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Abstract
Undeniably, there is a link between water resources and people’s lives and, consequently, economic development, which 
makes them vital in health and the environment. Proper water quality forecasting time series has a crucial role in giving 
on-time warnings for water pollution and supporting the decision-making of water resource management. The principal 
aim of this study is to develop a novel and cutting-edge ensemble data intelligence model named the weighted exponential 
regression and hybridized by gradient-based optimization (WER-GBO). Indeed, this is to reach more meticulous sodium 
(Na+) prediction monthly at Maroon River in the southwest of Iran. This developed model has advantages over other previ-
ous methodologies thanks to the following merits: (i) it can improve the performance and ability by mixing the outputs of 
four distinct data intelligence (DI) models, i.e., adaptive neuro-fuzzy inference system (ANFIS), least square support vector 
regression (LSSVM), Bayesian linear regression (BLR), and response surface regression (RSR); (ii) the proposed model 
can employ a Cauchy weighted function combined with an exponential-based regression model being optimized by GBO 
algorithm. To evaluate the performance of these models, diverse statistical indices and graphical assessment including error 
distributions, box plots, scatter-plots with confidence bounds and Taylor diagrams were conducted. According to obtained 
statistical metrics and verified validation procedures, the proposed WER-GBO resulted in promising accuracy compared to 
other models. Furthermore, the outcomes revealed the WER-GBO (R = 0.9712, RMSE = 0.639, and KGE = 0.948) reached 
more accurate and reliable results than other methods such as the ANFIS, LSSVM, BLR, and RSR for Na prediction in this 
study. Hence, the WER-GBO model can be considered a constructive technique to forecast the water quality parameters.
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Introduction

One of the serious problems attracting much attention 
recently is the issue of water environment pollution (Uddin 
et al. 2021). Owing to the importance of management and 
prediction of water quality (WQ) in a real-life water envi-
ronment, researchers have developed numerous parameters 
(physical, biological, and chemical) that serve as the yard-
stick for the evaluation of water pollution (Vasistha and 
Ganguly 2020). The role of such parameters is to capture 
the balance between the rate of atmospheric exchange, oxy-
gen consumption processes (such as nitrification, chemical 
oxidation, and aerobic respiration), and oxygen production 
processes (such as photosynthesis). Hence, there is a need 
to come up with a method for the accurate prediction of 
water quality (Haghiabi et al. 2018), because an accurate 
water quality prediction has a profound impact on the water 
management (Tao et al. 2019). Being that most of the avail-
able indicators of water quality normally vary with time, 
decision-makers can only rely on accurate water quality pre-
diction in making accurate water environment management 
decisions that will ensure the maintenance of water quality 
values within an acceptable limit (Tiyasha et al. 2021a, b).

Data intelligence (DI) models have found increasing 
application in environmental engineering (Chen et al. 
2008; Yetilmezsoy et al. 2011; Chakraborty et al. 2019; 
Hou et al. 2020; Al-Sulttani et al. 2021; Khan et al. 2021; 
Song et al. 2021). They have specifically been applied in 
DI-driven techniques in climate, morphology, hydrology, 
geology, and water chemical-related problems (Maier 
et  al. 2014; Nourani et  al. 2014; Yaseen et  al. 2019; 
Li et al. 2021a). DI techniques have been successfully 
applied in the development of different learning models 
in the field of environmental monitoring, especially in 
the monitoring of hydrological parameters (Feng et al. 
2021; Tiyasha et al. 2021a, b). In the study by (Fan et al. 
2018), authors reported the real-time application of an 
intelligent water regimen monitoring system that could 
improve working efficiency. The performance of artifi-
cial neural network (ANN) integrated with wavelet trans-
formation (WT) was tested for prediction the electrical 
conductivity (EC) by (Ravansalar and Rajaee 2015). A 
hybrid approach that relies on training an ANN model 
utilizing the multi-objective genetic algorithm (MOGA) 
was developed by Chatterjee et al. (2017) for improved 
WQ prediction accuracy (Chatterjee et al. 2017). The sug-
gested model's performance was compared to that of the 
ANN-GA, the improved ANN model with particle swarm 
optimization method (ANN-PSO), and the SVM, and the 
findings revealed that the proposed model outperformed 
the benchmarking techniques. A hybrid model termed 
genetic algorithm (GA) and LSSVM (GA-LSSVM) was 

developed by Bozorg-haddad et al. (2016) to predict water 
quality characteristics (Bozorg-Haddad et al. 2017). They 
conducted a comparison between the suggested model 
and genetic programming (GP). Na + , K + , Mg + , SO-24 
and Cl dissolved solids (TDS) were modeled using a GA-
LSSVR algorithm and a GP technique in the Sefidrood 
River in Iran. The findings show that the GA-LSSVR 
algorithm outperforms the GP algorithm when it comes 
to predicting water quality metrics. In another research, 
EC was predicted using coupled wavelet extreme learning 
machine (W-ELM) (Barzegar et al. 2018). Abobakr Yahya 
et al. (2019) revealed that an effective model for the esti-
mation of WQ in the Ungauged River Catchment under 
Dual Scenarios had been developed (Abobakr Yahya et al. 
2019). With modest prediction errors, their model could 
accurately forecast the WQ. Total dissolved solids were 
predicted using coupled multigene genetic programming 
(MGGP) with wavelet data pre-processing (Jamei et al. 
2020). For the hybrid RNNs-DS model, Li et al. (2021a, 
b) merged recurrent neural networks (RNNs) with modi-
fied Dempster/Shafer (D-S) evidence theory to produce 
an RNNs-DS model that was both accurate and efficient 
(Li et al. 2021b). An array of ensemble machine learning 
models, comprising quantile regression forest (QRF), ran-
dom forest (RF), radial support vector machine (SVM), 
stochastically gradient boosting (SGB), and gradient 
boosting machines (GBM), were used by Al-Sulttani et al. 
(2021) (Al-Sulttani et al. 2021) to estimate the amount 
of biochemical oxygen demand (BOD) in the Euphrates 
River, Iraq. Two separate feature extraction approaches, 
genetic algorithm (GA) and principal components analy-
sis (PCA), were used to create integrative models. This 
investigation shows that the PCA-QRF model identified 
in research outperformed the solo methods and the GA-
integrated models in this study. To estimate the BOD 
in the Haihe River Basin in China, Song et al. (2021) 
(Song et al. 2021) developed a novel hybrid model, the 
improved sparrow search algorithm (ISSA), which com-
bined Cauchy mutation and opposition-based learning 
(OBL) with the long short-term memory (LSTM). The 
findings reveal that the addressing model outperforms 
the competitor models in terms of prediction accuracy.

One of the non-renewable resources affecting human 
life greatly is surface water owing to its importance 
to human existence (Asadollah et  al. 2020; Tiyasha 
et  al. 2021a, b). However, the rapid increase in eco-
nomic development has negatively impacted the qual-
ity of surface water in some developing countries, and 
the sustained deterioration in surface water quality 
increases water stress and water demand, with conse-
quential threats to human health in such regions (Tabari 
et al. 2011; Uprety et al. 2020; Wu et al. 2020; Dai et al. 
2021; van Vliet et al. 2021). Hence, precise and timely 
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monitoring and prediction of water quality are greatly 
important to avert threats to human life. Although sev-
eral review articles on the prediction of water quality 
parameters using DI models have been published (Chen 
et al. 2020; Rajaee et al. 2020; Giri 2021; Tiyasha et al. 
2021a, b), some limitations of the existing models as 
reported in the literature gives rise to the development 
of new DI models using different water quality param-
eters to ensure prediction accuracy improvement. The 
environmental protection agencies must take certain 
rapid measures when alerted on impending deteriora-
tion in water quality. However, these agencies mostly 
rely on old models for water quality prediction, and the 
low precision of these old water quality prediction mod-
els may limit their future application; the availability 
of few training data in the literature may also limit the 
precision of these learning models even though there are 
still uncertainties regarding the relationship between the 
amount of training data and the performance of surface 
water quality prediction models.

