B̃b(xC)qb, (3.51)

where

qbi = [wi θxi θyi], (3.52)

B̃bi(xC) =
1

AC

∫

ΓC




0 Ninx 0

0 0 Niny

0 Niny Ninx


dΓ. (3.53)

Using integration with one-point Gauss quadrature to evaluate the above equation

over each line segment the smoothed gradient matrix is rewritten as

B̃bi(xC) =
1

AC

4∑

b=1




0 Ni(x
G
b )nx 0

0 0 Ni(x
G
b )ny

0 Ni(x
G
b )ny Ni(x

G
b )nx


lCb . (3.54)

Finally, the smoothed element bending stiffness matrix can be obtained as

K̃b =

∫

Ω

B̃T
b DB̃bdΩ =

nc∑
C=1

B̃T
bCDB̃bCAC , (3.55)

where nc is the number of smoothing cells, chosen to be 2 in this case in order to

ensure the rank sufficiency (Nguyen-Van et al., 2007a; Nguyen-Xuan et al., 2008).
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3.3.3 Transverse shear strains of the element

The shear strains are approximated with independent interpolation fields in the

natural coordinate system (Bathe and Dvorkin, 1985)


 γx

γy


 = J−1


 γξ

γη


 = J−1N̂




γA
η

γB
ξ

γC
η

γD
ξ




, (3.56)

in which

J =


 x,ξ y,ξ

x,η y,η


 , (3.57)

N̂ =
1

2


 (1− ξ) 0 (1 + ξ) 0

0 (1− η) 0 (1 + η)


 , (3.58)

J is the Jacobian matrix and the midside nodes A, B, C, D are shown in Figure 3.5.

Expressing γA
η , γC

η and γB
ξ ,γD

ξ in terms of the discretized fields q, we obtain the

shear matrix

B̄si = J−1


 Ni,ξ b11

i Ni,ξ b12
i Ni,ξ

Ni,η b21
i Ni,η b22

i Ni,η


 , (3.59)

where

b11
i = ξix

M
,ξ , b12

i = ξiy
M
,ξ , b21

i = ηix
L
,η, b22

i = ηiy
L
,η (3.60)

in which ξi ∈ {−1, 1, 1,−1}, ηi ∈ {−1,−1, 1, 1},
and (i,M, L) ∈ {(1, B, A); (2, B, C); (3, D,C); (4, D, A)}.

Figure 3.5: Mid-side points used to interpolate the transverse shear deformation.
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3.3.4 Smoothed element stiffness matrix

The total potential energy functional of a laminated plate is given by

Π =
1

2

∫

Ω

(ε̃T
mAε̃m+ε̃T

mBε̃b + ε̃T
b Bε̃m + ε̃T

b Dε̃b + γTCsγ)dΩ−
∫

Ω

pwdΩ (3.61)

By minimizing Equation (3.61), the element stiffness matrix can be obtained as

follows:

K̃ = K̃m + K̃mb + K̃T
mb + K̃b + K̄s, (3.62)

where

K̃m =
2∑

C=1

B̃T
mCAB̃mCAC (without drilling DOFs), (3.63)

K̃m =
1∑

C=1

B̃T
mCAB̃mCAC + γ

∫

Ω

bTbdΩ (with drilling DOFs), (3.64)

K̃mb =

∫

Ω

B̃T
mBB̃bdΩ =

2∑
C=1

B̃T
mCBB̃bCAC (without drilling DOFs),(3.65)

K̃mb =

∫

Ω

B̃T
mBB̃bdΩ =

1∑
C=1

B̃T
mCBB̃bCAC (with drilling DOFs), (3.66)

K̃b =

∫

Ω

B̃T
b DB̃bdΩ =

2∑
C=1

B̃T
bCDB̃bCAC , (3.67)

K̃s =

∫

Ω

B̄T
s CsB̄sdΩ =

2∑
i=1

2∑
j=1

wiwjB̄
T
s CsB̄s |J| dξdη. (3.68)

Once the displacement variables are known, the in-plane stresses σk
p for the kth

layer are obtained by

σ̃k
p = Q̄

k
(ε̃0

m + zε̃0
b), (3.69)

and the transverse shear stresses are calculated by a simple approach of Rolfes

and Rohwer (1997) with the details given in Appendix A.

The analysis described above forms the basis of two new four-node quadrilateral

flat laminated plate elements, one without drilling DOFs and one with drilling

DOFs. The first element with 5 DOFs per node is referred as MISQ20 (Mixed

Interpolation Smoothing Quadrilateral element with 20 DOFs), which is defined
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by Equation (3.63), Equation (3.65) and Equations (3.67)–(3.68). The second ele-

ment with 6 DOFs per node is named as MISQ24 (Mixed Interpolation Smoothing

Quadrilateral element with 24 DOFs), which is defined by Equation (3.64) and

Equations (3.66)–(3.68).

3.3.5 Smoothed element geometric stiffness matrix

In a similar way, by using the same constant smoothing function Φ as in Equa-

tion (3.39), the smoothed geometric strain can be obtained as follows

ε̃g(xC) = B̃g(xC)qb (3.70)

where

qbi = [wi θxi θyi], (3.71)

B̃gi (xC) =
1

AC

∫

ΓC




Ninx 0 0

Niny 0 0

0 Ninx 0

0 Niny 0

0 0 Ninx

0 0 Niny




dΓ (3.72)

Equation (3.72) can be evaluated with one-point Gauss quadrature integration as

follows

B̃gi (xC) =
1

AC

nb∑

g=1




Ni(xG
g )nx 0 0

Ni(xG
g )ny 0 0

0 Ni(xG
g )nx 0

0 Ni(xG
g )ny 0

0 0 Ni(xG
g )nx

0 0 Ni(xG
g )ny




lCg , (3.73)

in which nb = 4 is the number of edges of a smoothing cell.

Finally, the smoothed element geometric stiffness matrix can be obtained as

K̃g =

∫

Ω

B̃T
g σ̂0B̃gdΩ =

nc∑
C=1

B̃T
gCσ̂0B̃gCAC , (3.74)

where nc is the number of smoothing cells, chosen to be 1 in this case.
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3.4 Numerical examples: Static analysis

In this section, we will test and assess the MISQ20 and MISQ24 elements through

several application studies. Particular plates having different shapes, boundary

conditions, thickness ratios, number of layers, fibre orientations are analyzed with

these elements and the obtained results are discussed and compared with those

obtained from other analytical and/or numerical solutions if available. In all

examples, the material properties are assumed to be the same in all the layers

and the fibre orientations may be different among the layers. The ply angle of

each layer is measured from the global x−axis to the fibre direction. The thickness

of each layer is identified. The material properties considered in the numerical

examples here are given in Table 3.1.

Table 3.1: Material properties.

Moduli
HM graphite epoxy

M1 M2 M3 M4

E11 × 106 25.0 40.0 40.0 5.6

E22 × 106 1.0 1.0 1.0 1.2

G12 × 106 0.5 0.6 0.5 0.6

G13 × 106 0.5 0.6 0.5 0.6

G23 × 106 0.2 0.5 0.5 0.6

ν12 = ν23 = ν13 0.25 0.25 0.25 0.26

Before substantial examples are presented, the elements will be shown to have

passed the patch tests as described in the next section.

3.4.1 Patch tests

A patch test is a sufficient requirement in assessing the convergence of a finite

element method. It is an essential check in order to verify whether given elements

are able to exhibit states of constant strain and stress in distorted meshes. This

property is important to ensure well-behaved convergence characteristics since

elements should exhibit constant strain in the limit of infinitely small elements.
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A choice of material, mesh and boundary conditions was adopted, following the

approach of MacNeal and Harder (1985) as shown in Figure 3.6. In the patch

tests, the prescribed displacements are applied at the edges corresponding to the

nodes: 1, 2, 3 and 4. Two sets of tests are conducted including in-plane membrane

patch test and out-of-plane bending test.

Figure 3.6: Patch test geometry and mesh. Isotropic material properties: E =

106, ν = 0.25, h = 0.001.

The following boundary conditions are used in the patch test:

• Membrane test: u = 10−3(x + y
2
), v = 10−3(y + x

2
), w = 0.

• Bending test: w = 10−3(x2+xy+y2)/2, θx = 10−3(y+ x
2
), θy = 10−3(x+ y

2
).

Table 3.2: Results of patch test

Test case Stress MISQ20 MISQ24 Exact

Membrane σx 1.33300000E3 1.33300000E3 1333

σy 1.33300000E3 1.33300000E3 1333

σxy 0.40000000E3 0.39999999E3 400

Bending Mx 1.11111111E-7 1.11111111E-7 1.11111111E-7

My 1.11111111E-7 1.11111111E-7 1.11111111E-7

Mxy 0.33333333E-7 0.33333333E-7 0.33333333E-7

As expected, the MISQ20 and MISQ24 give exact results (up to 8 digit machine

precision) as shown in Table 3.2 for both test cases and hence both of MISQ20

and MISQ24 elements successfully pass the patch test.
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3.4.2 Cross-ply 3-layer symmetric [00/900/00] and 2-layer

unsymmetric [00/900] laminates under uniformly dis-

tributed load

The symmetric [00/900/00] and unsymmetric [00/900] cross-ply laminate square

plates of material M1 with length a and thickness h, subjected to simply supported

boundary SS1 (Reddy, 2004b) under a uniform transverse load qo = 1 are studied.

The shear correction factors are constant and equal to 5/6. Owing to symmetry,

only a quarter of the plate is discretized using 3×3, 6×6, 12×12 meshes with

regular as well as highly distorted elements as shown in Figure 3.7.

Figure 3.7: Meshes of a quarter of simply supported plate: (a) regular mesh 6×6;

(b) irregular mesh 3×3; (c) irregular mesh 6×6; (d) irregular mesh 12×12.

Table 3.3 shows the prediction accuracies and convergence rate for the dimension-

less plate center deflections w∗ = 100E2wh3/(qoa
4) with the two types of mesh.

It is found that the accuracy of the present element MISQ20 is better than EML4

(Enhance Mixed Linked 4 node) element (Auricchio and Sacco, 1999), HASL

(Hybrid Assumed-Strain Laminate) element (Cazzani et al., 2005) in the case of

regular meshes 12×12. The performance of MISQ24 element is only better than

that of HASL element for this particular problem. Numerical results in Table 3.3

also indicate that the performance of MISQ20 and MISQ24 element, in terms of
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rate of convergence and accuracy, with respect to exact solution is excellent.

It is interesting to note that the proposed MISQ20 and MISQ24 elements yield

not only accurate results in a wide range of thick to thin plates but also rapid con-

vergence, especially when plates are thin for both regular and extremely distorted

meshes. For symmetric cross-ply [00/900/00] laminates, the calculated results with

MISQ20 and MISQ24 elements are quite the same while for the unsymmetric cross-

ply [00/900] laminates, the MISQ24 element yields slightly smaller values than

those of the MISQ20 element. The effect of distorted mesh and span-to-thickness

ratio a/h on the convergence behaviour are depicted in Figure 3.8. It is found that

the convergence rate for unsymmetric cross-ply [00/900] with a/h = 10 is faster

than a/h = 100 in both types of mesh. For symmetric cross-ply [00/900/00], the

convergence rate for w∗ with a/h = 10 is slower than with a/h = 100.
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Figure 3.8: Convergence behaviour of the normalized central deflection w∗: (a)

antisymmetric cross-ply [00/900] and (b) symmetric cross-ply [00/900/00].
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3.4.3 Angle-ply [θ0/−θ0] square plate under uniformly dis-

tributed load

A simply supported and clamped two-layer angle-ply [θ0/ − θ0] square plate of

material M3 with length a = 10 and thickness h = 0.02, subjected to a uniformly

distributed transverse load qo = 1 is analyzed. Shear correction factors are: k2
1 =

k2
2 = 5/6. The total thicknesses of θ0 and −θ0 layers are equal. Due to asymmetry,

the entire plate is modelled using 4×4, 6×6, 8×8, 10×10 meshes. A representative

sketch of the 6×6 mesh used in this analysis is shown in Figure 3.9.

Figure 3.9: Finite element and geometry data for an unsymmetric angle-ply plate.

Table 3.4 presents a convergence study of the normalized central deflection w∗ =

100E2wh3/(qoa
4) for the simply supported two-layer square plate with different

fibre orientation angles. The normalized central deflection w∗ is compared with

the numerical solutions obtained using MQH3T (Spilker et al., 1985) (hybrid

laminated element), SQUAD4 (Wilt et al., 1990) (mixed laminated element),

RDTMLC (Ge and Chen, 2002) (refined discrete triangular laminated element),

RDKQ-L20, RDKQ-L24 (Zhang and Kim, 2004) (refined discrete quadrilateral

laminate element) and the exact solution given by Whitney (1969, 1970). Simi-

lar results are presented in Table 3.5 for the clamped two-layer angle-ply square

plate. The effect of fibre orientation on the accuracy of the present methods is

also shown in Figure 3.10.

From Table 3.4 and Figure 3.10a, it can be seen that the accuracy of the present
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elements compares very favorably with other elements and the method is conver-

gent with mesh refinement as shown in Table 3.4. The accuracy obtained with the

present MISQ20 and MISQ24 elements is quite insensitive to fibre angles while

other methods behave badly in some cases as shown in Figure 3.10a and Table

3.4.

From Table 3.5 for the case of clamped edges, it is evident that with an 8×8 mesh

for the whole plate, the present element gives more accurate results than the

SQUAD4 element with a 10×10 mesh and the RDKQ-L20, RDKQ-L24 element

with a 10×10 mesh. The MISQ20 results with a 10×10 mesh are comparable

to those of MQH3T with a 6×6 mesh and RDTMLC with an 8×8 mesh but

the degrees of freedom associated with MQH3T elements are much larger (665

DOF compared with 605 DOF). In this case, the performance of RDTMLC with

respect to fibre angles can be considered as the best one, but in the case of simply

supported plate, it is the worst behaviour (see Figure 3.10a).

It is clear from these numerical results of simply supported and clamped plates

that the MISQ20 and MISQ24 elements exhibit very favorable performance with

respect to fibre angle variation. It is also observed that the effect of strong bound-

ary layers together with the asymmetry of angle-ply lamination made the predic-

tions of displacements for the case of the CCCC boundary less accurate than that

of the SSSS boundary.



3.4. Numerical examples: Static analysis 50

T
ab

le
3.

4:
S
im

p
ly

su
p
p
or

te
d

2-
la

ye
r

an
gl

e-
p
ly

[θ
/
−

θ]
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
on

ve
rg

en
ce

of
th

e
n
or

m
al

iz
ed

ce
n
tr

al

d
efl

ec
ti

on
w
∗

=
10

0E
2
w

h
3
/(

q o
a

4
)

w
it

h
d
iff

er
en

t
fi
b
re

an
gl

es
an

d
co

m
p
ar

is
on

w
it

h
av

ai
la

b
le

li
te

ra
tu

re
.

F
ib

re

an
gl

e
E

xa
ct

M
Q

H
3T

SQ
U

A
D

4
R

D
T

M
L
C

R
D

K
Q

-L
20

R
D

K
Q

-L
24

M
IS

Q
20

M
IS

Q
24

6×
6

10
×1

0
10
×1

0
10
×1

0
10
×1

0
6×

6
8×

8
10
×1

0
6×

6
8×

8
10
×1

0

(6
65

D
O

F
)

(6
05

D
O

F
)

(6
05

D
O

F
)

(6
05

D
O

F
)

(7
26

D
O

F
)

(6
05

D
O

F
)

(7
26

D
O

F
)

±5
0

0.
47

36
0.

47
64

0.
47

76
0.

47
60

0.
47

39
0.

47
49

0.
47

93
0.

47
58

0.
47

48
0.

47
93

0.
47

51
0.

47
39

±1
50

0.
71

42
0.

71
60

–
0.

70
64

0.
71

41
0.

71
64

0.
71

91
0.

71
64

0.
71

55
0.

71
99

0.
71

67
0.

71
56

±2
50

0.
78

70
0.

78
70

0.
80

30
0.

77
20

0.
78

60
0.

78
75

0.
79

01
0.

78
86

0.
78

80
0.

78
78

0.
78

70
0.

78
69

±3
50

0.
75

61
0.

75
55

0.
77

45
0.

74
80

0.
75

46
0.

75
50

0.
75

81
0.

75
71

0.
75

67
0.

75
40

0.
75

47
0.

75
51

±4
50

0.
73

22
0.

73
15

0.
75

06
0.

71
84

0.
73

09
0.

73
12

0.
73

40
0.

73
31

0.
73

27
0.

72
75

0.
72

95
0.

73
05



3.4. Numerical examples: Static analysis 51

T
ab

le
3.

5:
C

la
m

p
ed

2-
la

ye
r

an
gl

e-
p
ly

[θ
/
−

θ]
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
on

ve
rg

en
ce

of
n
or

m
al

iz
ed

ce
n
tr

al
d
efl

ec
ti

on
w
∗

=

10
0E

2
w

h
3
/(

q o
a

4
)

w
it

h
d
iff

er
en

t
fi
b
re

an
gl

es
an

d
co

m
p
ar

is
on

w
it

h
av

ai
la

b
le

li
te

ra
tu

re
.

F
ib

re

an
gl

e
E

xa
ct

M
Q

H
3T

SQ
U

A
D

4
R

D
T

M
L
C

R
D

K
Q

-L
20

R
D

K
Q

-L
24

M
IS

Q
20

M
IS

Q
24

6×
6

10
×1

0
10
×1

0
10
×1

0
10
×1

0
6×

6
8×

8
10
×1

0
6×

6
8×

8
10
×1

0

(6
65

D
O

F
)

(6
05

D
O

F
)

(6
05

D
O

F
)

(6
05

D
O

F
)

(7
26

D
O

F
)

(6
05

D
O

F
)

(7
26

D
O

F
)

±5
0

0.
09

46
0.

10
83

0.
10

40
0.

10
74

0.
10

46
0.

10
49

0.
10

10
0.

10
13

0.
10

23
0.

10
22

0.
10

18
0.

10
25

±1
50

0.
16

91
0.

20
09

–
0.

19
59

0.
19

90
0.

19
93

0.
19

61
0.

19
64

0.
19

71
0.

19
80

0.
19

76
0.

19
77

±2
50

0.
23

55
0.

25
72

0.
26

02
0.

25
08

0.
26

00
0.

25
99

0.
25

78
0.

25
79

0.
25

80
0.

25
82

0.
25

83
0.

25
84

±3
50

0.
27

63
0.

28
44

0.
29

14
0.

27
82

0.
29

08
0.

29
07

0.
29

09
0.

28
95

0.
28

89
0.

28
81

0.
28

82
0.

28
82

±4
50

0.
28

90
0.

29
29

0.
30

13
0.

28
68

0.
30

04
0.

30
04

0.
30

13
0.

29
93

0.
29

86
0.

29
47

0.
29

56
0.

29
62



3.4. Numerical examples: Static analysis 52

5 10 15 20 25 30 35 40 45
−4

−3

−2

−1

0

1

2

3

Fibre orientation angle [degree]

%
E

rr
or

 [(
w

*−
w

ex
ac

t)/
w

ex
ac

t]

 

 

Exact
MQH3T
SQUAD4
RDTMLC
RDKQ−L20
RDKQ−L24
MISQ20
MISQ24

(a)

5 10 15 20 25 30 35 40 45
−5

0

5

10

15

20

Fibre orientation angle [degree]

%
E

rr
or

 [(
w

*−
w

ex
ac

t)/
w

ex
ac

t]

 

 
Exact
MQH3T
SQUAD4
RDTMLC
RDKQ−L20
RDKQ−L24
MISQ20
MISQ24

(b)

Figure 3.10: Angle-ply [θ0/− θ0] square plates: The effect of θ on the accuracy of

w∗: (a) simply supported edges and (b) clamped edges.
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3.4.4 Antisymmetric angle-ply [−450/450] and [−450/450]4

square plate under a double sinusoidal load

To study the combined effect of bending-inplane shear, extension twist coupling

caused by B16 and B26 in Equation (3.18) and transverse shear flexibility on

the performance of the proposed element, we analyse simply-supported 2-layer

[−450/450] and 8-layer [−450/450]4 angle-ply square plates, with length a and

thickness h subjected to doubly sinusoidal loading q = q0sin(x/a)sin(y/a) as

shown in Figure 3.11. The SCFs for the plate made of material M3 are assumed

to be 5/6.

Figure 3.11: Geometry data for unsymmetric angle-ply square plate.

Due to anti-symmetry, the whole plate is modelled with 10×10 meshes. The

present numerical results are shown in Table 3.6 and Table 3.7 together with some

other solutions in the literature. Calculations are performed for the normalized

central deflection w∗ = 1000E2wh3/(qoa
4); the normalized stress σ∗x = σxh

2/(qoa
2)

at point (a/2, a/2, h/2); the shear stress τ ∗xy = τxyh
2/(qoa

2) at point (0, 0,−h/2)

and the normalized transverse shear stress τ ∗xz = τxzh/(qoa) at point (0, a/2, h/4).

It can be seen that the results obtained by the MISQ20 and MISQ24 element,

with regards to the central deflections, normal and shear stresses, are in excellent

agreement with the exact FSDT solutions for all span-to-thickness ratios a/h. The

present elements also yield better solutions than those obtained by other elements

cited here as shown in Table 3.6-3.7
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Table 3.6: Simply supported 2-layer angle-ply [−450/450] square plate under dou-

bly sinusoidal loading: Comparison of normalized central deflection and normal-

ized stresses.

a/h Model w∗(a
2 , a

2 ) σ∗x(a
2 , a

2 , h
2 ) τ∗xy(0, 0,−h

2 ) τ∗xz(0,
a
2 , h

4 )

100 CTMQ20 (8×8) 0.6519 0.2474 0.2295 0.1194

RDKQ-L20 (10×10) 0.6533 0.2488 0.2302 0.1245

RDKQ-L24 (10×10) 0.6546 0.2500 0.2316 0.1597

MFE (8×8) 0.6558 – – –

MISQ20 (10×10) 0.6553 0.2459 0.2304 0.1884

MISQ24 (10×10) 0.6535 0.2452 0.2298 0.1884

Exact (FSDT) 0.6564 0.2498 0.2336 0.2143

20 CTMQ20 (8×8) 0.6906 0.2523 0.2333 0.1773

RDKQ-L20 (10×10) 0.6931 0.2513 0.2311 0.1882

RDKQ-L24 (10×10) 0.6960 0.2516 0.2316 0.2020

MFE (8×8) – – – –

MISQ20 (10×10) 0.6973 0.2456 0.2304 0.1884

MISQ24 (10×10) 0.6956 0.2452 0.2298 0.1884

Exact (FSDT) 0.6981 0.2498 0.2336 0.2143

10 CTMQ20 (8×8) 0.8218 0.2543 0.2349 0.2005

RDKQ-L20 (10×10) 0.8241 0.2517 0.2316 0.2053

MFE (8×8) 0.8257 – – –

MISQ20 (10×10) 0.8286 0.2459 0.2304 0.1884

MISQ24 (10×10) 0.8269 0.2452 0.2298 0.1884

Exact (FSDT) 0.8284 0.2498 0.2336 0.2143
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Table 3.7: Simply supported 8-layer angle-ply [−450/450]4 square plate under

doubly sinusoidal loading: Comparison of normalized central deflection and nor-

malized stresses.

a/h Model w∗(a
2 , a

2 ) σ∗x(a
2 , a

2 , h
2 ) τ∗xy(0, 0,−h

2 ) τ∗xz(0,
a
2 , h

4 )

100 CTMQ20 (8×8) 0.2463 0.1459 0.1356 0.1791

RDKQ-L20 (10×10) 0.2466 0.1464 0.1359 0.1813

RDKQ-L24 (10×10) 0.2467 0.1465 0.1361 0.1840

MFE (8×8) 0.2472 – – –

MISQ20 (10×10) 0.2475 0.1427 0.1368 0.2358

MISQ24 (10×10) 0.2475 0.1427 0.1368 0.2358

Exact (FSDT) 0.2479 0.1445 0.1384 0.2487

20 CTMQ20 (8×8) 0.2846 0.1496 0.1353 0.2225

RDKQ-L20 (10×10) 0.2861 0.1506 0.1366 0.2305

RDKQ-L24 (10×10) 0.2863 0.1506 0.1367 0.2315

MFE (8×8) – – – –

MISQ20 (10×10) 0.2895 0.1427 0.1368 0.2358

MISQ24 (10×10) 0.2895 0.1427 0.1368 0.2358

Exact (FSDT) 0.2896 0.1445 0.1384 0.2487

10 CTMQ20 (8×8) 0.4157 0.1507 0.1361 0.2384

RDKQ-L20 (10×10) 0.4171 0.1512 0.1370 0.2420

RDKQ-L24 (10×10) 0.4173 0.1513 0.1371 0.2423

MFE (8×8) 0.4189 – – –

MISQ20 (10×10) 0.4208 0.1427 0.1368 0.2358

MISQ24 (10×10) 0.4208 0.1427 0.1368 0.2358

Exact (FSDT) 0.4198 0.1445 0.1384 0.2487
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3.4.5 Cross-ply 9-layer [(00/900)2/0]s square plates under

uniformly distributed load

A clamped 9-layer symmetrically cross-ply [(00/900)2/0]s square plate of length a

and thickness h under uniform load qo is considered. The SCFs are: k2
1 = 1.054

and k2
2 = 0.917 (Zhang and Kim, 2004). The total thicknesses of 00 and 900

layers of material M1 are the same. This particular lay-up is known as especially

orthotropic as it does not exhibit any normal-shear coupling in the plane of the

laminate. Making use of this feature, only one quarter of the plate is discretized.

The normalized central deflection w∗ = 1000E2wh3/(qoa
4) of the clamped square

plate with various aspect ratios h/a is calculated with a 5×5 mesh. To the au-

thor’s knowledge, there is no analytic solution for this problem. The present

results are compared in Table 3.8 with those from other elements such as QUAD4

(Somashekar et al., 1987) with an 8×8 mesh, TRIPLT (Pagano, 1970) with a 4×4

mesh MFE (Singh et al., 2000) with an 8×8 mesh, RDTMLC (Ge and Chen, 2002)

with a 10×10 mesh, RDKQ-L20, RDKQ-24 (Zhang and Kim, 2004) with a 5×5

mesh and Hermitian SQH element (Noor and Mathers, 1975). The normalized

central moment resultants M∗
x = 100E2Mx/(qoa

2) for various span-to-thickness

ratios are also reported and compared in Table 3.9. It is observed that there is a

close agreement between the present results and the MFE ones in predictions of

deflections and moment resultants.

To assess the effect of boundary conditions on MISQ20 and MISQ24 element,

the plate is re-analyzed with simply supported boundaries. The results are listed

in Table 3.10 and Table 3.11 for central deflections and moment resultants, re-

spectively, which show that the present results are accurate and comparable with

those obtained with other elements and exact FSDT solution (Reddy, 2004b).

The present MISQ20, MISQ24 elements can provide accurate prediction of the

solution with much reduced degrees of freedom in some cases.



3.4. Numerical examples: Static analysis 57

T
ab

le
3.

8:
C

la
m

p
ed

9-
la

ye
r

cr
os

s-
p
ly

[(
00

/9
00

) 2
/0

] s
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
om

p
ar

is
on

of
n
or

m
al

iz
ed

ce
n
tr

al
d
efl

ec
ti

on

w
∗

=
10

00
E

2
w

h
3
/(

q o
a

4
).

a
/h

Q
U

A
D

4
T

R
IP

LT
M

F
E

R
D

T
M

L
R

D
K

Q
-L

20
R

D
K

Q
-L

24
M

IS
Q

20
M

IS
Q

24

SQ
H

8 ×
8

4 ×
4

8 ×
8

10
×1

0
5 ×

5
5 ×

5
5 ×

5
5 ×

5

(4
05

D
O

F
)

(3
75

D
O

F
)

(4
86

D
O

F
)

(6
05

D
O

F
)

(1
80

D
O

F
)

(2
16

D
O

F
)

(1
80

D
O

F
)

(2
16

D
O

F
)

10
00

0
0.

94
4

–
–

0.
95

7
0.

96
9

0.
96

9
0.

94
0

0.
94

0
–

10
00

0.
94

4
0.

93
4

0.
94

9
0.

95
7

0.
96

9
0.

96
9

0.
94

0
0.

94
0

0.
94

9

10
0

0.
95

7
0.

96
4

0.
96

3
0.

96
9

0.
98

3
0.

98
3

0.
95

5
0.

95
5

0.
96

3

10
2.

31
6

2.
32

0
2.

33
1

2.
31

8
2.

35
1

2.
35

1
2.

34
1

2.
34

1
2.

31
9

T
ab

le
3.

9:
C

la
m

p
ed

9-
la

ye
r

cr
os

s-
p
ly

[(
00

/9
00

) 2
/0

] s
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
om

p
ar

is
on

of
n
or

m
al

iz
ed

ce
n
tr

al
m

om
en

t

re
su

lt
an

t
M

∗ x
=

10
0E

2
M

x
/(

q o
a

2
).

a
/h

Q
U

A
D

4
T

R
IP

LT
M

F
E

M
IS

Q
20

M
IS

Q
24

10
0

-6
.6

1
-6

.6
2

-6
.5

8
-6

.5
0

-6
.5

0

10
-5

.6
6

-5
.6

6
-5

.5
9

-5
.5

7
-5

.5
7



3.4. Numerical examples: Static analysis 58

T
ab

le
3.

10
:

S
im

p
ly

su
p
p
or

te
d

9-
la

ye
r

cr
os

s-
p
ly

[(
00

/9
00

) 2
/0

] s
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
om

p
ar

is
on

of
n
or

m
al

iz
ed

ce
n
tr

al

d
efl

ec
ti

on
w
∗

=
10

00
E

2
w

h
3
/(

q o
a

4
).

a
/h

Q
U

A
D

4
T

R
IP

LT
M

F
E

R
D

T
M

L
R

D
K

Q
-L

20
R

D
K

Q
-L

24
M

IS
Q

20
M

IS
Q

24

E
xa

ct
8 ×

8
4 ×

4
8 ×

8
10
×1

0
5 ×

5
5 ×

5
5 ×

5
5 ×

5

(4
05

D
O

F
)

(3
75

D
O

F
)

(4
86

D
O

F
)

(6
05

D
O

F
)

(1
80

D
O

F
)

(2
16

D
O

F
)

(1
80

D
O

F
)

(2
16

D
O

F
)

10
00

0
4.

46
–

–
4.

47
0

4.
47

5
4.

47
5

4.
46

7
4.

46
7

4.
47

10
00

4.
46

4.
45

4.
47

4.
47

1
4.

47
5

4.
47

5
4.

46
7

4.
46

7
4.

47

10
0

4.
47

4.
48

4.
49

4.
48

3
4.

48
8

4.
48

8
4.

48
1

4.
48

1
4.

49

10
5.

84
5.

85
5.

86
5.

85
8

5.
85

1
5.

85
1

5.
86

4
5.

86
4

5.
85

T
ab

le
3.

