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A B S T R A C T   

Forage brassicas have historically been used in high rainfall/irrigated temperate livestock systems, but there is 
increasing interest in diverse forage brassicas in drier mixed crop-livestock farming systems. Computer-based 
modelling is an important decision support tool used in agriculture to explore the adaptability of crops to 
different climates and agronomic management practices, but existing modelling tools for forage brassicas are 
limited to temperate environments. We parameterised the APSIM (Agricultural Production Systems Simulator) 
model for four forage brassica genotypes, including three diverse forage rape cultivars and a raphanobrassica. 
The model was calibrated using two experiments with repeated measures of biomass components, nutritive 
value, and leaf and canopy development. We then tested the model extensively using data from a diverse set of 
environments within Australian and New Zealand (23 sites across four agro-climatic zones). Model predictions of 
biomass were good for all the genotypes (NSE > 0.60, Nash-Sutcliffe efficiency; RMSE ~1.5 t DM/ha, root mean 
square error). Predictions of metabolisable energy yield were satisfactory for all genotypes (NSE 0.43–0.73; 
RMSE ~17.8 GJ ME/ha) but forage dry matter digestibility (DMD) were poorly predicted due to the small 
variation in observed data. Our robust and widely tested model can be confidently used to predict forage pro
ductivity of common and new forage brassicas across a wide range of production environments and agronomic 
management practices. This model will enable future work to develop a better understanding of the potential 
value of these important forage crops for livestock production systems.   

1. Introduction 

Forage brassicas (members of the Brassicaceae family) are common 
forage crops that have historically been used in intensive livestock and 
dairy systems throughout temperate climatic regions of the world 
including Europe, New Zealand and Australia (Wheeler et al., 1974). 
They are valued for their ability to produce high biomass yields with 
high metabolisable energy (ME) content (12.1–14.1 MJ ME/kg DM) and 
are often superior to grass-based pastures or other forage crops such as 
annual cereals (e.g., oats, wheat, barley, triticale) (Barry, 2013). Forage 
brassicas are integrated strategically to help fill gaps in forage supply 
and nutritive value at times of the year when other on-farm forages are 
unable to sustain growth of young animals or maintain adequate pro
ductivity in intensive livestock systems (e.g., dairy cows). Because they 
maintain nutritive value for longer than other forages, forage brassicas 
are widely used as a fodder bank that can be grazed during periods of 
poor growth of other forage sources (e.g., cold winter, or dry summer 

periods). 
In Australia and New Zealand, a wide range of forage brassicas with 

varying functional traits suited to diverse applications are available to 
farmers. These include leafy-type forage brassicas like forage rapes 
(Brassica napus var. biennis L.), leafy turnip (B. rapa var. rapifera L. and 
B. campestris × napus), and raphanobrassica (B. oleracea var. acephala L. 
× Raphanus sativus L.), which can all be used as a multi-graze crop and 
exhibit genotypic variation in time to maturity and zones of adaptation. 
Kale (B. oleracea var. acephala L.), bulb turnips (B. campestris var. rapa L.) 
and swedes (B. napus var. napobrassica L.), are considered a single-graze 
crop, and are most often strip grazed as a high nutritive value ‘fodder 
bank’ (Ayres and Clements, 2002; de Ruiter et al., 2009). 

While a range of forage brassicas are widely used in humid, higher- 
rainfall livestock and dairy systems in Australia and New Zealand, there 
is increasing interest in their application in drier mixed crop-livestock 
farming systems, where they can be used as both a feed for livestock 
and a break-crop in cereal cropping systems where there are limited 
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well-suited alternatives. In recent years, dual-purpose canola (B. napus 
var. annua L.) has expanded in the higher rainfall mixed farming region 
(> 450 mm annual rainfall) of southern Australia (Kirkegaard et al., 
2016), creating opportunities for complimentary forage brassicas that 
can further widen brassica grazing options throughout the year. Recent 
multi-environment studies have shown that autumn-sown forage bras
sicas can produce comparable biomass and often produce higher yields 
of ME and crude protein (CP) than forage oats and offer an extended 
grazing window compared to dual-purpose canola (Watt et al., 2021). Of 
the genotypes tested, forage rapes and raphanobrassica genotypes were 
found to be the most suitable for the drier environments found in the 
mixed farming zone of Australia and were able to sustain growth late in 
the season when other forage brassicas (e.g., leafy turnip and bulb turnip 
genotypes) had senesced due to water limitations (Watt et al., 2021). 

There is increasing need to diversify forage systems to reduce periods 
of feed shortages and improve the quality of feed for livestock and this is 
becoming more urgent with a changing climate. Forage brassicas have 
the potential to mitigate these challenges across a broad range of envi
ronments and farming systems. However, to optimise the management 
of forage brassicas in Australian livestock farming systems, better un
derstanding of their potential productivity across environments, 
matching agronomic management to resource availability (e.g., water 
and nutrient availability) and their timing of forage production and 
nutritive value is needed. Simulation models have been used to explore 
the value other crops to fill feed gaps when grown in a range of envi
ronments (Bell, 2008; Bell et al., 2018; Martin and Magne, 2015). While 
several simulation models are available to predict growth and nutritive 
value of a range of forages and pastures grown in dairy (e.g., DairyMod; 
Johnson et al., 2008), temperate pasture-livestock (e.g., GrassGro; 
Moore, Donnelly and Freer, 1997) and rangeland grazing systems (e.g., 
GRASP; McKeon et al., 2000; Rickert, Stuth and McKeon, 2000), only 
DairyMod has the capacity to simulate forage brassica crops, and this is 
limited to spring-summer sown crops grown in temperate environments. 
The Agricultural Production Systems Simulator (APSIM; Holzworth 
et al., 2014) is a well-known cropping systems model that is widely used 
for simulating broadacre crops across a range of environments and has 
become an important decision-support tool in cropping systems, and 
crop-livestock systems where it can be linked with other forage and 
livestock simulation models via a shared binary protocol (Moore et al., 
2007). These capabilities of APSIM provide the ideal framework for the 
development of forage crop models, but despite the diversity of 
broadacre crop models available in APSIM, there is a limited array of 
widely tested forage crop models. This paper outlines the development 
and testing of a simulation model in APSIM to predict growth and 
nutritive value of several forage brassica genotypes that show promise 
for wider application across Australia and New Zealand. 