The performance of DI models in water quality pre-
diction is not usually only a function of the applied 
models and the amount of dataset, but also it is deter-
mined by the selected water parameters for the training 
of the learning models (Tiyasha et al. 2020; Abba et al. 
2020). Hence, the most important water parameters for 
the training of the learning models must be identified 
and selected without sacrificing the predictive perfor-
mance of the model; this could significantly improve the 
prediction efficiency and reduce the overall prediction 
cost (Yaseen et al. 2018; Tian et al. 2022). Nevertheless, 
there are still studies on the evaluation of the perfor-
mance of learning models in surface water quality pre-
diction to identify the most important water parameters 
from large training datasets.

The majority of DI models have achieved significant 
results as each model has its advantages and disadvan-
tages. In order to deal with the concerns of each model 
or the advantages of all models, ensemble models are 
attaining more attention (Jamei et  al. 2021b; Pandey 
et al. 2021). The main goal of this research is to develop 
ensemble models using artificial intelligence (AI) 
(Ahmadianfar et al. 2021, 2022) techniques to forecast 
sodium (Na) in the Tange-Takab station, in the south of 
Iran. The proposed model is based on a weighted expo-
nential regression optimized by gradient-based optimiza-
tion (WER-GBO). To the best of the authors’ knowledge, 
there are no published studies demonstrating the devel-
opment of the WER-GBO model in the field of mod-
eling, estimating, and predicting. The goal was obtained 
in three main steps: (1) selection of the best combina-
tion of input variables through the best subset analysis, 
(2) using four DI models (i.e., adaptive neuro-fuzzy 

inference system (ANFIS), least square support vector 
machine (LSSVM), Bayesian linear regression (BLR), 
and response surface regression (RSR)) to predict the 
Na and finally development of an ensemble model (i.e., 
WER-GBO) to boost the performance of the single DI 
models in forecasting the Na.

The current research objectives are (i) to develop 
a robust and accurate predictive model based on the 
hybridization weighted exponential regression model 
using gradient-based optimization for monthly records 
of sodium (Na) at Maroon River in the southwest of 
Iran and four DI models (i.e., ANFIS, LSSVM, RSR, 
and BLR), (ii) to introduce the data preprocessing and 
best input variables selection, (iii) to compare results by 
using the standalone DI models, wavelet-based DI mod-
els, and the proposed ensemble model, and (iv) finally, 
to describe the conclusion.

Methodology

Weighted exponential regression (WER)

WER is a weighted regression model based on the exponen-
tial function. The proposed WER uses a Cauchy function as 
a weighting function to increase the accuracy of the regres-
sion model’s results. In addition, to show the ability of the 
WER model, predicting the Na is also modeled by a linear 
model called WLR. The WER and WLR models for the Na 
prediction are formulated as follows,

where yWER and yWLR are the outputs of WER and WLR 
models. �1 , �2 , �3 , and �4 are the tuning parameters of WER 
model. w1 , w2 , w3 , and w4 are the weighting functions based 
on the Cauchy function, which is formulated as,

The gradient-based optimization algorithm is developed 
to extract optimal amounts of main unknown parameters of 
these two models based on measured data to predict the Na.

Accordingly, the following stages are implemented to 
derive optimal amounts of unknown coefficients of two 
models:

(1)	 All datasets consisting of input and output parameters 
(i.e., lag-time of discharge (Q) and Na) are collected.

(1)yWER = w1.X
�1
1
+ w2.X

�2
1
+ w3.X

�3
1
+ w4.X

�4
1

(2)yWLR = w1.X1 + w2.X2 + w3.X3 + w4.X4

(3)
w =

a(
b + c.

|||
|||xi − xj

|||
|||
2
)
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(2)	 The collected datasets from 1980 to 2016 are utilized in 
the GBO to determine the best values of tuning param-
eters of two models. The main criterion to choose the 
best values for parameters of two models is the mini-
mum objective functions, defined as,

where NaM,i and NaDI,i are the measured and DI mod-
els, N denotes the number of the dataset.

(3)	 Optimal amounts of the main parameters of each model 
are selected based on stage (2).

Gradient‑based optimization (GBO)

GBO is a math-based optimization algorithm developed 
based on Newton’s method (Özban 2004) to solve complex 
optimization problems (Ahmadianfar et al. 2020a). The 
method consists of two operators: (1) gradient search rule 
(GSR) and (2) local escaping operator (LEO). The main 
stages of GBO are explained in the following parts.

Initialization

GBO is initialized by creating a set of random solutions 
(population) with the size of N and D dimension, which is 
expressed as,

where LS and US are the lower and upper limits of the prob-
lem space, and rand has a random value in [0, 1].

Gradient search rule (GSR)

GSR is a search mechanism in the GBO to find the promis-
ing regions in the solution space. The mechanism is acquired 
by Newton’s method (Özban 2004). The GSR is expressed 
as,

in which

(4)Minimize g(x) =

N∑
i=1

(NaM,i − NaDI,i)
2

(5)xm = LS + rand × (US − LS)

(6)GSR = randn.R1.
2Δx × xm

(dpm − dqm + �)

(7)dpm = rand.(

[
um+1+xm

]
2

+ rand.Δx)

(8)dqm = rand.(

[
um+1+xm

]
2

− rand.Δx)

where randn has a random value with a normal distribution. 
� has a small value in [0, 0.1].xw and xb are the worst and 
best positions. R1 denotes a weighting factor. GM means the 
gradient direction to improve the exploitation. The GD is 
expressed as,

In Eq. (6), Δx is a differential vector, which is expressed 
as,

where a1,a2,a3,anda4(a1 ≠ a2 ≠ a3 ≠ a4 ≠ m ) are the four 
different integers values, randomly chosen from [1, N], and 
S is the step size.

Calculate the new solutions

To generate the new solution ( Z1it
m

 ) in the GBO, the GSR 
and GD are used by the following equations:

in which

where R1 and R2 are two adaptive weighting factors. The 
leading role of these factors is to make a proper equilib-
rium between the exploration and exploitation, which are 
formulated as,

(9)um+1 = xm − randn.
2Δx.xm

(xw − xb + �)
+ GD

(10)GD = rand.R2 × (xb − xit
m
)

(11)Δx = rand.|S|

(11-1)S =
(xb − xit

a1
) + �

2

(11-2)� = 2.rand.

[|||||
xit
a1
+ xit

a2
+ xit

a3
+ xit

a4

4
− xit

m

|||||

]

(12)Z1it
m
= xit

m
− GSR + GD

(13)Z1it
m
= xit

m
− randn.R1.

2Δx.xit
m(

dpm − dqm + �
) + GD

(13-1)GD = rand.R2.(xb − xit
m
)

(14)R1 = 2.rand.� − �

(15)R2 = 2.rand.� − �

(15-1)� =
||||� × sin

(
3�

2
+ ���

(
� ×

3�

2

))||||
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where it denotes the number of iteration, Maxit is the maxi-
mum number of iterations, �min and �max are equal to 0.2 and 
1.2, respectively.