11
:

S
im

p
ly

su
p
p
or

te
d

9-
la

ye
r

cr
os

s-
p
ly

[(
00

/9
00

) 2
/0

] s
sq

u
ar

e
p
la

te
u
n
d
er

u
n
if
or

m
lo

ad
:

C
om

p
ar

is
on

of
n
or

m
al

iz
ed

ce
n
tr

al

m
om

en
t

re
su

lt
an

t
M

∗ x
=

10
00

E
2
M

x
/(

q o
a

2
).

a
/h

Q
U

A
D

4
T

R
IP

LT
M

F
E

M
IS

Q
20

M
IS

Q
24

E
xa

ct

10
00

8.
88

8.
42

8.
90

9.
02

9.
02

8.
89

10
0

8.
88

8.
81

8.
90

9.
02

9.
02

8.
88

10
8.

84
8.

42
8.

44
8.

80
8.

80
8.

42



3.4. Numerical examples: Static analysis 59

Note that the RDKQ-L20(24) denotes both RDKQ-L20 (20 DOFs per node) and

RDKQ-L24 (24 DOFs per node) elements while the MISQ20(24) denotes MISQ20

(20 DOFs per node) and MISQ24 (24 DOFs per node) elements. The RDKQ-

L20(24) formulations are based in the Timoshenko’s beam function method while

the MISQ20(24) elements are based on the assumed strain smoothing method.

The MISQ20(24) formulations are quite different from the RDKQ-L20(24) and

hence they have different accuracies.

3.4.6 Cross-ply [00/900/00] and angle-ply [450/−450/450] skew

laminated plates under uniformly distributed load

This section deals with symmetric cross-ply [00/900/00] and angle-ply [450/ −
450/450] skew laminated plates of material M1 with length a = 10 and thickness

h = 0.1, subjected to simply supported boundary under a uniform load as shown

in Figure 3.12. The SCFs are equal to 5/6. The skew angle α is varied from

00 to 450. The entire plate is modelled using 8×8, 10×10 and 12×12 meshes.

A representative example of the 10×10 mesh used in this analysis is shown in

Figure 3.12.

Figure 3.12: Finite element and geometry data of skew plate.

Since very few results are available for static analysis of skew composite plates,

the present results are only compared with some results of Chakrabarti et al.

(2004) based on FSDT and higher order shear deformation theory (HSDT) as

given in the Table 3.12. It can be seen that both of MISQ20 and MISQ24 yield

the same solutions and the obtained results in general indicate a good agreement.

However, it is observed that the deflection and stress are closer to those of FSDT

than HSDT.



3.4. Numerical examples: Static analysis 60

Table 3.12: Simply supported [00/900/00] and [450/− 450/450] skew plate: Com-

parison of normalized central deflection and stress (a/h = 100).

α Model
[00/900/00] [450/− 450/450]

w∗(a
2 , a

2 , 0) σ∗x(a
2 , a

2 , h
2 ) w∗(a

2 , a
2 , 0) σ∗x(a

2 , a
2 , h

2 )

00 MISQ20 8×8 6.7365 0.7846 5.9825 0.2770

10×10 6.7219 0.7930 6.0128 0.2766

12×12 6.7146 0.7975 6.0397 0.2771

MISQ24 8×8 6.7365 0.7846 5.9825 0.2770

10×10 6.7219 0.7930 6.0128 0.2766

12×12 6.7146 0.7975 6.0397 0.2771

HSDT (16×16) 6.7222 0.8211 5.9502 0.2739

FSDT (16×16) 6.7090 0.8159 5.9515 0.2743

150 MISQ20 8×8 6.4526 0.7493 6.4700 0.2559

10×10 6.4417 0.7587 6.4873 0.2622

12×12 6.4367 0.7634 6.5027 0.2656

MISQ24 8×8 6.4526 0.7493 6.4700 0.2559

10×10 6.4417 0.7587 6.4873 0.2622

12×12 6.4367 0.7634 6.5027 0.2656

HSDT (16×16) 6.4437 0.7858 6.4391 0.2692

FSDT (16×16) 6.4321 0.7812 6.4332 0.2693

300 MISQ20 8×8 5.4708 0.6321 5.8039 0.2511

10×10 5.4681 0.6424 5.8150 0.2563

12×12 5.4687 0.6476 5.8234 0.2593

MISQ24 8×8 5.4708 0.6321 5.8039 0.2511

10×10 5.4681 0.6424 5.8150 0.2563

12×12 5.4687 0.6476 5.8234 0.2593

HSDT (16×16) 5.4732 0.6664 5.7955 0.2658

FSDT (16×16) 5.4654 0.6634 5.7904 0.2651

450 MISQ20 8×8 3.6305 0.4208 3.5984 0.2210

10×10 3.6333 0.4326 3.6149 0.2251

12×12 3.6396 0.4387 3.6275 0.2270

MISQ24 8×8 3.6305 0.4208 3.5984 0.2210

10×10 3.6333 0.4326 3.6149 0.2251

12×12 3.6396 0.4387 3.6275 0.2270

HSDT (16×16) 3.6323 0.4516 3.6324 0.2329

FSDT (16×16) 3.6300 0.4505 3.6301 0.2323
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3.4.7 Circular plate subjected to uniform pressure

A clamped circular plate of material M4 with radius R and various aspect ratios

of R/h subjected to uniformly distributed load is considered. The laminate is

unidirectional with fibers oriented at θ = 0o with respect to the global coordinates.

The SCFs are 5/6. Owing to symmetry, only a quarter of the circular plate is

modelled with 12 and 48 elements as shown in Figure 3.13.

(a) (b)

Figure 3.13: Typical meshes of a circular laminated plate: (a) a mesh of 12

elements and (b) a mesh of 48 elements.

The results are compared with numerical results of the SQUAD4 element (Wilt

et al., 1990), the RDKQ-L20, RDKQ-L24 element (Zhang and Kim, 2004), RDTMLC

element (Ge and Chen, 2002) and the exact solution (Reddy, 2004b) in Table 3.13.

Note that the normalized central deflection of the circular plate in Table 3.13 is

w∗ = wD/(qR4) with D = 3(D11 +D22)+2(D12 +2D66), where D11, D22, D12, D66

are bending rigidity coefficients of the laminate found by laminate theory.

From the data of Table 3.13, it can be seen that the present elements MISQ20

and MISQ24 yield the same results and give more accurate solution for both thick

and thin plate than those of cited elements.

3.4.8 Triangular plate subjected to uniform pressure

The last problem considered in this section is that of a triangular plate, clamped

on all sides subjected to a uniform load qo. The unidirectional laminate of material
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Table 3.13: Clamped circular plate under uniform loading: Comparison of nor-

malized central deflection w∗ = wD/(qR4).

R/h
RDTMLC SQUAD4 RDKQ-L20(24) MISQ20(24)

Exact
96 48 12 48 12 48

1000 0.1265 0.1231 0.1269 0.1259 0.1271 0.1258 0.1250

100 0.1266 0.1242 0.1245 0.1251 0.1273 0.1259 –

50 0.1268 0.1247 0.1244 0.1251 0.1277 0.1264 –

25 0.1276 0.1264 0.1244 0.1251 0.1293 0.1280 –

16.67 0.1291 0.1291 0.1244 0.1251 0.1320 0.1308 –

10 0.1344 0.1378 0.1244 0.1251 0.1407 0.1394 –

M4 is investigated with the fibres oriented at an angle θ = 00 with respect to global

x−axis. The reference solution is taken from Wilt et al. (1990) and a typical mesh

of 48 elements as shown in Figure 3.14 was chosen on the basis of results from

SQUAD4 element (Wilt et al., 1990).

Figure 3.14: Finite element and geometry data for triangular plate.

The deflections w∗ = 1000E2wh3/(qoa
4) for various plate aspect ratios are given

in Table 3.14. As shown, the discrepancy between the present MISQ20 (MISQ24)

and SQUAD4 results decreases when the a/h ratio increases, except for the case

a/h = 1000. However, in all cases of the span-to-thickness a/h ratio, the difference

between the two results is always less than 4%.
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Table 3.14: Clamped triangular plate under uniform load: Comparison of nor-

malized centroidal deflection w∗
C = 1000E2wCh3/(qoa

4).

Model
a/h

10 16.667 25 50 100 1000

SQUAD4 1.9200 1.3517 1.1641 1.0406 0.9975 0.9452

MISQ20(24) 1.8515 1.3085 1.1289 1.0174 0.9890 0.9795

%Error -3.568% -3.196% -3.024% -2.229% -0.852% 3.629%

3.4.9 Thermo-mechanical analysis of functionally graded

material (FGM) plates

This section deals with the static behaviour of FGM plates. The developed

MISQ20 element is modified to adapt to the classical Reissner-Mindlin model

for FGM plates. The unknowns of the Reissner-Mindlin model are the normal

displacement w and the rotations θx, θy of the normal about the y− and x−axis,

respectively. Therefore, the DOFs of MISQ20 is reduced to 12 DOFs per element

and there is no membrane part in the formulations. The reduced MISQ20 element

is termed as MISQ20R and its detailed formulation for FGM plates is presented

in Appendix B.

In this section, the bending analysis of FGM plates made of a ceramic-metal bi-

material, is performed under mechanical and thermal loads. The plate consists

of a Zirconia layer (ceramic material) at the top and an aluminum layer (metal

material) at the bottom. Through-thickness material properties vary with the

following power-law distribution:

V (z) = (Vt − Vb)Vc + Vb, (3.75)

Vc =

(
1

2
+

z

h

)n

, (n ≥ 0, −h

2
≤ z ≤ h

2
). (3.76)

where V denotes generic material properties including the Young’s modulus, ther-

mal expansion and thermal conductivity; Vt, Vb represent the material properties

at the top (ceramic) and bottom (metal) faces of the plate, respectively, z is the

thickness coordinate; Vc is the volume fraction and n is the volume fraction ex-
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ponent ranging from n = 0 to 5. Physical material properties are summarized in

Table 3.15. For any case of plates exposed in a temperature field, the tempera-

ture is assumed to be constant at the ceramic and metal surfaces. The Poisson’s

ratio is assumed to be constant. The temperature distribution T (z) across the

thickness of the FGM plate is obtained from the solution of the one-dimensional

steady-state heat conduction as

T (z) = Tt − Tt − Tb∫ h/2

−h/2
(dz/λ(z))

∫ h/2

z

dξ

λ(ξ)
(3.77)

where the thermal conductivity λ(z) varies according to the power-law distribution

of Equation (3.75). A constant temperature of Tt = 3000C is imposed on the top

surface while the bottom surface is held at Tb = 200C. A uniform load q0 =

−1×106 Pa and regular meshes are used in all examples. The geometry data and

material distribution of a representative FGM plate is shown in Figure 3.15.

Figure 3.15: Geometry and material distribution of the functionally graded plate.

Table 3.15: Material properties of the FGM components

Properties Aluminum (Al) Zirconia (ZrO2-1) Zirconia (ZrO2-2)

Young’s modulus 70 GPa 200 GPa 151 GPa

Poisson’s ratio 0.3 0.3 0.3

Thermal conductivity 204 W/mK 2.09 W/mK 2.09 W/mK

Thermal expansion 23×10−6/C 10×10−6/C 10×10−6/C
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3.4.9.1 Convergence study

This section deals with the convergence of the non-dimensional central deflec-

tions of the Al/ZrO2− 1 square plates subjected to a uniform transverse load q0.

Two boundary conditions, namely simply supported (SSSS) and fully clamped

(CCCC), are considered. The span-to-thickness ratio a/h is chosen to be 10.

Table 3.16 shows the values of non-dimensional central deflection with mesh re-

finement together with the solutions reported by Zienkiewicz and Taylor (2000).

It can be seen that the solutions converge with mesh refinement. The results with

n = 0 and a mesh of 12 × 12, agree well with those given in the literature. It

is also observed that the values of volume fraction exponent n do not affect the

convergence rate of the solutions.

Table 3.16: Square FGM Al/ZrO2-1 plates: Convergence study of non-

dimensional central deflections (a/h = 10, D0 = EZrh
3/(12(1 − ν2

Zr)), w∗ =

100wD0/(q0a
4)).

B.C Model Mesh
n

0 0.2 0.5 1 2

SSSS MISQ20R 4× 4 0.4280 0.4929 0.5633 0.6340 0.7043

8× 8 0.4277 0.4926 0.5629 0.6336 0.7038

12× 12 0.4276 0.4925 0.5628 0.6335 0.7037

16× 16 0.4276 0.4925 0.5628 0.6335 0.7037

Zienkiewicz and Taylor (2000)] 0.4280

CCCC MISQ20R 4× 4 0.1503 0.1726 0.1972 0.2227 0.2493

8× 8 0.1506 0.1730 0.1976 0.2232 0.2499

12× 12 0.1507 0.1731 0.1977 0.2233 0.2500

16× 16 0.1507 0.1731 0.1977 0.2233 0.2500

Zienkiewicz and Taylor (2000)] 0.1480

Figure 3.16 shows the effect of the volume fraction exponent and span-to-thickness

ratio on the non-dimensional central deflections of simply supported and clamped

square FGM Al/ZrO2-1 plates under a mechanical uniform load. It can be seen
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that the deflection of the plates with a certain volume fraction, decreases as the

span-to-thickness ratio increases up to approximately 40. This can be explained

from a physical point of view that the effect of shear deformation in the Reissner-

Mindlin formulation (thick plate formulation) is to increase the deflection. How-

ever, the deflection remain unchanged when the value of span-to-thickness ratio

is greater than 40. It is concluded that the effect of the span-to-thickness ratio

on the displacement is independent with the variation of volume fraction and has

no influence for thin plates (a/h > 40).

Figure 3.17a depicts the effect of the volume fraction exponent and span-to-

thickness ratio on the non-dimensional normal stress σ∗x = σxh
2/q0a

2 at the top

surface of the center of simply supported FGM Al/ZrO2-1 square plate under a

uniform load. It can be seen that the span-to-thickness ratio has no effect on the

normal stress σx. For the plates under clamped edges, the effect of the span-to-

thickness ratio also has a minor effect on the normal stress σx when a/h < 40 and

no influence with a/h > 40, as shown in Figure 3.17b.
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Figure 3.16: Square FGM Al/ZrO2–1 plates under uniform load: non-dimensional

central deflections versus the span-to-thickness ratios for (a) simply supported

edges and (b) fully clamped edges.
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Figure 3.17: Square FGM Al/ZrO2–1 plates under uniform load: non-dimensional

central normal stress σ∗x at the top surface versus the span-to-thickness ratios for

(a) simply supported edges and (b) fully clamped edges.
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3.4.9.2 Thermal-mechanical analysis

This section deals with the behaviour of the simply supported FGM Al/ZrO2-2

square plate of side a = 0.2m and thickness h = 0.01m subjected to increasing

mechanical uniform load with or without the presence of temperature field. A

uniform load q0 = −1×106Nm−2 and a regular mesh of 12×12 elements are used

in the analysis.

Figure 3.18 demonstrates the non-dimensional central deflection with respect to

mechanical load P = q0a
4/(Ebh

4) for various values of exponent n. From Fig-

ure 3.18a, it can be seen that the deflection of the metallic and ceramic plates

have the largest and smallest magnitude, respectively while the deflection of the

graded plates belongs to the intermediate range. In the case of the presence of the

temperature field, it is observed from Figure 3.18b that the deflections of graded

plates are not intermediate to those of the metal and ceramic plates. With the

effect of temperature, the deflections of all plates are initially positive and tend

towards negative values with increasing loads similar to the case of pure mechani-

cal load. It is also noted that the present results are in good agreement with those

reported in Reddy (2000); Croce and Venini (2004)

Figure 3.19a shows the behaviour of the non-dimensional normal stress σ∗x =

σxh
2/(q0a

2) evaluated at the center of the plates through the thickness when

subjected only to mechanical load P while Figure 3.19b display normal stress

when a temperature field and mechanical load are applied. It is observed that the

non-dimensional normal stresses σx are compressive both at the top and bottom

surfaces. All normal stresses of graded plates are close to each other and their

values are less than those of homogeneous plates. All the results are also in good

agreement with those reported in Reddy (2000); Croce and Venini (2004)
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Figure 3.18: Square FGM Al/ZrO2–2 plates: non-dimensional central deflections

versus load parameter P under (a) mechanical load and (b) thermo-mechanical

load.
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Figure 3.19: Square FGM Al/ZrO2–2 plates: non-dimensional central normal

stress profile through the thickness under (a) mechanical load and (b) thermo-

mechanical load.
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3.5 Numerical examples: Free vibration analysis

In this section, a number of numerical examples are presented to demonstrate

the performance of the MISQ20 and MISQ24 elements in the analysis of free

vibration of laminated plates. Particular plate structures with various boundary

conditions, span-to-thickness ratios and modulus ratios (the degree of orthotropy)

are analyzed. In all examples, the material properties are assumed to be the same

in all the layers and the fibre orientations may be different among the layers. The

ply angle of each layer is measured from the global x−axis to the fibre direction.

The thickness of each layer is identified and the mass density ρ is taken to be

uniform in the thickness direction. Unless otherwise specified, shear correction

factors k2
1 = k2

2 = π2

12
are used for all computations. The following material

parameters of a layer are used in all plate examples unless otherwise stated:

E1/E2 = 10, 20, 30 or 40; G12 = G13 = 0.6E2; G23 = 0.5E2; ν12 = ν13 = ν23 =

0.25; ρ = 1.

3.5.1 Square laminated plates

This section deals with cross-ply laminated square plates with various span-to-

thickness ratios, number of layers, boundary conditions and lay-up stacking se-

quences. A typical representative sketch of a mesh of 14×14 used in these analyses

is shown in Figure 3.20.

Figure 3.20: Geometry and discretization of square laminated plates
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3.5.1.1 Convergence study and effect of modulus ratios

A simply supported four-layer cross-ply [0/90/90/0] square laminated plate is

chosen to study the convergence of the present method using MISQ20 and MISQ24

elements. The span-to-thickness ratio of the plate a/h is taken to be 5 in the

computation. Table 3.17 shows the convergence and comparison of the normalized

fundamental frequencies of the present method with other solutions for various

degrees of orthotropy of the individual layers (E1/E2 ratio). It is found that the

MISQ20 and MISQ24 elements yield the same results and the obtained results are

not only relatively accurate in a wide range of E1 to E2 ratios but also rapidly

convergent as shown in Figure 3.21a. The effect of various modulus ratios of E1/E2

on the accuracy of the fundamental frequency is also displayed in Figure 3.21b.

It can be seen that the present results are in good agreement with exact solutions

(Reddy, 2004b; Khdeir and Librescu, 1988) and closer to MLSDQ’s solutions by

Liew et al. (2003) than RBF’s results of Ferreira et al. (2005).

Table 3.17: Simply supported cross-ply [00/900/900/00] square plate: Convergence

of normalized fundamental frequencies and comparison with other solutions (ω∗ =

(ωa2/h)
√

ρ/E2, a/h = 5).

Model Mesh
E1/E2

10 20 30 40

MISQ20 6×6 8.4443 9.7149 10.4729 11.0001

10×10 8.3384 9.6010 10.3548 10.8792

12×12 8.3203 9.5815 10.3346 10.8585

14×14 8.3094 9.5698 10.3224 10.8471

MISQ24 6×6 8.4443 9.7149 10.4729 11.0001

10×10 8.3384 9.6010 10.3548 10.8792

12×12 8.3203 9.5698 10.3346 10.8585

14×14 8.3094 9.5698 10.3224 10.8471

MLSDQ 8.2924 9.5613 10.320 10.849

RBF 8.3101 9.5801 10.349 10.864

Exact 8.2982 9.5671 10.326 10.854
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Figure 3.21: Cross-ply [00/900/900/00] square laminated plate: (a) convergence of

the present method and (b) effect of modulus ratio on the accuracy of fundamental

frequencies.

Note that the present elements are formulated based on assumed strain smoothing

method which leads to softer element stiffness matrices than those of the standard

FEM. This explains why the present results are slightly lower than the ’exact’

frequency in Table 3.17. The MLSDQ is a mesh-free method with higher-order

approximants and hence it is possible to obtain more flexible predictions than the

’exact’ frequencies for this particular problem.
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3.5.1.2 Effect of mesh distortion

The influence of mesh distortion is studied in this section. The plate of the first

example (Section 3.5.1.1) is analyzed again using distorted element created by

irregular interior nodes. These interior nodes are derived from a set of regular

nodes by using a controlling distortion factor s. Thus, the coordinates of an

irregular mesh are obtained by the following expressions

x′ = x + rcs∆x,

y′ = y + rcs∆y,
(3.78)

where rc is a computer-generated random number between −1.0 and 1.0, ∆x, ∆y

are initial regular element sizes in the x–and y–directions, respectively and s ∈
[0, 0.4] is used to control the shapes of the distorted elements: the bigger value of

s, the more irregular the shape of generated elements. Typical irregular meshes

of the analysis are shown in Figure 3.22.

s = 0.2 s = 0.3 s = 0.4

Figure 3.22: Typical irregular meshes of 14× 14 with various distortion factor s.

The effect of the mesh distortion on the fundamental frequency of the plate ob-

tained by the present method is shown in Table 3.18 and Figure 3.23. It is found

that the accuracy of the fundamental frequencies associated with irregular mesh

decreases in comparison with regular meshes. However, the deterioration is very

small and the overall performance is insensitive to mesh distortion to the extent

that the maximum error of frequency is below 0.3% (in the case of E1/E2 = 10).

For the cases of E1/E2 = 30 and 40, Figure 3.23 indicates that the error at some

s could become even smaller than those at s = 0 (regular mesh).
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Table 3.18: Simply supported cross-ply [00/900/900/00] square plate: Ef-

fect of mesh distortion on the normalized fundamental frequencies (ω∗ =

(ωa2/h)
√

ρ/E2, a/h = 5).

s Model
E1/E2

10 20 30 40

0 MISQ20 (14× 14) 8.3094 9.5698 10.3224 10.8471

MISQ24 (14× 14) 8.3094 9.5698 10.3224 10.8471

0.1 MISQ20 (14× 14) 8.3108 9.5712 10.3239 10.8476

MISQ24 (14× 14) 8.3108 9.5712 10.3239 10.8476

0.2 MISQ20 (14× 14) 8.3125 9.5728 10.3257 10.8495

MISQ24 (14× 14) 8.3125 9.5728 10.3257 10.8495

0.3 MISQ20 (14× 14) 8.3140 9.5749 10.3283 10.8528

MISQ24 (14× 14) 8.3140 9.5749 10.3283 10.8528

0.4 MISQ20 (14× 14) 8.3207 9.5820 10.3354 10.8597

MISQ24 (14× 14) 8.3207 9.5820 10.3354 10.8597
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Figure 3.23: Square cross-ply [0/90/90/0] laminated plate: Effect of mesh distor-

tion on the accuracy of the fundamental frequency.
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3.5.1.3 Effect of span-to-thickness ratio

This section deals with the effect of the span-to-thickness ratio (a/h) on the funda-

mental frequency of a simply supported square cross-ply plate made of material

having E1/E2 = 40. Table 3.19 presents a convergence study on the normal-

ized fundamental frequency. The present numerical results are comparable with

those of Reddy and Phan (1985) who used higher-order shear deformation the-

ory (HSDT), Liew (1996) who used a p-Ritz solution, Ferreira and Fasshauer

(2007) who used RBF-pseudospectral method, Wu and Chen (1994) who used

local higher-order theory, Matsunaga (1991) who used global higher-order theory,

Striz et al. (1991) who used higher-order individual-layer (HOIL) theory and Zhen

and Wanji (2006) who used global-local higher-order theory.

Table 3.19: Simply supported cross-ply [00/900/900/00] square plate with various

a/h ratios: Convergence of normalized fundamental frequencies and comparison

with other solutions (E1/E2 = 40, ω∗ = (ωa2/h)
√

ρ/E2).

Model
a/h

5 10 20 25 50 100

MISQ20 6×6 11.0001 15.4187 18.0504 18.4839 19.1221 19.2939

10×10 10.8792 15.2201 17.7903 18.2122 18.8325 18.9992

14×14 10.8461 15.1658 17.7192 18.1380 18.7535 18.9189

MISQ24 6×6 11.0001 15.4187 18.0504 18.4839 19.1221 19.2939

10×10 10.8792 15.2201 17.7903 18.2122 18.8325 18.9992

14×14 10.8461 15.1658 17.7192 18.1380 18.7535 18.9189

p-Ritz 10.8550 15.1434 17.6583 18.0718 18.6734 18.8359

RBF-pseudospectral 10.8074 15.1007 17.6338 18.0490 18.6586 18.8223

HSDT 10.9891 15.2689 17.6669 18.0490 18.4624 18.7561

HOIL theory 10.673 15.066 17.535 18.054 18.670 18.835

Local theory 10.682 15.069 17.636 18.055 18.670 18.835

Global theory 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352

Global-local theory 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566

However, it can be seen that the present results are in closer agreement with re-
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sults of Liew (1996) than other methods cited here. From Table 3.19, it is also

noticed that the span-to-thickness ratio has a considerable effect on the funda-

mental frequency of plates at lower a/h ratios. At higher a/h ratios (a/h > 25),

the influence on the fundamental frequency is minor.

3.5.1.4 Effect of lay-up sequence and fibre orientation

To investigate the effect of lay-up sequence and fibre orientation, this section re-

ports the analysis of two composite plates with lamination sequence [θ/0/0/θ] and

[0/θ/θ/0] with simply supported (SSSS) and clamped (CCCC) edges. The span-

to-thickness ratio of the plate a/h = 100 and modulus ratio E1/E2 = 10 are used

in the computation. Figure 3.24 shows the effects of both fibre orientation and

lay-up sequence on the fundamental frequencies. It is found that there is symme-

try for the orientation angle of 45 degrees in both cases of simply supported and

clamped conditions. Moreover, in the case of SSSS edge conditions, the [θ/0/0/θ]

lamination results in a higher fundamental frequencies than the corresponding

ones for the [0/θ/θ/0] sequence. In the case of CCCC edge conditions, the be-

haviour of the fundamental frequencies is opposite to the above SSSS results. It

appears that, in both cases, the fundamental frequencies has an extremum at ply

angle θ = 45o.
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Figure 3.24: Effect of fibre orientation and stacking sequence on fundamental

frequencies of square laminated plates.
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3.5.1.5 Effect of mixed boundaries and span-to-thickness ratio

The influence of the mixed boundary conditions and span-to-thickness ratio are

now considered. The plate is simply supported along the edges parallel to the

x−axis while the other edges have simply supported (S), clamped (C) or free

(F) boundary conditions. The notation SS, SC, CC, FF, FS and FC refer to

the boundary conditions of two edges parallel to the y−axis only. The three

layer cross-ply [00/900/00] square plate is analyzed with E1 = 40E2 and a 14× 14

mesh as indicated in Figure 3.20. Table 3.20 contains the normalized fundamental

frequencies for various span-to-thickness ratios obtained by the present method

and other solutions of Liew et al. (2003) using MLSDQ method, RBF’s results

by Ferreira et al. (2005) and exact solutions Reddy (2004b); Khdeir and Librescu

(1988). It can be seen that the accuracy of the present method compares very

well with exact solutions and other numerical results.

Furthermore, the comparison of the first five natural frequencies of a clamped

3-layer cross-ply [00/900/00] square plate with other methods including p-Ritz

method (Liew, 1996), global-local theory (Zhen and Wanji, 2006), MLSDQ method

(Lanhe et al., 2005) and Jian’s solution (Jian et al., 2004) is also presented in Ta-

ble 3.21. The first six mode shapes obtained by the present method are also

depicted on Figure 3.25. It is found that the present results in general indicate

good agreement with other cited solutions.
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Table 3.20: Cross-ply [00/900/00] square plate with various mixed boundaries and

span-to-thickness ratios: Comparison of normalized fundamental frequencies with

other solutions (E1/E2 = 40, ω∗ = (ωa2/h)
√

ρ/E2).

a/h Model SS SC CC FF FS FC

5 MISQ20 10.2780 10.6280 11.2387 4.0717 4.5613 5.9370

MISQ24 10.2780 10.6280 11.2387 4.0717 4.5613 5.9370

RBF 10.307 10.658 11.274 – – –

MLSDQ 10.290 10.647 11.266 4.054 4.545 5.938

Exact 10.290 10.646 11.266 4.053 4.544 5.937

10 MISQ20 14.7823 17.1806 19.6614 4.3679 4.9401 7.3372

MISQ24 14.7823 17.1806 19.6614 4.3679 4.9401 7.3372

RBF 14.804 17.199 19.678 – – –

MLSDQ 14.767 17.176 19.669 4.343 4.917 7.333

Exact 14.766 17.175 19.669 4.343 4.914 7.331

100 MISQ20 18.9095 28.4750 40.5937 4.4835 5.1007 8.2665

MISQ24 18.9095 28.4750 40.5937 4.4835 5.1007 8.2665

RBF 18.355 28.165 40.234 – – –

MLSDQ 18.769 28.164 40.004 4.439 5.301 8.451

Exact 18.891 28.501 40.743 4.457 5.076 8.269
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Table 3.21: Clamped cross-ply [00/900/00] square plate: Comparison of the first

five natural frequencies with other solutions (E1/E2 = 40, D0 = E2h
3/(12(1 −

ν12ν21)), ω∗ = (ωa2/π2)
√

ρh/D0).

a/h Model
Mode

1 2 3 4 5

5 MISQ20 4.4671 6.7365 7.7706 8.7678 9.2988

MISQ24 4.4671 6.7365 7.7706 8.7678 9.2988

p-Ritz 4.447 6.642 7.700 9.185 9.738

Global-local theory 4.540 6.524 8.178 9.473 9.492

10 MISQ20 7.4542 10.5909 14.0808 16.0497 16.0868

MISQ24 7.4542 10.5909 14.0808 16.0497 16.0868

p-Ritz 7.411 10.393 13.913 15.429 15.806

Global-local theory 7.484 10.207 14.340 14.863 16.070

Jian’s solution 7.451 10.451 13.993 15.534 15.896

MLSDQ 7.432 10.399 13.958 15.467 15.838

20 MISQ20 11.0454 14.2988 21.4609 23.6389 25.4605

MISQ24 11.0454 14.2988 21.4609 23.6389 25.4605

p-Ritz 10.953 14.028 20.388 23.196 24.978

Global-local theory 11.003 14.064 20.321 23.498 25.350

Jian’s solution 11.015 14.152 20.691 23.323 25.142

100 MISQ20 14.6199 17.7013 25.5625 38.2411 39.3269

MISQ24 14.6199 17.7013 25.5625 38.2411 39.3269

p-Ritz 14.666 17.614 24.511 35.532 39.157

Global-local theory 14.601 17.812 25.236 37.168 38.528

Jian’s solution 14.583 17.762 25.004 36.644 38.073

MLSDQ 14.674 17.668 24.594 35.897 39.625
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Figure 3.25: Clamped cross-ply [00/900/00] square plate (E1/E2 = 40, a/h = 10):

the first six mode shapes.
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3.5.2 Skew laminated plates

This section deals with five-layer symmetric cross-ply and angle-ply skew lami-

nated plates. Simply supported and clamped edges are considered with various

skew angles α from 0o to 60o. The span-to-thickness ratio a/h is taken to be

10 and the entire plate is modelled using 6 × 6, 10 × 10 and 14 × 14 meshes. A

representative sketch of the 10 × 10 mesh used in the analysis is displayed in

Figure 3.26.