Because of the commonality of forage brassicas with canola, we used 
the APSIM-canola model as a foundation, which has been extensively 
tested across a range of environments within Australia and interna
tionally (Robertson and Lilley, 2016). A number of winter-type, dual-
purpose canola varieties are available in the model and have been 
simulated across a range of locations (Lilley et al., 2015). Winter canola 
cultivars have similar phenological traits to forage rapes, with high 
vernalisation requirements causing a longer vegetative period than 
spring canola cultivars (Whish et al., 2020), which enables them to be 
used as a dual-purpose crop (i.e., grazing and grain). Other basic plant 
physiology is also quite similar between these brassica genotypes. These 
similarities make the APSIM-canola model a suitable template for the 
development of a forage brassica model. Forage rapes have been pre
viously modelled using the APSIM-canola model by increasing the leaf 
size parameters and thermal time coefficients of a generic winter canola 
cultivar (Pembleton et al., 2013). However, this model was limited and 
did not account for the potential differences in plant attributes between 
forage rape ‘types’, and testing and subsequent application were limited 
to cool, temperate environments (Pembleton et al., 2021, 2016). 
Consequently, DM yield was often underpredicted in regions where late 

maturity cultivars were grown. We aimed to develop and test model 
parameters that distinguish between different forage brassica ‘types’ for 
dry matter (DM) production and nutritive value characteristics for a 
broad range of environments and management practices. We demon
strate that the forage brassica model outlined in this study can satis
factorily predict the productivity of forage brassicas across a very 
diverse range of environments. 

2. Materials and methods 

A two-stage process was used to calibrate and test a range of forage 
brassicas genotypes using the APSIM-canola model as a template 
(Robertson and Lilley, 2016) in APSIM-version 7.10. The first calibration 
stage used a dataset that was collected over two site-years and included 
a combination of multiple measures of biomass and its components, 
forage nutritive value of plant components, leaf and canopy develop
ment, and observations of crop phenological development (i.e., vege
tative, buds visible, flowering). Soil water, nitrate-nitrogen (NO3-N) and 
ammonium-nitrogen (NH4-N) concentration were measured at the start 
and end of each experimental site-year (Table 1). This data was available 
for the several forage brassica genotypes as well as the reference canola 
crop. This enabled the simulations to be characterised using canola and 
then model parameters to be modified to accurately predict the growth 
of each forage brassica genotype. 

The second evaluation stage involved testing the newly derived set of 
parameters for each genotype across a wider range of production envi
ronments, climatic conditions, and agronomic management practices. 
Using data from previous studies from Australia and New Zealand, 
simulations were developed for 23 experimental site-years where data 
on plant biomass (220 individual observations) and nutritive value (i.e., 
dry matter digestibility (DMD) and crude protein content (CP)) (102 
individual observations) were available for these genotypes (or similar 
varieties) (see Table 2). 

2.1. Stage 1: Calibration of biomass accumulation and partitioning, and 
nutritive value 

Two experiments carried out at Tummaville, Queensland (QLD) 
(27.85 S, 151.45 E) in 2018 and 2019 were used to calibrate forage rape 
cultivars Goliath (late maturity giant-type rape), Winfred (early 

Table 1 
Summary of the observations of different plant growth attributes from two 
experimental years used for the calibration of each forage rape cultivar (cv. 
Goliath, HT-R24 and Winfred), raphanobrassica cv. Pallaton and the reference 
crop canola.   

No. of observations for: 

Plant growth attributes measured Forage rapes Raphanobrassica Canola 
Biomass    

Total biomass 10 10 10 
Green biomass 10 10 10 
Senesced biomass 5 5 4 
Leaf/petiole biomass 8 8 7 
Stem biomass 8 7 7 

Nutritive value1 

Whole plant 8 8 7 
Leaf/petiole 7 7 6 
Stem 7 5 6 

Leaf and canopy development   
Leaf number (mainstem) 15 15 15 
Leaf area index 11 12 11 
Radiation interception 11 12 11 
Distribution of individual leaf size 2 2 2 
Specific leaf area 2 2 2 

Water and nitrogen uptake    
Start/End soil water 2 2 2 
Start/End soil mineral N 2 2 2  

1 Dry matter digestibility (DMD) and crude protein (CP) content 
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Table 2 
Summary of data sets used for the model testing of forage brassica genotypes parameterisations using APSIM.   

Site Characteristics Reference crops Forage brassica genotypes No. 
observations/ 
genotype  

Site No. Location 
(lat, long) 

Agro-climatic 
zone 

Soil type APSoil 
No. 

Sowing date Canola Cereal1 Field 
pea 

Goliath 
rape 

HT- 
R24 
rape 

Winfred 
rape 

Interval 
rape 

Leafmore 
rape 

Titan 
rape 

Bonar 
rape 

Pallaton 
raphanobrassica 

Biomass DMD/ 
CP 

Reference 

1, 2 Tummaville, 
QLD2 

(− 27.85, 
151.45) 

Sub-tropical, 
sub-humid 

Black 
Vertosol 

7 13-Jun-2018 
12-Ap-2019 

✓   ✓ ✓ ✓     ✓ 10 8 Watt et al. 
(2021) 

3 Pilton, QLD 
(− 27.52, 
151.59) 

Sub-tropical, 
sub-humid 

Brown 
Vertosol 

33 21-May-2011  ✓    ✓   ✓   1  Bell et al. 
(2020) 

4 Formartin, 
QLD 
(− 27.27, 
151.25) 

Sub-tropical, 
sub-humid 

Black 
Vertosol 

622-YP 21-Jun-2012  ✓    ✓ ✓ ✓    1  Bell et al. 
(2020) 

5 Tulloona, 
QLD 
(− 29.00, 
150.02) 

Sub-tropical, 
sub-humid 

Grey 
Vertosol 

238 05-Jun-2013   ✓   ✓ ✓ ✓    1  Bell et al. 
(2020) 

6, 7 Iandra, NSW 
(− 34.08, 
148.37) 

Temperate, 
sub-humid 

Red 
Kandosol 

* 21-Jun-2018 
28-Mar-2019 

✓   ✓ ✓ ✓     ✓ 2 2 Watt et al. 
(2021) 

8 Wagga 
Wagga, NSW 
(− 35.06, 
147.21) 

Temperate, 
sub-humid 

Red 
kandosol 

* 18-Apr-2007 ✓     ✓      2  Kirkegaard 
et al. (2008) 