To increase the exploitation in the GBO, another solution 
(16) is formulated as follows:

Finally, based on the solutions Z1it
m

 and Z2it
m

 , the new 
solution ( xnew ) is calculated as,

(15-2)� = �min +
(
�max − �min

)
.

(
1 −

(
it

Maxit

)3
)2

(16)

Z2it
m
= xb − randn.R1.

2Δx.xit
m(

dpit
m
− dqit

m
+ �

) + rand.R2.(x
it
a1
− xit

a2
)

(17)xnew = r1.
(
r2.V1

k
l
+
(
1 − r2

)
.V2k

l

)
+
(
1 − r1

)
.Z3it

m

in which

where r1 and r2 have two random values in [0, 1].

Local escaping operator (LEO)

The GBO uses an effective operator to avoid the local solu-
tions called the LEO. The new solution ( xnew ) is created 
based on two random solutions ( xit

a1
 , and xit

a2
 ) and the solu-

tions Z1it
m
 and Z2it

m
 , which is expressed as,

where �1 and �2 have two random values in [-1,1], and c1 , 
c2 , and c3 have random values, which are defined as:

(17-1)Z3it
m
= xit

m
− w1 × (Z2it

m
− Z1it

m
)

(18)

Fig. 1   Flowchart of GBO 
algorithm
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where xrand is a new random solution, xit
a5

 is a random 
selected solution ( a5 ∈ [1, 2,… , N]), and �2 has a random 
value in [0, 1]. The GBO’s flowchart is displayed in Fig. 1.

ANFIS model

There are a large variety of supervised learning algorithms, 
among which the hybrid learning algorithm is regarded for 
prediction problems, primarily because the hybrid learning 
algorithm is widely utilized. ANFIS, a hybrid model, origi-
nates from integrating ANN and fuzzy systems, employ-
ing ANN learning method to gain fuzzy if–then rules with 
sufficient membership functions (Jang 1993). It can learn 
things through vague data and bring along the result. On the 
other hand, ANFIS uses memory and self-learning neural 

(18-5)xrand = LS + rand.(US − LS)

Fig. 2   Location of Tabge-Takab station

where �1 has a random value in [0, 1].
The solution xit

rand
 in Eq. (18) is formulated as,

(18-1)c1 =

{
2.rand if 𝜏1 < 0.5

1 otherwise

(18-2)c2 =

{
rand if 𝜏1 < 0.5

1 otherwise

(18-3)c3 =

{
rand if 𝜏1 < 0.5

1 otherwise

(18-4)xit
rand

=

{
xrand if 𝜏2 < 0.5

xit
a5

otherwise
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network’s capabilities efficiently and creates a more constant 
training process (Huang et al. 2017).

Overall, ANFIS is, in fact, made by five distinct layers 
(Orouji et al. 2013). To put it simply, the input layer is a 
previous parameter and the other layers, namely rule-based 
along with three constant factors and a consequent factor, as 
well an output layer. Regarding the first layer, it can convert 
the input into a degree in the range of 0 and 1 or fuzzifica-
tion, being named premise parameter. Indeed, it can be an 
activation function along with membership function includ-
ing trapezoidal or generalized Bell, gauss and triangular 
(Mohammadi et al. 2016). Furthermore, the second layer 
can calculate the incoming signals to neurons through the 
product operator, while the third layer can bring the sig-
nals to a stable condition. However, the fourth layer is about 
fuzzification. The last layer can finally abstract the weighted 
output proportions.

Linear Regression (LR)

The linearity can be divided into two descriptions; linear 
to variable and linear to parameter. That is, modeling is 
considered a linear model on condition that the model is 
linear to parameter (Gujarati et al. 2012). Thus, the main 

criterion for the linear model is linear model to the param-
eter even though the model is linear to the variable or not 
to the variable. Regarding multiple linear regression mod-
els, their objective is to assess the relationship of two or 
several independent variables with dependent ones, which 
is widely used. Making correlation or relationship between 
dependent and independent variables as well as the relation-
ship between independent ones with each independent lin-
ear variable is essential before starting the process of linear 
regression modeling. Besides, it is important to test the pos-
sibility of whether the relationship between the independent 
and dependent variables could utilize Spearman or Pearson 
correlation test (Hauke and Kossowski 2011), although there 
are various testing procedures to examine the linearity test, 
namely Reset test, White test and Terasvirta test (Teräsvirta 
et al. 1993). Provided that one dependent variable ( y ) of m 
independent variables ( x1 , x2 , …, xm ) is available, the models 
of multiple linear regression can be reformulated as:

(19)y = a0 + a1x1 + a2x2 +⋯ + amxm + �

(20)y = aX + �

Fig. 3   Time series of (A) Q 
(input) and (B) Na (target)
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where y denotes the dependent variable, a is the coefficients 
of the LR model, and � denotes the error vector.

To reach the regression model, the a parameter can be cal-
culated by the following formula (Draper and Smith 1998):

Bayesian Linear Regression (BLR)

Regression modeling with parameter calculation technique 
is Bayesian linear regression (BLR), wherein the Bayesian 
method (Box and Tiao 2011) is used. This procedure lies on 
likelihood, prior and posterior distribution, in which param-
eters are calculated based on posterior distribution multi-
plying the prior one with likelihood distribution. Addition-
ally, there is an OLS (i.e., ordinary least square) calculation 

(21)Y =

⎡⎢⎢⎢⎣

y1
y2
⋮

yn

⎤⎥⎥⎥⎦
X =

⎡⎢⎢⎢⎣

1 x11 … x1m
1 x21 … x2m
⋮ ⋮ ⋮ ⋮

1 xn1 … xnm

⎤⎥⎥⎥⎦
a =

⎡⎢⎢⎢⎣

a0
a1
⋮

am

⎤⎥⎥⎥⎦
� =

⎡⎢⎢⎢⎣

�1
�2
⋮

�n

⎤⎥⎥⎥⎦

(22)â =
(
XTX

)−1
XTY

strategy for linear regression model, with it working by nor-
mal distributed error hypothesis, at � ∼ N(0, �2) . The vari-
ables (Y|X, a,�2 ) are highly likely to be distributed normally 
since they are similar to the error. Therefore, pdf or prob-
ability density function for variables (Y|X, a,�2 ) ∼ N(Xa, �2) 
can be defined as (Mutiarani et al. 2012):

According to the pdf, the likelihood of the mentioned 
variables is formulated in the following:

Hence, many prior distributions are available to be 
employed in the Bayesian procedure of linear regression 
model, among which the distribution of prior conjugate 

(23)

prob
�
Y ∣ X, a, �2

�
=

1√
2��2

exp
�
−

1

2�2
(Y − Xa)T (Y − Xa)

�

(24)

prob
�
Y ∣ X, a, �2

�
=
�m

j=1

1√
2��2

exp
�
−

1

2�2
(Y − Xa)T (Y − Xa)

�

(25)

prob
(
Y ∣ X, a, �2

)
=
(
�2
)− m

2 exp
[
−

1

2�2
(Y − Xa)T (Y − Xa)

]

Fig. 4   ACF and PACF graphs of Q and Na datasets
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(Rubio and Genton 2016) can be one of the probable meth-
ods. By considering the manner of iteration in marginal 
posterior, the calculation of regression model’s parameters 
through Bayesian procedure can be done. Also, posterior dis-
tribution can be estimated by multiplying the likelihood as 
well the prior distribution function (Mutiarani et al. 2012).

where k is the number of regression coefficients, (
�2
)−( u

2
+1

)
.exp

(
−

us2

2�2

)
 denotes the inverse Gamma(a, b) , 

where a = u∕2 and b = us2 . � is [a0, a1,… , am]
T.