Figure 3.26: Geometry and discretization of skew laminated plates

Table 3.22 and Table 3.23 present the normalized fundamental frequencies of the

cross-ply [900/00/900/00/900] with simply supported and clamped edges, respec-

tively while Table 3.24 and Table 3.25 show the normalized fundamental frequen-

cies of the angle-ply [45/− 45/45/− 45/45] with simply supported and clamped

boundaries. The results calculated using MLSDQ method by Liew et al. (2003),

B-spline Rayleigh-Ritz method of Wang (1997) and RBF of Ferreira et al. (2005)

are also listed for comparison. It can be seen that there is a good agreement

between the present results and other existing solutions for both cases of cross-

ply and angle-ply laminates. The numerical results are slightly dependent on the

skew angle α (accuracy deteriorates with increasing α) but insensitive to lay-up

sequence.
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Table 3.22: Simply supported cross-ply [900/00/900/00/900] skew plate with var-

ious skew angles: Convergence of fundamental frequencies and comparison with

other solutions (E1/E2 = 40, a/h = 10, ω∗ = ωa2
√

ρ/E2/(π
2h)).

Model Mesh
α

00 150 300 450 600

MISQ20 6× 6 1.6030 1.7267 2.1441 3.0021 4.7710

10× 10 1.5797 1.6977 2.0963 2.9141 4.6033

14× 14 1.5733 1.6896 2.0820 2.8855 4.5412

MISQ24 6× 6 1.6030 1.7267 2.1441 3.0021 4.7710

10× 10 1.5797 1.6977 2.0963 2.9141 4.6033

14× 14 1.5733 1.6896 2.0820 2.8855 4.5412

MLSDQ 1.5709 1.6886 2.1026 2.8798 4.4998

RBF 1.5791 1.6917 2.0799 2.8228 4.3761

B-spline 1.5699 – 2.0844 2.8825 –

Table 3.23: Clamped cross-ply [900/00/900/00/900] skew plate with various skew

angles: Convergence of fundamental frequencies and comparison with other solu-

tions (E1/E2 = 40, a/h = 10, ω∗ = ωa2
√

ρ/E2/(π
2h)).

Model Mesh
α

00 150 300 450 600

MISQ20 6× 6 2.4550 2.5528 2.8901 3.6260 5.2538

10× 10 2.4014 2.4958 2.8194 3.5200 5.0610

14× 14 2.3869 2.4803 2.7998 3.4893 4.9989

MISQ24 6× 6 2.4550 2.5528 2.8901 3.6260 5.2538

10× 10 2.4014 2.4958 2.8194 3.5200 5.0610

14× 14 2.3869 2.4803 2.7998 3.4893 4.9989

MLSDQ 2.3790 2.4725 2.7927 3.4723 4.9430

RBF 2.4021 2.4932 2.8005 3.4923 4.9541

B-spline 2.3820 – 2.7921 3.4738 –
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Table 3.24: Simply supported angle-ply [450/ − 450/450/ − 450/450] skew plate

with various skew angles: Convergence of fundamental frequencies and comparison

with other solutions (E1/E2 = 40, a/h = 10, ω∗ = ωa2
√

ρ/E2/(π
2h)).

Model Mesh
α

00 150 300 450 600

MISQ20 6× 6 1.8768 1.9255 2.1546 2.7185 4.1758

10× 10 1.8491 1.8969 2.1093 2.6286 4.0249

14× 14 1.8413 1.8889 2.0955 2.5672 3.9718

MISQ24 6× 6 1.8768 1.9255 2.1546 2.7185 4.1758

10× 10 1.8491 1.8969 2.1093 2.6286 4.0249

14× 14 1.8413 1.8889 2.0955 2.5672 3.9718

MLSDQ 1.8248 1.8838 2.0074 2.5028 4.0227

RBF 1.8357 1.8586 2.0382 2.4862 3.8619

B-spline 1.8792 – 2.0002 2.4788 –

Table 3.25: Clamped angle-ply [450/−450/450/−450/450] skew plate with various

skew angles: Convergence of fundamental frequencies and comparison with other

solutions (E1/E2 = 40, a/h = 10, ω∗ = ωa2
√

ρ/E2/(π
2h)).

Model Mesh
α

00 150 300 450 600

MISQ20 6× 6 2.3551 2.4242 2.7566 3.5013 5.1549

10× 10 2.3045 2.3713 2.6892 3.3977 4.9605

14× 14 2.2908 2.3570 2.6708 3.3683 4.8982

MISQ24 6× 6 2.3551 2.4242 2.7566 3.5013 5.1549

10× 10 2.3045 2.3713 2.6892 3.3977 4.9605

14× 14 2.2908 2.3570 2.6708 3.3683 4.8982

MLSDQ 2.2787 2.3504 2.6636 3.3594 4.8566

RBF 2.3324 2.3962 2.6981 3.3747 4.8548

B-spline 2.2857 – 2.6626 3.3523 –
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3.5.3 Circular laminated plates

A circular symmetric 4-layer [θ/ − θ/ − θ/θ] laminated plate with a diameter D

and a thickness h as shown in Figure 3.27 is analysed. The span-to-thickness ratio

a/h is taken to be 10 in the computation. Two types of boundary conditions,

simply supported (SSSS) and clamped (CCCC) with various fibre orientation

angles θ = 0o, 15o, 30o, 45o are considered.

D

x

y

Figure 3.27: Geometry and discretization of a circular laminated plate

The effect of the ply’s angle θ on the normalized fundamental frequency of the

simply supported and clamped circular laminated plate is presented in Table 3.26.

The natural frequencies of the first six modes in the case of clamped edge con-

ditions are also presented in Table 3.27 together with the corresponding mode

shapes in Figure 3.28. It is observed that the numerical results obtained by the

present methods are comparable with results obtained by MLSDQ method of Liew

et al. (2003).
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Table 3.26: Circular 4-layer [θ/−θ/−θ/θ] laminated plates with various boundary

conditions and ply angles: Comparison of fundamental frequencies with other

solutions (ω∗ = (ωa2/h)
√

ρ/E2, E1/E2 = 40, a/h = 10).

Model B.C
θ

0 15 30 45

MISQ20 SSSS 16.168 16.448 16.924 17.162

MISQ24 16.168 16.448 16.924 17.162

MLSDQ 16.167 16.475 16.928 17.119

MISQ20 CCCC 22.123 22.698 24.046 24.766

MISQ24 22.123 22.698 24.046 24.766

MLSDQ 22.211 22.774 24.071 24.752

Table 3.27: Clamped circular 4-layer [θ/ − θ/ − θ/θ] laminated plate: Com-

parison of the normalized natural frequencies of the first six modes (ω∗ =

(ωa2/h)
√

ρ/E2, E1/E2 = 40, a/h = 10).

θ Model
Mode

1 2 3 4 5 6

0 MISQ20 22.123 29.768 41.726 42.805 50.756 56.950

MISQ24 22.123 29.768 41.726 42.805 50.756 56.950

MLSDQ 22.211 29.651 41.101 42.635 50.309 54.553

15 MISQ20 22.698 31.568 43.635 44.318 53.468 60.012

MISQ24 22.698 31.568 43.635 44.318 53.468 60.012

MLSDQ 22.774 31.455 43.350 43.469 52.872 57.386

30 MISQ20 24.046 36.399 44.189 52.028 57.478 67.099

MISQ24 24.046 36.399 44.189 52.028 57.478 67.099

MLSDQ 24.071 36.153 43.968 51.074 56.315 66.220

45 MISQ20 24.766 39.441 43.817 57.907 57.945 66.297

MISQ24 24.766 39.441 43.817 57.907 57.945 66.297

MLSDQ 24.752 39.181 43.607 56.759 56.967 65.571
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Figure 3.28: Clamped circular angle-ply [450/− 450/− 450/450] laminated plate:

the first six mode shapes.
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3.5.4 Right-angle triangular laminated plates

This section deal with the free vibration of symmetric/antisymmetric cross-ply

and angle-ply right-angle triangular plates as shown in Figure 3.14. The following

material properties are used in the analysis:

E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.5E2; ν12 = ν13 = ν23 = 0.25; ρ = 1.

Table 3.28 reports the present normalized natural frequencies of the first six modes

with various lay-up of cross-ply and angle-ply sequences, together with the solu-

tions using LS12 higher-order element (Haldar and Sengupta, 2003). It is observed

that the present results give a little larger value than those obtained by LS12 el-

ement. It may be the use of consistent matrices in the present formula which

usually yields results greater than those by LS12 formula using the lumped mass

matrices (Cook et al., 2002). The first six mode shapes are also displayed in

Figure 3.29.

Table 3.28: Clamped right-angle triangular laminated plate: Compari-

son of the normalized natural frequencies of the first six modes (ω∗ =

(ωa2/h)
√

ρ/E2, E1/E2 = 25, a/h = 100).

Lay-up Model
Mode

1 2 3 4 5 6

[00/900] MISQ20 52.453 91.179 105.284 144.020 156.290 178.941

MISQ24 52.516 91.357 105.561 144.274 156.950 179.809

LS12 51.933 89.391 102.88 139.28 149.94 172.06

[00/900/00] MISQ20 70.000 109.088 148.223 160.771 203.320 221.969

MISQ24 70.000 109.088 148.223 160.771 203.320 221.969

LS12 69.252 106.73 143.88 155.06 193.84 210.11

[300/− 300] MISQ20 52.222 84.840 113.245 127.063 159.778 178.549

MISQ24 52.172 84.630 113.019 126.735 159.177 178.205

LS12 51.735 83.376 110.71 123.05 153.62 169.81

[450/− 450] MISQ20 52.571 86.269 113.882 130.911 160.286 186.491

MISQ24 52.624 86.392 114.102 131.150 160.734 186.982

LS12 52.057 84.715 111.25 126.73 153.86 177.31
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Figure 3.29: Clamped cross-ply [00/900/00] right-angle triangular plates: the first

six mode shapes.
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3.6 Numerical examples: Buckling analysis

In this section, a number of numerical examples are presented to demonstrate

the performance of the MISQ20 and MISQ24 elements in buckling analysis of

laminated plates. Particular plate structures with various boundary conditions,

span-to-thickness ratios and modulus ratios (the degree of orthotropy) are ana-

lyzed. In all examples, the material properties are assumed to be the same in all

the layers and the fibre orientations may be different among the layers. The ply

angle of each layer is measured from the global x−axis to the fibre direction. The

thickness of each layer is identified. Unless otherwise specified, shear correction

factors k2
1 = k2

2 = π2

12
are used for all computations. The following two sets of typ-

ical graphite-epoxy material properties are used in the analysis unless otherwise

stated:

• Material I: E1/E2 = 3, 10, 20, 30 or 40; G12 = G13 = 0.6E2; G23 =

0.5E2; ν12 = ν13 = ν23 = 0.25.

• Material II: E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 = ν13 =

ν23 = 0.25.

3.6.1 Cross-ply [00/900/900/00] square plate under uniaxial

compression

3.6.1.1 Convergence study and effect of modulus ratios

A simply supported four-layer cross-ply [00/900/900/00] square laminated plate is

chosen to study the convergence of the present method using MISQ20 and MISQ24

elements. Figure 3.30 shows the plate geometry and boundary conditions. The

span-to-thickness ratio of the plate a/h is taken to be 10 in the computation.

Table 3.29 shows the convergence and comparison of the normalized fundamen-

tal frequencies of the present method with other solutions for various degrees of

orthotropy of the individual layers (E1/E2 ratio). It is found that the MISQ20

and MISQ24 elements yield the same solution with relatively accurate results in

a wide range of E1 to E2 ratios.
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Figure 3.30: Cross-ply square laminated plate subjected to in-plane compression.

The effect of various modulus ratios of E1/E2 on the accuracy of the critical

buckling load is also displayed in Figure 3.31. It can be seen that the present

results are in good agreement with the 3D elasticity solutions of Noor (1975)

and slightly better than those of FSDT-based RPIM’s solutions of Liu, Chua and

Ghista (2007). It is also found that the present MISQ20 and MISQ24 solution is

quite insensitive to the variation of modulus ratios as can be seen in Figure 3.31
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Figure 3.31: Effect of modulus ratios on the accuracy of critical buckling loads.
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Table 3.29: Simply supported cross-ply [00/900/900/00] square plate: Convergence

of normalized critical buckling loads with various E1/E2 ratios and comparison

with other solutions (λ∗ = Nxa
2/(E2h

3), a/h = 10).

Model Mesh
E1/E2

3 10 20 30 40

MISQ20 6×6 5.583 10.279 15.803 20.308 24.080

10×10 5.409 9.978 15.360 19.759 23.446

12×12 5.380 9.927 15.287 19.667 23.340

16×16 5.352 9.878 15.214 19.577 23.236

(1.096%) (1.188%) (1.298%) (1.414%) (1.551%)

MISQ24 6×6 5.583 10.279 15.803 20.308 24.080

10×10 5.409 9.978 15.360 19.759 23.446

12×12 5.380 9.927 15.287 19.667 23.340

16×16 5.352 9.878 15.214 19.577 23.236

(1.096%) (1.188%) (1.298%) (1.414%) (1.551%)

Liu, Chua and Ghista (2007) 5.401 9.985 15.374 19.537 23.154

(2.021%) (2.284%) (2.364%) (1.207%) (1.193%)

Phan and Reddy (1985) 5.114 9.774 15.298 19.957 23.340

(-3.400%) (1.230%) (1.858%) (3.383%) (2.006%)

Khdeir and Librescu (1988) 5.442 10.026 15.418 19.813 23.489

(2.796%) (2.704%) (2.657%) (2.637%) (2.657%)

Noor (1975) 5.294 9.762 15.019 19.304 22.881

Values in parentheses correspond to relative error compared to 3D elasticity solution.

3.6.1.2 Effect of mesh distortion

The influence of mesh distortion is studied in this section. The plate of the first

example (Section 3.6.1.1) is analyzed again using distorted element created by ir-

regular interior nodes. These interior nodes are derived from a set of regular nodes

by using a controlling distortion factor s as in Equation (3.78) of Section 3.5.1.2.

Typical irregular meshes of the analysis are shown in Figure 3.32.

The effect of the mesh distortion on the critical buckling loads of the plate obtained
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s = 0.2 s = 0.3 s = 0.4

Figure 3.32: Typical irregular meshes of 16× 16 with various distortion factor s.

by the present method is shown in Table 3.30 and Figure 3.33. It is found that the

accuracy of the fundamental critical buckling loads associated with irregular mesh

decreases in comparison with regular meshes. For the cases of E1/E2 = 20, 30

and 40, Figure 3.33 indicates that the error at some s could become even smaller

than those at s = 0 (regular mesh).
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Figure 3.33: Cross-ply [00/900/900/00] square plate: Effect of mesh distortion on

the accuracy of critical buckling load.
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Table 3.30: Simply supported cross-ply [00/900/900/00] square plate: Ef-

fect of mesh distortion on the normalized critical buckling loads (λ∗ =

Nxa
2/(E2h

3), a/h = 10).

E1/E2 Model
s

0 0.1 0.2 0.3 0.4

3 MISQ20 (16× 16) 5.352 5.463 5.651 6.013 5.970

MISQ24 (16× 16) 5.352 5.463 5.651 6.013 5.970

10 MISQ20 (16× 16) 9.878 9.947 10.065 10.201 9.919

MISQ24 (16× 16) 9.878 9.947 10.065 10.201 9.919

20 MISQ20 (16× 16) 15.214 15.214 15.208 15.010 14.369

MISQ24 (16× 16) 15.214 15.214 15.208 15.010 14.369

30 MISQ20 (16× 16) 19.577 19.509 19.369 18.859 17.871

MISQ24 (16× 16) 19.577 19.509 19.369 18.859 17.871

40 MISQ20 (16× 16) 23.236 23.102 22.823 22.026 20.710

MISQ24 (16× 16) 23.236 23.102 22.823 22.026 20.710

3.6.2 Symmetric/anti-symmetric cross-ply and angle-ply

square plates under uniaxial compression

This section deals with the effect of the span-to-thickness ratio and various edge

support conditions to symmetric/antisymmetric cross-ply and angle-ply square

plates. The influence of the number of layers on the critical buckling load is also

presented with 2-,4- and 10-layer laminates. A typical representative sketch of the

laminated plate is shown in Figure 3.34.

3.6.2.1 Effect of span-to-thickness ratio

The effect of the span-to-thickness ratio (a/h) on the uniaxial critical buckling load

is studied for simply supported symmetric/antisymmetric cross-ply and angle-ply

square plates made of Material I having E1/E2 = 40. The results obtained by the
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Figure 3.34: Geometry and discretization of square laminated plates.

present MISQ20, MISQ24 elements are shown from Table 3.31 to Table 3.34 in

comparison with those obtained by FSDT (Chakrabarti and Sheikh, 2003; Reddy

and Phan, 1985) and HSDT (Reddy and Phan, 1985).

The numerical results show that the present solutions converge with mesh refine-

ment for various span-to-thickness ratios a/h = 10, 20, 50, 100. It is also ob-

served that the normalized critical buckling loads increase with increasing span-to-

thickness ratio and increasing number of layers for both of cross-ply and angle-ply

laminates. Both of MISQ20 and MISQ24 elements give the same critical buckling

loads for symmetric laminates and almost the same results for all cases of un-

symmetric laminates. The obtained numerical results are comparable with other

solutions and in closer agreement with HSDT than FSDT.
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Table 3.31: Simply supported symmetric cross-ply [00/900/900/00] square plate

with various a/h ratios: Convergence of normalized critical buckling loads and

comparison with other solutions (E1/E2 = 40, λ∗ = Nxa
2/(E2h

3)).

Model
a/h

10 20 50 100

MISQ20 6×6 24.080 33.037 37.081 37.750

10×10 23.446 32.067 35.939 36.578

16×16 23.236 31.747 35.561 36.190

MISQ24 6×6 24.080 33.037 37.081 37.750

10×10 23.446 32.067 35.939 36.578

16×16 23.236 31.747 35.561 36.190

FSDT (Chakrabarti and Sheikh, 2003) 23.409 31.625 35.254 35.851

FSDT (Reddy and Phan, 1985) 23.471 31.707 35.356 35.955

HSDT (Reddy and Phan, 1985) 23.349 31.637 35.419 35.971

Table 3.32: Simply supported unsymmetric cross-ply [00/900] square plate with

various a/h ratios: Convergence of normalized critical buckling loads and com-

parison with other solutions (E1/E2 = 40, λ∗ = Nxa
2/(E2h

3)).

Model
a/h

10 20 50 100

MISQ20 6×6 11.663 13.113 13.595 13.667

10×10 11.291 12.668 13.123 13.190

16×16 11.169 12.520 12.967 13.033

MISQ24 6×6 12.083 13.373 13.819 13.911

10×10 11.604 12.798 13.210 13.296

16×16 11.446 12.609 13.011 13.095

FSDT (Chakrabarti and Sheikh, 2003) 11.349 12.510 12.879 12.934

FSDT (Reddy and Phan, 1985) 11.353 12.515 12.884 12.939

HSDT (Reddy and Phan, 1985) 11.563 12.577 12.895 12.942
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Table 3.33: Simply supported angle-ply [450/−450] square plate with various a/h

ratios: Convergence of normalized critical buckling loads and comparison with

other solutions (E1/E2 = 25, λ∗ = Nxa
2/(E2h

3)).

Model
a/h

10 20 50 100

MISQ20 6×6 12.539 15.149 16.101 16.247

10×10 12.180 14.672 15.577 15.716

16×16 12.062 14.515 15.404 15.540

MISQ24 6×6 12.615 15.256 16.222 16.370

10×10 12.206 14.709 15.618 15.758

16×16 12.072 14.528 15.419 15.557

HSDT (Chakrabarti and Sheikh, 2003) 12.600 14.629 15.329 15.435

HSDT (Phan and Reddy, 1985) 12.622 14.644 15.336 15.441

Table 3.34: Simply supported angle-ply [450/− 450/450/− 450] square plate with

various a/h ratios: Convergence of normalized critical buckling loads and com-

parison with other solutions (E1/E2 = 25, λ∗ = Nxa
2/(E2h

3)).

Model
a/h

10 20 50 100

MISQ20 6×6 20.833 32.539 36.937 37.666

10×10 20.018 31.564 35.756 36.450

16×16 19.764 31.241 35.366 36.048

MISQ24 6×6 20.955 32.562 36.966 37.697

10×10 20.111 31.572 35.766 36.460

16×16 19.848 31.244 35.370 36.052

HSDT (Chakrabarti and Sheikh, 2003) 19.593 30.949 35.084 35.769

HSDT (Phan and Reddy, 1985) 21.962 31.032 35.120 35.795
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3.6.2.2 Effect of mixed boundaries

The influence of the mixed boundary conditions and span-to-thickness ratio are

now considered. The plate is always simply supported (S) along the edges parallel

to the y−axis while the other edges have simply supported (S), clamped (C) or free

(F) boundary conditions. The notation SSFC, for example, refers to the simply

supported of two edges parallel to the y−axis and the free and fully clamped for

the two edges parallel to the x−axis as shown in Figure 3.34. The 2-layer [00/900],

[450/ − 450] and 10-layer [00/900]5, [450/− 450]5 square plates are analyzed with

E1 = 40E2 (Material I) and a 10× 10 mesh .

Table 3.35–3.36 contain the normalized critical buckling loads of cross-ply lay-ups

for various mixed boundaries obtained by the present method and other solutions

of Huang and Li (2004) using FSDT-based MLSDQ method, RKPM’s results by

Wang et al. (2002) and FSDT, HSDT solutions of Reddy and Khdeir (1989). It can

be seen that the accuracy of the present method compares very well with FSDT

solutions and other numerical results cited here. The buckling modes of the 10-

layer [00/900]5 plate under various edge conditions are also shown in Figure 3.35.

Table 3.37–3.38 show the effect of mixed boundary conditions on the normalized

critical buckling load of 2-layer [450/ − 450] and 10-layer [450/ − 450]5 angle-ply

plates together with other solutions in the literature. Again, the present results

are in close agreements with the FSDT solutions cited here.

Table 3.35: Cross-ply [00/900] square plate with various mixed boundaries: Com-

parison of normalized critical buckling loads with other solutions (E1/E2 =

40, a/h = 10, λ∗ = Nxa
2/(E2h

3)).

Model SSSS SSFF SSCC SSSC SSFC SSFS

MISQ20 11.291 4.860 20.082 16.470 6.140 5.342

MISQ24 11.604 4.860 20.330 16.814 6.244 5.395

MLSDQ (Huang and Li, 2004) 11.301 4.823 19.871 – – –

RKPM (Wang et al., 2002) 11.582 4.996 20.624 16.872 6.333 5.502

FSDT (Reddy and Khdeir, 1989) 11.353 4.851 20.067 16.437 6.166 5.351

HSDT (Reddy and Khdeir, 1989) 11.562 4.940 21.464 17.133 6.274 5.442
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Table 3.36: Cross-ply 10-layer [00/900]5 square plate with various mixed bound-

aries: Comparison of normalized critical buckling loads with other solutions

(E1/E2 = 40, a/h = 10, λ∗ = Nxa
2/(E2h

3)).

Model SSSS SSFF SSCC SSSC SSFC SSFS

MISQ20 25.525 12.131 35.105 32.870 14.352 12.541

MISQ24 25.534 12.131 34.531 32.874 14.356 12.543

MLSDQ (Huang and Li, 2004) 25.338 12.030 34.604 – – –

RKPM (Wang et al., 2002) 25.703 12.224 35.162 32.950 14.495 12.658

FSDT (Reddy and Khdeir, 1989) 25.450 12.092 34.837 32.614 14.358 12.524

HSDT (Reddy and Khdeir, 1989) 25.423 12.077 35.376 32.885 14.351 12.506

Table 3.37: Angle-ply [450/ − 450] square plate with various mixed boundaries:

Comparison of normalized critical buckling loads with other solutions (E1/E2 =

40, a/h = 10, λ∗ = Nxa
2/(E2h

3)).

Model SSSS SSFF SSCC

MISQ20 17.510 2.362 19.849

MISQ24 17.512 2.455 21.191

FSDT-based MLSDQ (Huang and Li, 2004) 17.527 2.450 19.858

FSDT (Khdeir, 1989) 17.552 2.327 19.957

Table 3.38: Angle-ply [450/ − 450]5 square plate with various mixed boundaries:

Comparison of normalized critical buckling loads with other solutions (E1/E2 =

40, a/h = 10, λ∗ = Nxa
2/(E2h

3)).

Model SSSS SSFF SSCC

MISQ20 33.487 4.531 33.653

MISQ24 31.288 4.206 31.555

FSDT-based MLSDQ (Huang and Li, 2004) 33.027 4.741 33.205

FSDT (Khdeir, 1989) 33.173 4.401 33.356
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(a) SSSS (b) SSFF

(c) SSCC (d) SSSC

(e) SSFC (f) SSFS

Figure 3.35: Fundamental buckling modes of cross-ply 10-layer [00/900]5 square

plate with various mixed boundaries: (a) SSSS; (b) SSFF; (c) SSCC; (d) SSSC;

(e) SSFC and (f) SSFS.
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3.6.3 Cross-ply skew plates with various skew angles and

span-to-thickness ratios under uniaxial compression

This section deals with 4-layer symmetric cross-ply skew laminated plates under

uniaxial compression as shown in Figure 3.36. Simply supported plates at the four

edges are considered with various skew angle from 0 to 300. The span-to-thickness

ratio a/h is taken to be 10, 20, 50 and 100 and the entire plate is modelled using

10 × 10 mesh. In this problem, the material properties used for each individual

layer are: E1 = 128 GPa, E2 = 11 GPa, G12 = G13 = 4.48 GPa, G23 = 1.53 GPa

and ν12 = ν13 = ν23 = 0.25.

Figure 3.36: Geometry and discretization of cross-ply skew plates.

Table 3.39 presents the normalized critical buckling load obtained by the present

MISQ20 and MISQ24 elements together with those of Chakrabarti and Sheikh

(2003) and Hu and Tzeng (2000).

It can be seen that there is a good agreement between the present results and

other existing solutions. Numerical results also show that the critical buckling

load increases as the skew angle or as the span-to-thickness ratio increases.
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Table 3.39: Simply supported cross-ply [900/00/00/900] skew plate with various

skew angles and span-to-thickness ratios: Comparison of the critical buckling

loads with other solutions (λ∗ = Nxa
2/(E2h

3)).

Skew Angle Model
a/h

10 20 50 100

0 MISQ20 8.623 10.976 11.939 12.094

MISQ24 8.623 10.976 11.939 12.094

Chakrabarti and Sheikh (2003) 9.392 11.324 12.029 12.138

Hu and Tzeng (2000) – – – 12.045

10 MISQ20 8.979 11.600 12.757 12.960

MISQ24 8.978 11.599 12.757 12.960

Chakrabarti and Sheikh (2003) 9.871 12.057 12.888 13.020

Hu and Tzeng (2000) – – – 13.000

20 MISQ20 10.104 13.577 15.369 15.753

MISQ24 10.104 13.576 15.369 15.753

Chakrabarti and Sheikh (2003) 11.367 14.441 16.701 15.915

Hu and Tzeng (2000) – – – 15.636

30 MISQ20 12.185 17.314 20.294 21.050

MISQ24 12.185 17.314 20.294 21.050

Chakrabarti and Sheikh (2003) 13.753 18.920 20.188 21.605

Hu and Tzeng (2000) – – – 21.500
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3.6.4 Cross-ply square plates under biaxial compression

In this section, 3-layer symmetric cross-ply [00/900/00] square plate is chosen to

compute the bi-axial buckling load under various edge support conditions (see

Figure 3.37). The plate is of width a and thickness h and the span-to-thickness

ratio a/h is taken to be 10. Material I is used in this computation.

Figure 3.37: Geometry and discretization of cross-ply square plates.

3.6.4.1 Effect of material anisotropy

The effect of modulus ratio E1/E2 on the critical bi-axial buckling load is studied

in this section. Table 3.40 reports the normalized critical buckling loads obtained

by the present elements together with the FSDT solution of Fares and Zenkour

(1999)and HSDT solution of Khdeir and Librescu (1988). The present results

in general indicate a good agreement with other referenced results and closer to

those of HSDT than FSDT. It is also observed than the critical bi-axial buckling

load increases with the degree of orthotropy (E1/E2 ratio).

3.6.4.2 Effect of mixed boundary conditions

The effect of mixed edge support conditions on the critical biaxial buckling load

is now investigated. Table 3.41 reports the present critical biaxial buckling loads

together with the FSDT solutions of (Khdeir and Librescu, 1988; Liew and Huang,

2003) and HSDT solutions of (Liu, Chua and Ghista, 2007; Khdeir and Librescu,
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1988). Once again, the MISQ20 and MISQ24 yield the same results and they are

in good agreement with other numerical results cited here.

Table 3.40: Simply supported cross-ply [00/900/00] square plate with various mod-

ulus ratio: Comparison of the critical bi-axial buckling loads with other solutions

(λ∗ = Nxa
2/(E2h

3)).

Model
E1/E2

10 20 30 40

MISQ20 (10× 10) 4.939 7.488 9.016 10.252

MISQ24 (10× 10) 4.939 7.488 9.016 10.252

FSDT (Fares and Zenkour, 1999) 4.963 7.588 8.575 10.202

HSDT (Khdeir and Librescu, 1988) 4.963 5.516 9.056 10.259

Table 3.41: Cross-ply [00/900/00] square plate with various mixed boundaries

under biaxial compression: Comparison of normalized critical buckling loads with

other solutions (E1/E2 = 40, a/h = 10, λ∗ = Nxa
2/(E2h

3)).

Model SSSS SSFF SSCC SSSC SSFC

MISQ20 (10× 10) 10.252 1.858 13.249 11.613 5.964

MISQ24 (10× 10) 10.252 1.858 13.249 11.613 5.964

MLSDQ (Liew and Huang, 2003) 10.120 1.926 13.225 11.523 5.517

RPIM (Liu, Chua and Ghista, 2007) 10.091 1.928 12.952 – –

FSDT (Khdeir and Librescu, 1988) 10.202 1.937 13.290 11.602 5.551

HSDT (Khdeir and Librescu, 1988)] 10.259 1.937 13.288 – –

3.7 Concluding remarks

In this chapter, the development of two novel, simple, robust and efficient low-

order displacement-based elements has been reported and described for linear-

elastic analysis of thin to moderately thick laminated composite plates of var-

ious shapes. The two developed four-node 20-DOF and four-node 24-DOF ele-

ments, namely MISQ20 and MISQ24, are based on mixed interpolation with strain
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smoothing technique used in Galerkin mesh-free method within the framework of

the FSDT. With this combination, the elements maintain a sufficient rank and

free from shear locking and any spurious modes.