9, 10 York, WA 
(− 32.91, 
118.23) 

Dry 
Mediterranean 

Grey 
sandy 
loam 

1202 26-Jun-2018 
28-Jun-2019 

✓   ✓ ✓ ✓     ✓ 6 4 Watt et al. 
(2021) 

11 Lameroo, SA 
(− 35.20, 
140.30) 

Dry 
Mediterranean 

Sand over 
loam 
(midslope) 

* 15-May-2019  ✓  ✓       ✓ 3 3 Flohr 
(unpubl. 

data) 
12 Delegate, 

NSW 
(− 37.03, 
148.56) 

Temperate, 
cool season 
wet 

Podosol 1037- 
Generic 

11-Mar-2010 
14-Dec-2010 

✓3     ✓      6  Kirkegaard 
(unpubl. 

data) 

13, 14 Elliott, TAS4 

(− 41.06, 
145.46) 

Temperate, 
cool season 
wet 

Clay loam 653 13-Nov-1999 
13-Oct-2000          

✓  58 22 Neilsen 
(2005) 

15 Stonehouse, 
TAS 
(− 42.18, 
147.40) 

Temperate, 
cool season 
wet 

Medium 
clay 

661 13-Nov-2009       ✓     1 1 J. Lynch 
(unpubl. 

data) 

16 Cambridge, 
TAS 
(− 42.51, 
147.26) 

Temperate, 
cool season 
wet 

Medium 
clay 

661 22-Dec-2009       ✓     1 1 J. Lynch 
(unpubl. 

data) 

17 Mawbanna, 
TAS 
(− 41.00, 
145.22) 

Temperate, 
cool season 
wet 

Clay loam 656 26-Feb-2010       ✓     4 1 K. 
Pembleton 
(unpubl. 

data) 
18 Stanley, TAS 

(− 40.45, 
145.16) 

Temperate, 
cool season 
wet 

Clay loam 656 12-Apr-2010       ✓     5 1 K. 
Pembleton 

(continued on next page) 
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Table 2 (continued )  

Site Characteristics Reference crops Forage brassica genotypes No. 
observations/ 
genotype  

(unpubl. 
data) 

19, 20 Terang, VIC5 

(− 38.15, 
142.54) 

Temperate, 
cool season 
wet 

Sandy clay 
loam 

739 13-Dec-2004 
20-Oct-2007      

✓      12 12 Jacobs and 
Ward 

(2011) 
21 Mt Gambier, 

SA6 

(− 37.52, 
140.45) 

Temperate, 
cool season 
wet 

Sandy 
loam 

SE069 26-Mar-2007    ✓  ✓      1 1 K. Boston 
(unpubl. 

data); 
DairySA 
(2009) 

22 Hastings, 
NZ7 

(− 39.38, 
176.50) 

Temperate, 
cool season 
wet 

Silt clay 
loam 

1338 02-Nov-2011         ✓   25  Chakwizira 
et al. (2014) 

23 Lincoln, NZ8 

(− 43.38, 
172.29) 

Temperate, 
cool season 
wet 

Silt loam 1317 19-Nov-2008         ✓   18  Fletcher 
and 

Chakwizira 
(2012) 

Presence of that genotype in the experiment is indicated by a ✓; APSoil derived soil number from the database are provided except where a locally developed soil was used ( * ); DMD, dry matter digestibility; CP, crude 
protein. 

1 Cereal crops of wheat, barley or oats 
2 Two experimental sites used in the model calibration stage 
3 Two canola cultivars (Taurus and CBI406) as reference crop 
4 Elliott 1999 included four irrigation treatments (0%, 20%, 50% and 100%) and Elliott 2000 included six irrigation treatments (0%, 20%, 40%, 60%, 80% and 100%) 
5 Terang 2004 and 2007 both included six nitrogen treatments (0, 40, 80, 120, 160, 200 kg N/ha) 
6 Crop consisted of a Goliath/Winfred mixture 
7 Hastings 2011 included five nitrogen treatments (0, 25, 50, 100 and 200 kg N/ha) 
8 Lincoln 2009 included three nitrogen treatments (one application of 200 kg N/ha 16 days after sowing (DAS), one application of 200 kg N/ha applied 40 DAS or two applications of 200 kg N applied 16 DAS and 40 

DAS) 
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Fig. 1. Model simulations of forage rape cv. Winfred in APSIM (lines) compared with observations (dots) from calibration experiments in 2018 (blue) and 2019 
(orange) for biomass and its components (a-c, and e-f), forage nutritive value (d and g-i), and leaf canopy and development (j-l) attributes for the parameterisations. 
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Fig. 2. Model simulations of raphanobrassica cv. Pallaton in APSIM (lines) compared with observations (dots) from calibration experiments in 2018 (blue) and 2019 
(orange) for biomass and its components (a-c, and e-f), forage nutritive value (d and g-i), and leaf canopy and development (j-l) attributes for the parameterisations. 
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maturity leaf-type rape) and HT-R24 (late maturity herbicide tolerant 
rape), and raphanobrassica cv. Pallaton. These experiments are fully 
described in Watt et al. (2021). Briefly, these experiments included a 
broad range of forage brassica genotypes and reference crops of canola 
and forage oats that were sown in four replicated plots per genotype in a 
replicated block design. Experiment 1 was sown on the 20 June 2018 
and received 193 mm rainfall and 135 mm supplemental irrigation. 
Experiment 2 was sown on the 12 April 2019 and received 30 mm of 
rainfall and 128 mm supplemental irrigation. Biomass, nutritive value, 
leaf and canopy development and soil water and nitrogen (N) uptake 
observations from both experiments were used to calibrate model pa
rameters for the forage brassica genotypes (Table 1). 