MCMC or Markov Chain Monte Carlo (Geyer 1992) 
algorithm is employed to reach the calculation of the regres-
sion model’s parameters in the Bayesian procedure. Indeed, 
Gibbs sampling is one of the most well-known approaches in 
MCMC. In the following, the process of iteration for param-
eters calculation is done till the burn-in circumstances are 
completed.

LSSVM model

Vapnik (1995) presented initially the support vector machine 
or (SVM) algorithm based on statistical learning theory 
(Vapnik et  al. 1995). This algorithm indeed focuses on 
formulating the training process in modeling by employ-
ing quadratic programming. Likewise, an improved SVM 
called the least squares SVM (LSSVM) was introduced by 
(Suykens and Vandewalle 1999) to minimize the computa-
tional time of the SVM algorithm process. Take into account 
a training set of M datasets and the input and output data xm 
and y, respectively. The LSSVM-based models in feature 
space for regression matters are described as (Samui and 
Kothari 2011):

(26)

p
(
a, �2 ∣ Y ,X

)
∝ p

(
Y ∣ X, a, �2

)
p
(
�2

)
p
(
a ∣ �2

)
=
(
�2
)− m

2

exp
[
−

1

2�2
(Y − Xa)T (Y − Xa)

]
.
(
�2
)−( u

2
+1

)
.

exp

(
−
us2

2�2

)
.
(
�2

)−k∕2
exp

[
−

1

2a2
(a − �)TΛ(a − �)

]

(27)y = QT∅(x) + c

Table 1   Main information of dataset employed in train and test

Mode Statistic Q Na

Training No. of observations 302 302
Minimum 4.900 0.900
Maximum 532.000 30.000
Median 23.550 11.450
Mean 51.575 11.276
SD 71.707 5.039
Skewness (S) 3.646 0.262
Kurtosis (K) 17.070 0.064

Testing No. of observations 130 130
Minimum 3.060 3.120
Maximum 479.000 17.100
Median 17.900 9.660
Mean 37.099 9.556
SD 2.733 64.282
Skewness (S) 0.042 4.648
Kurtosis (K) -0.095 24.643

AC R1 0.439 0.622
R2 0.216 0.413
R3 0.099 0.188
R4 -0.045 -0.013

Fig. 5   Cross correlation values between input and target

Table 2   BRS to optimally select 
the input combination of Na for 
DI models

Combinations R2% R2−Ajd% Cp PC

1 Nat-1 0.386 0.384 90.192 0.617
2 Qt /Nat-1 0.486 0.484 7.610 0.519
3 Qt /Nat-2 /Nat-1 0.494 0.490 3.053 0.513
4 Qt /Nat-3 /Nat-2 /Nat-1 0.496 0.492 2.991 0.513
5 Qt-2 /Qt /Nat-3 /Nat-2 /Nat-1 0.497 0.491 4.394 0.515
6 Qt-3 /Qt-2 /Qt /Nat-3 /Nat-2 /Nat-1 0.497 0.490 6.165 0.517
7 Qt-3 /Qt-2 /Qt-1/ Qt /Nat-3 /Nat-2 /Nat-1 0.497 0.489 8.000 0.519
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in which ∅(x) is considered an adaptable weight vector, c 
denotes the scalar threshold regarded as bias. Q defines the 
mapping function moving the input data into a larger dimen-
sional feature space. In the following, the given optimization 
problem is mathematically written for function calculation:

wherein v describes the error variable while � being the reg-
ulative constant. Eventually, the LSSVM can be achieved 
by making a solution for the given optimization problems:

where Kr
(
x, xi

)
 is considered the kernel function. In this 

research, radial basis function (RBF) as a kernel function is 
broadly utilized to support the previous research (Baesens 

(28)
Minimize ∶

1

2
Q

T

Q +
1

2
�
∑M

t=1
v2
t
Subjected to ∶ y

= QT∅(x) + c + vt , t = 1,… ,M

(29)f (x) =

M∑
i=1

aiKr
(
x, xi

)
+ c

et al. 2000), in which diverse datasets compared the poly-
nomial kernels and RBF. More significantly, the first kernel 
seems to be more appropriate than the second. RBF can be 
described by:

where � denotes the tuning parameters of the kernel 
function.

Response surface regression (RSR)

In order to find a relationship between a number of input variables 
determined by (x1, x2,… , xm) and a response Y, RSR (Gunst 1996; 
Bezerra et al. 2008) containing a set of approaches is employed. 
Overall, this relationship is estimated by the polynomial model as:

(30)K
�
x, xi

�
= exp

�
−
‖x − xi‖2

2�2

�

Fig. 6   Decomposition of Q and Na time series for Bior6.8 and Dmey
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in which X = (x1, x2,… , xm) , f (X) indicates the vector 
function of K containing the powers and cross-products of 
x1, x2,… , xm to a distinct degree detected by d(≥ 1) . Besides, 
� defines a random experimental error. a describes the vector 
of k stable parameters. In RSM, usually, two major conven-
tional models are utilized, including the first-degree ( d = 1 ) 
and second-degree model ( d = 2 ). In this study, the second-
degree model RSM is employed, wherein

Evaluation criteria

In this study, seven well-known statistical metrics are used to assess the 
efficiency of DI models in forecasting the Na, including the correlation 

(31)y = f
�

(X)a + �

(32)
y = a0 +

∑m

j=1
ajxj +

∑
k

∑
j>k

akixkxj +
∑m

j=1
akx

2
j
+ 𝜖

coefficient (R), mean absolute percentage error (MAPE), root mean 
square error (RMSE), Willmott’s agreement Index (IA), mean abso-
lute error (MAE), relative absolute error (RAE), and Kling–Gupta 
efficiency (KGE) (Gupta et al.), which are formulated as,
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1
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)2
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Fig. 6   (continued)
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where N is the total number of datasets, NaM,i denotes the 
measured dataset of Na, whilst NaDI,i expresses the predicted 
Na by DI models. NaDI  and NaM denote the average amounts 
of the predicted Na and measured dataset correspondingly. 
SDDI and SDM are the standard deviation of the predicted 
and measured datasets.

In this paper, the performance index (PI), a multi-index 
criterion, was employed to convert the stated seven metrics 
into a single metric. This assists the user to facilitate deci-
sion making in selecting the best DI model. The proposed 
PI is formulated as,

where MAEPmax , MAEmax , RMSEmax and MAEmax express 
the maximum amounts of MAEP , MAE, RMSE and MAE 
computed by DI models, whereas IAmin , Rmin and KGEmin 
indicate the minimum amounts of IA , R andKGE , which are 
calculated by DI models.