Several numerical examples of laminated composite plates of various shapes from

single layer to multi-layer, from cross-ply to angle-ply stacking sequences, from

symmetric to anti-symmetric laminations are investigated in detail to verify and

assess the performance of the two proposed elements. The applicability of the

present approaches is demonstrated over a wide range of static bending, free

vibration, buckling test problems associated with different parameters such as

boundary conditions, types of laminates, mesh distortion, fibre orientation, span-

to-thickness ratio, mixed boundaries and modulus ratios. Comparison of the nu-

merical results computed using the MISQ20 and MISQ24 elements together with

analytic solution and other FSDT-based, HSDT-based elements also form a major

part of the present investigation.

Based on the results obtained from the numerical evaluations, the presently de-

veloped elements have been shown to pass the patch tests, to possess satisfactory

rate of convergence and excellent accuracy within reasonable mesh refinement

for multi-layer laminated plates of both homogeneous isotropic and laminated

anisotropic materials. No evidence of shear locking or spurious modes has been

found in any of the examples carried out to date. The MISQ20 and MISQ24 ele-

ments also appear to be insensitive to shape distortion and to be able to yield ac-

curate results even with coarse discretization irrespective of the span-to-thickness

ratio and stacking sequence as shown in many examples.

It is observed that the performance of MISQ20 and MISQ24 elements is the same

for analysis of symmetric laminates. For anti-symmetric laminates (or highly

anisotropic), the behaviour of MISQ20 and MISQ24 is slightly different due to

the coupling between membrane and bending parts. As the MISQ24 element has

more DOFs (additional drilling) than MISQ20 element while both elements be-

have very similarly, MISQ20 should be more economical and preferred to MISQ24

even though there is a small difference in dealing with anti-symmetric laminates.

A reduced four-node 12-DOF element, termed as MISQ20R, has also been suc-

cessfully developed for thermo-mechanical static analysis of functionally graded

material plates. This element is also found to be free of shear locking and exhibits



3.7. Concluding remarks 107

excellent accuracy characteristics.

The simplicity, robustness and efficiency of the developed elements may be at-

tributable to the fact that the merits of the strain smoothing improvement of the

SCNI mesh-free method are merged in a complementary manner in the formula-

tions of the developed elements through the assumed strain finite element method.

In the next chapter, the MISQ20 and MISQ24 elements will be further extended

for geometrically linear analysis of shell structures.
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Chapter 4

Assumed Strain Smoothing Flat

Shell Finite Elements

The two proposed MISQ20 and MISQ24 elements, which were described and ver-

ified in the previous chapter for plate bending problems, are further developed

for shell problems in this chapter. The performance of the elements is validated

and demonstrated through several numerical benchmark problems. Convergence

studies and comparison with other existing solutions in the literature suggest that

the present elements are free of lockings and efficient for linear analysis of thin to

moderately thick shell structures.

4.1 Introduction

The wide application of shell structures in engineering practice has caught the in-

terests of many researchers in the fields of analysis and design of such structures.

A great body of research work has been proposed over several decades towards

the development of simple and efficient shell finite elements through three major

approaches: (1) the curved shell elements based on classical shell theory with

curvilinear coordinates; (2) the degenerated shell elements derived from three-

dimensional solid elements and (3) the flat shell elements obtained by the combi-

nation of the membrane and bending behaviour of plate elements.
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In general, it is difficult to identify which shell element is the most advantageous.

Among these approaches, the flat shell elements are regarded to be the most

attractive as they can be readily built by combining existing plate and mem-

brane elements. They have been used extensively because of the simplicity in

their formulation, the effectiveness in performing computation and the flexibility

in applications to both shell and folder plate structures. In addition, the inclu-

sion of transverse shear effect with the aid of Reissner-Mindlin kinematics and

the incorporation of drilling degrees of freedom, also significantly improved the

performance of the flat elements for thick to thin shell structures (Darilmaz and

Kumbasar, 2006).

Although triangular flat elements are most efficient for discretizing arbitrary shell

geometries, quadrilateral elements are usually used owing to their better perfor-

mance with respect to convergence rates than that of triangular elements (Lee

and Bathe, 2004). The difficulty in the development of the four-node shell ele-

ment is that such elements are too stiff and suffer from locking phenomenon. This

phenomenon originates from the shortcoming in the interpolation of the displace-

ment. Two well-known locking types that may occur in four-node flat elements

in analysis of shell structures are: (1) the transverse shears locking which arises

as the ratio of the thickness-to-characteristic length of a shell becomes small (e.g.

t/L ≤ 1/100), and (2) the membrane locking which occurs when coarse or dis-

torted meshes are used, especially in bending dominated problems.

With the development of shell elements, many methods have been proposed to

circumvent these disadvantages. For a summary, the readers are referred to Yang

et al. (2000). More works on the problems related to the membrane locking of

flat shell elements can be found in the references by Cook (1994), Taylor (1987),

Groenwold and Slander (1995), and Choi and Lee (1999, 2003), etc.

A large number of four-node shell element formulations have been presented to

date and showed good performance, however, there is still room to improve the

behaviour of flat shell elements, in order to enhance the efficiency, accuracy and

stability even when meshes are coarse or elements are badly-shaped. The objec-

tive of this chapter is to extend the improved formulations of locking-free quadri-

lateral flat shell elements that is able to reduce the mesh distortion sensitivity

and enhance the coarse mesh accuracy. Moreover, the incorporation of the ASS
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technique also facilitates relatively simple implementation procedure which makes

coding easier (Nguyen-Van et al., 2007b, 2008d, 2009).

In the following sections, a brief review of the strain smoothing approach for two

four-node flat shell finite elements is first introduced. This is followed by numerical

benchmark tests in static, free vibration and buckling analysis to investigate and

assess the performance of the two proposed four-node flat shell elements before

some concluding remarks are presented.

4.2 Assumed strain smoothing flat shell finite

element formulations

Based on the previous chapters, the smoothed membrane, bending and geometric

strain fields of flat shell elements, MISQ20 and MISQ24, can be rewritten as

ε̃m(xC) = B̃C
m(xC)q, (4.1)

ε̃b(xC) = B̃C
b (xC)q, (4.2)

ε̃g(xC) = B̃C
g (xC)q, (4.3)

where qi = [ui vi wi θxi θyi θzi]
T is the nodal displacement vector; B̃C

m, B̃C
b , B̃C

g

the smoothed membrane gradient matrix, the smoothed bending gradient matrix

and the smoothed geometric gradient matrix, respectively.

The smoothed membrane gradient matrix B̃C
mi of the MISQ24 element is given as

B̃C
mi(xC) =

1
AC

4∑

m=1




nG∑
n=1

wnNi(xmn)nx 0 0 0 0 0

0
nG∑
n=1

wnNi(xmn)ny 0 0 0 0

nG∑
n=1

wnNi(xmn)ny

nG∑
n=1

wnNi(xmn)nx 0 0 0 0




+
1

AC

4∑

m=1




0 0 0 0 0
nG∑
n=1

wnNxi(xmn)nx

0 0 0 0 0
nG∑
n=1

wnNyi(xmn)ny

0 0 0 0 0
nG∑
n=1

wnNxi(xmn)ny +
nG∑
n=1

wnNyi(xmn)nx




(4.4)
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while the smoothed membrane gradient matrix B̃C
mi of the MISQ20 element is

B̃
C

mi(xC) =
1

AC

4∑
m=1




Ni(x
G
m)nx 0 0 0 0 0

0 Ni(x
G
m)ny 0 0 0 0

Ni(x
G
m)ny Ni(x

G
m)nx 0 0 0 0


lCm (4.5)

The smoothed bending gradient matrix and the smoothed geometric gradient

matrix of the MISQ20 and MISQ24 are the same and they are given as follows.

B̃
C

bi(xC) =
1

AC

4∑

b=1




0 0 0 Ni(xG
b )nx 0 0

0 0 0 0 Ni(xG
b )ny 0

0 0 0 Ni(xG
b )ny Ni(xG

b )nx 0


lCb , (4.6)

B̃C
gi (xC) =

1

AC

4∑
g=1




04×6 0 0 0 0

0 Ni(x
G
g )nx 0 0 0

0 Ni(x
G
g )ny 0 0 0

0 0 Ni(x
G
g )nx 0 0

0 0 Ni(x
G
g )ny 0 0

0 0 0 Ni(x
G
g )nx 0

0 0 0 Ni(x
G
g )ny 0

0 0 0 0 02×6




lCg , (4.7)

The shear strains of MISQ20 and MISQ24 elements are approximated with in-

dependent interpolation schemes in the natural coordinate system and given as

follows.

γ = B̄sq, (4.8)

where

B̄si = J−1


 0 0 Ni,ξ b11

i Ni,ξ b12
i Ni,ξ 0

0 0 Ni,η b21
i Ni,η b22

i Ni,η 0


 , (4.9)

and J is the Jacobian operator relating the natural coordinate derivatives to the

local coordinate derivatives which is defined as

J =


 x,ξ y,ξ

x,η y,η


 . (4.10)
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Finally the smoothed element stiffness matrix of a flat shell laminated element in

the local coordinate is obtained as

k̃ = k̃m + k̃mb + k̃T
mb + k̃b + k̄s, (4.11)

where

k̃MISQ20
m =

∫

Ω

B̃T
mAB̃mdΩ =

2∑
C=1

B̃T
mCAB̃mCAC , (4.12)

k̃MISQ24
m =

∫

Ω

B̃T
mAB̃mdΩ + γ

∫

Ω

bTbdΩ

=
1∑

C=1

B̃T
mCAB̃mCAC + γ

1∑
i=1

1∑
j=1

wiwjb
Tb |J| dξdη, (4.13)

k̃MISQ20
mb =

∫

Ω

B̃T
mBB̃bdΩ =

2∑
C=1

B̃T
mCBB̃bCAC , (4.14)

k̃MISQ24
mb =

∫

Ω

B̃T
mBB̃bdΩ =

1∑
C=1

B̃T
mCBB̃bCAC , (4.15)

k̃b =

∫

Ω

B̃T
b DB̃bdΩ =

2∑
C=1

B̄T
bCDB̄bCAC , (4.16)

k̄s =

∫

Ω

B̄T
s CsB̄sdΩ =

2∑
i=1

2∑
j=1

wiwjB̄
T
s CsB̄s |J| dξdη, (4.17)

The smoothed element geometric stiffness matrix is obtained in a similar way in

the local coordinate system as

k̃g =
1∑

C=1

B̃T
gCσ̂0B̃gCAC , (4.18)

where σ̂0 is defined in Equation (3.26)

To deal with the effect of out-of-plane warp, the so-called rigid link correction of

Taylor (1987) is employed to transformed the nodal variable into the projected

flat element variable as in Equation (2.39) of Chapter 2 as follows.

k̃
MISQ20(24)
proj = Wk̃MISQ20(24)WT , (4.19)

k̃gproj
= Wk̃gW

T . (4.20)
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The local corrected warping element stiffness matrices are then transformed to

the global coordinate system as

K̃
MISQ20(24)
global = RT k̃

MISQ20(24)
proj R, (4.21)

K̃gglobal
= RT k̃gproj

R, (4.22)

where W, R are defined in Equation (2.39) and Equation (2.42), respectively.

4.3 Numerical examples: Static analysis

In this section, several benchmark problems are presented to validate and demon-

strate the performance of the MISQ20 and MISQ24 flat elements in linear-elastic

static, free vibration and buckling analysis of shell structures. The performance

of the developed elements is compared with that of a fairly complete set of other

four-node shell elements in the literature. The list of shell elements used for

comparison with the proposed elements is outlined in Table 4.1.



4.3. Numerical examples: Static analysis 114

Table 4.1: List of shell elements used for comparison in the present study.

Name Brief description

DKQ-4 4-node discrete Kirchoff quadrilateral element of Taylor (1987)

SRI-4 bilinear degenerated shell element, with selective reduced integra-

tion of Hughes and Liu (1981)

RSDS-4 bilinear resultant-stress degenerated-shell element, with uniform

reduced integration and stability (Liu et al., 1986)

URI-4 4-node uniformly reduced integrated element (Belytschko et al.,

1989)

QPH quadrilateral shell element with physical hourglass control of Be-

lytschko and Leviathan (1994)

IBRA-4 4-node shell element with drilling DOF developed by Ibrahimbe-

govic and Frey (1994)

MITC4 4-node fully integrated shell element based on assumed shear strain

field of Dvorkin and Bathe (1984)

Mixed bilinear element with mixed formulation for membrane and bend-

ing stress and full 2x2 quadrature of Simo et al. (1989)

MIN4T 4-node flat shell with drilling DOF via explicit Kirchhoff constrains

(Liu et al., 2000)

NMS-4F defect-free 4-node flat shell element with drilling DOF (Choi and

Lee, 1999)

XSHELL41/42 4-node quasi-conforming flat shell element with DDOF (Kim et al.,

2003)

QC5D-SA 4-node flat shell with drilling DOF and 5-point quadrature by

Groenwold and Slander (1995)

SHELL63 4-node thin shell element with drilling DOF in ANSYS (1998)

T029 4-node Mindlin shell element in Samtech (2003)

HBQ8 8-node quadrilateral assumed-stress hybrid shell element (Daril-

maz and Kumbasar, 2006)

KUMBA 8-node curved shell element with reduced integration (Kumbasar

and Aksu, 1995)
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4.3.1 Scordelis-lo (Barrel vault) roof

The Scordelis-Lo roof provides one of the standard tests to assess the performance

of shell elements in a combined bending-membrane problem with the membrane

action being dominant. The roof is modelled as a short cylinder shell, loaded

by self-weight and supported by rigid diaphragms at the curved edges while the

straight edges are free. Geometry, material data and boundary conditions of the

problem are shown in the Figure 4.1.

Figure 4.1: The Scordelis-Lo roof: Geometry and material data.
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Figure 4.2: The Scordelis-Lo roof: (a) typical regular mesh and (b) irregular mesh.

According to MacNeal and Harder (1985), the theoretical value for the vertical

deflection at the center of the free edge is 0.3086, but a slightly lower value 0.3024

seems to have become the reference solution for many publications. In this study

the latter value is used to normalize numerical results. Taking advantage of sym-

metry, only a quadrant of the roof is discretized and analyzed. Two typical types
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of mesh, namely N×N uniform elements and N×N distorted elements are shown

in Figure 4.2.

Table 4.2: The Scordelis-Lo roof: displacements at point B, normalized by 0.3024.

Model
Mesh

4× 4 8× 8 12× 12 16× 16

MISQ20 (regular mesh) 1.0776 1.0180 1.0137 1.0105

MISQ20 (irregular mesh) 1.0657 1.0193 1.0171 1.0097

MISQ24 (regular mesh) 1.1912 1.0420 1.0154 1.0063

MISQ24 (irregular mesh) 1.1925 1.0422 1.0155 1.0066

SRI-4 0.964 0.984 – 0.999

RSDS-4 1.201 1.046 – 1.010

T029 (SAMCEF) 0.976 0.986 – 0.993

NMS-4F 1.047 1.005 – 0.997

QPH 0.940 0.980 – 1.010

DKQ-4 1.048 1.005 – 0.996

IBRA-4 1.047 1.005 – 0.997

URI-4 1.219 1.054 – 1.017

Table 4.2 shows the normalized deflections at the midpoint of the free edge (point

B) obtained by the present elements with different meshes, together with those of

other 4-node shell elements available in the literature. The results show that the

present elements, MISQ20 and MISQ24, perform quite well in both types of mesh

in comparison with the reference solution and other shell elements.

The numerical convergence is also plotted in Figure 4.3. As can be seen, the

convergence rate of the present elements for both types of mesh is nearly equiva-

lent. It is also observed that the MISQ24’s rate of convergence is slightly slower

than that of the MISQ20 element, the SRI-4 element, the MITC4 element and

the Mixed element. However, it is interesting to note that the MISQ24 element

appears to converge monotonically to the reference solution even with a highly

distorted mesh. Convergence rates of the present elements in this problem indeed
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appear satisfactory.
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Figure 4.3: The Scordelis-Lo roof: Convergence behaviour of normalized displace-

ments at point B.

4.3.2 Pinched cylinder with end diaphragms

In this section, a pinched cylinder with end diaphragms is considered. This prob-

lem is regarded as one of the most severe tests for the performance of the element

to present both in-extensional bending and complex membrane states of stress.

The cylinder is supported by rigid diaphragms at both ends and pinched with

two opposite radial concentrated loads at the middle of the length as shown in

Figure 4.4 where the geometrical and material properties of the cylinder are also

depicted.

Owing to symmetry, only one octant of cylinder is modelled with a mesh of uniform

elements as well as distorted elements. Two typical meshes used in the analysis

are shown in Figure 4.5.

The theoretical solution of the radial deflection at the loading point (point C)

given by Belytschko and Leviathan (1994) is 1.8248× 10−5 for isotropic material.

The present numerical results with meshes of 4 × 4, 8 × 8, 12 × 12 and 16 × 16

elements are compared versus other solutions from the literature using 4–node
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Figure 4.4: A pinched cylinder with end diaphragms: Geometry and material

data.
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Figure 4.5: A pinched cylinder with end diaphragms: (a) typical regular mesh

and (b) irregular mesh.

quadrilateral elements. All the numerical results, normalized with respect to the

analytical value, are given in the Table 4.3. It is observed that the performance

of the present elements, MISQ20 and MISQ24, are in good agreement with the

analytic solution for both types of mesh and the MISQ24 performance is better

than other shell elements considered in this study.

The convergence behaviours of all cited elements are also plotted together in Fig-

ure 4.6. As can be seen, the MISQ24 elements yield the most rapidly converging

solutions to theoretical value. In the case of highly distorted elements, it is par-

ticularly interesting to point out that the MISQ24 elements faces no difficulties

converging at the same rate as some of the most efficient contemporary four-node

shell elements using uniform elements. The MISQ24’s convergence rate is slightly
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Table 4.3: An isotropic pinched cylinder with end diaphragms: normalized dis-

placements at point C. Normalized by: 1.8248× 10−5

Model
Mesh

4× 4 8× 8 12× 12 16× 16

MISQ20 (regular) 0.4418 0.7878 0.9022 0.9482

MISQ20 (irregular) 0.4148 0.7679 0.9115 0.9541

MISQ24 (regular) 0.6416 0.9411 0.9921 1.0018

MISQ24 (irregular) 0.6477 0.9375 0.9915 1.0010

MIN4T 0.5040 0.8374 – 0.9619

XSHELL41 0.625 0.926 – 0.995

XSHELL42 0.625 0.918 – 0.992

SRI-4 0.373 0.747 – 0.935

RSDS-4 0.469 0.791 – 0.946

SHELL63(ANSYS) 0.6302 0.9371 – 1.0029

QC5D-SA 0.3759 0.7464 – 0.9300

QPH 0.370 0.740 – 0.930

IBRA-4 0.3704 0.7367 – 0.9343

DKQ-4 0.6357 0.9459 – 1.0160

MICT4 0.3699 0.7398 – 0.9300

Mixed 0.3989 0.7628 – 0.9349

better than the SHELL63 element used in the commercial finite element software

ANSYS for this problem.

The pinched circular cylinder problem is also analyzed when the shell is made

of laminated composite material with cross-ply and angle-ply lay-ups as shown

in Figure 4.4. Table 4.4 reports the normalized deflections for 2-layer and 10-

layer antisymmetric cross-ply [00/900/00/...] and angle-ply [−450/450/ − 450/...]

laminated shell for different radius-to-thickness ratio, S = R/h. The present
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Figure 4.6: An isotropic pinched cylinder with end diaphragms: Convergence

behaviour.

results are obtained using 32× 32 uniform mesh. It can be seen that the MISQ24

solutions are in good agreement with the FSDT solutions of Reddy (2004b) while

the MISQ20 solutions are not in as good agreement as the MISQ24 is.

Table 4.4: A laminated composite pinched cylinder problem: normalized displace-

ments at point C, w∗
c = 10wc(

a
2
, a

2
)E1h

3/(PR2)

S = R/h Model
Lay-up

[00/900] [−450/450] [00/900]5 [−450/450]5

20 MISQ20 (32× 32) 4.4678 5.4868 3.7960 4.0132

MISQ24 (32× 32) 6.0162 5.7883 4.2020 3.5418

Reddy (2004b) 6.0742 5.2275 4.2118 3.6457

50 MISQ20 (32× 32) 1.7988 2.1124 1.6559 1.3496

MISQ24 (32× 32) 2.3604 2.2222 1.4773 1.1363

Reddy (2004b) 2.3756 2.2283 1.4527 1.2986

100 MISQ20 (32× 32) 0.8162 1.0500 0.4895 0.7084

MISQ24 (32× 32) 1.2536 1.3153 0.7566 0.6238

Reddy (2004b) 1.2450 1.3065 0.7405 0.7373
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4.3.3 Pinched hemispherical shell with an 180 hole

Figure 4.7 shows the hemispherical shell with an 180 hole subjected to concen-

trated diametrical loads of opposite signs every 900 in the equatorial plane. This

problem is a very useful example to check the ability of the element to handle

rigid body rotation about the normal to the shell surface and the inextensible

bending modes. Shell elements with membrane locking cannot solve correctly this

problem. Taking advantage of symmetry, a quadrant of the shell is modelled with

uniform elements.

Figure 4.7: A pinched hemispherical shell with 180 hole: Geometry and material

data.

Table 4.5 shows numerical results for the radial displacement at the loading point

(uA) for different elements. The values are normalized with the theorical value

of 0.094 reported by MacNeal and Harder (1985). All normalized radial displace-

ments are also plotted in Figure 4.8 to assess the convergence behaviour of each

element. It can be seen that the present elements yield the most monotonic con-

vergence towards the reference solution while some other elements do not. The

plot also shows that the present elements, MISQ20 and MISQ24, exhibit an ex-

cellent accuracy with a 16 × 16 mesh. No membrane locking is detected and the

performance of the present elements in this problem is remarkable.
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Table 4.5: A hemispherical shell with an 180 hole: displacements at point A,

normalized by 0.0940

Model
Mesh

4× 4 8× 8 12× 12 16× 16

MISQ20 (regular) 0.8765 0.9778 0.9889 0.9918

MISQ24 (regular) 0.7670 0.9798 0.9954 0.9960

MIN4T 0.136 0.651 0.897 –

IBRA-4 0.999 0.991 – 0.990

XSHELL41 1.027 1.001 – 0.990

XSHELL42 0.266 0.652 – 0.960

QC5D-SA 0.386 0.951 – 0.991

DKQ-4 0.897 0.999 – 0.995

NMS-4F 0.935 0.989 – 0.991

Mixed 0.993 0.987 – 0.988
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Figure 4.8: A pinched hemispherical shell with an 180 hole: Convergence be-

haviour of radial displacements at point A.
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4.3.4 Shallow spherical shells

A shallow spherical shell is considered in this section. The shell is simply sup-

ported on four sides and subjected to uniform loading. The geometric and material

parameters are shown in Figure 4.9. By making use of symmetry of geometry and

boundary conditions, only one quadrant of the shell is analysed with 8×8, 12×12

and 16× 16 elements.

Figure 4.9: A shallow spherical shell: Geometry and material data.

The comparison of vertical deflection wA at the center point A of an isotropic shell

with various thickness h is given in Table 4.6 together with the plot in Figure 4.10.

It can be seen that the accuracy of the present method compares very favorably

with other high-order elements and it is slightly insensitive to thickness variations.

A laminated composite shallow spherical shell is also studied. Nine-layer cross-

ply [(00/900)4/0
0] and angle-ply [(450/− 450)4/450] laminates are considered with

span-to-thickness ratio a/h = 100 and 1000. Similar to the isotropic case, the

present elements converge quickly with mesh refinement and compare favorable

with analytic solutions. The computed results are reported in Table 4.7 together

with other numerical results and analytic solutions.
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Table 4.6: Isotropic shallow spherical shell: vertical deflection wA × 103 at the

center point A with various thickness h.

Model
Thickness h

0.32 1.6 3.2 6.4

MISQ20 (8× 8) 309.291 51.708 12.012 2.127

(12× 12) 311.776 51.032 11.742 2.068

(16× 16) 312.644 50.706 11.619 2.042

MISQ24 (8× 8) 308.881 51.698 12.000 2.123

(12× 12) 311.931 51.021 11.734 2.066

(16× 16) 312.437 50.698 11.616 2.042

HBQ8 310.382 48.671 10.903 1.917

KUMBA 330.469 51.583 11.482 1.929

Analytic (Reddy, 1984b) 313.860 49.695 11.265 1.976
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Figure 4.10: Isotropic shallow spherical shell: effect of thickness on the accuracy

of central deflection.
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Table 4.7: Laminated composite shallow spherical shells: Convergence of central

deflection wA × 10−3 at the center point A with various span-to-thickness a/h.

a/h Model Mesh
Lay-up

[(00/900)4/00] [(450/− 450)4/450]

100 MISQ20 8× 8 2.9311 0.5436

12× 12 2.8407 0.5395

16× 16 2.8005 0.5369

MISQ24 8× 8 2.7117 0.5163

12× 12 2.6914 0.5122

16× 16 2.6808 0.5098

To and Wang (1998) 2.717 0.5259

Park et al. (2006)] 2.701 0.5337

Somashekar et al. (1987) 2.727 0.5270

Analytic (Reddy, 1984a) 2.717 0.5170

1000 MISQ20 8× 8 0.0595 0.0116

12× 12 0.0593 0.0117

16× 16 0.0592 0.0116

MISQ24 8× 8 0.0586 0.0063

12× 12 0.0587 0.0063

16× 16 0.0588 0.0063

To and Wang (1998) 0.0588 0.0101

Park et al. (2006)] 0.0591 0.0105

Somashekar et al. (1987) 0.0599 0.0088

Analytic (Reddy, 1984a) 0.0592 0.0105
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4.3.5 A hypar shell

A hyperbolic paraboloid shell or hypar shell (Figure 4.11) as proposed in Gruttmann

and Wagner (2005) is studied. This problem is used to assess the performance of

elements in dealing with warped geometry and the effect of membrane locking.

The geometry of the hypar shell is defined by the expression z = xy
8L

. The shell is

subjected to a uniform load pz in the vertical direction with the following bound-

ary conditions:

w(−L/2, y) = w(L/2, y) = w(x,−L/2) = w(x, L/2) = 0;

uA = uB = 0; vC = vD = 0.

Figure 4.11: A hypar shell: Geometry and material data.

The entire hypar shell is modelled and analyzed with meshes of uniform elements.

Table 4.8 presents the computed vertical displacement at the center point with

different models. Numerical results indicate that the behaviour of the present

elements is in a close agreement with other reference solutions. It is observed that

the present elements does not show any sign of membrane locking. The MISQ24

element demonstrates an excellent performance where the displacement prediction

error for the coarse mesh of 8× 8 elements is about 0.609%.

The displacements presented in Table 4.8 are also shown graphically in Figure 4.12

to assess the convergence with mesh refinement. As can be seen from the plot,

the present elements converge quickly with mesh refinement. The performance of

MISQ24 element is superior to that of the MISQ20 element and slightly better

than those of other elements cited here for this problem.
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Table 4.8: A hypar shell: central deflection w0 for different elements

Model
Mesh

4× 4 8× 8 16× 16 32× 32 64× 64

MISQ20 3.320 4.190 4.447 4.509 4.536

MISQ24 4.500 4.572 4.589 4.594 4.601

DKQ-4 4.51 4.55 4.56 – 4.57

Sauer (1998) 4.51 4.56 4.58 – 4.60

Gruttmann and Wagner (2005) 4.52 4.56 4.58 – 4.60

Analytic (Duddeck, 1962) 4.6
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Figure 4.12: A hypar shell: normalized central deflections with mesh refinement.

4.3.6 Partly clamped hyperbolic paraboloid shells

The problem considered in this section is that of a hyperbolic paraboloid shell,

clamped along one side and free on three edges and loaded by self-weight. This is

a pure bending dominated problem and known to be a very hard test for locking

behaviour as suggested in Chapelle and Bathe (1998); Bathe et al. (2000). The
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shell geometry is describe by the following equation:

z = x2 − y2; (x, y) ∈
[
−L

2
;
L

2

]
(4.23)

Figure 4.13: A partly clamped hypar shell: Geometry and material data.

One symmetric half of the shell, with uniform mesh patterns of N×N/2 elements,

is analyzed in the present work. Two typical meshes of 16×8 and 32×16 uniform

elements are shown in Figure 4.14. To the author’s knowledge, there is no analytic

solution for this problem and the reference solution for displacement and strain

energy obtained by Bathe et al. (2000) with a refined mesh of high-order element

MITC16, are used for comparison. Two thickness-to-length (t/L) ratios of 1/100,

1/1000 are adapted from the proposal of Bathe et al. (2000) to check locking

behaviour of the present elements MISQ20 and MISQ24.
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Figure 4.14: A partly clamped hypar shell: Typical meshes (a) a mesh of 16 × 8

uniform elements and (b) a mesh of 32× 16 uniform elements.
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Figure 4.15 and Figure 4.16 demonstrate the convergence of displacement and

strain energy. It can be seen that the proposed element perform well and are

insensitive to the decrease in thickness. It is observed that the convergence in the

case of t/L = 1/1000 is slower than that for h/L = 1/100.

Table 4.9: A partly clamped hyperbolic paraboloid shell: deflection at point A

with mesh refinement.

Mesh
h/L = 1/100 h/L = 1/1000

MISQ20 MISQ24 MICT16 MISQ20 MISQ24 MITC16

8× 4 8.2866E-5 9.9088E-5 – 6.5826E-3 7.1209E-3 –

16× 8 9.0138E-5 9.4681E-5 – 6.3349E-3 6.7129E-3 –

32× 16 9.3317E-5 9.3665E-5 – 6.3467E-3 6.4677E-3 –

48× 24 9.4160E-5 9.3501E-5 9.3355E-5 6.3691E-3 6.4264E-3 6.3941E-3

Table 4.10: A partly clamped hyperbolic paraboloid shell: strain energy with

mesh refinement

Mesh
h/L = 1/100 h/L = 1/1000

MISQ20 MISQ24 MICT16 MISQ20 MISQ24 MITC16

8× 4 1.4742E-3 1.8028 E-3 – 1.1380E-2 1.2512E-2 –

16× 8 1.6113E-3 1.7073E-3 – 1.0903E-2 1.1633E-2 –

32× 16 1.6744E-3 1.6858E-3 – 1.0925E-2 1.1155E-2 –

48× 24 1.6917E-3 1.6822E-3 1.6790E-3 1.0963E-2 1.1077E-2 1.1013E-2

4.3.7 Pre-twisted cantilever beams

A pre-twisted cantilever beam shown in Figure 4.17 is considered in this section.