2.1.1. Collection of experimental observations 
In both experiments, leaf number on the mainstem was recorded 

every 7–14 days from ~30 days after sowing (DAS) to ~75 DAS and then 
every 21 days until ~110 DAS. Recording of leaf number ceased once 
branching commenced as it was difficult to accurately count leaves 
thereafter. Total biomass was collected from 1 m2 quadrats (taking care 
to avoid previously sampled areas) in the central rows of each replicated 
plot at 70, 99, 127 and 146 DAS in Experiment 1, and 41, 62, 83, 111, 
145 and 166 DAS in Experiment 2. Samples were partitioned into leaf 
(leaf/petiole) and stem, except during the early stages of growth when 
little stem was present and instead only whole plant biomass was 
recorded. Samples were also separated into green and senesced leaf 
biomass. All samples were dried in a forced-draught oven at 60 ◦C until 
at constant dry weight and then weighed. Samples were ground through 
a 1 mm screen and analysed for DMD to determine metabolisable energy 
(ME; 0.172 × DMD% − 1.707; Freer, Dove and Nolan, 2007), and total N 
to determine crude protein (CP; Total N concentration × 6.25; AFIA, 
2014) content, as described in detail by Watt et al. (2021). Leaf area of 
individual leaves was measured at 103 DAS in Experiment 1 and 40 DAS 
in Experiment 2 using three randomly sub-sampled plants taken from 
central rows in each replicate plot. Plants were partitioned into leaf and 
stem and leaf area was recorded using a leaf area meter (LI-3100 C Area 
Meter, Li-Cor Biosciences Inc., Lincoln Nebraska USA). Leaves from in
dividual plants were dried in a forced-draught oven at 60 ◦C until at 
constant dry weight and specific leaf area of each genotype was calcu
lated by dividing leaf area by leaf biomass. Leaf area index (LAI) and 
radiation interception (Ri) were recorded at 30, 70, 78, 99, 127 and 146 
DAS in Experiment 1, and at 42, 62, 133, 145, 152 and 166 DAS in 
Experiment 2, using a AccuPAR PAR/LAI Ceptometer, Model LP-80 
(Decagon Devices Inc., Pullman Western Australia). An additional 
measure for LAI and Ri was taken for Pallaton in 2019 at 68 DAS, as the 
crop had not yet reached full canopy closure at the previous sampling 
point. Recording for leaf canopy development were targeted at early 
vegetative and late vegetative/senescing stages of growth. Leaf distri
bution parameters (χ) for all genotypes was set at 2.0, within the typical 
range for a rape crop as specified by the operator’s manual (Decagon 
devices Inc, 2013). 

Soil cores were taken before sowing and at the end of each experi
ment to characterise the soil at the site for APSIM. Six soil cores 50 mm 
in diameter and 1800 mm depth were taken across each replicate block 
(n = 4 blocks) prior to sowing. Soil samples were partitioned into soil 
layers 0–150, 150–300, 300–600, 600–900, 900–1200, 1200–1500, 
1500–1800 mm, split in half lengthwise and bulked within each block 
into separate bags for analysis of soil water and nutrients including 
organic carbon content, and NO3-N and NH4-N concentrations. Soil 
water samples were weighed immediately in the field and then dried at 
105 ◦C until at constant dry weight and reweighed for gravimetric soil 
water content. Soil nutrients samples were dried at 40 ◦C for 3–5 days 
and finely ground for analysis at CSBP Soil and Plant Analysis Labora
tory Bibra Lake, WA. At the end of each experiment two soil cores were 
taken in individual plots and were partitioned, dried, and analysed as 
above to determine final soil water and N status for each genotype. 

2.1.2. Simulation set-up for calibration experiments in APSIM 
Meteorological data for the simulations for these two sites were 

sourced via the Scientific Information for Land Owners (SILO) Long 
Paddock database (Jeffrey et al., 2001; https://www.longpaddock.qld. 
gov.au/silo/) with a suitable weather station located ~2 km from the 
sites (station no. 041306). A previously classified soil (APSoil No. 007) 
located ~2.5 km was selected from the APSoil database (https://www. 
apsim.info/apsim-model/apsoil/) and used for the simulations of both 
sites based on confirmation it matched the soil type, depth, organic 
carbon content, and soil texture for both experimental sites. 

Starting volumetric soil water and soil N concentration in the sim
ulations were set with volumetric soil water calculated by multiplying 
gravimetric soil water by the bulk density values measured for the 
selected soil. The reference crop, canola cvv. Wahoo in 2018 and 
Hyola970 CL in 2019 was used to further calibrate the simulation of 
each of the experiments based on starting soil water and N conditions. 
Some very minor adjustments were made to the canola lower limits in 
each of the APSoil soil layers to match the final soil water measured in 
each soil layer which resulted in an improved prediction of crop biomass 
for the reference crop. Canola lower limits were used for all forage 
brassica genotypes. 

2.1.3. Modifications to forage brassica genotype-specific parameters 
The calibration stage aimed to produce a functional forage brassica 

model by making only minor modifications to the generic crop param
eters in the APSIM-canola model to improve the fit between predicted 
and observed data for each genotype. Initial parameters for the forage 
brassicas genotypes were based on the winter canola cv. Taurus because 
of its high vernalisation requirement. Modifications to parameters were 
made using observed data where possible, followed by exploring the 
sensitivity of the model to changes in parameter values. Refinements 
were made iteratively until a point was reached that optimised model 
agreement with observed values. The process targeted crop parameters 
for which experimental data were clearly different between canola and 
forage brassica genotypes (i.e., phenological development, leaf appear
ance rate, leaf size, specific leaf area). Model parameterisation was 
conducted stepwise, firstly focussed on crop phenology, then on canopy 
development and biomass partitioning, and finally on parameters 
driving nutritive value predictions. 

Thermal time requirements for emergence, end juvenile and floral 
initiation stages were modified to account for the higher vernalisation 
requirements for each of the forage genotypes and the extended vege
tative growing window (Supplementary Table 1). Changes were not 
made to thermal time between floral initiation, flowering, start or end 
grain filling or maturity as no data was available to support alternative 
parameters. Based on the observed data, leaf appearance rate of the 
forage rape cultivars were modified to increase initial leaf appearance 
rate (i.e., lower thermal time per leaf) during early vegetative growth 
stages (to leaf 10) and reduced rate thereafter compared to canola. For 
raphanobrassica, initial leaf appearance rate was modified to reflect the 
overall slower leaf appearance rate of this genotype than the forage rape 
cultivars and canola. Using observed data, leaf size (area per leaf) was 
also modified to reflect the larger size observed for the forage rape ge
notypes compared to canola. Changes to these leaf parameters were also 
supported by other data of forage rape leaf size and appearance rate 
(Neilsen, 2005). Leaf size parameters of the forage rapes cvv. Goliath and 
Winfred were best matched to those used for hybrid canola cultivars in 
the APSIM-canola model (e.g., CBI406, H46Y78). Larger leaf size was 
observed in raphanobrassica cv. Pallaton and forage rape cv. HT-R24 
compared to the other forage rape cultivars, as documented also by 
others (Dumbleton et al., 2012; Westwood and Mulcock, 2012). 
Maximum and minimum range for specific leaf area were decreased for 
Pallaton based on observed specific leaf area (Supplementary Table 1). 
Further improvements to the biomass partitioning of leaf and stem for 
the forage brassica genotypes were made via modifications to the 
biomass partitioning parameters in the model to better reflect the higher 
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Table 3 
Summary statistics of model performance of APSIM in predicting biomass production, and nutritive value of the different forage brassica genotypes across multi- 
environments spanning agro-climatic zones.   