This study uses the Taylor diagram (Taylor 2001), 
a graphical metric, to clearly show the higher effi-
ciency of the proposed model in comparison with 
other models. To implement this metric, three sta-
t ist ical  metr ics are used to plot  this graph, such 
as  standard deviat ion (SD),  centered root  mean 
square er ror (  cRMSE  ) ,  and (R).  The performance 
of DI models is specif ied by geometr ical distance 
to desired point (target point) in a polar space dis-
played in the graph (Taylor 2001).  The cRMSE  is 
expressed as,

where SDM and SDDI  denote the standard deviation 
of the measured and predicted amounts by DI models 
correspondingly.
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√
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(41)cRMSE2 = SD2
M
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DI
− 2.R.SDM .SDDI

Case study and data preprocessing

Study area

This research lies on water quality prediction based on Na prediction 
estimated at the Tange-Takab station in Maroun River, Khuzestan 
province, in Iran with Longitude 50° 20′ 02'', Latitude 30° 41′ 09'', 
and 280 heights from mean sea level. This study is conducted by 
considering the main water quality parameters including Sodium 
(Na) and discharge (Q) on a monthly basis. Since the area is 
comprised of the drainage area of 6,824 km2 and roughly 310 km 
long, this river has an integral role in various purposes such as 
irrigation, drinking water as well recreational activities in Iran, in 
particular local dwellers in this province. Figure 2 illustrates the 
locality of this station (Fig. 3).

Pre‑processing and selecting the best combination

In this part, the principal combinations of the gathered water 
quality datasets during the 36 years, from 1980 to 2016 on 
a monthly basis, are addressed in order to forecast the Na 
through DI models. These data consist of training and testing 
datasets, being 70 and 30 per cent or 302 and 130 months of 
the whole dataset correspondingly. The time series of Q as 
independent variables are displayed in Fig. 4A. To add to it, 
the Na time series as a target in testing and training intervals 
are shown in Fig. 4B. Table 1 provides the information on 
the factor’s categorizations, namely kurtosis (K), average 
(AVG), skewness (S), maximum (MAX), minimum (MIN), 
autocorrelation coefficients (AC), and standard deviation 
(SD) for testing, training and other data points. According 
to Table 1, the amounts of K and S for Na in the training and 
testing dataset stand at [0.064, 24.643] and [0.262, 4.648] 
ranges. Nonetheless, K range ([15.4, 48.81]) and S range 
([3.469, 6.49]) for the Q indicate that the time series’ dis-
tribution has significant disparity from regular distribution.

One of the most significant steps in the prediction of Na 
parameter through DI models is to choose the most appropri-
ate input variables’ combination. Simply put, the time series’ 
lags have a profound impact on this step (Malik et al. 2019; 
Jamei et al. 2020). Three statistical methods, namely cross 
correlation (CC), auto-correlation function (ACF) and partial 
auto correlation function (PACF), are employed to determine 
the input variables’ input combination (Barzegar et al. 2016).

As illustrated in Fig. 4, the calculation process of effi-
cient input parameters is done by employing PACF and 
ACF. Apparently, the lagged input variables 1-month and 
2-month’s AFC has a profound impact on Qt , original input 
datasets. By contrast, the ACF of 1-month, 2-month, and 
3-month lagged input variable Nat is more efficient compared 
to the lagged times Qt−3,Qt−4,… , ;Nat−4,… . The 1-month 
lagged signal can be set for Nat and Qt with regard to PCFA.
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As can be observed in Fig. 5, the input signal at the pre-
sent time, Qt , Qt−1 , Qt−2 , Qt−3 , and Nat−1 , Nat−2 , Nat−3 , time-
lagged signals for Nat have a large proportion of correlation, 
bringing along an influential predictive model in comparison 
with Nat−4 and Qt−4 . The comparison of cross-correlation 
and target signals ( Nat ) indicates the Nat−1 and Nat−2 affect 
significantly  Nat parameter prediction in target thanks to 
high correlation coefficients, accounting for by 0.62 and 0.41 
Nat−1 , Nat−2 correspondingly. Summing up, the assessment 
of ACF, CC, and PACF proves that there is a suitable range 

for lags, as lagged t to t − 4 for Nat and t − 1 to t − 3 months 
in the present month prediction of Nat.

The best subset regression, BSR, was addressed in this 
research to specify the most appropriate input patterns from 
probable and current patterns. In this regard, a wide range 
of various factors such as Mallows ( Cp ) (Gilmour 1996), R2, 
Amemiya prediction criterion (PC) (Claeskens and Hjort 
2008) and adjusted R are employed to detect optimal input 
pattern for water quality targets. The PC and Cp are formu-
lated as (Kobayashi and Sakata 1990):

Fig. 7   Flowchart of DI models 
for predicting Na
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wherein RSSk indicates the squares’ residual sum, MSEm 
is considered mean squared error, N denotes the historical 
number of datasets and k defines the number of predictors. 
Table 2 depicts the classification of the outcomes of BSR 
analysis Nat , and also the analysis of Nat was assessed for 
five distinct suitable combinations. These combinations are 
the optimum input data in predictive models according to the 
most appropriate outcomes, including PC ([0.513, 0.517]), 
R2 ([0.492, 0.497]), Cp ([2.991, 8.00]). Indeed, this method 

(42)Cp =
RSSk

MSEm

+ 2k − N,m > k

(43)PC = ((n + k)∕(n − k))(1 −
(
R2

)
)

cannot alone bring along the certainty of the most appro-
priate input combinations, which in turn a more authentic 
assessment in the most suitable and possible input combi-
nations is necessary. That is, five input combinations are 
considered to improve the DI models being specified by grey 
highlight in Table 2.

Results and discussion

Model development

To predict the Nat in the wavelet-complementary and stan-
dalone frameworks, several DI models, namely LSSVM, 

Table 3   Comparison of the 
statistic metrics achieved by 
four DI models to forecast the 
Na

Boldface indicates the best prediction results

Model Criteria Combination

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

ANFIS R 0.610 0.595 0.578 0.564 0.471
RMSE 3.113 2.990 2.981 2.991 3.272
MAE 2.378 2.264 2.222 2.198 2.529
RAE 1.106 1.053 1.033 1.022 1.176
MAPE 30.459 29.007 29.005 28.141 31.665
IA 0.716 0.722 0.706 0.708 0.664
KGE 0.559 0.559 0.542 0.535 0.442
PI 0.898 0.875 0.879 0.877 1.000

LSSVM R 0.567 0.568 0.578 0.567 0.574
RMSE 2.973 2.926 2.997 2.935 2.897
MAE 2.240 2.195 2.258 2.189 2.166
RAE 1.041 1.020 1.050 1.018 1.007
MAPE 29.236 28.720 29.572 28.468 28.154
IA 0.703 0.705 0.702 0.710 0.716
KGE 0.531 0.531 0.536 0.535 0.544
PI 0.995 0.984 0.996 0.980 0.969

BLR R 0.540 0.543 0.536 0.535 0.535
RMSE 2.799 2.781 2.849 2.854 2.851
MAE 2.139 2.129 2.202 2.206 2.205
RAE 0.995 0.990 1.024 1.026 1.025
MAPE 29.183 29.114 30.099 30.154 30.135
IA 0.710 0.711 0.702 0.701 0.702
KGE 0.526 0.526 0.516 0.515 0.516
PI 0.978 0.975 0.999 1.000 0.999

RSR R 0.572 0.577 0.568 0.559 0.570
RMSE 2.958 2.704 2.837 3.082 2.889
MAE 2.290 2.023 2.115 2.336 2.157
RAE 1.065 0.941 0.983 1.086 1.003
MAPE 30.034 27.086 28.095 30.645 28.725
IA 0.711 0.733 0.723 0.705 0.719
KGE 0.542 0.557 0.546 0.525 0.545
PI 0.977 0.909 0.938 1.000 0.949
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RSR, BLR, and ANFIS, are utilized in this stage, after which 
the obtained predicted amounts from these models are con-
sidered for inputs in a meticulous model, named weighted 
exponential regression. This model was in fact integrated 
with gradient-based optimization (WER-GBO) in order to 
predict the Nat . This means it employs the principal benefit 
of these four models to reach more exact Nat prediction. 
More significantly, the essential WER parameters in the 
proposed model are optimized by the algorithm of GBO. 
To add to it, using various cutting-edge machine learning 
methods, namely LSSVM, RSR, ANFIS, and BLR, played 
an integral role in proving the ability of WER-GBO in fore-
casting, which eventually brought about striking novelty in 
this study. The LSSVM acquired their setting parameters 
during the process of the trial-test procedure, in which the 
values of parameters are � = 8.80 and � = 2.00.