The cantilevered beam undergoes 900 of twist over its length. Two load cases are

studied: a unit shear force P in the width direction and a unit shear force Q in

the thickness direction. This example, proposed by MacNeal and Harder (1985),
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Figure 4.15: A partly clamped hypar shell: Convergence of the displacement at

point A.
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Figure 4.16: A partly clamped hypar shell: Convergence of the strain energy.

is an excellent test for assessing the element performance when the geometry con-

figuration is warped. In the case of isotropic material, the theoretical deflections

at the beam’s tip are 0.00542 (in-plane shear P ) and 0.001754 (out-of-plane shear

Q), respectively, for the two load cases.

Typical meshes used in the present calculation are shown in Figure 4.18. Ta-
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Figure 4.17: Pre-twisted cantilever beams: geometry and material data.
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Figure 4.18: The pre-twisted cantilever beam: (a) typical regular mesh of 2 × 6

elements and (b) 4× 24 elements.

ble 4.11 presents the obtained results with mesh refinement together with other

numerical solutions in the literature. It is observed that the MISQ20 converges

very slowly and does not appear to work well in a warped configuration. However,

it still yield a better results than the RSDS-4 element for both load cases. In con-

trast to MISQ20 performance, the MISQ24 element has no difficulties in dealing

with warped geometries. Its performance is found to be superior to that of MISQ20

and better than that of some other elements cited here such as XSHELL42, RSDS-

4 and MITC4 elements. It is also observed that both MISQ20 and MISQ24 have a

slow convergence for the out of plane case but they still give reasonable and better

results with 4x24 elements than those of XSHELL42 and RSDS-4 elements.

A laminated composite pre-twisted beam is also analyzed with cross-ply and angle-
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ply lay-ups. The numerical results are tabulated in Table 4.12 and Table 4.13 for

a thick (h = 0.32) and a thin beam (h = 0.05) respectively. Once again, it is

found that the results obtained with MISQ24 elements are in closer agreement

with QC5D-SA results than those of MISQ20 elements for both thin and thick

beam except for the case of the [450/− 450] layup under in-plane loading.

Table 4.11: Isotropic pre-twisted cantilever beam: tip displacements, normalized

by 5.424 × 10−2 for in-plane displacements and by 1.754 × 10−2 for out-of-plane

displacements.

Load case Model
Mesh

2× 6 4× 12 4× 24

In-plane MISQ20 0.418 1.357 1.358

MISQ24 0.979 1.006 1.008

DKQ-4 – – 0.996

XSHELL41 – – 0.997

XSHELL42 – – 1.228

RSDS-4 – – 1.411

MITC4 – – 0.996

Out-of plane MISQ20 0.462 1.215 1.261

MISQ24 0.811 0.928 1.015

DKQ-4 – – 0.998

XSHELL41 – – 0.999

XSHELL42 – – 1.473

RSDS-4 – – 1.361

MITC4 – – 0.974
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Table 4.12: Thick laminated pre-twisted beam: Convergence of tip displacements

and comparison with other solutions.

Load case Model
Lay-up

[−450/450] [450/− 450]s [00/900]s

In-plane MISQ20 (2× 6) 0.0271 0.0265 0.0121

(4× 12) 0.0771 0.0763 0.0448

(4× 24) 0.0757 0.0747 0.0448

MISQ24 (2× 6) 0.0955 0.0864 0.0351

(4× 12) 0.0983 0.0885 0.0356

(4× 24) 0.0983 0.0886 0.0356

QC5D-SA (4× 24) 0.0802 0.0850 0.0354

Out-of plane MISQ20 (2× 6) 0.0126 0.0117 0.0033

(4× 12) 0.0253 0.0241 0.0107

(4× 24) 0.0260 0.0247 0.0111

MISQ24 (2× 6) 0.0267 0.0244 0.0068

(4× 12) 0.0307 0.0281 0.0083

(4× 24) 0.0339 0.0310 0.0091

QC5D-SA (4× 24) 0.0286 0.0298 0.0095
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Table 4.13: Thin laminated pre-twisted beam: Convergence of tip displacements

and comparison with other solutions.

Load case Model
Lay-up

[−450/450] [450/− 450]s [00/900]s

In-plane MISQ20 (2× 6) 12.349 10.512 4.349

(4× 12) 18.020 17.478 7.985

(4× 24) 17.832 17.212 7.964

MISQ24 (2× 6) 17.976 15.576 8.399

(4× 12) 23.448 19.982 9.191

(4× 24) 23.787 20.359 9.224

QC5D-SA (4× 24) 17.54 19.80 9.170

Out-of plane MISQ20 (2× 6) 3.716 3.063 1.619

(4× 12) 6.559 6.325 3.458

(4× 24) 6.282 6.078 3.389

MISQ24 (2× 6) 3.337 3.051 1.377

(4× 12) 5.247 4.844 1.841

(4× 24) 5.896 5.446 2.048

QC5D-SA (4× 24) 5.474 5.909 2.243
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4.4 Numerical examples: Free vibration and Buck-

ling analysis

4.4.1 Free vibration of cross-ply laminated cylindrical shells

The cross-ply laminated cylindrical panel with a radius R = 100, a side length

L = 20 and an angle ϕ = 0.1 radian, subjected to simply supported boundaries is

studied. The total thickness of the panel is h = 0.2. All layers have equal thickness

and are made of the same material: E1/E2 = 25, G12 = G13 = 0.5E2, G23 =

0.2E2, ν12 = ν13 = ν23 = 0.25, ρ = 1. The SCFs are assumed to be 5/6. Three

kinds of lay-up sequence, namely [00/900], [00/900/00] and [00/900/900/00], are

considered. Considering only doubly symmetric modes, a quadrant designated as

ABCD as shown in Figure 4.19 is modelled. The 4 × 4, 6 × 6 and 8 × 8 meshes

are used in computing the fundamental frequencies associated with the doubly

symmetric modes.

Figure 4.19: Geometry and discretization of laminated cylindrical shells.

The convergence study of the normalized fundamental frequency is presented in

Table 4.14. The present results are also compared with other numerical solutions

such as results of Liu and To (2003) using layer-wise shell element, of Jayasankar

et al. (2007) using 9-node degenerated shell element and the analytical solution

by Reddy (1984a).

It can be seen that the accuracy of the present elements, MISQ20 and MISQ24, are
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compared very favourably with other elements and the method is also convergent

with mesh refinement. The present elements can provide accurate prediction of

the solution with much reduced degrees of freedom and their performances with

respect to analytical solution are excellent as measured by relative errors shown

in Table 4.14.

Table 4.14: Simply supported cross-ply cylindrical shells: Convergence of normal-

ized fundamental frequencies ω∗ = (ωL2/h)
√

ρ/E2 for doubly symmetric modes

and comparison with other solutions.

Model Mesh
Lay-up

[00/900] [00/900/00] [00/900/900/00]

MISQ20 4× 4 17.061 20.575 20.694

6× 6 16.833 20.340 20.461

8× 8 16.736 20.240 20.367

(0.408%) (-0.452%) (0.029%)

MISQ24 4× 4 17.099 20.585 20.703

6× 6 16.873 20.367 20.481

8× 8 16.794 20.292 20.404

(0.756%) (-0.197%) (0.211%)

LW theory (Liu and To, 2003) 8× 8 17.390 20.960 20.960

(4.332%) (3.089%) (2.942%)

Jayasankar et al. (2007) 5× 5 17.7 – –

(6.192%) – –

Analytic (Reddy, 1984a) 16.668 20.332 20.361

4.4.2 Free vibration of angle-ply laminated cylindrical shells

To assess the effect of fibre orientation on fundamental frequencies, the cylindrical

shell of the previous example is reanalyzed with 2-layer [θ0/− θ0] angle-ply lam-

ination. The fibre angle θ is varied from 00 to 600. The span-to-thickness ratio

of the shell is L/h = 20 and the shallowness angle ϕ = 22.50. All layers have

equal thickness and are made of the same material: E1/E2 = 40, G12 = G13 =



4.4. Numerical examples: Free vibration and Buckling analysis 137

0.6E2, G23 = 0.5E2, ν12 = ν13 = ν23 = 0.25, ρ = 1.

Table 4.15 reports the normalized fundamental frequencies for doubly symmetric

modes obtained by the present elements together with other solutions such as the

parabolic shear deformation theory (PSDT) of Soldatos (1987), the generalized

differential quadrature (GDQ) of Loy et al. (1999) and the 18-node solid element

of Rattanawangcharoen et al. (2005). The present results in general indicate a

good agreement with other solution cited here for different fibre angle θ. It is also

observed that the fundamental frequency increases with increasing fibre angle.

Table 4.15: Simply supported angle-ply cylindrical shells: Convergence of normal-

ized fundamental frequencies ω∗ = (ωL2/h)
√

ρ/E2 for doubly symmetric modes

and comparison with other solutions.

Model Mesh
θ

0 15 30 45 60

MISQ20 4× 4 23.559 22.748 33.827 51.181 67.108

6× 6 23.409 22.968 34.478 51.049 65.165

8× 8 23.355 23.007 34.337 49.866 62.657

MISQ24 4× 4 23.549 22.318 32.497 50.080 60.769

6× 6 23.379 22.759 33.742 50.376 62.995

8× 8 23.321 22.611 33.214 49.387 58.523

Rattanawangcharoen et al. (2005) 23.23 27.93 30.06 48.38 51.29

GDQ (Loy et al., 1999) 24.281 21.861 31.829 52.392 74.625

PSDT (Soldatos, 1987) 22.85 – 31.42 51.73 54.16

4.4.3 Free vibration of cross-ply laminated spherical shells

A clamped nine-layered cross-ply [00/900/00/900/00/900/00/900/00] laminated spher-

ical panel as shown in Figure 4.20 is considered. The panel has a radius R = 10

and a side length a = 1. The total thickness of the panel is h = 0.01. All layers

are of equal thickness and same material properties: E1 = 2.0685 × 1011, E2 =

E1/40, G12 = G13 = 0.5E2, G23 = 0.6E2, ν12 = 0.25 and ρ = 1605. The SCFs
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are k2
1 = k2

2 = 5/6. Three different finite element meshes are used 6× 6, 10× 10,

and 14× 14 for modelling the full shell.

Figure 4.20: Geometry and discretization of a laminated spherical shell.

Table 4.16 gives the first four normalized natural frequencies obtained by the

present method in comparison with the solution of Jayasankar et al. (2007) us-

ing nine-node degenerated shell element. It can be seen that the present results

obtained by using MISQ20 and MISQ24 elements agree well with the solutions

given by Jayasankar. The first six mode shapes are also displayed in Figure 4.21.

Table 4.16: Clamped 9-layer [(00/900)4/0
0] cross-ply spherical shell: Comparison

of the normalized frequencies ω∗ = (ωa2/h)
√

ρ/E2 with other solutions.

Model Mesh Mode 1 Mode 2 Mode 3 Mode 4

MISQ20 6× 6 69.61 98.25 118.15 136.05

10× 10 67.94 88.24 104.45 119.73

14× 14 67.51 86.00 101.27 115.88

MISQ24 6× 6 69.61 98.25 118.15 136.05

10× 10 67.94 88.24 104.45 119.73

14× 14 67.51 86.00 101.27 115.88

Jayasankar et al. (2007) 15× 15 67.43 84.16 99.71 113.70
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Mode 1 Mode 2

Mode 3 Mode 4

Mode 5 Mode 6

Figure 4.21: Clamped 9-layer cross-ply [(00/900)4/0
0] spherical shell: the first six

mode shapes.
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4.4.4 Uniaxial buckling of multi-layer cylindrical shallow

shell panels

This section deal with the uniaxial buckling analysis of simply supported cross-ply

laminated cylindrical shell panels (see Figure 4.22). The thickness of each layer

is identified and shear correction factors k2
1 = k2

2 = π2

12
are used for all computa-

tions, unless otherwise specified. The following two sets of typical graphite-epoxy

material properties are used in the analysis:

• Material I: E1/E2 = 40; G12 = G13 = 0.5E2; G23 = 0.6E2; ν12 = ν13 =

ν23 = 0.25.

• Material II: E1/E2 = 25; G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 = ν13 =

ν23 = 0.25.

Figure 4.22: Geometry data of a cylindrical shallow shell subjected to uniaxial

compression.

4.4.4.1 Effect of span-to-thickness ratio

A symmetric cross-ply 5-layer [00/900/00/900/00] shell panel of Material I is chosen

to study the effect of span-to-thickness ratios on the critical buckling load. The

panel is simply supported at all the edges, with aspect ratio a/b = 1 and R/a = 20.

Table 4.17 reports the normalized critical buckling loads obtained by MISQ20 and
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MISQ24 elements for various span-to-thickness ratios a/h together with FSDT-

based higher order element solutions (Kumar et al., 2003; Prusty and Satsangi,

2001) and an analytic FSDT solution of Sciuva and Carrera (1990).

As can be seen that both MISQ20 and MISQ24 yield the same results and show a

slightly better performance than those of Kumar et al. (2003); Prusty and Satsangi

(2001) for ratios a/h < 50. It is also observed that increasing ratio a/h leads to

the higher critical buckling loads but this effect will have a minor influence with

a/h > 50.

Table 4.17: Simply supported cross-ply [00/900/00/900//00] cylindrical shell panel:

Comparison of the normalized critical buckling loads with other solutions (λ∗ =

Nxa
2/(E2h

3)).

Model
a/h

10 20 30 50 100

MISQ20 (8× 8) 24.412 32.557 34.796 36.081 36.656

(12× 12) 24.088 32.077 34.268 35.525 36.087

(16× 16) 23.976 31.911 34.086 35.334 35.891

MISQ24 (8× 8) 24.412 32.557 34.796 36.081 36.656

(12× 12) 24.088 32.077 34.268 35.525 36.087

(16× 16) 23.976 31.911 34.086 35.334 35.891

Kumar et al. (2003) 23.97 31.79 – 35.40 36.85

Prusty and Satsangi (2001) 23.96 31.89 33.98 35.39 36.84

FSDT (Sciuva and Carrera, 1990) 24.19 31.91 34.04 35.42 36.86

4.4.4.2 Effect of the number of layers

The effect of the number of layers on the critical buckling load is now studied

with two span-to-thickness ratios a/h = 5 and 10. A simply supported cross-

ply k−layer [00/900/...]k cylindrical shallow shell of Material II, with aspect ratio

R/a = 2 and a/b = 1 is considered.

Table 4.18 reports the normalized critical buckling loads obtained by the present
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elements together with the analytic solution of Matsunaga (2007) with various

value of k. The numerical results show that the present solutions of MISQ20

and MISQ20 are in good agreement with the analytic solution. The effect of the

number of layers is also found to be a weak influence on the critical buckling loads.

Table 4.18: Simply supported cross-ply k−layer [00/900/...]k cylindrical shallow

shell: Comparison of normalized critical buckling loads (λ∗ = Nx/(E2h), R/a = 2,

a/b = 1).

k
a/h = 5 a/h = 10

MISQ20 MISQ24 Matsunaga (2007) MISQ20 MISQ24 Matsunaga (2007)

2 0.2204 0.2344 0.2227 0.0810 0.0956 0.0879

3 0.2964 0.2964 0.2660 0.1498 0.1498 0.1424

4 0.2820 0.2828 0.2763 0.1477 0.1506 0.1400

5 0.3093 0.3093 0.2973 0.1601 0.1601 0.1561

10 0.2858 0.2858 0.3487 0.1635 0.1639 0.1686

4.5 Concluding remarks

This chapter has demonstrated a successful adaption of flat shell element approach

for two developed MISQ20 and MISQ24 elements in geometrically linear analysis

of shell structures within the context of the FSDT. Two novel four-node quadri-

lateral elements, one with fictional drilling DOFs (MISQ20) and one with actual

drilling DOFs (MISQ24), are examined for their capacity to accurately simulate

the behavior of moderately thick to thin shell structures including isotropic and

laminated composite materials. As opposed to general trend to use curved higher

order finite elements for the analysis of shells, it is shown that the flat element

formulations herein is adequately accurate in all test cases.

Despite the fact that the developed elements are based on flat shell configuration,

the results obtained herein with MISQ20 and MISQ24 elements exhibit the same

high accuracy as the other geometrically-exact hybrid shell element of Simo et al.

(1989) over the wide range of standard benchmark problems from shallow to deep,

from thin to moderately thick shell structures. In all tests carried out to date with
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the same mesh, it is observed that the MISQ24 element achieves better accuracy

than the MISQ20 element for static bending, free vibration and buckling problems.

The MISQ24 element has also shown its robust performance in highly distorted

configurations, i.e. warping geometries. As a results, the MISQ24 element can be

considered as a very suitable candidate for an adaptive finite element refinement

strategy.

In conclusion, the two novel flat shell elements provide excellent results to most

of problems when compared with analytic solutions and many high-performance

four-node shell elements in the literature. The reported numerical results also

highlight that both developed elements are free of membrane and shear locking

and could be good candidates for general shell structural analysis in engineering

practice in which the range of thickness-to-length (t/L) is usually from 1/10 to

1/1000. Further development of MISQ20 and MISQ24 for geometrically nonlinear

plate and shell structures will be reported in the subsequent chapter.
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Chapter 5

Geometrically Nonlinear Analysis

of Plate/Shell Structures

This chapter reports the extension of the formulation of MISQ20 and MISQ24

elements, reported in previous chapters, for the present purpose of geometrically

nonlinear analysis of plate and shell structures. The von Karman’s large deflection

theory and the Total Lagrangian (TL) approach are employed in the formulation

of the elements to describe small strain geometric nonlinearity with large de-

formations. The predictive capability of the present models is demonstrated by

comparing the present results with analytical/experimental and other numerical

solutions available in the literature.

5.1 Introduction

Plate/shell structures have been widely used in practical engineering applications

where geometrically nonlinear analysis of these structures becomes important for

a full investigation of their behaviour in the large deformation regime.

Geometrically nonlinear analysis usually refers to a nonlinear equilibrium path

with linear elastic material behaviour. In the geometrically nonlinear analysis,

the equilibrium is achieved in the deformed configuration and not in the initial

configuration as with linear analysis. Therefore, geometrically nonlinear analy-
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sis is considered as a complex issue that requires efficient and reliable advanced

numerical methods. Numerical methods such as FEM have been developed and

widely used for nonlinear analysis of these structures with complex geometry and

loading history. There is a vast amount of literature on geometrically nonlinear

analysis of plates/shells which is impossible to list altogether here. An excellent

review of the development of plate/shell finite elements during the past 20 years

was presented by Yang et al (2000). Further extensive references on plates/shells

can be found in a detailed review by Gal and Levy (2006) and Zhang and Yang

(2009), for example.

As discussed in Chapter 4, flat elements have been often and widely used owing

to the ease to mix with other types of element, the simplicity in their formulation

and the effectiveness of computation. Consequently, flat elements are advanta-

geous in solving the geometrically nonlinear problems in which the response of

the structure at each increment/iteration needs to be computed and stored with

a large number of history variables. The goal of this chapter is to further develop

the flat elements MISQ20 and MISQ24, whose performances in linear analysis

have already been verified and demonstrated in Chapter 3 and Chapter 4, for

geometrically nonlinear analysis of general plate and shell structures. The von

Karman’s large deflection theory and the Total Lagrangian approach are utilized

in the small strain-large deformation formulation and then the solution of the

nonlinear equilibrium equations is obtained by the full Newton-Raphson method.

Numerical examples show that the present method exhibits good accuracy and

stability in capturing geometric nonlinearity in plate/shell structures.

This chapter is outlined as follows. First, a brief review of the FSDT finite element

formulations for geometrically nonlinear analysis is introduced in Section 5.2. The

description of strain smoothing approaches for the nonlinear membrane strain and

the tangent stiffness matrix of the element are derived in Section 5.3. Several

numerical examples are presented in Section 5.4 in order to verify and assess

the performance of the proposed elements. Finally, some concluding remarks are

reported in Section 5.5.



5.2. Finite element formulation for geometrically nonlinear analysis 146

5.2 Finite element formulation for geometrically

nonlinear analysis

5.2.1 Kinematic equations

Based on the FSDT, the laminated composite plate kinematics is governed by the

midplane displacement u0, v0, w0 and the rotation θx, θy of the mid-surface normal

about y− and x−axis, respectively

u(x, y, z) = u0(x, y) + zθx,

v(x, y, z) = v0(x, y) + zθy, (5.1)

w(x, y, z) = w0(x, y).

For large deformation analysis, the in-plane vector of Green-Lagrangian strain at

any point in a plate element is:

ε =





εx

εy

εxy





=





u,x + 1
2
(u2

,x + v2
,x + w2

,x)

v,y + 1
2
(u2

,y + v2
,y + w2

,y)

u,y + v,x + (u,xu,y + v,xv,y + w,xw,y)





(5.2)

Substituting Equation (5.2) into Equation (5.1) and considering the von Karman’s

large deflection assumption, the in-plane strain vector can be rewritten as

ε = εm + zεb, (5.3)

in which

εb =





θx,x

θy,y

θx,y + θy,x





, (5.4)

εm =





u0,x + 1
2
w2

,x

v0,y + 1
2
w2

,y

u0,y + v0,x + w,xw,y





=





u0,x

v0,y

u0,y + v0,x





︸ ︷︷ ︸
linear part

+





1
2
w2

,x

1
2
w2

,y

w,xw,y





︸ ︷︷ ︸
nonlinear part

(5.5)

= εL
m + εNL

m . (5.6)
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The nonlinear term of the membrane strain-displacement vector can be rewritten

as follows

εNL
m =

1

2




w,x 0

0 w,y

w,y w,x




︸ ︷︷ ︸
H





w,x

w,y





︸ ︷︷ ︸
θ

=
1

2
Hθ, (5.7)

in which θ is termed the slope vector.

The transverse shear strain vector is given as

γ =





γxz

γyz



 =





θx − w,x

θy − w,y



 . (5.8)

The constitutive relationship of laminated plates can be expressed as

σ∗ = D∗ε∗ (5.9)

where

σ∗ =




N

M

T


 , ε∗ =




εm

εb

γ


 , D∗ =




A B 0

B D 0

0 0 Cs


 , (5.10)

where N = {Nx Ny Nxy} is the in-plane traction, T = {Qx Qy} is the out-of-

plane traction and M = {Mx My Mxy} is the out-of-plane moment resultant. A

is the extensional stiffness, D is the bending stiffness, B is the bending-extension

coupling stiffness and Cs is the transverse shear stiffness, which are given in detail

in Chapter 3.

5.2.2 Total Lagrangian finite element formulation

The Total Lagrangian (TL) approach, in which the original configuration is taken

as the reference, is usually used for geometrically nonlinear analysis. The finite

element equation in the TL approach can be expressed in the following form:

tKT∆q = t+∆tP− tF (5.11)
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where tF is the element internal force at time t, t+∆tP is the element external

force at time t+∆t, tKT is the element tangent stiffness matrix at time t and ∆q

is the element displacement increment.

The element tangent stiffness matrix KT is defined as

KT = KL + KNL + Kg, (5.12)

where KL represent the linear stiffness matrix, KNL denotes the nonlinear stiffness

matrix and Kg is the geometric stiffness matrix.

The linear stiffness matrix KL is known from the linear analysis as

KL =

∫

Ω

BT
LD∗BLdΩ (5.13)

where BL is the linear gradient matrix given as

BL =




BL
m

Bb

Bs


 (5.14)

The linear membrane, bending and transverse shear gradient matrix, Bm, Bb, Bs,

respectively, can be obtained from the following strain-displacement equations:

∆εL
m = BL

m∆qm, ∆εb = Bb∆qb, ∆γ = Bs∆qb. (5.15)

in which

∆qmi = [∆ui ∆vi]
T for MISQ20 and ∆qmi = [∆ui ∆vi ∆θzi]

T for MISQ24,

∆qbi = [∆wi ∆θxi ∆θyi]
T ,

BL
mi, Bbi, Bsi are defined in Equation (3.29) of Chapter 3.

The nonlinear stiffness matrix KNL is defined as

KNL =

∫

Ω

(BT
LD∗BNL + BT

NLD
∗BL + BT

NLD
∗BNL)dΩ (5.16)

where BNL is the nonlinear gradient matrix given by

BNL =




BNL
m

0

0


 (5.17)

and BNL
m can be obtained as follows.
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Taking the variation of Equation (5.7) yields

dεNL
m =

1

2
dHθ +

1

2
Hdθ. (5.18)

It is easily proven that

dHθ =




w,xdw,x

w,ydw,y

w,xdw,y + w,ydw,x


 =




w,x 0

0 w,y

w,y w,x








dw,x

dw,y



 = Hdθ (5.19)

Then

dεNL
m = Hdθ. (5.20)

The interpolation of θ can be written as

θ =





w,x

w,y



 =


 Ni,x 0 0

Ni,y 0 0




︸ ︷︷ ︸
G





w

θx

θy





= Gqb,

dθ = Gdqb.

(5.21)

Substituting Equation (5.21) into Equation (5.20) we obtain

dεNL
m = HG︸︷︷︸

BNL
m

dqb = BNL
m dqb. (5.22)

From Equation (5.22) a general expression for the nonlinear gradient matrix

BNL
m = HG is derived and hence the nonlinear stiffness matrix KNL can be

computed from Equation (5.16).

Finally, the strain components ε∗ from Equation (5.10) can be separated into

linear part εL and nonlinear part εNL as follows.

ε∗ = εL + εNL = (BL +
1

2
BNL)q. (5.23)

The element geometric stiffness matrix is described as

Kg =

∫

Ω

GT N̂GdΩ (5.24)

where G is given in Equation (5.21) and the traction matrix N̂ is defined as

N̂ =


 Nx Nxy

Nxy Ny


 . (5.25)



5.3. Strain smoothing formulation for geometrically nonlinear analysis 150

5.3 Strain smoothing formulation for geometri-

cally nonlinear analysis

As in the case of linear strains, the nonlinear strain field is smoothed by a weighted

average of the original nonlinear strain using the same constant smoothing func-

tion Φ as follows.

ε̃∗(xC) =

∫

ΩC

ε∗(x)Φ(x− xC)dΩ

=

∫

ΩC

εL(x)Φ(x− xC)dΩ

︸ ︷︷ ︸
ε̃L(xC)

+

∫

ΩC

εNL(x)Φ(x− xC)dΩ

︸ ︷︷ ︸
ε̃NL(xC)

. (5.26)

Introducing the approximation of the linear strain and nonlinear strain in Equa-

tion (5.23) to the above equation yields

ε̃L(xC) = B̃Lq, (5.27)

ε̃NL(xC) =
1

2
B̃NLq, (5.28)

where B̃L, B̃NL are the smoothed linear and nonlinear gradient matrix, respec-

tively, which are given as

B̃L =




B̃L
m

B̃b

B̄s


 , B̃NL =




B̃NL
m

0

0


 (5.29)

in which B̃L
m, B̃b, B̄s are defined in the linear analysis part of Chapter 3.

B̃NL
m is the smoothed nonlinear strain matrix in the smoothing cell given as

B̃NL
mi = H̃G̃i, (5.30)

in which

G̃i =
1

AC

4∑

g=1


 0 0 Ni(xG

g )nx 0 0 0

0 0 Ni(xG
g )ny 0 0 0


lCg , (5.31)

H̃ =
4∑

i=1




1
AC

4∑
j=1

Ni(xG
j )nxlCj wi 0

0 1
AC

4∑
j=1

Ni(xG
j )nyl

C
j wi

1
AC

4∑
j=1

Ni(xG
j )nyl

C
j wi

1
AC

4∑
j=1

Ni(xG
j )nxlCj wi




, (5.32)
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where wi is the deflection at the node i of the element.

The element tangent stiffness matrix KT is modified as

K̃T = K̃L + K̃NL + K̃g, (5.33)

where

K̃L =
nc∑
i=1

B̃T
LiD

∗B̃LiAi, (5.34)

K̃NL =
nc∑
i=1

(B̃T
LiD

∗B̃NLi + B̃T
NLiD

∗B̃Li + B̃T
NLiD

∗B̃NLi)Ai, (5.35)

K̃g =
nc∑
i=1

G̃T
i N̂G̃iAi, (5.36)

and the number of smoothing cells nc = 2 is chosen in this study.

The internal forces at the time t, computed from the stress state in the structures,

can be rewritten as
tF̃ =

∫

Ω

(B̃L + B̃NL)tσ∗dΩ (5.37)

in which the stress resultant after the ith iteration is

tσ∗
i+1 = tσ∗

i + t∆σ∗, (5.38)

and the incremental stress is expressed as

t∆σ∗ = D∗∆ε∗ = D∗(B̃L + B̃NL)∆q. (5.39)

Finally, the nonlinear equations can be rewritten as

tK̃T∆q = t+∆tP− tF̃. (5.40)

By transforming Equation (5.40) to the global coordinates via the standard rota-

tion matrix R defined in Equation (2.42), the resultant nonlinear equations can

be used to analyse the geometrically nonlinear problem of shells. In this study,

such nonlinear system of equations are solved by a full Newton-Raphson procedure

with the following incremental/iterative algorithm:

• Input geometry, material properties and solution parameters
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• Initialize P0 = 0, F0
(0) = 0, u0

(0) = 0, εD = 0.001(convergence tolerance)

• LOOP over load increments, n = 1..maxinc

◦ Calculate load factor λ = 1/maxinc

◦ Compute incremental force ∆P = λP

◦ Set Error = 1, i = 0

◦ Set Pn = Pn−1 + ∆P, un
(0) = un−1, Kn

T (0) = Kn−1
T

◦ DO WHILE (i < maxinc) & (Error > εD)

¦ i = i + 1

¦ Solve the equations of equilibrium: Kn
T (i−1)∆u(i) = Pn − Fn

(i−1)

¦ Update nodal displacements: un
(i) = un

(i−1) + ∆u(i)

¦ Find Error =
∥∥∥∆u(i)

∥∥∥/
∥∥∥un

(i)

∥∥∥
◦ END DO

◦ Update nodal coordinates

• END LOOP

5.4 Numerical examples

In this section, we will test and assess the MISQ20 and MISQ24 element through

several geometrically nonlinear applications. Composite plates/shells having dif-

ferent shapes, boundary conditions, thickness ratios, stacking sequences are ana-

lyzed and the obtained results are discussed and compared with those obtained

from other analytical/experimental and numerical solutions if available. In all

the examples, the full Newton-Raphson method is used to solve the nonlinear

finite element equations and the convergence tolerance εD is taken to be 0.001.

For simplicity, the external load is considered to be conservative and it does not

change with the deformation of geometry. Unless otherwise specified, the SCFs

are k2
1 = k2

2 = 5/6. Note that in some examples, non-SI units are used so that

comparison with published results can be made.
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5.4.1 Clamped cross-ply 4-layer symmetric [00/900/900/00]

square plate under uniform pressure

A clamped cross-ply 4-layer symmetric [00/900/900/00] square plate subjected to

uniformly distributed load is considered. The plate has a thickness h = 0.096

in and a side length L = 12 in with the material properties: E1 = 1.8282 × 106

psi, E2 = 1.8315 × 106 psi, G12 = G13 = G23 = 3.125 × 105 psi, ν12 = 0.23949.

Owing to symmetry, only a quarter of the plate is discretized using 3×3, 4×4, 5×5

meshes with regular as well as highly distorted elements as shown in Figure 5.1.