Genotype Agro-climatic zone  

Early rape Late rape HT rape Raphanobrassica Sub-tropic, 
semi-humid 

Temperate, 
sub-humid 

Dry 
Mediterranean 

Temperate, cool season wet 

Biomass (t DM‧ha-1)     
n 101 80 18 21 48 10 30 132 
R2 0.74 0.78 0.79 0.73 0.56 0.43 0.41 0.81 
NSE 0.64 0.70 0.72 0.61 0.46 0.14 -0.11 0.73 
RMSE 1.72 1.42 1.52 1.42 2.02 0.56 1.02 1.54 
PBIAS (%) -3.1 16.6 -9.3 -21.4 -17.2 -8.8 -0.4 8.0 

Metabolisable energy yield (GJ ME‧ha-1)     
n 31 40 14 17 32 8 22 40 
R2 0.51 0.75 0.68 0.70 0.36 0.18 0.29 0.72 
NSE 0.43 0.73 0.60 0.57 0.19 -0.31 -1.04 0.64 
RMSE 17.8 16.8 19.7 16.9 24.6 7.96 13.1 13.9 
PBIAS (%) -11.1 -0.5 -11.2 -17.7 -17.1 -9.7 4.4 -2.8 

Dry matter digestibility (% DM)     
n 31 40 14 17 32 8 22 40 
R2 0.07 0.05 0.00 0.00 0.03 0.31 0.05 0.14 
NSE -0.70 -0.63 -0.68 -0.54 -0.39 0.24 -0.90 -5.72 
RMSE 8.33 10.48 2.77 3.10 3.74 2.09 2.50 12.45 
PBIAS (%) -5.3 -7.9 0.4 2.1 1.7 -0.1 2.1 -12.6 

Crude protein content (% DM)     
n 31 40 14 17 32 8 22 40 
R2 0.00 0.15 0.26 0.03 0.09 0.89 0.46 0.01 
NSE -0.24 0.03 -0.60 -0.17 -0.02 0.79 -7.07 -0.48 
RMSE 5.53 4.36 4.46 6.13 4.04 1.82 7.32 4.74 
PBIAS (%) -4.7 8.5 20.6 13.5 7.0 -0.8 57.3 -9.2 

n, number of observations; R2, R-squared coefficient of determination; NSE, Nash-Sutcliffe efficiency score; RMSE , root mean square error; PBIAS, percent-bias. 

Fig. 3. Observed v. predicted (a) biomass, (b) metabolisable energy (ME) yield, (c) dry matter digestibility (DMD), and (d) crude protein (CP) content of forage 
brassica types: early rapes (blue solid circles), late rapes (blue open squares), raphanobrassica (orange solid triangles) and HT rape (orange open diamonds). Solid 
line represents 1:1 line and red dotted line represents linear regression. Statistical values for goodness of fit are shown in Table 3. 
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allocation to leaf in the forage brassica genotypes from emergence to 
floral initiation compared to canola. Compared to the parameters set for 
canola, the allocation to leaf was increased by 10%, 30% and 50% 
during the emergence, juvenile, and floral initiation stages, respectively. 
The DMD of green leaf and stem were also increased to better reflect the 
higher DMD value of the forage brassicas during the vegetative period 
compared to those set in the released canola crop model. Initially DMD 
values were set to those reported for similar forage brassica genotypes 
from in vivo studies (Sun et al., 2015a, 2012) and further modifications 
were made using the iterative process combined with visual inspection 
of the predicted and observed data for nutritive value (both total and 
plant components). To improve biomass partitioning between green and 
senesced biomass, changes to parameters driving leaf senescence in 
response to water stress were explored; however, these changes did not 
improve the model beyond the standard canola parameters. A summary 
of all key parameters for each genotype are detailed in Supplementary 
Table 1. 

2.2. Stage 2: Testing of crop biomass production and nutritive value 
across environments 

To test the new model parameterisations for the forage brassica ge
notypes across a wider range of environments and agronomic manage
ment practices (e.g., sowing times, fertiliser inputs, irrigation 
schedules), data were gathered from several sources where forage 
biomass and nutritive value were measured for the characterised ge
notypes (or equivalent varieties) and sufficient agronomic information 
was available to build simulations of these experiments (Table 2). The 
model test set included data on diverse forage brassicas from: (1) multi- 
environment experiments in a range of agro-climatic zones of Australia’s 

mixed farming zone, including: sub-tropic semi-humid, temperate sub- 
humid, and dry Mediterranean environments (Watt et al., 2021; Flohr 
unpubl. data); (2) forage rapes grown for comparison with dual-purpose 
canola in temperate sub-humid (Kirkegaard et al., 2008), and temperate 
cool-season wet environments (Kirkegaard unpubl. data); (3) forage 
rape evaluations in temperate cool-season wet environments of southern 
Australia and previously used for modelling in APSIM (Pembleton et al., 
2013); and (4) forage rape experiments in temperate cool-season wet 
environments of New Zealand (Chakwizira et al., 2014; Fletcher and 
Chakwizira, 2012) (Table 2). Many experiments involved other forage 
rape cultivars which were aligned to either Winfred (cvv. Leafmore, 
Interval and Titan) or Goliath (cv. Bonar) based on their relative matu
rity. Data was more limited to Australia’s mixed farming zone for the 
recently released genotypes Pallaton raphanobrassica, and the hybrid 
type HT-R24 forage rape (Table 2). Data from sites at Elliot in Tasmania, 
Terang in Victoria, and Hastings and Lincoln in New Zealand (all 
temperate, cool season wet environments) included a range of irrigation 
and nitrogen treatments that enabled us to explore the capability of the 
model to predict forage brassica production under different agronomic 
management regimes (see Table 2). 