Wavelet‑DI models

To boost the certainty and accuracy of DI models, wavelet 
can be a beneficial tool, mainly because wavelet decomposes 

Fig. 8   Comparison of scatter graphs of predicted and measured amounts of Na applying the standalone DI models

Fig. 9   SDE values of all models for training and testing stages
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the inputs into two classifications, namely high-frequency 
(approximate) dataset and low-frequency (details) data-
set. One of the most well-known wavelets in hydrologi-
cal modeling, called discrete wavelet transform (DWT), 
is employed in this research. Two of most commonly used 
mother wavelets are discrete Meyer (Damey) and Biorthogo-
nal 6.8 (Bior6.8) (Ahmadianfar et al. 2020b; Jamei et al. 
2021a). In fact, these wavelets have been constructive ones 
in water quality predictive models. In other words, these 
mentioned wavelets support compressed form while being 
advantageous in creating time localization (Nourani et al. 
2014; Freire et al. 2019; Ahmadianfar et al. 2020b; Jamei 

et al. 2021a). The mother wavelet (i.e., Bior6.8 and Dmey) 
was utilized in this study to take apart in the time series. The 
optimal decomposition grade (1) of wavelet transform for 
the water quality time series was defined as below (Barzegar 
et al. 2018):

wherein M is considered the number of datasets, standing 
at 432. The proportion of disintegration grade will account 
for 3.

(44)nW = int[log(M)]

Fig. 10   Variations of the predicted and measured Na for the best performance of DI models
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In the following stage, disintegrated time series 
being constructive in this process were gathered (e.g., 
Q = A3 +

∑3

k=1
Dk ) and set as inputs in order for comple-

mentary DI models with regard to the input combinations 
of Na. Besides, the As, approximations, and Ds, details of 
signals of Na and Q simulation, are illustrated in Fig. 6. In 
Fig. 7, DI models’ flowchart for Na prediction parameters 
is drawn.

Investigation of the standalone DI model abilities

In this step, four DI models, ANFIS, LSSVM, BLR, and 
RSR, were assessed in terms of performance and ability 
on the five diverse input parameters’ combinations. The 
outcomes are given in Table. 3, in which the fundamen-
tal variety of DI models’ forecasting ability in test data for 
combinations in Nat prediction is provided. According to 

Table 4   Comparison of the 
statistic metrics achieved 
by ANFIS models for all 
combinations

Boldface indicates the best prediction results

Model Criteria Combination

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Wavelet-Dmey R 0.931 0.937 0.964 0.966 0.967
RMSE 1.065 1.016 0.729 0.699 0.699
MAE 0.833 0.745 0.561 0.530 0.526
RAE 0.387 0.346 0.261 0.246 0.245
MAPE 10.143 9.550 7.050 6.344 6.230
IA 0.963 0.966 0.981 0.983 0.982
KGE 0.912 0.916 0.952 0.951 0.929
PI 1.000 0.953 0.805 0.780 0.781

Wavelet-Bior R 0.896 0.902 0.926 0.930 0.905
RMSE 1.242 1.200 1.028 1.002 1.168
MAE 0.904 0.816 0.767 0.770 0.867
RAE 0.420 0.380 0.357 0.358 0.403
MAPE 11.537 10.208 9.346 9.233 10.341
IA 0.938 0.947 0.960 0.962 0.946
KGE 0.801 0.894 0.892 0.885 0.844
PI 1.000 0.934 0.882 0.879 0.955

Table 5   Comparison of the 
statistic metrics achieved 
by BLR models for all 
combinations

Boldface indicates the best prediction results

Model Criteria Combination

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Wavelet-Demy R 0.945 0.966 0.966 0.966 0.968
RMSE 0.899 0.705 0.703 0.704 0.682
MAE 0.714 0.560 0.558 0.544 0.512
RAE 0.332 0.260 0.259 0.253 0.238
MAPE 8.712 7.153 7.058 6.597 6.015
IA 0.971 0.982 0.983 0.982 0.983
KGE 0.924 0.955 0.955 0.947 0.931
PI 1.000 0.872 0.870 0.858 0.834

Wavelet-Bior R 0.913 0.931 0.929 0.925 0.932
RMSE 1.117 0.996 1.008 1.035 0.990
MAE 0.826 0.740 0.751 0.796 0.767
RAE 0.384 0.344 0.349 0.370 0.356
MAPE 9.890 9.024 9.010 9.478 8.999
IA 0.953 0.963 0.962 0.960 0.963
KGE 0.885 0.904 0.898 0.890 0.879
PI 0.999 0.934 0.940 0.968 0.946
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Table 3, the performance and ability of the ANFIS model in 
forecasting the Nat in the testing process proves that Combo 
2 (R = 0.595, RMSE = 2.990, MAPE = 29.007, KGE = 0.559, 
and PI = 0.875) stands out compared to the other combina-
tions. By considering five combinations, the best combi-
nation of inputs in BLR and RSR was detected. The most 
appropriate combinations for both are Combo 2 (RSR: 
(R = 0.577, RMSE = 2.704, MAPE = 27.086, KGE = 0.557, 

and PI = 0.909), and BLR: (R = 0.543, RMSE = 2.781, 
MAPE = 29.114, KGE = 0.526, and PI = 0.975)). Turning to 
LSSVM model, the best combination is considered Combo 4 
(R = 0.574, RMSE = 2.897, MAPE = 28.154, KGE = 0.544, 
and PI = 0.969)).

Different models, including ANFIS, LSSVM, BLR, 
and RSR, are utilized to determine the prediction out-
comes of 6 water quality indicators demonstrated in 

Table 6   Comparison of the 
statistic metrics achieved 
by LSSVM models for all 
combinations

Boldface indicates the best prediction results

Model Criteria Combination

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Wavelet-Demy R 0.936 0.962 0.958 0.954 0.952
RMSE 1.008 0.783 0.808 0.846 0.874
MAE 0.781 0.604 0.620 0.646 0.660
RAE 0.363 0.281 0.288 0.300 0.307
MAPE 9.926 7.682 7.790 7.945 8.118
IA 0.960 0.977 0.976 0.973 0.971
KGE 0.850 0.902 0.915 0.901 0.891
PI 1.000 0.856 0.866 0.886 0.900

Wavelet-Bior R 0.898 0.929 0.922 0.924 0.906
RMSE 1.259 1.053 1.098 1.089 1.221
MAE 0.960 0.799 0.823 0.827 0.931
RAE 0.446 0.371 0.382 0.384 0.433
MAPE 12.387 10.069 10.235 10.149 11.746
IA 0.937 0.957 0.953 0.954 0.940
KGE 0.814 0.858 0.851 0.857 0.808
PI 0.999 0.886 0.903 0.901 0.978

Table 7   Comparison of the 
statistic metrics achieved 
by RSR models for all 
combinations