Figure 5.1: Meshes of a quarter of a simply supported plate: (a) typical regular

mesh 3×3; (b) irregular mesh 3×3; (c) irregular mesh 4×4; (d) irregular mesh

5×5.

Table 5.1 shows the calculated central deflections obtained by present elements

with uniform mesh and distorted mesh refinement and those from experiment

(Putcha and Reddy, 1986), the mixed element by Putcha and Reddy (1986) and

the RDKQ-NL20(24) elements of Zhang and Kim (2006). The load-deflection

curves are also plotted in Figure 5.2 for comparison.

It can be seen that both MISQ20 and MISQ24 elements yield almost the same

solution and the present results are in good agreement with other solutions. It is

interesting to note that the present solutions are closer to the experimental results
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than those of other numerical results cited here.

The effect of distorted mesh on central deflection under the variation of load

intensity is plotted in Figure 5.3. It can be seen that the present elements, MISQ20

and MISQ24, are relatively insensitive to mesh distortion.

Table 5.1: A clamped cross-ply [00/900/900/00] square plate: Central deflections

under a uniformly distributed load q0.

Model
q0

0.4 0.8 1.2 1.6 2.0

MISQ20 3×3 (regular) 0.059 0.102 0.130 0.150 0.167

3×3 (irregular) 0.059 0.103 0.129 0.147 0.165

4×4 (regular) 0.058 0.099 0.125 0.146 0.162

4×4 (irregular) 0.059 0.100 0.123 0.145 0.162

5×5 (regular) 0.058 0.097 0.123 0.143 0.159

5×5 (irregular) 0.058 0.094 0.121 0.142 0.158

MISQ24 3×3 (regular) 0.055 0.096 0.126 0.148 0.166

3×3 (irregular) 0.059 0.104 0.134 0.155 0.173

4×4 (regular) 0.059 0.099 0.126 0.147 0.163

4×4 (irregular) 0.060 0.097 0.127 0.148 0.166

5×5 (regular) 0.058 0.098 0.124 0.144 0.160

5×5 (irregular) 0.059 0.100 0.128 0.147 0.164

RDKQ-NL20(24) 0.061 0.096 0.120 0.139 0.155

Mixed element 0.062 0.096 0.119 0.140 0.150

Experiment 0.078 0.122 0.148 0.174 0.187



5.4. Numerical examples 155

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Central deflection w (inch)

q 0 (
ps

i)

 

 
MISQ20 (3x3regular)
MISQ20 (4x4regular)
MISQ20 (5x5regular)
MISQ24 (3x3regular)
MISQ24 (4x4regular)
MISQ24 (5x5regular)
RDKQ−NL20(24) element
Mixed element
Experiment

Figure 5.2: Clamped cross-ply 4-layer [0/90/90/0] square plate: Load-deflection

relationship curves.
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Figure 5.3: Clamped cross-ply 4-layer [0/90/90/0] square plate: Effect of mesh

distortion.
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5.4.2 Simply supported unidirectional 8-layer [00]8 square

plate under uniform pressure

This section deals with a simply supported unidirectional 8-layer [00]8 square plate

with a length L = 12 in and a thickness h = 0.138 in, under uniform pressure

load. The material properties are E1 = 3.0 × 106 psi, E2 = 1.28 × 106 psi,

G12 = G13 = G23 = 3.7× 105 psi, ν12 = 0.32.

The following simply supported boundary conditions are used:

At edges parallel to x−axis: u = w = θx = 0,

At edges parallel to y−axis: v = w = θy = 0.

The full plate is discretized with 10 × 10 uniform elements as well as distorted

elements as shown in Figure 5.4

(a) (b)

Figure 5.4: Simply supported unidirectional 8-layer [00]8 square plate: (a) regular

mesh and (b) irregular mesh.

The nonlinear solutions of the central deflection obtained with the present ele-

ments, RDKQ-NL20(24) elements of Zhang and Kim (2006), the 3-node multi-

layered facet element of Argyris and Tenek (1994) and by experiment of Zaghloul

and Kennedy (1975), are reported in Table 5.2. The load-deflection relationship

curves are plotted in Figure 5.5. It is obvious that the present results are in rea-

sonable agreement with the experimental results and the present elements show

better performance than that of RDKQ-NL20(24) elements with the same mesh

and DOFs. The effect of mesh distortion on the MISQ20 and MISQ24’s perfor-

mance displayed in Figure 5.6 does show that the present elements are relatively
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insensitive to badly-shaped elements.

Table 5.2: A simply supported unidirectional [00]8 square plate: Central deflec-

tions under a uniformly distributed load q0.

Model
q0

0.4 0.8 1.2 1.6 2.0

MISQ20 10×10 (regular) 0.080 0.142 0.174 0.211 0.236

10×10 (irregular) 0.079 0.148 0.174 0.204 0.231

MISQ24 10×10 (regular) 0.079 0.137 0.184 0.211 0.238

10×10 (irregular) 0.079 0.138 0.184 0.212 0.244

RDKQ-NL20 10×10 0.071 0.121 0.157 0.187 0.212

RDKQ-NL24 10×10 0.078 0.131 0.171 0.202 0.229

Argyris and Tenek (1994) 0.084 0.141 0.177 0.215 0.236

Experiment (Zaghloul and Kennedy, 1975) 0.081 0.140 0.177 0.215 0.230
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MISQ24 (10x10regular)
RDKQ−NL20 (10x10regular)
RDKQ−NL24 (10x10regular)
3−node facet element
Experiment

Figure 5.5: Simply supported unidirectional 8-layer [00]8 square plate: Load-

deflection relationship curves.
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Figure 5.6: Simply supported unidirectional 8-layer [00]8 square plate: Effect of

mesh distortion.

5.4.3 Simply supported cross-ply 4-layer [00/900/900/00] square

plate under uniform pressure

A simply supported 4-layer [00/900/900/00] square plate under uniform pressure is

analysed with various span-to-thickness ratios L/h = 40, 20 and 10. The material

properties are E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = 0.25. Owing

to symmetry, a 4× 4 uniform mesh is used to model a quarter of the plate. The

simply supported boundary conditions are the same as in Section 5.4.2.

The present results together with other numerical and analytic solutions are listed

in Table 5.3 and plotted in Figure 5.7 to Figure 5.8 for various span-to-thickness

ratios L/h = 10, 20, 40. The present results apparently agree well with the

analytical solutions (Kant and Kommineni, 1992) and other numerical results

such as RDKQ-20(24) solutions (Zhang and Kim, 2006) and HSDT solution (Kant

and Kommineni, 1992). For the present method, the effect of span-to-thickness

ratios on the central deflections is also plotted and compared in Figure 5.8b. It

is observed that the deflections in thick plates is more pronounced than those in

the cases of thin plates due to the effect of shear deformation.
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Table 5.3: Simply supported cross-ply [00/900/900/00] square plate with various

span-to-thickness ratios L/h: Comparison of normalized central deflections w∗ =

w/h with other solutions under uniformly distributed load.

L
h

q0L4

(E2h4)
MISQ20 MISQ24 RDKQ-NL20 RDKQ-NL24 HSDT Analytic

40 50 0.290 0.292 0.291 0.294 0.293 0.293

100 0.464 0.469 0.461 0.467 0.464 0.464

150 0.585 0.590 0.577 0.587 0.582 0.582

200 0.679 0.683 0.667 0.679 0.664 0.664

250 0.755 0.758 0.740 0.754 0.738 0.738

20 50 0.311 0.326 0.323 0.327 0.320 0.320

100 0.480 0.484 0.487 0.494 0.493 0.486

150 0.598 0.601 0.597 0.608 0.592 0.592

200 0.689 0.692 0.682 0.695 0.680 0.680

250 0.762 0.766 0.751 0.766 0.752 0.752

10 50 0.356 0.365 0.363 0.370 0.360 0.356

100 0.518 0.519 0.514 0.525 0.520 0.510

150 0.628 0.634 0.616 0.629 0.624 0.610

200 0.716 0.721 0.695 0.710 0.696 0.689

250 0.786 0.789 0.761 0.777 0.760 0.747
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Figure 5.7: Simply supported cross-ply [00/900/900/00] square plate: Load-

deflection curves with (a) L/h = 40 and (b) L/h = 20 .
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Figure 5.8: Simply supported cross-ply [00/900/900/00] square plate: Load-

deflection curves with (a) L/h = 10 and (b) the effect of span-to-thickness ratios.
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5.4.4 Clamped antisymmetric cross-ply and angle-ply square

plates under uniform pressure

This section is concerned with the nonlinear bending response of clamped anti-

symmetric cross-ply [00/900] and angle-ply [450/ − 450] square plates under uni-

form pressure. All layers are of equal thickness and same material properties:

E1/E2 = 40, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 0.25.

A quadrant of the plate is modelled with a uniform mesh of 4 × 4 elements in

the simulation. Table 5.4 reports the computed values of the central deflection

obtained by the present method under increasing load parameter q0L4

E2h4 with various

span-to-thickness L/h ratios.

Figures 5.9a–b show load-deflection curves of clamped antisymmetric cross-ply

[00/900] and angle-ply [450/ − 450] laminates for various span-to-thickness ratio,

respectively. It is observed that the degree of nonlinearity in thick plates is more

pronounced than in thin plates owing to the effect of shear deformation for both

two-layer angle-ply and cross-ply plates.

The effect of span-to-thickness ratios and lamination schemes on the central de-

flections of two-layer cross-ply and angle-ply laminates are shown in Figure 5.10.

It can be seen that for the same span-to-thickness ratio, the angle-ply lamination

is stiffer than cross-ply lamination and exhibits a lesser degree of nonlinearity

compared to the cross-ply laminates.
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Figure 5.9: Effect of span-to-thickness ratio L/h on the central deflection of

clamped two-layer square plates: (a) cross-ply lamination (b) angle-ply lamina-

tion.
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Figure 5.10: Effect of span-to-thickness ratio L/h and lamination scheme on the

central deflection of clamped antisymmetric cross-ply and angle-ply square plates.

5.4.5 Clamped isotropic circular plate under uniform pres-

sure

The large deformation analysis of a clamped isotropic circular plate under uniform

pressure q0 is considered in this section. The geometry data and material prop-

erties are: radius R = 100, thickness h = 2, Young’s modulus E = 107, Poisson’s

ratio ν = 0.3. Owing to symmetry, a quadrant of the plate is modelled with a

27-element mesh as shown in Figure 5.11.

Figure 5.11: A quadrant of a clamped isotropic circular plate under uniform

pressure with a mesh of 27 elements.
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Table 5.4: Clamped cross-ply [00/900] and angle-ply [450/ − 450] square plates:

Effect of the span-to-thickness ratios on normalized central deflections.

L/h q0L4

E2h4

[00/900] [450/− 450]

MISQ20 MISQ24 MISQ20 MISQ24

10 25 0.120 0.114 0.097 0.098

50 0.226 0.209 0.192 0.193

75 0.308 0.298 0.270 0.271

100 0.374 0.367 0.335 0.335

125 0.430 0.422 0.392 0.393

150 0.477 0.471 0.444 0.443

175 0.518 0.513 0.489 0.489

200 0.557 0.551 0.531 0.532

225 0.590 0.585 0.571 0.570

250 0.620 0.617 0.606 0.605

50 25 0.066 0.064 0.036 0.037

50 0.139 0.137 0.075 0.077

75 0.203 0.202 0.112 0.114

100 0.261 0.260 0.145 0.148

125 0.314 0.312 0.177 0.181

150 0.362 0.362 0.207 0.211

175 0.407 0.405 0.235 0.240

200 0.447 0.445 0.262 0.267

225 0.484 0.482 0.289 0.292

250 0.516 0.516 0.313 0.317

100 25 0.063 0.063 0.034 0.037

50 0.134 0.133 0.071 0.073

75 0.198 0.198 0.105 0.107

100 0.257 0.254 0.137 0.140

125 0.309 0.308 0.167 0.171

150 0.357 0.356 0.196 0.200

175 0.401 0.401 0.223 0.228

200 0.441 0.441 0.248 0.253

225 0.478 0.476 0.273 0.278

250 0.511 0.511 0.297 0.302
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The computed normalized central deflection w/h of the present method, together

with the analytic solution of Schoop (1989), and those obtained with Kirchhoff-

based elements such as QS element (Pica et al., 1980), DKT element (Stricklin

et al., 1969) and RNEM element (Zhang and Kim, 2005) in Table 5.5. The load-

deflection curves are also plotted in Figure 5.12 for comparison. It is interesting to

note that, the present elements, MISQ20 and MISQ24, show better performance

than that of the DKT and RNEM elements for this thin plate problem even

through the present elements are based on the thick plate theory.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

5

10

15

Normalized central deflection w/h

q 0R
4 /(

E
2h4 )
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MISQ24
QS
DKT
RNEM
Analytic

Figure 5.12: Clamped isotropic circular plate under uniformly distributed load:

Load-deflection relationship curve.

Table 5.5: Clamped isotropic circular plate under uniformly distributed load:

Comparison of normalized central deflections w∗ = w/h with other solutions.

q0L4

(E2h4)
MISQ20 MISQ24 QS DKT RNEM Analytic

1 0.156 0.154 0.161 0.172 0.171 0.169

2 0.310 0.319 0.312 0.330 0.333 0.323

3 0.452 0.462 0.445 0.470 0.475 0.457

6 0.771 0.777 0.757 0.791 0.796 0.761

10 1.060 1.066 1.042 1.082 1.084 1.035

15 1.315 1.322 1.295 1.342 1.339 1.279
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5.4.6 Clamped isotropic cylindrical shell

A clamped shallow cylindrical shell subjected to a uniformly distributed pressure p

is examined (Figure 5.13). The geometry parameters of the shell are: L = 20, R =

100, h = 0.125, ϕ = 0.1 and the material properties are: E = 4.5× 105, ν = 0.3.

Figure 5.13: Clamped isotropic cylindrical shell under uniform pressure.

Owing to symmetry, only a quadrant of the shell is modelled by 6 × 6 uniform

elements. Figure 5.14 shows the deflection wc at the center of the shell versus the

applied pressure p obtained by the present models together with other solutions of

Reddy (2004a) and Palazotto and Dennis (1992). It is observed that the deflection

response of this cylindrical shell change from softening to hardening and the trends

of these solutions agree well with each others with only small disparities. The

present MISQ20 and MISQ24 solutions are closer to those obtained by Reddy

with slightly higher values.

5.4.7 Hinged antisymmetrical angle-ply cylindrical shell

This section deals with a two layer angle-ply [−450/450] cylindrical shell under

uniformly distributed transversal pressure p as shown in Figure 5.15. The length

of the shell panel is L = 0.508 m with a shell radius R = 2.54 m, an open angle

2ϕ = 0.2 rad and a total thickness h = 0.0124 m. All layers are of same material

properties: E1 = 3.2993×109 Pa, E2 = 1.0998×109 Pa, G12 = G13 = 6.5985×108

Pa, G23 = 4.4128× 108 Pa, ν12 = 0.25.
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Figure 5.14: Clamped isotropic circular plate under uniformly distributed load:

Load-deflection relationship curve.

Figure 5.15: A free-hinged angle-ply cylindrical shell under a uniform pressure.

Owing to symmetry, only a quadrant of the shell is modelled by 6 × 6 uniform

elements. The present MISQ20 and MISQ24 results for the central deflection

are compared with those obtained by the hybrid strain-based triangular element

(HLCTS) of To and Wang (1999). They are plotted together in Figure 5.16. As

can be seen, the trends of these results are in good agreement with only slight

disparities and they have a limit point at about the same load level. The present

elements are also found to be softer than that of the HLCTS element for this

problem.
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Figure 5.16: A free-hinged angle-ply cylindrical shell under a uniform pressure.

5.4.8 Simply supported cross-ply spherical shell

A simply supported cross-ply 9-layer [00/900...]9 doubly curved spherical shell

under uniform pressure p are analysed in this section. The total thickness of

the shell is h = 0.01m. The thickness of 00 layers is h/2 and 900 layers is

h/8. The radius of the shell is R = 10m and the projected side length is

a = 1m. All layers are of same material properties: E1 = 2.0685 × 1011 Pa,

E2 = E1/40, G12 = 0.6E2, G23 = G13 = 0.5E2, ν12 = 0.25.

Figure 5.17: A cross-ply spherical shell: Geometry and material data.
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By making use of symmetry of geometry and boundary conditions, only one quad-

rant of the shell is analysed with a 6×6 mesh as shown in Figure 5.17. The present

MISQ20 and MISQ24 results for the central deflection are compared with those

obtained by the FSDT-based HLCTS element of To and Wang (1999) and the

layerwised-based HLCTS element of To and Liu (2001). They are presented to-

gether as load-central deflection curves in Figure 5.18. As can be seen, generally

the results are in good agreement. The differences may be due to the different

shell formulations and solution strategies.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

Normalized central deflection,  w/h

Pr
es

su
re

, p
 (

kP
a)

 

 

MISQ20
MISQ24
FSDT−based HLCTS
Layerwise−based HLCTS

Figure 5.18: A free-hinged angle-ply cylindrical shell under a uniform pressure.

5.4.9 Pinched semi-cylindrical cross-ply laminated shells

The last problem considered in this section is that of a pinched semi-cylindrical

cross-ply [00/900/00] shell, subjected to a point load at the middle of the free-

hanging circumferential segment while the other circumferential edge is fully

clamped. The shell is also hinged along its longitudinal edges. Geometry data

and material properties of the shell are shown in Figure 5.19.

Taking advantage of symmetry, a half of the shell is modelled and analysed with

16 × 16 elements. The present computed results for the downward normalized
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deflection of point A are plotted together with those reported by Andrade et al.

(2007), using the 8-node hexahedral element, in Figure 5.20, where good agree-

ment is observed for both MISQ20 and MISQ24 elements.

Figure 5.19: Semi-cylindrical shell under an end pinching force: Geometry and

material data.
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Figure 5.20: Semi-cylindrical shell under an end pinching force: Load-deflection

curves at point load.
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5.5 Concluding remarks

In this chapter, the present MISQ20 and MISQ24 elements have been extended

successfully to geometrically nonlinear analysis of plate and shell structures in the

framework of the FSDT. The von Karman’s large deflection theory and the Total

Lagrangian approach are employed in the formulation of the elements to describe

small strain geometric nonlinearity with large displacements. Several numerical

examples have been carried out and the present elements are found to yield satis-

factory results in comparison with other available finite element solutions as well

as theorical/experimental results. Both MISQ20 and MISQ24 elements are able

to offer good prediction in geometrically nonlinear analysis of thin to moderately

thick plates/shells. No shear-locking is found in the numerical investigations and

the elements provide good accuracy even with coarse meshes or distorted ele-

ments. In addition, the present elements have the advantage of being simple in

formulation and ready for use in both plate and shell structures with a minimal

amount of effort to implement. The success of the present flat/shell elements pro-

vide a further demonstration of efficient flat quadrilateral elements for nonlinear

analysis.
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Chapter 6

Assumed Strain Smoothing

Methods for Piezoelectric

Materials

In this chapter, two types of the novel piezoelectric elements based on the as-

sumed strain smoothing technique (Nguyen-Van et al., 2008a,b,c) are presented

for static and dynamic analysis of the electromechanical coupling behaviour of

piezoelectric solids. Two approaches are proposed to transform original finite el-

ements into smoothing elements in which the strain smoothing operation of the

SCNI is performed. The first scheme forms the so-called cell-based element ap-

proach and the second the node-based element approach. In both approaches, the

approximations of mechanical strains and electric potential fields are normalized

by the smoothing constant function of the SCNI technique over each smoothing

cell. This method allows field gradients to be directly computed from interpolating

shape functions using boundary integrations along the boundary of the smoothing

element. The boundary integration will contribute to the preservation of high ac-

curacy of the method even when elements are extremely distorted, for example, a

concave quadrilateral. No mapping or coordinate transformation and derivatives

of shape functions are necessary so that the original meshes with badly shaped

elements, can be used. Furthermore, the present elements do not introduce any

additional degrees of freedom and are easy to implement into an existing FEM.
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Numerical examples and comparative studies with analytic solutions are presented

to demonstrate the simplicity, efficiency and accuracy of the developed elements.

6.1 Introduction

Piezoelectric materials are perhaps the most widely used of the smart mate-

rials. They are usually integrated with structural systems to form a class of

smart/intelligent or adaptive structures. Piezoelectric materials have a great

range of engineering applications owing to its inexpensive cost, light weight, high

stiffness and the ease with which these materials can be shaped and bonded to

surfaces or embedded into structures. The material generates an electric charge

under a mechanical load or imposed deformation, which is called the direct piezo-

electric effect and conversely, mechanical stress or strain occurs when the material

is subjected to an applied electric potential, which is termed as the converse piezo-

electric effect. Therefore, piezoelectric materials can be used as sensor (passive)

or actuator (active) or both at different times to monitor and actively control

vibration, noise and shape of a structural system. They can be also used as a

medium to transform electrical and acoustic waves in telecommunication or in an

accelerometer.

Significant progress has been made over past decades in analyzing such materials

and structures with various approaches, including analytic methods and experi-

mental/numerical models, by many researchers. For example, analytical methods

were initially proposed for analysis of beam with piezoelectric patches (Craw-

ley and Luis, 1987; Im and Atluri, 1989; Shen, 1995) and later for piezoelectric

flat panels and plates (Tzou and Tiersten, 1994; Bisegna and Maceri, 1996; Ray

et al., 1998; Han et al., 2006), etc. However, due to the complexity of governing

equations in piezoelectricity, so far only a few simple problems have been solved

analytically.

The first significant numerical attempt using finite element implementation for

piezoelectric phenomenon was a piezoelectric vibration analysis proposed by Allik

and Hughes (1970). Since then, the FEM has been considered as a powerful tool

for the numerical analysis and design of piezoelectric devices and smart/adaptive
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structural systems. Most of the finite element models, following the work of Allik

and Hughes, are based on the interpolation of displacement and electric potential

as kinematic field variables that satisfy compatibility equations. These elements

are often too stiff, inaccurate and sensitive to mesh distortion. To overcome these

shortcomings, hybrid and mixed finite element have been developed, with notable

contributions from Cannarozzi and Ubertini (2001) and Sze’s group (Sze and Pan,

1999; Sze and Yao, 2000; Wu et al., 2001; Sze et al., 2004). Other relevant works

include piezoelectric elements with drilling degrees of freedom of Long, Loveday

and Groenwold (2006) and Zemcik et al. (2007). More details and reviews on the

development of the finite element methods applied to the modeling and analysis of

piezoelectric material and smart structures can be found in Mackerle (2003). So

far, many researchers are still actively involved in the development of new special

elements as can be seen from recent works of Benjeddou (2000) and Carrera and

Boscolo (2007).

Although the FEM is considered to be a versatile and effective numerical method,

there often exist difficulties and deteriorations in performance when mesh dis-

tortion occurs. On the other hand, several mesh-free methods have become an

alternative approach for analysis of piezoelectric material, including the Radial

Point Interpolation Meshfree (RIPM) method (Liu et al., 2003), the Point Inter-

polation Meshfree (PIM) method (Liu et al., 2002), the Point Collocation Meshfree

(PCM) method (Ohs and Aluru, 2001), the Element Free Galerkin (EFG) method

(Liew et al., 2002), the Meshless Local Petrov-Galerkin (MLPG) method (Sladek

et al., 2006, 2007), etc. However, the complex approximation space of mesh-free

methods increases the computational cost for numerical integrations.

In this chapter, new formulations for piezoelectric solids based on the ASS tech-

nique of the SCNI are further developed in order to remedy the shortcomings

mentioned above. In these new element formulations, the approximation of me-

chanical and dielectric displacements are similar to the conventional finite element

method while mechanical strains and electric potential fields are normalized by

a constant smoothing function on smoothing cells (smoothing elements). Two

different schemes are developed to transform an original finite element or a group

of original finite elements into smoothing elements. The first scheme forms the

so-called cell-based element approach and the second one the node-based element
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approach. The cell-based element is constructed by the subdivision of original

quadrilateral elements into smoothing-cells while the node-based element is cre-

ated by transforming a given more general mesh (triangular or quadrilateral el-

ements) into a mesh of new smoothing cells and each of these new elements is

associated with a single node of the original mesh. Problem domains, therefore,

can be discretized with more flexibility in terms of element shapes. Several nu-

merical examples and comparison with other numerical or analytic solutions in

the literature are carried out here to demonstrate the capability, efficiency and

reliability of the present novel element. Numerical experiment does show that the

proposed elements are robust and uniformly accurate in modelling static behav-

ior of planar electro-mechanical problems even in the case of extremely distorted

meshes or coarse discretization.

This chapter is outlined as follows. First, a brief review of the constitutive rela-

tions of linear piezoelectricity is introduced in Section 6.2. Finite element formu-

lations for modelling piezoelectric solids are then summarized in Section 6.3. The

description of strain smoothing method for piezoelectric material is derived in Sec-

tion 6.4. Several numerical applications are investigated in Section 6.5 to assess

the performances of the proposed elements. Finally, some concluding remarks are

drawn in Section 6.6.

6.2 Linear piezoelectric constitutive relations

An important characteristic of piezoelectric materials compared to other smart

materials is its linear behaviour within a certain range. In this section, only the

piezoelectric coupling is considered and the thermoelectric terms are neglected.

The following constitutive relations are referred to as the e−forms and given in

more detail in references (Lines and Glass, 1977; Ikeda, 1996). The related energy

expression is defined as Gibb’s free energy G

G =
1

2
εTcEε− ETeε− 1

2
ETgE, (6.1)

where ε is the strain vector, E is the electric field vector, cE is the elastic stiffness

matrix computed at constant electric field E, e is the piezoelectric matrix which
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couples electrical and mechanical fields and g is the dielectric constant matrix

computed at constant mechanical strain ε.

The terms relating to the independent and dependent field variables are defined

by the following well-known material constants

gmn = − ∂2G

∂Em∂En

, enij = − ∂2G

∂En∂εij

, cE
ijkl =

∂2G

∂εkl∂εij

(6.2)

The stress vector σ and the electric displacement vector D can be obtained by

the expressions

σ =
∂G

∂ε
(6.3)

D = −∂G

∂E
(6.4)

Substituting Equation (6.1) into Equation (6.3)–(6.4), the constitutive equations

can be expressed in the e−form as follows:

σ = cEε− eTE, (converse effect) (6.5)

D = eε + gE. (direct effect) (6.6)

The explicit constitutive forms in the material reference system 1− 2− 3 are




σ1

σ2

σ3

σ4

σ5

σ6




=




c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66







ε1

ε2

ε3

ε4

ε5

ε6




−




0 0 e31

0 0 e32

0 0 e33

e14 e24 0

e15 e25 0

0 0 e36







E1

E2

E3


(6.7)




D1

D2

D3


 =




0 0 0 e14 e15 0

0 0 0 e24 e25 0

e31 e32 e33 0 0 e36







ε1

ε2

ε3

ε4

ε5

ε6




+




g11 g12 0

g12 g22 0

0 0 g33







E1

E2

E3


(6.8)
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By incorporating the plane assumptions and taking the z−axis as the poling

direction, the constitutive relations can be reduced and expressed in the following

forms



σx

σz

τxz


 =




c11 c13 0

c13 c33 0

0 0 c55







εx

εz

γxz


−




0 e31

0 e33

e15 0





 Ex

Ez


 , (6.9)


 Dx

Dz


 =


 0 0 e15

e31 e33 0







εx

εz

γxz


−


 g11 0

0 g33





 Ex

Ez


 . (6.10)

If the piezoelectric stress constants are unavailable in Equation (6.9) or (6.10),

they can be obtained by using the following relationship


 0 0 e15

e31 e33 0


 =


 0 0 d15

d31 d33 0







c11 c13 0

c13 c33 0

0 0 c55


 . (6.11)

in which [d] is the piezoelectric strain constant matrix.

6.3 Review of finite element formulations for 2D

piezoelectric problems

In this section, the variational form and finite element formulations of piezoelectric

solids are briefly reviewed. A two-dimensional piezoelectric problem in domain Ω

bounded by Γ is considered. For linear piezoelectric materials, the governing

equations and boundary conditions can be described as

σij,i + fj = ρüj, (6.12)

εij =
1

2
(ui,j + uj,i), (6.13)

Di,i = 0, (6.14)

Ei = −φ,i, (6.15)



6.3. Review of finite element formulations for 2D piezoelectric problems 179

together with the following boundary conditions

σijnj = t̄i on Γσ, ui = ūi on Γu, (6.16)

φ = φ̄ on Γφ, Dini = −q̄ on Γq, (6.17)

where σij, εij represent stress and strain tensor respectively, fj is the body force

density, uj is the mechanical displacement vector, ρ is the mass density, Di is the

dielectric displacement vector, Ei is the electric field vector and φ is the scalar

electric potential field.

The Lagrangian functional L is obtained by summing the kinetic energy, strain

energy, dielectric energy and potential energy of external fields as follows.

L =

∫

Ω

[
1

2
ρu̇T u̇− 1

2
εT σ +

1

2
DTE + uT f

]
dΩ +

∫

Γ

[
uT t̄ + φT q̄

]
dΓ. (6.18)

Then the variational form of the equations of motion can be derived using Hamil-

ton’s principle

∫

Ω

[δεT σ + δuT ρü − δETD − δuT f]dΩ −
∫

Γ

[δuT t̄ + δφT q̄]dΓ = 0. (6.19)

The finite element approximation solution for 2D piezoelectric problems using the

standard 4-node quadrilateral element can be expressed as

u =
4∑

i=1

Ni
uqi = Nuq, (6.20)

φ =
4∑

i=1

Ni
φφi = Nφϕ, (6.21)

where q and ϕ are the nodal displacement and nodal electric potential vectors,

Nu and Nφ are shape function matrices. They are given by

qi = [ui vi], (6.22)

φi = [φi], (6.23)

Ni
u =


 Ni 0

0 Ni


 , (6.24)

Ni
φ = [Ni], (6.25)
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in which Ni = 1
4
(1 + ξiξ)(1 + ηiη) is the bilinear shape function of the four-node

serendipity element.

The corresponding approximation of the linear strain ε and electric field E are

ε = ∇su =




∂
∂x

0

0 ∂
∂z

∂
∂z

∂
∂x


u =

4∑
i=1

Bi
uqi, (6.26)

E = −∇φ = −
4∑

i=1

Bi
φφi, (6.27)

where

Bi
u =




Ni,x 0

0 Ni,z

Ni,z Ni,x


 , (6.28)

Bi
φ =


 Ni,x

Ni,z


 . (6.29)

It should be noted that Equation (6.28)–(6.29) are derived for plane stress/strain

problems. For axisymmetric problems, they should be modified into the following

expressions

Bi
u =




Ni,r 0

Ni

r
0

0 Ni,z

Ni,z Ni,r




, (6.30)

Bi
φ =




Ni,r

Ni

r

Ni,z


 . (6.31)

where r is evaluated at the centroid of the element.