2.2.1. Model testing using APSIM and test datasets 
Simulations for each of the 23 experiments were built in APSIM using 

management and soil information documented for each of these studies. 
Soils used in the simulations were sourced from the APSoil database. 
Representative soils for each region were selected via consultation with 
scientists working in each region or via the Soils and Landscapes Grid of 
Australia (Grundy et al., 2015) and the SoilMapp iPad app (CSIRO, 
2020) based on soil type, depth, and plant available water capacity 
(PAWC) (Table 2). Meteorological data for all Australian locations was 

Fig. 4. The relative performance of the forage brassica model to predict biomass at 23 locations located in sub-tropic, semi-humid (grey lines), temperate, sub-humid 
(grey dots), dry Mediterranean (dark grey) and temperate, cool season wet environments (light grey) within Australia and New Zealand. Coloured dots for each site 
represent the average difference between observed and predicted biomass data for each site. 
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sourced via SILO Long Paddock database (Jeffrey et al., 2001) and data 
for New Zealand locations were sourced via the NIWA Virtual Climate 
Station Network (Cichota et al., 2008; Tait and Turner, 2005). 

Soil N and/or water content were available for the majority of the 
sites, to initialise the simulated soil conditions. However, at the Pilton, 
Tulloona and Formartin sites starting soil conditions were not measured, 
so simulations were initialised by setting the starting soil N and water 
conditions to the crop lower limits and zero mineral N at the harvest date 
of a wheat crop sown in the previous year. Crop management, reflected 
seed bed preparation, sowing, N fertiliser and irrigation application at 
each experimental site. Where plant establishment numbers were not 
reported, plant establishment was estimated based on sowing rate and a 
75% emergence rate. 

Simulation outputs were tested against observed data for biomass, 
ME yield, and total plant DMD and CP, although many data sets were 
limited to biomass data only. Temperature, soil water and N stress 
response on plant photosynthesis was also output as an additional check 
of model performance. Where possible, reference crops were used to 
check that simulation of water and N resources were reasonable. In some 
cases, the soil N available at sowing was adjusted in order to adequately 
simulate growth of the reference crop. 

Plant CP content, ME content and ME yield were calculated from 
APSIM crop output variables using the following equations:  

(1) Plant CP content (% DM) = Total plant N concentration × 6.25  
(2) ME (MJ/kg DM) = 0.172 × dry matter digestibility (% DM) – 

1.707  
(3) ME yield (GJ‧ha-1) = crop biomass (t DM‧ha-1) ×ME (MJ‧kg-1 DM) 

2.3. Statistical analyses of model performance 

Statistical analyses were used to evaluate the performance of the 
model simulations of biomass, ME yield, and total plant DMD and CP 
content. Analyses were carried out for each forage brassica genotype and 
partitioned to test the performance in each agro-climatic zone. This 
enabled sources of variability within the broader model testing data set 
to be identified. All statistical analyses were carried out using ‘stats’(R 
Core Team, 2017), ‘Metrics’ (Harmer et al., 2018), and ‘hydroGOF’ 
(Zambrano-Bigiarini, 2020) packages in the statistical software program 
R (R Foundation, Vienna). The statistical analyses included: (1) coeffi
cient of determination (R2) that describes the variance between pre
dicted and observed data when a linear regression is fitted (1 is optimal); 
(2) Nash-Sutcliffe efficiency score (NSE) that describes the relative 
magnitude between the residual variance and observed data variance 
(0.75–1 is very good, and ≤ 0.50 is unsatisfactory) (Moriasi et al., 2007; 
Nash and Sutcliffe, 1970); (3) root mean square error (RMSE) that in
dicates the error in the units being measured (0 is optimal); and (4) 
percent-bias (PBIAS) that measures the tendency of the predicted values 
to differ to the observed values (+ values indicates model 
under-estimation, and − value indicates model over-estimation; 
0 optimal) (Moriasi et al., 2007; Yapo et al., 1996). 

3. Results 

3.1. Stage 1: Calibration of forage brassica genotypes 

3.1.1. Biomass partitioning 
The thermal time parameters derived for each forage brassica ge

notype achieved reasonable agreement with field phenological obser
vations of floral initiation in both experiments (data not shown). Many 
of APSIM’s processes are driven by crop phenology so modifications to 
the parameters in APSIM-canola also achieved improvements in pre
dictions of other crop parameters such as biomass partitioning for the 
forage brassica genotypes. Changes to the phenology parameters greatly 
improved total biomass and green biomass of all the forage brassica 
genotypes, particularly green biomass later in the season (Figs. 1b and 

2b). These changes had little influence on senesced biomass predictions 
for the forage rape cultivars, which were often overpredicted (Fig. 1c; 
Supplementary Figs. 2c and 3c). Senesced biomass of Pallaton rapha
nobrassica was reasonably well predicted in comparison to the forage 
rape cultivars (Fig. 2c). A larger discrepancy between observed and 
predicted total and senesced biomass occurred in 2019, compared to the 
2018 experiment in the forage rapes, but this was also present in the 
reference canola crops (Fig. 1a and c; Supplementary Figs. 1–3a and c). 

Modifications to the biomass partitioning in APSIM-canola were 
made to better reflect the higher leaf to stem ratio of the forage brassica 
genotypes and these significantly improved predictions of the allocation 
to leaf and stem. Large discrepancies between the plant allocations to 
leaf and stem between the two calibration years (Figs. 1e-f and 2e-f; 
Supplementary Figs. 2e-f and 3e-f) meant that further calibration to 
better predict biomass allocation were not possible within the current 
model framework. This seasonal divergence was also found in the canola 
reference crop where leaf was underpredicted, and stem overpredicted 
in 2019, but plant allocation predictions were much better in 2018 
(Supplementary Fig. 1). Green leaf biomass of the forage rapes was 
relatively well predicted up to 120 DAS, but the model tended to 
underpredict at later times, mainly due to the model predicting greater 
leaf senescence than recorded in the experimental data. Leaf biomass 
predictions for Pallaton (Fig. 2e-f) were much better over the full 
growing season compared to the forage rape cultivars (Fig. 1e-f; Sup
plementary Figs. 2e-f and 3e-f). 