Boldface indicates the best prediction results

Model Criteria Combination

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Wavelet-Demy R 0.940 0.961 0.952 0.948 0.932
RMSE 0.970 0.749 0.847 0.866 1.023
MAE 0.763 0.590 0.648 0.627 0.753
RAE 0.355 0.274 0.301 0.292 0.350
MAPE 9.251 7.595 8.064 7.595 9.210
IA 0.965 0.980 0.975 0.973 0.964
KGE 0.901 0.952 0.946 0.941 0.928
PI 0.991 0.857 0.903 0.892 0.991

Wavelet-Bior R 0.902 0.921 0.927 0.814 0.878
RMSE 1.177 1.069 1.027 1.705 1.331
MAE 0.861 0.808 0.789 1.019 0.943
RAE 0.400 0.376 0.367 0.474 0.438
MAPE 10.208 10.173 9.669 12.778 11.333
IA 0.947 0.958 0.961 0.899 0.935
KGE 0.863 0.904 0.902 0.808 0.870
PI 0.852 0.818 0.802 1.000 0.905
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Fig. 8. The X-axis defines the measured value, and the 
Y-axis depicts the predicted value. More specifically, 
the ideal forecasting outcomes will be distributed on 
both sides of the line or Y = X. In turn, it is apparent 
that the error is conforming to the Gaussian distribution 
rule. In other words, the location of points based on the 
line has a direct relation with the amount of error. Thus, 
providing that the points are adjacent to the Y = X line, 
the error is minor. On the other side, by considering the 

forecasting of 4 indicators, the spots of DI models are 
out of the Y = X line. As can be observed in Fig. 8, the 
distribution of prediction outcomes for many models is 
on the equal side of Y = X, which results in significant 
deviation and some under-fitting or over-fitting prob-
lems. Additionally, the error value stands at ± 40% based 
on predicted proportions obtained by two distinct DI 
models. As a consequence, five standalone DI models 
are not able to predict the Na accurately.

Fig. 11   Comparison of scatter 
graphs of predicted and meas-
ured amounts of Na applying 
the wavelet-based DI models
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Since stability is a vital matter in prediction, the 
standard deviation error (SDE) can be an influential 
factor to investigate the models’ prediction stability. In 
Fig. 9, the SDEs of forecasting the different water qual-
ity indicators are drawn. More importantly, the SDEs 
of ANFIS reached the first and second-best place in 
training and testing stages, accounting for 0.99 and 0.09 
correspondingly. Moreover, results reveal the SDEs 
of LSSVM, standing at 0.07, outperform in the test-
ing step. The efficiency of ANFIS, LSSVM, BLR, and 
RSR models are addressed using time series diagrams 

based on the measured and calculated proportion of Na 
within training and testing stages, which is provided in 
Fig. 10. As a result, all DI models cannot forecast the 
Na correctly.

Evaluate the performance of wavelet‑based DI 
models

The W-ANFIS, W-LSSVM, W-BLR, and W-RSR models 
were improved with the purpose of enhancing the accuracy 
and certainty of standalone DI models (i.e., ANFIS, LSSVM, 

Fig. 12   Variations of the predicted and measured Na for the best performance of W-DI models
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BLR, and RSR. Two mother wavelets (i.e., Bior6.8 and Dmey) 
are used in the decomposition process of time series for Na. 
The assessment of W-DI models’ ability with various mother 
wavelets is implemented by considering five distinct combina-
tions of input variables. The parameter settings of LSSVM-
Bior6.8 ( � = 271.73 and � = 34.24 ) and LSSVM-Dmey 
( � = 111 and � = 19.4 ) are calculated based on trial-and-error.

Table 4 provides the data on the forecasting accuracy and 
certainty of W-ANFIS models considering all combina-
tions and two mother wavelets. As shown, the most suitable 
combination for the W-ANFIS model with mother wavelets 
Dmey and Bior6.8 can be Comb 4 (R = 0.966, RMSE = 0.699, 
MAPE = 6.344, KGE = 0.951, and PI = 0.780) and also for 
Nat prediction in testing step can be Comb 4 (R = 0.930, 
RMSE = 1.002, MAPE = 9.233, KGE = 0.885, and PI = 0.879). 
The ultimate results prove Dmey outperforms the Bior6.8 for 
W-ANFIS, which stems from its more accurate and exact per-
formance than Bior6.8 mother wavelet (Table 5).

In the W-BLR model, Comb 4 is considered the best combi-
nation being equal to all mother wavelets, and the related data 
are provided in Table. Moreover, the final results of different 
mother wavelets for the most appropriate combination stand out 
at W-BRL-Dmey (Combo5: R = 0.968, RMSE = 0.682, MAPE 
MAPE = 6.015, KGE = 0.931, and PI = 0.834), and W- BLR 
-Bior6.8 (Combo2: R = 0.931, RMSE = 0.996, MAPE = 9.024, 
KGE = 0.904, and PI = 0.934). Accordingly, the outcomes con-
firm that the most suitable mother wavelet is admittedly Dmey 
in W-BLR, mainly because it reached higher certainty and accu-
racy than other models.

Regarding W-LSSVM, as can be seen in Table 6, Combo 2 
is considered the winner for two mother wavelets. Besides, the 
estimated outcomes for Bior6.8 and Dmey mother wavelets for 
the most appropriate combination stand at: W-LSSVM -Dmey 
(R = 0.962, RMSE = 783, MAPE = 7.682, KGE = 0.902, and 
PI = 0.856), and W-LSSVM-Bior6.8 (R = 0.929, RMSE = 1.053, 
MAPE = 10.069, KGE = 0.858, and PI = 0.886). Eventually, the 
best mother wavelet for the W- LSSVM is considered Bior6.8, 
which results in the highest certainty in comparison with Dmey.

Table 7 reports the W-RSR model’s results with Bior6.8 and 
mother wavelets Dmey, with it indicating Comb 2 (R = 0.961, 
RMSE = 0.749, MAPE = 7.595, KGE = 0.952, and PI = 0.857) 
and Comb 3 (R = 0.927, RMSE = 1.027, MAPE = 9.669, 
KGE = 0.902, and PI = 0.802) as the best combinations for Dmey 
and Bior6.8, respectively. Therefore, Dmey considered the best 
mother wavelet that makes powerful performance and more 
accuracy than Bior6.8.

In Fig. 11, the scatter plot of forecasted values versus experi-
mental ones is demonstrated. The main criterion to confirm the 
accuracy of the proposed ANFIS model in prediction ability 
can be the high density of points in the vicinity of the Y = X 
line. According to this figure, there is a significant coincidence 
between experimental values and predicted ones. This means 
the proposed ANFIS model creates acceptable and reliable 

Table 8   Comparison of statistical metrics of WER-GBO and WLR-
GBO models

Boldface indicates the best prediction results

Mode Criteria WER-GBO WLR-GBO

Train R 0.9813 0.9811
RMSE 0.9671 0.9741
MAE 0.7028 0.7125
RAE 0.1711 0.1735
MAPE 7.7907 8.2642
IA 0.9905 0.9904
KGE 0.9731 0.9730
PI 0.987 1.000

Test R 0.9721 0.9712
RMSE 0.6399 0.6525
MAE 0.4976 0.5030
RAE 0.2314 0.2338
MAPE 5.8858 6.0126
IA 0.9854 0.9847
KGE 0.9486 0.9398
PI 0.990 1.000

Fig. 13   Comparison of scatter graphs of predicted and measured 
amounts of Na applying the WER-GBO and WLR-GBO models
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predictions. The time series plots, related to predicted and expe-
rienced Na in the testing and training phases, are depicted in 
Fig. 12. According to this figure, all predictive models reach 
considerable performance, and the predictive values are equiva-
lent to the estimated Na.