Substituting Equations (6.26)–(6.29) into Equation (6.19) leads to the piezoelec-

tric dynamic equations

 Muu 0

0 0








q̈

ϕ̈



 +


 Kuu Kuφ

Kuφ Kφφ








q

ϕ



 =





F

Q



 , (6.32)
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in which

Muu =

∫

Ω

ρNT
uNudΩ, (6.33)

Kuu =

∫

Ω

BT
ucEBudΩ, (6.34)

Kuφ =

∫

Ω

BT
ueTBφdΩ, (6.35)

Kφφ = −
∫

Ω

BT
φgBφdΩ, (6.36)

F =

∫

Ω

NT
u fdΩ +

∫

Γσ

NT
u t̄dΓ, (6.37)

Q =

∫

Γq

NT
φ q̄dΓ. (6.38)

For free vibration and considering the nth mode, Equation (6.32) can be written

as

(Kuu − ω2
nMuu)q + Kuφϕ = 0, (6.39)

Kφuq + Kφφϕ = 0, (6.40)

where ωn is the natural frequency of mode n. By performing the condensation of

the electric potential degree of freedom, the eigenvalue equation can be obtained

as follows.

[(Kuu −KuφK
−1
φφKφu)− ω2

nMuu]q = 0. (6.41)

6.4 Strain smoothing approach for piezoelectric

finite element method

6.4.1 Cell-based strain smoothing approach

The smoothed strain and smoothed electric field at an arbitrary point xC are

obtained by

ε̃(xC) =

∫

ΩC

ε(x)Φ(x− xC)dΩ, (6.42)

Ẽ(xC) =

∫

ΩC

E(x)Φ(x− xC)dΩ, (6.43)
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where ε, E are respectively the mechanical strain and electric field obtained from

displacement compatibility condition as given in Equations (6.26)–(6.27). ΩC

is the smoothing cell domain on which the smoothing operation is performed.

Depending on the stability analysis (Liu, Dai and Nguyen, 2007; Liu, Nguyen,

Dai and Lam, 2007), ΩC may be an entire element or part of an element as shown

in Figure 6.1. Φ is a smoothing function that satisfies the following properties

Φ ≥ 0 and
∫
Ω

ΦdΩ = 1. (6.44)

For simplicity, Φ is chosen as a constant function

Φ(x− xC) =





1/AC x ∈ ΩC ,

0 x /∈ ΩC .
(6.45)

where AC =
∫

ΩC
dΩ is the area of the smoothing cell (subcell).

Figure 6.1: Subdivision of an element into nc smoothing cells and the values of

shape functions at nodes.

Substituting Φ into Equation (6.42)–(6.43) and applying the divergence theorem,

we obtain a smoothed strain and smoothed electric field in the domain ΩC as

follows.

ε̃(xC) = 1
AC

∫
ΩC
∇su(x)dΩ = 1

AC

∫
ΓC

nuu(x)dΓ, (6.46)

Ẽ(xC) = − 1
AC

∫
ΩC
∇φ(x)dΩ = − 1

AC

∫
ΓC

nφφ(x)dΓ, (6.47)

where nu and nφ are matrices containing unit outward vector normal to the bound-
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ary ΓC

nu =




nx 0

0 nz

nz nx


 , nφ = [nx nz]

T . (6.48)

Introducing the finite element approximation of u and φ into Equations (6.46)

and (6.47) one gets

ε̃(xC) =
nc∑
i=1

B̃ui(xC)qi, (6.49)

Ẽ(xC) = −
nc∑
i=1

B̃φi(xC)φi, (6.50)

in which

B̃ui(xC) =
1

AC

∫

ΓC




Ninx 0

0 Ninz

Ninz Ninx


 dΓ, (6.51)

B̃φi(xC) =
1

AC

∫

ΓC


 Ninx

Ninz


 dΓ. (6.52)

Using one Gauss point to evaluate Equation (6.51) and (6.52) along each line

segment of the boundary ΓC
i of ΩC , they can be transformed as

B̃ui(xC) =
1

AC

nb∑

b=1




Ni(x
G
b )nx 0

0 Ni(x
G
b )nz

Ni(x
G
b )nz Ni(x

G
b )nx


lCb , (6.53)

B̃φi(xC) =
1

AC

nb∑

b=1


 Ni(x

G
b )nx

Ni(x
G
b )nz


lCb , (6.54)

where xG
b and lCb are the midpoint (Gauss point) and the length of ΓC

b , respectively;

nb is the total number of edges of each smoothing cell (nb = 4 in this case).

Finally, the linear equations of motion (6.32) can be rewritten as follows


 Muu 0

0 0








q̈

ϕ̈



 +


 K̃uu K̃uφ

K̃uφ K̃φφ








q

ϕ



 =





F

Q



 , (6.55)
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where

K̃e
uu =

nc∑
C=1

B̃T
uCcEB̃uCAC , (6.56)

K̃e
uφ =

nc∑
C=1

B̃T
uCeT B̃φCAC , (6.57)

K̃e
φφ = −

nc∑
C=1

B̃T
φCgT B̃φCAC . (6.58)

Equation (6.55) forms the basis of the smoothed piezoelectric finite element method.

In this work, four-node quadrilateral element is employed for domain discretiza-

tion. Two smoothing cells or subcells (nc = 2) are used to evaluate Equation

(6.56)–(6.58). Further increase of nc will lead to higher computational cost but the

accuracy may not be better because this results in stiffer system (Liu, Nguyen, Dai

and Lam, 2007). The obtained four-node piezoelectric element with two smooth-

ing cells is named SPQ4 (Smoothed Piezoelectric Quadrilateral 4-node element).

In order to clarify how the cell-based smoothing technique is incorporated into

a finite element code, a numerical implementation for computing the element

stiffness matrix is briefly presented as follows.

1. Initialize the number of smoothing cell nc

2. Estimate shape function matrix Ni at field nodes: N(x) = N(xfield)

3. Create spurious nodes (no associated DOFs) at mid-side edges:

• Compute Ni at spurious nodes

• Update N(x) = [N(xfield); N(xspur)]

4. Setup a connective matrix (cells) for each smoothing cell

5. Calculate and assemble element stiffness matrices to build the system stiff-

ness matrix:

Loop over all subcells, ic = 1 to nc

• Compute the unit outward normal vector n on each side of a subcell

• Compute the area Aic of each subcell
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• Loop over 4 sides of each subcell, iside = 1 to 4

◦ Loop over Gauss points on each side, ig = 1 to 4

if iside < 4 then

N(ig) = 1
2
{N(cells(ic, iside), ig) + N(cells(ic, iside + 1), ig)}

else

N(ig) = 1
2
{N(cells(ic, iside), ig) + N(cells(ic, iside− 3), ig)}

◦ End the loop over Gauss points on each side

◦ Compute the gradient matrix B̃ic
u , B̃ic

φ using Equation (6.53)–

(6.54)

• End loop over 4 sides of each subcell

• Compute the stiffness matrices K̃ic
uu, K̃ic

uφ and K̃ic
φφ corresponding to

the Ωic using Equation (6.56)–(6.58)

• Update the smoothed element stiffness matrices and assemble

K̃e ←− K̃e + K̃ic

End the loop over all nodes.

6.4.2 Node-based strain smoothing approach

Consider a problem domain Ω with a mesh of triangular or quadrilateral ele-

ments numbered from 1 to Ne and nodes numbered from 1 to Nn. The basic

idea of the following development is to associate new elements (smoothing ele-

ments) with each of the nodes of the original mesh. For this process, the prob-

lem domain is transformed into smoothing cells associated with nodes such that

Ω = Ω1 ∪ Ω2 ∪ ... ∪ Ωn and Ωi ∩ Ωj = ∅, i 6= j. A new element (smoothing cell)

Ωk associated with a single node k is termed as the node-based element. These

elements are created by connecting sequentially the mid-side points of edges ema-

nating from node k to the centroidal points of original elements surrounding node

k as shown in Figure 6.2.

Introducing the smoothing operation of the SCNI, the strain and electric fields
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Figure 6.2: Node-based elements: Transformation of an original mesh into smooth-

ing elements associated with nodes. The dashed lines are formed by connecting

midside points with centroidal points of original elements and serve as new cell

(element) boundaries.

over the smoothing cell Ωk associated with node k are assumed as follows.

ε̃k(xk) =

∫

Ωk

ε(x)Φk(x− xk)dΩ, (6.59)

Ẽk(xk) =

∫

Ωk

E(x)Φk(x− xk)dΩ, (6.60)

where ε, E are respectively the mechanical strain and electric field obtained from

displacement compatibility condition as given in Equations (6.26) and (6.27). Φk

is a smoothing function that satisfies the following properties

Φk ≥ 0 and
∫
Ωk ΦkdΩ = 1. (6.61)

For simplicity, Φk is chosen as a constant function

Φk(x− xk) =





1/Ak x ∈ Ωk,

0 x /∈ Ωk.
(6.62)

where Ak =
∫

Ωk dΩ is the area of the smoothing cell Ωk as shown in Figure 6.2.

Substituting Φk into Equation (6.59)–(6.60) and applying the divergence theorem,

we obtain a smoothed strain and smoothed electric field in the domain Ωk as

follows.

ε̃k(xk) = 1
Ak

∫
Ωk ∇su(x)dΩ = 1

Ak

∫
Γk nk

uu(x)dΓ, (6.63)

Ẽk(xk) = − 1
Ak

∫
Ωk ∇φ(x)dΩ = − 1

Ak

∫
Γk nk

φφ(x)dΓ, (6.64)
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where nk
u and nk

φ are matrices associated with unit outward vector normal to the

boundary Γk,

nk
u =




nk
x 0

0 nk
z

nk
z nk

x


 , nk

φ =


 nk

x

nk
z


 , (6.65)

and u(x), φ(x) are approximated functions as in Equations (6.20)–(6.21).

Introducing the finite element approximation of u and φ into Equations (6.63) and

(6.64), the smoothed strain and electric field on the smoothing cell Ωk associated

with the node k can be expressed in the following matrix form

ε̃k(xk) =
nk∑
i=1

B̃i
u(x

k)qi, (6.66)

Ẽk(xk) = −
nk∑
i=1

B̃i
φ(x

k)φi, (6.67)

in which nk is the number of nodes connecting directly to the node k (i.e. nodes

whose shape functions support node k). B̃ui(x
k) and B̃φi(x

k) are smoothed gra-

dient matrices for u and φ respectively, on the smoothing cell Ωk

B̃i
u(x

k) =
1

Ak

∫

Γk




Nin
k
x 0

0 Nin
k
z

Nin
k
z Nin

k
x


 dΓ, (6.68)

B̃i
φ(x

k) =
1

Ak

∫

Γk


 Nin

k
x

Nin
k
z


 dΓ. (6.69)

When a linear completed displacement field along the boundary Γk is used, one

Gauss point is sufficient for accurate boundary integration along each line segment

Γk
i of the boundary Γk of Ωk. Therefore, Equations (6.68)–(6.69) can be evaluated

with one-point Gauss quadrature integration as follows.

B̃i
u(x

k) =
1

Ak

nb∑

b=1




Ni(x
G
b )nk

x 0

0 Ni(x
G
b )nk

z

Ni(x
G
b )nk

z Ni(x
G
b )nk

x


lkb , (6.70)

B̃i
φ(x

k) =
1

Ak

nb∑

b=1


 Ni(x

G
b )nk

x

Ni(x
G
b )nk

z


lkb , (6.71)
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where nb is the total number of the line segments of the contour Γk, xG
b is the

midpoint (Gauss point) of each line segments Γk
b , whose length and outward unit

normal are denoted as lkb and nk, respectively.

Finally, the linear static equation (6.32) can be rewritten as follows


 K̃k

uu K̃k
uφ

K̃k
uφ K̃k

φφ








q

ϕ



 =





F

Q



 , (6.72)

where

K̃k
uu =

nk∑
i=1

B̃iT
u cEB̃i

uA
k, (6.73)

K̃k
uφ =

nk∑
i=1

B̃iT
u eT B̃i

φA
k, (6.74)

K̃k
φφ = −

nk∑
i=1

B̃iT
φ gT B̃i

φA
k. (6.75)

The stiffness matrix K̃ of the system is then assembled in a manner similar to

that in the conventional FEM such as

K̃ =
Nn∑

k=1

K̃k, (6.76)

where

K̃k =


 K̃k

uu K̃k
uφ

K̃k
uφ K̃k

φφ


 . (6.77)

It can be seen that only values of shape functions at Gauss points along the edges

of boundary Γk
i are needed for evaluating Equations (6.70)–(6.71). The details for

computing values of shape functions are presented in the following section.

6.4.2.1 Construction of linear shape functions

In this approach, a finite element mesh of linear triangular or bilinear quadrilat-

eral elements is considered. It should be noted that the purpose of introducing

midside points and centroidal points is to form the linear compatible boundary of



6.4. Strain smoothing approach for piezoelectric finite element method 189

the node-based element and to evaluate the shape functions at the Gauss points.

No additional degrees of freedom are associated with these points and the nodal

unknowns are the same as in the original FEM mesh. Moreover, the derivations

of the smoothed strain and smoothed electric fields of the smoothing cell Ωk asso-

ciated with node k transforms the domain integration into boundary integration

along the boundary Γk of Ωk. Therefore, only the shape function values at Gauss

points along each segment Γk
i of the boundary Γk are used. Values of shape

functions at these points of interest (mid-edge points and centroidal points) for

triangular and quadrilateral elements are illustrated in Figure 6.3. Note that the

shape function values in Figure 6.3 are denoted in the format (N1, N2, ..., Nne)

where ne is the number of nodes of an element.

Figure 6.3: Shape function values for a typical linear triangular and bilinear

quadrilateral element.

By using an original mesh of linear triangular or bilinear quadrilateral elements,

a linear compatible displacement field along the boundary Γk of a smoothing cell

(node-based element) is obtained. Only one Gauss point at midside point on each

segment of Γk is required for accurate boundary integration. The shape function

values at the Gauss points (e.g. point c) are shown in Figure 6.4.

6.4.2.2 Implementation procedure

In order to clarify how the node-based smoothing technique is incorporated into a

finite element code, a numerical implementation for the method is briefly presented

as follows.
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Figure 6.4: Detail of a node-based element (smoothing cell) and values of shape

functions at Gauss points (a,b,c,d,e,f,g,h)

1. Discretize the domain into triangular or quadrilateral elements and form the

matrices of node coordinates (coord) and element connections (nodes).

2. Find surrounding cells of each node k and determine the area of each smooth-

ing cell Ωk associated with node k:

Loop over all nodes, k = 1 to Nn

Loop over all elements, j = 1 to Ne

if (find (k == nodes(j, :))) ≥ 1, add the element j to the list of

surrounding cells and compute the area of the surrounding cell j.

End the loop over all elements.

End the loop over all nodes.

3. Calculate and assemble element stiffness matrices to build the system stiff-

ness matrix:

Loop over all nodes, k = 1 to Nn

(a) Determine the connecting points of each smoothing cell Ωk associ-

ated with node k.

(b) Calculate the outward unit normal vector nk on each boundary

segment of the smoothing cell Ωk.

(c) Evaluate smoothed gradient matrices B̃k
u, B̃

k
φ using Equations (6.70)–

(6.71).
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(d) Compute smoothed element stiffness matrices corresponding to the

Ωk using Equations (6.73)–(6.75).

(e) Assemble the contribution of smoothed element stiffness matrices

to form the system stiffness matrix using Equation (6.76).

End the loop over all nodes.

4. Assign boundary conditions.

5. Solve the system equation to obtain nodal kinematics.

6. Post-process strains and stresses at points of interest.

6.5 Numerical examples

In this section, several numerical examples are employed to test and assess the

performance of the cell-based as well as node-based smoothing elements as applied

to the linear static and free vibration analysis of two-dimensional piezoelectric

structures. The elements considered in this section are:

• SPQ4: the cell-based smoothing piezoelectric quadrilateral 4-node element

using two smoothing cells.

• NSPE-Q4: the node-based smoothing piezoelectric element based on quadri-

lateral finite element mesh.

• NSPE-T3: the node-based smoothing piezoelectric element based on trian-

gular finite element mesh.

• FEM-Q4: the standard 4-node quadrilateral piezoelectric finite element

using 2× 2 Gauss points.

• FEM-T3: the standard 3-node piezoelectric finite element using linear shape

functions.
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6.5.1 Patch tests

Passing the patch test is a sufficient condition for the convergence of a finite

element method. It is an essential check in order to verify that the elements

exhibit proper convergence properties, consistency and stability when subjected

to constant strain. In this section, a patch test is used to verify that the proposed

cell-based (SPQ4) and node-based elements (NSPE-T3, NSPE-Q4) have proper

convergence properties. A choice of geometry, mesh and boundary conditions was

adapted from the work of Sze et al. (2004), as shown in Figure 6.5.

The following PZT4 material in Sze et al. (2004) is used for the patch test.

c11 = 139× 103, c33 = 113× 103, c13 = 74.3× 103, c55 = 25.6× 103 N/mm2,

e15 = 13.44× 106, e31 = −6.98× 106, e33 = 13.84× 106 pC/mm2,

g11 = 6.00× 109, g33 = 5.47× 109 pC/GVmm.

(a) (b)

Figure 6.5: Typical meshes of the patch test: (a) triangular mesh (NSPE-T3

elements); (b) quadrilateral mesh (SPQ4, NSPE-Q4 elements).

The prescribed mechanical displacements and electric potentials are applied at

the edges defined by nodes 1, 2, 3 and 4 as follows.

u = s11σ0x, w = s13σ0z, φ = b31σ0z.

where σ0 = 1000 is an arbitrary stress parameter. s11, s13 and b31 are material
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constants which can be calculated by the following relation




s11 s13 b31

s13 s33 b33

b31 b33 −f33


 =




c11 c13 e31

c13 c33 e33

e31 e33 −g33




−1

.

Under the boundary conditions described above, the corresponding exact stress

σ and electric displacement D are given as:

σx = σ0, σz = τxz = Dx = Dz = 0.

It is found that the obtained results with SPQ4, NSPE-T3 and NSPE-Q4 elements

match well the exact solution as shown in Table 6.1 and hence the proposed

elements successfully pass the patch test.
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Table 6.1: Results of the patch test

Var.
Models

SPQ4 NSPE-T3 NSPE-Q4 Exact

σx 1000.0000 1000.0000 1000.0000 1000

σz 1.9397× 10−10 2.0240× 10−10 −8.6968× 10−14 0

τxz 9.4022× 10−11 2.2414× 10−10 −4.1149× 10−13 0

Dx 9.1261× 10−8 −1.0658× 10−8 −2.2461× 10−10 0

Dz −1.4486× 10−8 5.5046× 10−8 1.1983× 10−10 0

u5 1.9012× 10−3 1.9012× 10−3 1.9012× 10−3 1.9012× 10−3

w5 −6.0626× 10−5 −6.0626× 10−5 −6.0626× 10−5 −6.0626× 10−5

φ5 −3.5557× 10−7 −3.5557× 10−7 −3.5557× 10−7 −3.5557× 10−7

u6 3.0103× 10−3 3.0103× 10−3 3.0103× 10−3 3.0103× 10−3

w6 −9.0939× 10−5 −9.0939× 10−5 −9.0939× 10−5 −9.0939× 10−5

φ6 −5.3335× 10−7 −5.3335× 10−7 −5.3335× 10−7 −5.3335× 10−7

u7 2.8519× 10−3 2.8519× 10−3 2.8519× 10−3 2.8519× 10−3

w7 −2.4251× 10−4 −2.4251× 10−4 −2.4251× 10−4 −2.4251× 10−4

φ7 −1.4223× 10−6 −1.4223× 10−6 −1.4223× 10−6 −1.4223× 10−6

u8 2.2181× 10−3 2.2181× 10−3 2.2181× 10−3 2.2181× 10−3

w8 −2.4251× 10−4 −2.4251× 10−4 −2.4251× 10−4 −2.4251× 10−4

φ8 −1.4223× 10−6 −1.4223× 10−6 −1.4223× 10−6 −1.4223× 10−6
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6.5.2 Single-layer piezoelectric strip in tension

A piezoelectric strip of size 2a × 2h subjected to uniaxial tension as shown in

Figure 6.6 is considered. The material used in this example is PZT-4 ceramic,

poled in the z−direction. Its mechanical and piezoelectric elastic constants are as

follows.

c11 = 12.6× 1010, c33 = 11.5× 1010, c12 = 7.78× 1010,

c13 = 7.43× 1010, c55 = 2.56× 1010 N/m2,

e15 = 12.7, e31 = −5.2, e33 = 15.1 C/m2,

g11 = 6.463× 10−9, g33 = 5.611× 10−9 F/m.

Owing to symmetric conditions, only an upper right quadrant of the plate is

modeled. Symmetric conditions are imposed on the left and bottom edges as

shown in Figure 6.6.

Figure 6.6: Piezo-strip subjected to a uniform tension stress.

In the calculation, we set a = 5m, h = 10m, σo = 10 N/m2. To demonstrate the

capability of the proposed elements to deal with bad element shapes, the strip is

modeled with two types of mesh in this analysis with 5× 7 quadrilateral elements

as well as triangular elements as shown in Figure 6.7. All corresponding numerical

results are compared with the analytic solution given by Ding et al. (1998) and

Wang et al. (2003).

All results are plotted together in Figure 6.9–6.11. Note that the computed dis-

placements u are along the bottom side (z = 0) while the displacements w and

electric potential φ distribute along the left edge (x = 0). As we can see, the
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Figure 6.7: Typical meshes of a piezo-strip in tension: (a) triangular mesh (NSPE-

T3, FEM-T3 elements); (b) quadrilateral mesh (NSPE-Q4, SPQ4 elements).
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Figure 6.8: Total deformation of a piezo-strip in tension (scale factor: 5 × 105):

(a) triangular mesh; (b) quadrilateral mesh.

present solutions are in excellent agreement with analytic ones. It is also noticed

that the performance of NSPE-T3 and SPQ4 elements is slightly better than that

of NSPE-Q4 element when compared with exact ones using absolute error, as

shown in Figure 6.9b–6.11b.
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Figure 6.9: Piezo-strip in tension: Computed and exact u−displacements: (a) Dis-

tribution of u on the edge z = 0; (b) Comparison of the error in u−displacement
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Figure 6.10: Piezo-strip in tension: Computed and exact w−displacements:

(a) Distribution of w on the edge x = 0; (b) Comparison of the error in

w−displacement
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Figure 6.11: Piezo-strip in tension: Computed and exact electric potential φ:

(a) Distribution of φ on the edge x = 0; (b) Comparison of the error in electric

potential.
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6.5.3 Single-layer piezoelectric strip in shear deformation

Figure 6.12: Piezo-strip subjected to a uniform stress and a voltage.

In this example, we consider the shear deformation of a 1 × 1mm single-layer

square strip polarized in the z−direction. The strip is subjected to a combined

loading of pressure σ0 in the z direction and an applied voltage V0 as depicted on

Figure 6.12. The material PZT-5 is used for this problem and its properties are

summarized in Table 6.2.

Table 6.2: Single-layer piezoelectric material properties, dimensions and other

constants.

s11 16.4× 10−6 mm2/N d31 −172× 10−9 mm/V

s13 −7.22× 10−6 mm2/N d33 −374× 10−9 mm/V

s33 18.8× 10−6mm2/N d15 584× 10−9 mm/V

s55 47.5× 10−6 mm2/N g11 1.53105× 10−8 N/V2

σ0 −5.0 N/mm2 g33 1.505× 10−8 N/V2

σ1 20.0 N/mm2 V0 1000V

L 1.0mm h 0.5mm

The following mechanical and electrical boundary conditions are applied to the

sides of the strip
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φ,z(x,±h) = 0, σz(x,±h) = σ0, τxz(L, z) = 0,

τxz(x,±h) = 0, φ(L, z) = −V0, σx(L, z) = 0,

φ(0, z) = +V0, u(0, z) = 0, w(0, 0) = 0.

The analytical solution for this problem is given by Gaudnzi and Bathe (1995)

u = s13σ0x,

w =
d15V0x

h
+ s33σ0z,

φ = V0

(
1− 2

x

L

)
.

The strip is modelled with two types of mesh in this analysis with 8 × 8 quadri-

lateral elements or triangular elements as shown in Figure 6.13.
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Figure 6.13: Typical meshes of a piezo-strip in shear: (a) triangular mesh (NSPE-

T3, FEM-T3 elements); (b) quadrilateral mesh (NSPE-Q4, SPQ4 elements).

The present numerical results are compared with the standard linear triangular

piezoelectric finite element FEM-T3 and the exact solutions given by Gaudnzi and

Bathe (1995). The obtained total deformation of the strip is shown in Figure 6.14
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Figure 6.14: Total deformation of the piezo-strip in shear (scale factor=70): (a)

triangular mesh; (b) quadrilateral mesh

Figure 6.15a and Figure 6.16a depict the distribution of the displacements u and w,

respectively along the bottom edge (z = −h). The distribution of the computed

electric potential φ along this edge is also demonstrated in Figure 6.17a. It is

observed that all the computed displacements and electric potentials for both

types of mesh are in excellent agreement with the analytical solutions.

The relative errors (in log scale) of the displacements and electric potentials are

illustrated on Figure 6.15b–Figure 6.17b. It can be seen that the node-based

NSPE-T3 element achieves the best prediction for displacements (both of u and

w) when compared with other numerical solutions. The superior accuracy of

the present node-based elements (NSPE-T3, NSPE-Q4) and cell-based element

(SPQ4) over the standard FEM-T3 element is evident.
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Figure 6.15: Piezo-strip in shear: Computed and exact u−displacements: (a) Dis-

tribution of u on the edge z = −h; (b) Comparison of the error of u−displacement.
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Figure 6.16: Piezo-strip in shear: Computed and exact w−displacements: (a)

Distribution of w on the edge z = −h; (b) Comparison of the error of

w−displacement.
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Figure 6.17: Piezo-strip in shear: Computed and exact electric potential φ: (a)

Distribution of φ on the edge z = −h; (b) Comparison of the error of electric

potential.
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6.5.4 Single-layer piezoelectric strip in bending

The strip with the same material and geometry as in the previous example is

considered but with modified boundary conditions for bending situation. In this

case, a voltage V0 is applied on the top and bottom surfaces together with a linear

stress applied at the right edge as shown in Figure 6.18.

Figure 6.18: Piezo-strip subjected to a linear stress and a voltage.

The following mechanical and electrical boundary conditions are applied to the

edges of the strip

φ(x,±h) = ±V0, σz(x,±h) = 0, τxz(x,±h) = 0,

φ,x(L, z) = 0, σx(L, z) = σ0 + σ1z, τxz(L, z) = 0,

φ,x(0, z) = 0, u(0, z) = 0, w(0, 0) = 0.

The analytical solution is available for this problem and can be found in Gaudnzi

and Bathe (1995) or Ohs and Aluru (2001) as follows

u = s11

(
σ0 − d31V0

s11h

)
+ s11

(
1− d2

31

s11g33

)
σ1xz,

w = s13

(
σ0 − d33V0

s13h

)
z + s13

(
1− d33d31

s13g33

)
σ1

z2

2

−s11

(
1− d2

31

s11g33

)
σ1

x2

2
,

φ = V0
z

h
− d31σ1

2g33

(h2 − z2).

Two types of mesh as shown in Figure 6.13 are used again in the analysis. The

obtained deformation of the strip is shown in Figure 6.19.
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Figure 6.19: Total deformation of the piezo-strip in bending (scale factor=70):

(a) triangular mesh; (b) quadrilateral mesh

Figure 6.20 illustrates the distribution of displacement u and its relative error

along the right side (x = L) while the vertical displacement w and its relative

error along the bottom edge (z = −h) are shown in Figure 6.21. The distribution

of the computed electric potentials along the right side (x = L) and its relative

error are demonstrated in Figure 6.22. Both computed displacements and electric

potential match well the exact solutions for the node-based NSPE-T3 element

as well as for the NSPE-Q4 element. Again, the node-based element NSPE-

T3 demonstrates the best performance with respect to displacement fields when

compared with the FEM-T3, SPQ4 and NSPE-Q4 elements as can be seen in

the Figure 6.20b–Figure 6.21b. For the prediction of electric potential fields, all

elements yield virtually identical results which appear indistinguishable from each

other as can be seen in Figure 6.22.
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Figure 6.20: Piezo-strip in bending: Computed and exact u−displacements:

(a) Distribution of u on the edge x = L; (b) Comparison of the error of

u−displacement.
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Figure 6.21: Piezo-strip in bending: Computed and exact w−displacements:

(a) Distribution of w on the edge z = −h; (b) Comparison of the error of

w−displacement.
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Figure 6.22: Piezo-strip in bending: Computed and exact electric potential φ:

(a) Distribution of φ on the edge x = L; (b) Comparison of the error of electric

potential.
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6.5.5 Parallel piezoelectric bimorph beam

The example to be discussed here is the two-layer parallel bimorph beam. It

consists of a cantilever piezoelectric beam made of two PVDF layers of the same

thickness ht = hb = H/2 = 0.2 mm and a length of L = 5 mm, with same

polarization orientations as shown in Figure 6.23. The PVDF material properties

are summarized as follows.

E = 2 GPa, ν = 0.29, e31 = 0.046 C/m2, e32 = 0.046 C/m2,

g11 = 0.1062× 10−9 F/m, g33 = 0.1062× 10−9 F/m.

Figure 6.23: Two-layer parallel bimorph cantilever beam.

For the parallel bimorph configuration, a zero voltage (V = 0) is applied to the

intermediate electrode, while the voltage V = 1 is applied to the bottom and top

faces of the beam. The loading will generate moments that bend the bimorph.

In this study, the beam is assumed to be in a plane stress state. For an applied

electric field V only, the tip deflection δ of the cantilever parallel bimorph can be

approximated as in Cambridge (1995)

δ =
2L2V d31

H2
. (6.78)

With L = 5 mm and H = 0.4 mm, the approximated value of the tip deflection

calculated from Equation (6.78) is δ = 1.0206× 10−8 m.

The beam is analyzed using 15×2, 25×2, 35×2 and 50×2 uniform meshes. Table

6.3 presents the obtained tip deflections together with mesh-free solutions such

as PIM (Liu et al., 2002) and RPIM (Liu et al., 2003) and the analytic solution.

Note that the values in parentheses are the relative errors compared with analytic
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Table 6.3: Tip deflections of the bimorph beam and comparison with available

literatures (×10−8 m).

Model
Mesh

15×2 25×2 35×2 50×2

FEM-T3 0.4967 0.6287 0.6785 0.7084

(-30.589%)

PIM – 1.098 – 1.111

(8.856%)

RPIM – – – 1.204

(17.970%)

SPQ4 0.814 0.937 0.978 1.003

(-1.724%)

NSPE-Q4 1.0321 1.0287 1.0275 1.0269

(0.617%)

NSPE-T3 1.0263 1.0276 1.0270 1.0264

(0.568%)

Analytic 1.0206

solutions. Numerical results in the Table 6.3 also indicate that the node-based

element performance, in terms of rate of convergence and accuracy, with respect

to exact solution is excellent.