3.1.2. Forage nutritive value 
Forage nutritive value is linked to phenological stages in APSIM, so 

improvements in phenological parameters improved predicted forage 
nutritive value. However, further modifications were made to green leaf 
and green stem DMD parameters in APSIM-canola to more accurately 
predicted the higher DMD of green leaf and slower decline in DMD over 
time of the forage brassica genotypes compared to canola. As a result of 
these changes, the model closely predicted the DMD of the plant and its 
components (Figs. 1g-i and 2g-i; Supplementary Figs. 2g-i and 3g-i). 
Predictions of CP content were much more variable than DMD, but 
generally fell within the boundaries of the observed values (Figs. 1d and 
2d; Supplementary Figs. 2d and 3d) and this was also the case for the 
canola reference crop (Supplementary Fig. 1d). 

3.1.3. Leaf canopy and development 
Modifications to the APSIM-canola model were required to reflect a 

more rapid leaf appearance rate in the forage rape cultivars during early 
growth (~1.4 times faster than canola), which was maintained there
after compared to canola that increased dramatically as the crop 
approached floral initiation. Leaf appearance rate of raphanobrassica 
was much slower (i.e., more thermal time required per leaf) than both 
canola and forage rapes, especially after node number 10 (Supplemen
tary Table 1). As a result of these changes, the model closely predicted 
leaf development for all forage brassica genotypes (Figs. 1l and 2l; 
Supplementary Figs. 2l and 3l). Predicted LAI and Ri for forage rapes cv. 
Goliath and Winfred were greatly improved by adjusting leaf size using 
the existing parameterisations for hybrid canola cultivars in the APSIM- 
canola model (Fig. 1j-k; Supplementary Fig. 2j-k). Further adjustments 
were needed for HT-R24 rape and raphanobrassica to better reflect the 
more rapid expansion of leaves (and increase in leaf biomass produc
tion) (Fig. 2j-k; Supplementary Fig. 3j-k). Specific leaf area parameters 
were also modified for raphanobrassica to match the observed leaf area, 
but forage rapes remained the same as canola (Supplementary Table 1). 
Observed leaf canopy data was collected using the same leaf distribution 
parameter for all genotypes, despite obvious differences in plant struc
ture, particularly between the forage rapes and raphanobrassica. 
Although modifications to leaf size and specific leaf area improved the 
LAI and Ri for Pallaton, they were still often underpredicted, particularly 
during earlier growth periods (up to 80 DAS) (Fig. 2j-k). Further re
finements of canopy development parameters in Pallaton were explored 
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but resulted in reduced model performance in other attributes, so further 
changes were not incorporated in the absence of additional supporting 
data. This was not the case for the forage rapes where LAI and Ri were 
relatively well predicted (Fig. 1j-k; Supplementary Figs. 2j-k and 3j-k). 

3.2. Stage 2: Model testing 

3.2.1. Biomass 
When model performance was tested against an independent multi- 

environment data set the biomass for all genotypes was reasonably well 
predicted as indicated by the high NSE score (0.61–0.72), R2 > 0.73, and 
RMSE values ranging from 1.4 to 1.7 t DM‧ha-1. The PBIAS values for all 
genotypes were < 25% and early rape genotype was close to optimal, 
indicating low model bias, but predicted biomass for late rape genotype 
(e.g., Goliath) and raphanobrassica were often underestimated and 
overestimated, respectively (Table 3; Fig. 3a). 

Although there were differences in model performance between the 
agro-climatic zones, all sites had relatively low RMSE values ranging 
from 0.6 to 2 t DM‧ha-1 (Table 3). Overall, the model predicted biomass 
with only a 0–39% difference to the observed data at 18 out of the 23 
sites and this was distributed broadly across the agro-climatic zones 
(Fig. 4). Biomass was poorly predicted at two of the testing sites, but this 
was not consistent with other data collected at those sites or other cor
responding agro-climatic zones (Fig. 4). The agreement of the model was 
particularly good in temperate, cool season wet environments (that 
made up 60% of our model testing data). The agreement of the model in 
sub-tropical, semi-humid environments (that made up 22% of our model 
testing data) was just below the satisfactory rating for model perfor
mance with an NSE of 0.46. However, the R2 for this agro-climatic zone 
was 0.56 and the PBIAS was < ± 20% indicating that the observed data 
were evenly distributed within the predicted values (Table 3). The 
temperate, sub-humid, and dry Mediterranean environments had NSE 
values < ± 0.15 indicating poor model agreement, but the RMSE ranged 
between 0.5 and 1.0 t DM/ha, the R2 values were > 0.4 and the PBIAS 
were close to 0, which indicated that the observed data were evenly 
distributed within the predicted data (Table 3). 

3.2.2. Forage nutritive value 
Predictions of plant DMD and CP content were poor for all genotypes, 

often achieving negative NSE scores and R2 values well below 0.50 (R2 <

0.10 in most instances). This finding was also consistent across agro- 
climatic zones, with the only exception the temperate, sub-humid en
vironments where CP content was predicted very well (NSE >0.75; R2 

>0.85). The RMSE for CP content of all genotypes and across all agro- 
climatic zones was approximately 5%, which represented around a 
25% difference from the measured values. The PBIAS for CP content was 
< ± 20% for all genotypes and across all agro-climatic zones, except for 
the dry Mediterranean environment where CP content was largely 
underestimated (Table 3). While model predictions for CP content were 
very poor this was less the case for DMD with a low PBIAS and RMSE 
(~3%) for all genotypes, and agro-climatic zones (Table 3). However, 
the very low R2 values and near-constant predicted DMD values indi
cated that the variability in DMD between genotypes (Fig. 3c) and agro- 
climatic zones (Supplementary Figure 4c) were not adequately captured 
by the model. For the temperate, cool season wet environment, the 
observed DMD values were high (82–95%) compared to other sites 
(66–87%) (see cluster in Fig. 3c; Supplementary Figure 4c), and this 
resulted in a larger negative PBIAS value for that agro-climatic zone data 
(Table 3). 

Metabolisable energy yield (a function of both DMD content and 
biomass yield) was satisfactorily predicted for all forage brassica geno
types based on the high R2 values > 0.5 and NSE scores (average 0.58). 
The only exception was for early rapes that had an NSE below the 
satisfactory threshold (0.43) but the R2 was within the acceptable range 
(Table 3). The PBIAS for all genotypes were < ± 20% or close to optimal 
indicating that the observed data were evenly distributed within the 

predicted data; although the PBIAS value for raphanobrassica was more 
negative than the forage rapes (Table 3), indicating that the model 
tended to overestimate ME yield more for this genotype. 