Weighted exponential regression 
with gradient‑based optimization

In this research, two new regression-based models, known as 
weighted linear regression (WLR) and weighted exponential 
regression (WER) models and optimized by the GBO algo-
rithm for Na prediction, are introduced. These mentioned mod-
els are considered ensemble ones to utilize the most exact out-
comes of ANFIS, LSSVM, BLR, and RSR models as inputs in 
order to forecast Na. To put it simply, the input parameters for 
WLR-GBO and WER-GBO models are in fact the predicted 
values gained by W-ANFIS-C4, W-LSSVM-C2, W-BLR-C5, 
and W-RSR-C2. Table 8 provides the data on statistical fac-
tors acquired by WLR-GBO and WER-GBO models for test-
ing and training steps. Table 8 reports the WER-GBO outper-
forms according to the majority of important criteria for testing 
(R = 0.972, RMSE = 0.639, MAPE = 5.885, KGE = 0.948, and 
PI = 0.990) and training (R = 0.9813, RMSE = 0.9671, 
MAPE = 7.7907, KGE = 0.9731, and PI = 0.987) phases. Thus, 
it can be concluded that the WER-GBO model is able to reach 
more meticulous and accurate Na prediction compared to the 
WLR-GBO model. By drawing the scatter plots of these two 
models (Fig. 13), it reveals that they can predict Na meticulously 
because the calculated values in both models are found near the 
45° straight line of the scatter plots.

In Fig. 14, the time series plots of predicted and observed 
values of the WER-GBO and WLR-GBO are illustrated, with 
the figure showing a close agreement between predicted and 
measured values. Overall, by comparing the computational intel-
ligence strategies, it can be gained that both models, WER-GBO 

Fig. 14   Variations of the predicted and measured Na for the best performance of W-DI models

Fig. 15   SDE values of all models for training and testing stages
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and WLR-GBO, are concomitant with sufficient performance 
for both testing and training steps.

Comparison of the performance of all DI models

The analysis of the model is conducted to detect the most effi-
cient model. That is, DI models, namely ANFIS, LSSVM, BLR, 
RSR, and WER-GBO, are employed for Na prediction. From 
what has been gained by DI models, the WER-GBO is able to 
bring about more accurate prediction amongst other models dur-
ing the training and testing steps. In addition, Fig. 15 displays the 
prediction outcomes’ SDEs for diverse water quality predictors. 
In this regard, the SDEs in the WER-GBO model for training 
and testing steps stand out at 0.10 and 0.11, gaining the first 
rank. Indeed, it can be ratification for suitable stability of the 
WER-GBO model in Na prediction.

Relative deviation (RD) analyzes the error to address the 
accuracy of the proposed model. The distribution of RD, 
RD =

NaM−NaDI

NaM
 , relative deviation, for predictive models during 

the testing stages was shown. In Fig. 16, it is apparent that the 
compression of error distribution in the WER-GBO model is far 
more than in other models. Besides, by constituting the relative 
deviation range of methods, it can be concluded WER-GBO 
model includes the minimum deviation range 
(− 0.55 ≤ RD ≤ 0.32), which leads to better performance than 
ANFIS (− 0.84 ≤ RD ≤ 0.65), LSSVM (− 0.91 ≤ RD ≤ 0.52), 
RSR (− 1.13 ≤ RD ≤ 0.58), and BLR (− 1.24 ≤ Er ≤ 0.78) 
models.

The standard deviation and correlation coefficient (R), 
according to the Taylor diagram, are used to scrutinize the 
models’ ability and performance, which elaborates the efficiency 
of models (Jamei et al. 2020). As can be seen in the diagram, 

Fig. 16   RD of all DI models in 
forecasting Na
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by considering the standard deviation and R, there is a more 
compelling and tangible relationship between experienced and 
predicted Na. In Fig. 17, the Taylor diagram is depicted, while 
connecting the present monthly Na with all DI models. Hence, 
the best performance in the forecasting of Na is achieved by the 
WER-GBO model amongst other models while being the near-
est model to the target.

Conclusion

Prediction of water quality parameters using authoritative and 
precise models has a profound impact on saving time and cost. 
The main objective of this research is to develop two state-of-
the-art data intelligence methods based on the weighted expo-
nential regression hybrid with GBO (WER-GBO) and the 
weighted linear regression hybrid with GBO (WLR-GBO) to 
forecast Na parameter. Indeed, these mentioned models utilize 
exponential and linear regression relationships with the Cauchy 
function as a weighted function to raise forecasting accuracy. 
Furthermore, the role of the GBO algorithm is to optimize the 
fundamental parameters in the WER model. In this regard, in the 
first step, in which the ANFIS, LSSVM, BLR, and RSR models 
are utilized, the proposed model is performed to reach the Na 
prediction. Consequently, the input variables in the WER-GBO 
model are the predicted values of Na gained by the mentioned DI 
models. In this research, the aim of developing a new ensemble 
model is to boost forecasting accuracy.

Thus, the ACF, PACF, and CC in this study are employed 
to identify the Na lags’ number. Likewise, the measured time 
series of Na as well as Q on a monthly basis during the over 
36 years in the Maroon River, located in southern Iran, are used 
in this study. The most appropriate subset regression employed 
in this process detects the input variable combinations' num-
ber. Because the relationship of Na and time series is nonlinear 
and sophisticated, the wavelet transform is utilized with three 
decomposition grades to maximize the prediction certainty in 
ANFIS, LSSVM, BLR, and RSR.

Monthly Na prediction is implemented in surface water by 
wavelet-DI models, using Dmey and Bior6.8 as two mother 
wavelets. Having integrated with ANFIS, LSSVM, BLR, and 
RSR models to forecast Na, Dmey confirmed the best and 
outstanding progress in the simulation accuracy grade, while 
Bior6.8 reached a suitable performance. The W-BLR-Dmey 
in Combo 5 gained striking ability in monthly Na prediction 
(R = 0.968, RMSE = 0.682, and KGE = 0.931), followed by 
W-ANFIS-Dmey model in Combo 4 W-RSR-Dmey in Combo 
2, and W-LSSVM-Dmey in Combo 2. Overall, the assessment 
of all DI-based models confirms that the supplementary model 
of W-BLR can accurately forecast the Na parameter.

The predicted values obtained by the mentioned DI models 
are applied for the input variables in WER-GBO and WLR-
GBO models. From what has been gained as these models’ 
outcomes, it can be concluded that WER-GBO outperforms 
WLR-GBO according to results of testing step as R = 0.9813, 
RMSE = 0.967, and KGE = 0.973 for training stage and 
R = 0.9721, RMSE = 0.9639, and KGE = 0.948. Moreover, by 
considering SDE and RD as statistical errors, the proposed 
WER-GBO has the advantage over ANFIS, LSSVM, BLR, 
and RSR models thanks to reaching more meticulous and accu-
rate Na prediction. Based on the Taylor diagram, the predicted 
value of Na via WER-GBO has more similar features such as 
standard deviation and correlation to the measured Na than other 
models. Hence, the ensemble WER-GBO-based method, gath-
ering the benefits of all complementary techniques, can be a 
breakthrough in predicting water quality parameters, particularly 
surface water.
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