Figure 6.24 depicts the relative error of the tip deflection for different mesh re-

finement on a log scale. It is evident that the present NSPE-T3 element, gives

more accurate results than those of other numerical solutions cited here where the

displacement prediction error for the 50× 2 mesh is only 0.568%. On the whole,

all the node-based element perform similarly well and better than the cell-based

SPQ4 element and the FEM-T3 element.
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Figure 6.24: Convergence behaviour of tip deflection.

6.5.6 Piezoelectric Cook’s membrane

This section deals with a clamped tapered panel with distributed in-plane tip

load F = 1 similar to the well-known Cook’s membrane. The lower surface is

subjected to a voltage V = 0. The geometry and boundary conditions of the

beam are shown in the Figure 6.25. The beam is made of PZT4 material as in

Section 6.5.1. The two typical types of mesh with 8× 8 quadrilateral elements or

z

x

V=0

Figure 6.25: Piezoelectric Cook’s membrane.

triangular elements are shown in Figure 6.26.
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Figure 6.26: Typical meshes of a piezoelectric Cook’s membrane: (a) triangu-

lar mesh (NSPE-T3, FEM-T3 elements); (b) quadrilateral mesh (NSPE-Q4 ele-

ments).

To the author’s best knowledge, there is no analytic solution available for this

problem. The present results are compared with the best known values of the

displacement, the electric potential, the first principal stress and the electric flux

density at node A, B, C according to Long, Loveday and Groenwold (2006). They

are summarized as follows.

wA = 2.109× 10−4 mm, φA = 1.732× 10−8 GV,

σ1B = 0.21613 N/mm2, DC = 22.409 pC/mm2.

Table 6.4 presents the obtained results with mesh refinement and relative error

(difference) when compared with the best known values of Long, Loveday and

Groenwold (2006). It can be seen that with a mesh of 24 × 24, all the results

of node-based elements achieve better accuracy (relative error within 2%) than

those of the FEM-T3 element. Figure 6.27a displays the magnitude of the relative

error of vertical displacement wA at point A with various meshes. The accuracy of

the node-based element is again found to be better than the SPQ4 and FEM-T3

elements.

Figure 6.27b depicts the magnitude of the relative error of electric potential φA

at point A. Again, the node-based elements is superior to the FEM-T3 elements.

It is found that the cell-based SPQ4 element performs slightly better than the

node-based elements in this case.
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Table 6.4: Computed results of piezoelectric membrane and relative error in com-

parion with the best known results of Long et al. (2006).

Mesh
wA × 10−4 φA × 10−8 σ1B DC

(mm) (GV) (N/mm2) (pC/mm2)

NSPE-Q4 4× 4 2.2414 2.2294 2.1982E-01 1.8898E+01

8× 8 2.1568 1.9565 2.1423E-01 2.1548E+01

16× 16 2.1204 1.8109 2.1476E-01 2.2133E+01

24× 24 2.1137 1.7680 2.1512E-01 2.2179E+01

(0.223%) (2.078%) (-0.453%) (-1.026%)

NSPE-T3 4× 4 2.2630 2.4646 3.8899E-01 3.2448E+01

8× 8 2.1688 1.9597 2.2729E-01 2.4441E+01

16× 16 2.1227 1.8177 2.1904E-01 2.1828E+01

24× 24 2.1156 1.7622 2.1696E-01 2.1944E+01

(0.313%) (1.744%) (0.398%) (-2.075%)

SPQ4 4× 4 1.8801 1.2703 1.5779E-01 1.0555E+01

8× 8 2.0424 1.5796 1.9397E-01 1.6648E+01

16× 16 2.0910 1.6808 2.0744E-01 1.9785E+01

24× 24 2.1005 1.7033 2.1093E-01 2.0754E+01

(-0.403%) (-1.657%) (-2.392%) (-7.385%)

FEM-T3 4× 4 1.0356 0.64272 1.0975E-01 7.1749E+00

8× 8 1.5383 1.1629 1.6320E-01 7.2903E+00

16× 16 1.8990 1.5186 2.0002E-01 1.5830E+01

24× 24 2.0046 1.6213 2.0955E-01 1.8476E+01

(-4.950%) (-6.391%) (-3.031%) (-17.551%)

Long et al. (2006) 2.109 1.732 0.2161 22.409
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Figure 6.28 presents the magnitude of relative errors of the first principal stress

σ1B at point B and the electric flux density DC at point C. Again, all the node-

based elements perform similarly well and achieve better results than those of

SPQ4 and FEM-T3 elements.
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Figure 6.27: Piezoelectric Cook’s membrane: Convergence behaviours: (a) vertical

displacement w at point A; (b) electric potential φ at point A.
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Figure 6.28: Piezoelectric Cook’s membrane: Convergence behaviours: (a) first

principal stress σ1B at point B; (b) electric flux density DC at point C.
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6.5.7 Double bimorph optical micro-scanner

A central component of an optical micro-scanner is an adjustable mirror that is

used to reflect light beams. It has a variety of applications such as optical scanning,

display devices, printer or barcode scanning. This section concerns the modelling

of a simple micro-scanner, as depicted in Figure 6.29. The device is composed of

two parallel bimorphs bridged by a mirror at their tip center. When a voltage

is applied, the bimorphs deflect in opposite directions. This bending moves the

edges of the mirror up and down, rotating the mirror with a tilt angle β. The

angle of rotation β is larger than the angle at the tip of each bending bimorphs,

owing to the mechanical amplification that is achieved in this MEMS device. The

direction of the reflected light, therefore, can be changed under different applied

voltages.

Figure 6.29: A bimorph optical micro-scanner MEMS device.

The two-layer bimorphs are made of PVDF material whose properties are sum-

marized as follows.

c11 = 2.18× 10−3 N/µm2, c13 = 6.33× 10−4 N/µm2,

c33 = 2.18× 10−3 N/µm2, c55 = 7.75× 10−4 N/µm2,

e31 = 4.6× 10−8 N/(Vµm), e33 = 4.6× 10−8 N/(Vµm),

g11 = 1.062× 10−10 N/V2, g33 = 1.062× 10−10 N/V2.
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The following boundary conditions apply to the bottom layer of the bimorph beam

φ(1)(x,−h) = V0, σ(1)
z (x,−h) = 0, τ (1)

z (x,−h) = 0,

φ(1)(x, 0) = 0, σ(1)
z (x, 0) = σ(2)

z (x, 0),

τ (1)
xz (x, 0) = τ (2)

xz (x, 0),

φ(1)
,x (0, z) = 0, u(1)(0, z) = 0, w(1)(0, z) = 0.

φ(1)
,x (L, z) = 0, σ(1)

x (L, z) = 0, τ (1)
xz (L, z) = 0.

and boundary conditions for the top layer are

φ(2)(x, 0) = φ(1)(x, 0), u(2)(x, 0) = u(1)(x, 0),

w(2)(x, 0) = w(1)(x, 0) φ(2)(x, h) = V0,

σ(2)
z (x, h) = 0, τ (2)

xz (x, h) = 0,

φ(2)
,x (0, z) = 0, u(2)(0, z) = 0, w(2)(0, z) = 0,

φ(2)
,x (L, z) = 0, σ(2)

x (L, z) = 0, τ (2)
xz (L, z) = 0.

Referring to Figure 6.29, each bimorphs have a length L = 10 µm and a height

2h = 1 µm. The length of the mirror is λ = 1 µm. For sufficiently small rotations,

β can be approximated as

β =
2δ

λ
. (6.79)

A 80×2 uniform mesh (with node-based elements (NSPE-T3, NSPE-Q4), the cell-

based element (SPQ4) or the FEM-T3 element) is used to analyse the problem.

The tip displacements of the bimorph are calculated for several applied voltages

and shown in Table 6.5. All the results are compared with the meshless PCM

solution of Ohs and Aluru (2001).

From the tip displacements, the tilt angles of the mirror are determined from

Equation (6.79). The tilt angle that varies linearly with applied voltages as ex-

pected is shown on Figure 6.30. It can be seen that the results obtained from

node-based and cell-based elements are in closer agreement with the meshless

PCM solution than FEM-T3 solutions. It is interesting to note that the result

of NSPE-T3 element compares very favourably with the meshless PCM solution

while the computational cost is lower.
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Table 6.5: Tip deflection of the bimorph beam of the micro-scanner MEMS device.

Voltage FEM-T3 SPQ4 NSPE-Q4 NSPE-T3 PCM

1.00 4.3765E-03 5.1194E-03 4.7828E-03 4.9138E-03 4.9360E-03

2.00 8.7529E-03 1.0239E-02 9.5656E-03 9.8276E-03 9.8720E-03

5.00 2.1882E-02 2.5597E-02 2.3914E-02 2.4569E-02 2.4681E-02

10.00 4.3765E-02 5.1194E-02 4.7828E-02 4.9138E-02 4.9362E-02

15.00 6.5647E-02 7.6791E-02 7.1742E-02 7.3707E-02 7.4043E-02

20.00 8.7529E-02 1.0239E-01 9.5656E-02 9.8276E-02 9.8724E-02

25.00 1.0941E-01 1.2798E-01 1.1957E-01 1.2285E-01 1.2341E-01

50.00 2.1882E-01 2.5597E-01 2.3914E-01 2.4569E-01 2.4681E-01
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Figure 6.30: Behaviour of the mirror tilt angle under applied voltages.

6.5.8 Infinite piezoelectric plate with a circular hole

The last static analysis problem considered in this section is that of a piezoelectric

plate with a central circular cavity subjected to a uniform uniaxial far-field stress

σ∞ in the z−direction as shown in Figure 6.31. This example is used to show the

efficiency of the developed elements in predicting stresses in a stress concentration

problem.
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Figure 6.31: An infinite piezo-plate with a circular hole subjected to the far field

stress.

The material is PZT-4 ceramic and its mechanical and piezoelectric elastic con-

stants are as follows.

c11 = 12.6× 1010, c33 = 11.5× 1010, c12 = 7.78× 1010,

c13 = 7.43× 1010, c55 = 2.56× 1010 (N/m2),

e15 = 12.7, e31 = −5.2, e33 = 15.1 (C/m2),

g11 = 6.463× 10−9, g33 = 5.611× 10−9(F/m).

Owing to symmetric conditions of the geometry and the loading case, only one

quadrant of the problem needs to be modeled. According to Saint-Venant’s prin-

ciple, stress disturbance due to the hole extends no more than a few diameters

from the hole. Thus, it is reasonable to use a 10a by 10a domain to model one

quadrant of the problem domain. In the analysis, the hole radius a is taken to be

1 and the applied stress σ∞ = 10. Two types of mesh used in the calculation are

shown in Figure 6.32.

All numerical results are compared with the analytical solutions given by Sosa

(1991) as shown in Figure 6.33 –6.36.
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Figure 6.32: Typical meshes of a quadrant of a piezo-plate with a central circular

hole: (a) triangular mesh (NSPE-T3 elements); (b) quadrilateral mesh (NSPE-Q4

elements).

Figure 6.33 and Figure 6.34 describe the distributions of σr and σθ on the line

θ = 0, respectively. It can be seen from Figure 6.34 that σθ has maximum value

at the intersection of the hole and the x−axis as in Sosa’s theorical results.

The distributions of σr and σθ on the line θ = π/2 are displayed in Figure 6.35 and

Figure 6.36. It is observed from Figure 6.36 that σθ approaches zero rapidly when

r increases, which indicates that there is a stress concentration region near the

hole. The minimum value of σθ, obtained where the circle intersects the z−axis,

agrees well with the theory of piezoelasticity as depicted in Figure 6.36.

It is evident in Figure 6.33–6.36 that the performance of developed elements

(SPQ4, NSPE-T3, NSPE-Q4) in predicting stress concentration near the hole

are better than those of standard finite elements (FEM-T3 or FEM-Q4)
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Figure 6.33: Distribution of σr along the line θ = 0.
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Figure 6.34: Distribution of σθ along the line θ = 0.
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Figure 6.35: Distribution of σr along the line θ = π/2.
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Figure 6.36: Distribution of σt along the line θ = π/2.
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6.5.9 Free vibration of a piezoelectric transducer

This section reports an eigenvalue analysis of a piezoelectric transducer consisting

of a piezoelectric wall made of PZT4 material with brass end caps as shown in

Figure 6.37. The piezoelectric material is electroded on both the inner and outer

surfaces. This problem is similar to the one studied numerically by Liu et al.

(2003) and experimentally by Mercer et al. (1987). It is also a typical example

described in Section 6.1.1 of ABAQUS/Standard (2004).

The material properties of PZT4 are as follows.

ρ = 7500 kgm−3,

c =




115.4 74.28 74.28 0 0 0

74.28 139.0 77.84 0 0 0

74.28 77.84 139.0 0 0 0

0 0 0 25.64 0 0

0 0 0 0 25.64 0

0 0 0 0 0 25.64




GPa,

e =




15.08 −5.207 −5.207 0 0 0

0 0 0 12.710 0 0

0 0 0 0 12.710 0


 Cm−2,

g =




5.872 0 0

0 6.752 0

0 0 6.752


× 10−9Fm−1,

and the material properties of brass are: ρ = 8500 kgm−3, E = 10.4×1010 Pa, ν =

0.37.

The transducer is modelled as an axisymmetric structure with 44 uniform elements

as shown in Figure 6.38. The obtained results are compared with those of Liu

et al. (2002) using PIM mesh-free method and experimental results reported in

Mercer et al. (1987) as given in Table 6.6. The values in parentheses correspond

to the relative error compared with experimental results.
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Figure 6.37: Representative sketch of a piezoelectric transducer.
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Figure 6.38: Domain discretization of a piezoelectric transducer: (a) triangular

mesh and (b) quadrilateral mesh.

It can be seen that the present solutions of the SPQ4, NSPE-T3 and NSPE-Q4

elements in general indicate good agreement with experimental results and give
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Table 6.6: Computed eigenvalues of the transducer and comparison with other

solutions.

Model Mode 1 Mode 2 Mode 3 Mode 4

Experimental 18.6 35.4 54.2 63.3

PIM (44 cells) 19.9 42.8 59.7 66.1

(6.989%) (20.904%) (10.148%) (4.423%)

FEM-Q4 (44 element) 20.387 43.443 62.874 67.993

(9.607%) (22.720%) (16.003%) (7.414%)

FEM-T3 (88 element) 20.905 44.181 64.101 72.196

(12.392%) (24.805%) (18.267%) (14.053%)

NSPE-Q4 (69 nodes) 19.169 42.721 47.642 60.604

(3.059%) (20.681%) (-12.099%) (-4.259%)

NSPE-T3 (69 nodes) 19.433 42.206 48.086 62.271

(4.478%) (19.226%) (-11.280%) (-1.626%)

SPQ4 (44 elements) 18.214 41.773 58.642 65.798

(-2.075%) (18.003%) (8.195%) (3.946%)

smaller relative error than those of PIM, FEM-T3 and FEM-Q4 results. The first

four mode shapes are also displayed in Figure 6.39 which appears identical to

those depicted in Liu et al. (2003).
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Figure 6.39: Piezoelectric transducer: the first four mode shapes with (a) trian-

gular mesh and (b) quadrilateral mesh.
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6.6 Concluding remarks

This chapter presents the successful development and implementation of a family

of novel and robust low-order piezoelectric elements for linear static and frequency

analysis of planar piezoelectric structures. The incorporation of the SCNI tech-

nique into the finite element method gives the novel elements several advantages:

(1) field gradients are to be computed directly from shape functions themselves

(i.e. derivatives of shape functions are not required). This property can reduce the

requirement on the smoothness of shape functions and low-order shape functions

can be used to obtained accurate solutions. (2) the transformation of domain in-

tegrations into boundary integrations eliminates coordinate transformation (map-

ping) and contributes to the preservation of high accuracy of the method when

extremely distorted elements are used; (3) the method is straightforward and

simple to implement because the constructions of the stiffness matrices of the

developed elements are very similar to those of the standard FEM.

The reliability, accuracy and convergence of the novel element formulations are

demonstrated through various favourable comparisons with other existing ele-

ments as well as analytic solutions. Both the cell-based and node-based ap-

proaches are able to offer better results in comparison with the conventional FEM

using linear/bilinear shape functions and even more accurate than some mesh-free

methods in some cases. Furthermore, the proposed methods allow the elimina-

tion of the need for well-shaped element discretisation of the problem domain to

obtain accurate solution in the standard FEM. Their performance with respect to

analytic solution is excellent even with extreme element distortions.

Among two approaches, the node-based method provides more accurate predic-

tion of the solution than those of the cell-based method with the same degrees

of freedom. In addition, the node-based method is more convenient to compute

directly nodal stresses while the cell-based method and the standard FEM need to

use post-processing to recover these stresses. Therefore the node-based approach

is very promising in terms of a simple and practical procedure for stress anal-

ysis. Within the two developed node-based elements, the node-based NSPE-T3

element, in general, is better in term of accuracy than the NPSE-Q4 element as

shown through many examples.
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Chapter 7

Conclusions

7.1 Summary and conclusion

In this thesis, a class of novel and robust low-order displacement-based finite

elements for the analysis of composite structures are formulated and presented.

The elements are based on the incorporation of the strain smoothing technique

of the stabilized conforming nodal integration (SCNI) mesh-free method into the

conventional finite element method through the assumed strain technique. The

outcome of the present research is the successful creation and implementation of

the following novel finite element models:

• Two novel, simple and high-performance low-order quadrilateral flat ele-

ments (MISQ20 and MISQ24) for modelling general plate and shell struc-

tures which can not only easily be adapted to a particular material type (i.e.

composite laminates, isotropic materials or functionally graded materials)

but also improve model accuracy and alleviate numerical instabilities for

geometrically linear and nonlinear analysis.

• Two novel, simple, accurate and efficient piezoelectric elements (SPQ4 and

NSPE-Q4/NSPE-T3) for linear static and free vibration analysis of electro-

mechanical coupling behaviours of planar piezoelectric structures.
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The new flat quadrilateral plate/shell elements, MISQ20 and MISQ24, have the

following important properties:

¦ The elements are formulated based on the equivalent single-layer first-order

shear deformation theory and hence they can be used for analysis of mod-

erately thick to thin structures.

¦ The evaluation of membrane, bending and geometric stiffness matrices are

computed by integration along the boundary of smoothing elements. There-

fore the amount of computation required to calculate the element stiffness

matrix are reduced when compared with domain integration approach.

¦ The elements pass patch tests which imply the convergence of solutions with

mesh refinement.

¦ The elements are free from membrane and shear locking in the limit of thin

plates/shells without any spurious zero-energy modes.

¦ The elements are insensitivity to extreme shape distortion and provide good

accuracy even with coarse meshes or warping geometries.

¦ The elements are simple in formulation and their implementation straight-

forward. Linear/nonlinear constitutive laws can be incorporated into an

existing finite element code with a minimum effort.

¦ The elements can be considered as some of the simplest flat quadrilateral

elements for analysis of plate/shell structures.

¦ The accuracy of the present models is assessed by comparison with analytical

or experimental and numerical solutions available in the literature. Highly

accurate solutions obtained in all cases show that the elements are reliable

and have good predictive capability in the analysis of moderately thick and

thin plates/shells of arbitrary geometries.

In the case of coupled analysis of piezoelectric systems, two different approaches

are utilized to develop two new smoothing piezoelectric finite elements. The first

one is the cell-based element (SPQ4) based on the subdivision of original quadrilat-

eral finite elements into smoothing cells. The second one, the node-based element



7.1. Summary and conclusion 232

(NSPE-T3 or NSPE-Q4), is created by transforming a triangular or quadrilateral

mesh into a mesh of new smoothing cells associated with each of the nodes of

the original mesh. The significant features of the developed piezoelectric finite

element models are summarized as follows.

¦ The element field gradients are computed directly from shape functions

themselves (i.e. derivatives of shape functions are not required) and no

limitation is imposed on the shape of elements in the original mesh.

¦ No coordinate transformation or mapping is required in the present formu-

lations and problem domains can be discretized in more flexible ways than

the traditional FEM.

¦ The transformation of domain integrations into boundary integrations con-

tributes to the preservation of high accuracy of the method in cases of ex-

tremely distorted elements and may reduce the computational cost. This

also allows the elimination of the need for uniform discretisation of the prob-

lem domain to obtain accurate solutions.

¦ The element formulations are straightforward and simple to implement be-

cause the construction of the element stiffness matrices are very similar to

those of the standard FEM.

¦ The elements pass patch tests for plane piezoelectric problem which implies

convergence of solutions with mesh refinement.

¦ The accuracy and reliable of the present elements are justified through var-

ious favourable comparisons with other existing elements as well as experi-

mental or analytic solutions.

In conclusion, the present research results in new, simple and efficient finite ele-

ment formulations, which is a contribution to further knowledge and understand-

ing in the area of computational engineering using finite element analysis. Nu-

merical simulations are studied and demonstrated in a wide range of engineering

applications involving analysis of plate/shell structures with various geometric

shapes (rectangular, triangular, skew, circular plates; cylindrical, spherical, hy-

perbolic paraboloid shells, etc.) as well as different type of materials (isotropic,
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laminated composite or functionally grade material). The obtained numerical re-

sults have provided a definitive and better understanding of the effect of modulus

ratios, fibre orientations, different mixed boundary conditions, span-to-thickness

ratios and lay-up sequences (i.e. cross-ply, angle-ply, symmetric/unsymmetric

laminates) on the behaviour of laminated composite structures regimes in bend-

ing, free vibration and buckling analysis. The present method has also been shown

to be applicable to other types of composite structures such as piezoelectric mate-

rials. Bending analysis and free vibration of planar piezoelectric structures have

been investigated in detail through several numerical examples. It is found that

the elements offer the advantage of lower computational cost and superior perfor-

mance in comparison with more conventional finite elements.

7.2 Suggested work

The presently developed framework can be further improved to offer a more valu-

able model for the analysis of composite structures. The following points are

suggested for future research as a possible continuation of this work

• The present method has been successfully formulated for elastic analysis

and it is therefore natural to further develop the model to investigate elasto-

plastic behaviour of composite structures.

• It is probable that material nonlinearities will occur during the deforma-

tion of structures. Therefore, nonlinear material models need to be devel-

oped and incorporated in the present formulation to cater for a more real-

istic structural behavior. Post-buckling analysis to determine the ultimate

strength of plate/shell structures can be also investigated.

• It would be interesting to advance a damage model for characterization of

damage evolution and propagation in composite structures using the present

formulation. Crack and fatigue failures can also be included.

• Another research direction is to extend the models for analysis and design of

vibration shape control of FGM or laminated composite plates/shells with

piezoelectric coupling.
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Appendix A

Determination of transverse

shear stresses

A detailed theory for calculating the transverse shear stresses is thoroughly out-

lined in Rolfes and Rohwer (1997). Only those relationships necessary to obtain

the transverse shear stresses are given here.

By solving the local equilibrium equations in the x− and y−direction for trans-

verse shear stresses, the following equation is obtained

τ z =


 τ

(k)
xz

τ
(k)
yz


 = −

∫ ζ=z

ζ=0


 σ

(k)
x,x + τ

(k)
xy,y

σ
(k)
y,y + τ

(k)
xy,x


 dζ. (A.1)

With the assumption of vanishing normal stress, the material law for the kth

lamina is

σ(k)
m =




σx

σy

τxy




(k)

= Q̄(k)(εm + zεb), (A.2)

where Q̄(k) are the reduced stiffness of the kth lamina and εm and εb denote the

lamina membrane and bending strains, respectively.

Substituting Equation (A.2) into Equation (A.1) yields

τ z = −
∫ ζ=z

ζ=0

[
B1Q̄

(k)(εm,x + ζεb,x) + B2Q̄
(k)(εm,y + ζεb,y)

]
dζ, (A.3)
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in which B1 and B2 denote Boolean matrices in the following form

B1 =


 1 0 0

0 0 1


 , B2 =


 0 0 1

0 1 0


 . (A.4)

Using the elasticity law of the laminate

 N

M


 =


 A B

B D





 εm

εb


 , (A.5)

where A, D and B are the membrane, bending and coupling stiffness, respectively

and

M =




Mx

My

Mxy


 , N =




Nx

Ny

Nxy


 . (A.6)

Since the influence of the membrane forces on the transverse shear stresses is very

small, the membrane forces N can be neglected and the laminate strains can be

expressed by only the moments as follows.

εm = −A−1Bεb, (A.7)

εb = −D∗−1M, (A.8)

where

D∗ = (D−BTA−1B). (A.9)

Substituting Equation (A.7)–(A.9) into Equation (A.3) the transverse shear stresses

are obtained as

τ z = −B1F(z)M,x −B2F(z)M,y, (A.10)

where

F(z) =
(
a(z)A−1B− b(z)

)
D∗−1, (A.11)

in which a(z) and b(z) are partial membrane and coupling stiffnesses of the lam-

inate, respectively. They are defined as

a(z) =

∫ ζ=z

ζ=0

Q̄dζ, b(z) =

∫ ζ=z

ζ=0

Q̄ζdζ. (A.12)
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Further assuming cylindrical bending around the x− axis yields

M,x =




Mx,x

0

0


 , (A.13)

and around the y− axis provides

M,y =




0

My,y

0


 . (A.14)

Then, the derivatives of the moments can be related to the shear forces as

Rxz = −Mx,x, (A.15)

Ryz = −My,y. (A.16)

With the aid of the above relations, the moment derivatives in Equation (A.10)

are replaced by transverse shear forces, leading to

τ z =


 F11 F32

F31 F22





 Rxz

Ryz


 = f(z)R. (A.17)

where the transverse shear force R can be calculated using the material law

R = Ḡγ, (A.18)

in which Ḡ is the improved transverse shear stiffness matrix given as

Ḡ =

[∫
fTG−1fdz

]−1

, (A.19)

where G is the shear moduli matrix.



237

Appendix B

Assumed strain smoothing finite

elements for FGM

Reissner-Mindlin plates

B.1 Material properties and thermal analysis

Consider a functionally graded material (FGM) plate of thickness h made of two-

constituent material such as ceramic and metal. The material property is assumed

to vary through the thickness direction with the following power-law distribution:

V (z) = (Vt − Vb)Vc + Vb, (B.1)

Vc =

(
1

2
+

z

h

)n

, (n ≥ 0, −h

2
≤ z ≤ h

2
). (B.2)

where V denote a generic material property, Vt, Vb represent the material prop-

erties at the top (ceramic) and bottom (metal) faces of the plate, respectively, z

is the thickness coordinate, Vc is the volume fraction and n is the volume fraction

exponent. The variation of the volume fraction through the thickness for different

value of n is plotted in Figure B.1.

For all cases of FGM plates being exposed in a temperature field, the temperature

is assumed to be constant in the plane of the plate and varies only through the

thickness direction. The temperature distribution across the thickness can be
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Figure B.1: Variation of the volume fraction Vc versus the normalized thickness.

obtained by solving the one-dimensional steady heat transfer equation:

− d

dt

(
λ(z)

dT

dz

)
= 0 (B.3)

with the thermal boundary conditions

T = Tt at z = h/2, T = Tb at z = −h/2.

The solution of Equation (B.3) is then obtained as

T (z) = Tt − Tt − Tb∫ h/2

−h/2
(dz/λ(z))

∫ h/2

z

dξ

λ(ξ)
(B.4)

where the thermal conductivity λ(z) varies according to the power-law distribution

of Equation (B.1). The thermal effects are often introduced at the constitutive

level and are described in the next section.

B.2 Assumed strain smoothing finite element for-

mulation for FGM Reissner-Mindlin plates

Based on the Reissner-Mindlin theory, the displacement fields are expressed as

u(x, y, z) = −zθx(x, y), v(x, y, z) = −zθy(x, y), w(x, y, z) = w(x, y). (B.5)
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The in-plane strain vector is defined as

εb = [θx,x θy,y θx,y + θy,x]
T , (B.6)

and the transverse shear strain is

γ = [θx − w,x θy − w,y]
T . (B.7)

Under a given temperature distribution T with a thermal coefficient of expansion

α(z), the thermal strain vector in the plate is given by

εth = [α(z) (T (z)− T0) α(z) (T (z)− T0) 0]T . (B.8)

Then, the constitutive relations are expressed as

σ = B(z)(ε− εth), τ = S(z)γ, (B.9)

where σ = [σx, σy, σxy]
T and τ = [τx, τy]

T are the total in-plane and shear stresses,

respectively.

The grading matrices B(z) and S(z) are defined as

B(z) =
E(z)

1− ν2




1 ν 0

ν 1 0

0 0 1−ν
2


 , S(z) =

E(z)

1− ν2




1−ν
2

0

0 1−ν
2


 (B.10)

In the Reissner-Mindlin model, the total potential energy under the thermal load

and the mechanical pressure load p can be written as

Π(θx, θy, w) =
1

2

∫

Ω

εT
b DbεbdΩ +

ks

2

∫

Ω

γTDsγdΩ +
1

2

∫

Ω

mthεbdΩ−
∫

Ω

pwdΩ,

(B.11)

where ks = 5/6 is the shear correction factor and the elasticity matrices are given

as

Db =

∫ h/2

−h/2

B(z)z2dz, Ds =

∫ h/2

−h/2

S(z)dz, (B.12)

and the vector of the thermal moments is

mth =

∫ h/2

−h/2

B(z)εthzdz =
1

1− ν




∫ h/2

−h/2
α(z)E(z)(T (z)− T0)zdz

∫ h/2

−h/2
α(z)E(z)(T (z)− T0)zdz

0


 (B.13)
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Consider a bounded domain Ω =
ne∑
i=1

Ωe of a FGM plate which is discretized into

ne finite elements. The finite element solution u of a displacement-based 4-node

quadrilateral model is approximated as

u =





w

θx

θy





=
4∑

i=1

Niqi, (B.14)

where Ni is the bilinear shape function, qi = [wi θxi θyi]
T is the nodal displace-

ment vectors of the element.

The corresponding approximation of the smoothed bending strain and the as-

sumed natural shear strains can be expressed in the following forms

ε̃b = B̃bq, γ = B̄sq, (B.15)

where B̃bi and B̄si were already defined in Equation (3.54) and Equation (3.59)

of Chapter 3 as follows.

B̃bi =
1

AC

4∑

b=1




0 Ni(x
G
b )nx 0

0 0 Ni(x
G
b )ny

0 Ni(x
G
b )ny Ni(x

G
b )nx


lb, (B.16)

B̄si = J−1


 Ni,ξ b11

i Ni,ξ b12
i Ni,ξ

Ni,η b21
i Ni,η b22

i Ni,η


 . (B.17)

By minimizing Equation (B.11), the finite element formulations for thermoelastic

static analysis of Reissner-Mindlin FGM plates can be obtained as follows.

K̃q = F̃, (B.18)

where K̃ is the element stiffness matrix and F̃ is the element load vector, which

are given as

K̃ =
nc∑

C=1

B̃T
bCDbB̃bCAC +

∫

Ω

B̄T
s DsB̄sdΩ, (B.19)

F̃ =

∫

Ω

pNdΩ +
nc∑

C=1

mthB̃bCAC , (B.20)

in which the number of smoothing cells nc is chosen as nc = 2.
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