Similar to biomass, the model agreement for ME yield was strongest 
in temperate, cool season wet environments (Table 3) but the model 
prediction was less accurate across the other agro-climatic zones 
(Table 3). Despite this, the PBIAS for all agro-climatic zones was 
< ± 10%, with the exception of the sub-tropic, semi-humid environment 
that was slightly higher (< ± 20%). Further, the RMSE values in each 
agro-climatic zone were generally acceptable given the range of 
observed biomass values within each zone (Table 3). The greatest source 
of error for ME yield predictions came from inaccurate predictions of 
forage DMD rather than error in biomass. 

4. Discussion 

Development of this forage brassica model provides an opportunity 
to understand and refine agronomic management practices and identify 
the potential role of forage brassicas to complement the existing live
stock feedbase. We have parameterised a model for three forage rape 
genotypes and a raphanobrassica that can predict their vegetative 
biomass and nutritive value characteristics across a broad range of agro- 
climatic zones (e.g., sub-tropic, semi-humid cf. temperate, cool season 
wet environments), and agronomic management practices. This model is 
significantly more robust and broadly applicable than other forage 
brassica models, such as DairyMod (Johnson, 2016). This new capacity 
adds considerably to the complement of forage and crop models avail
able in the APSIM framework. Having this capability in APSIM allows 
broader exploration of forage brassicas in the farming system, including 
their interactions with available soil water and nutrients, production 
risk in the face of climate variability, and interactions with other crops 
and forages in rotation. 

Forage rapes are the same species as grain and dual-purpose canola. 
The APSIM-canola model includes a broad suite of canola cultivars, 
including winter and hybrid canola types that have been added more 
recently. However, these winter and hybrid canola varieties have 
received limited testing compared to more broadly used conventional 
and triazine tolerant varieties (APSIM Initative, 2021; McCormick et al., 
2015). In the calibration stage of our study, we found that the biomass 
components and leaf number of the canola reference crop was better 
predicted for the open pollinated triazine tolerant variety (e.g., Wahoo) 
compared to hybrid winter type canola (e.g., Hyola 970 CL). Despite 
these minor limitations, winter and hybrid canola are most similar to 
forage brassicas because they have higher vernalisation, larger leaf size, 
and differ in transpiration efficiency compared to traditional spring-type 
canola varieties (McCormick et al., 2015; Whish et al., 2020). This 
justified the use of winter canola cv. Taurus as a template for our forage 
brassica model. 

Previous modelling of non-genotype specific forage rapes in 
temperate, cool season wet environments has been carried out in APSIM- 
canola using the French winter cultivar with modifications made to 
maximum leaf size and thermal time parameters (Pembleton et al., 
2013). Unlike our model, the Pembleton et al. (2013) model did not 
differentiate between forage rape types and their unique plant attributes 
(e.g., maturity, giant vs. leaf-types, leaf size and appearance rate); and 
DM yield was often underpredicted. However, the R2 value for both 
studies were similar (R2 ~0.76). Modifications to the biomass parti
tioning was also made in our forage brassica model to account for the 
higher leaf to stem ratio of forage brassica crops compared to canola, 
which was not accounted for in the other study that only reported total 
biomass and not plant components. Furthermore, the Pembleton et al. 
(2013) model focussed on forage brassicas grown in temperate, cool 
season wet environments within south-eastern Australian dairy systems 
and the ability of the model to simulate forage brassica production 
across different agro-climatic zones (and production environments) was 
not tested. This demonstrates the broader application and robustness of 
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our forage brassica model in comparison. 
One of the more difficult aspects of predicting plant biomass across 

both the forage brassicas and the canola reference crops was the pre
diction of green and senesced biomass. This was less well predicted for 
the forage brassica genotypes in the late-vegetative/early reproductive 
stages of growth. Better parameterisation of green biomass later in the 
season is especially important for future livestock systems modelling, as 
green biomass has higher nutritional value to grazing livestock. 
Furthermore, forage crops that can maintain vegetative production late 
in the season are highly advantageous for livestock systems since dry 
pastures and/or crop residues of lower nutritive value are usually the 
alternative forage sources and growing animals often require costly 
supplementation. There are several model parameters that control plant 
senescence including plant age, and those that alter the response of 
plants to environmental factors, such as N supply, temperature, and 
particularly water stress, which can be difficult to parameterise. 
Although modifications were made to leaf senescence rate from water 
stress using the iterative process in the calibration stage, model perfor
mance was not enhanced for any of the genotypes tested, and so these 
were kept the same as for the APSIM-canola model. Attributes to predict 
root depth, and water extraction in our forage brassica model were also 
kept the same as for the APSIM-canola model as we did not have data to 
support more crop specific parameterisation. Data from the two exper
iments used in the calibration stage represented crops grown under dry 
conditions, and the timing and intensity of water deficit stress varied 
between experiments, which also made parameterisations challenging. 
Water deficit stress is known to impact biomass production in forage 
brassicas (Chakwizira and Fletcher, 2012) and other crops (maize and 
sweet corn; Song et al., 2010; Stone et al., 2001) and is also known to 
impact leaf to stem ratio (Buxton and Casler, 1993), which may explain 
the seasonal divergence between stem biomass in 2018 and 2019 data 
used in the calibration stage. 

Forage brassicas are known to respond differently to water deficit 
stress. Canola is considered more sensitive to water deficit stress than 
other brassica crops (Kirkegaard et al., 2021), but forage brassica ge
notypes also vary in their tolerance to water deficit stress. For example, 
forage rapes have a deep root systems and can extract moisture from 
deeper water layers than bulb turnips (Fletcher et al., 2010) and this 
makes them more suitable to drier environments. Forage rapes and 
raphanobrassica genotypes have been shown to outperform other forage 
brassica genotypes for both biomass production and nutritive value 
under dry seasonal conditions (Watt et al., 2021). In general, there is 
very limited data on the rooting depth or water extraction capabilities of 
different forage brassica genotypes, which are typically grown in envi
ronments that are rarely water limited. The difficulty to accurately 
measure plant senescence in the field, and insufficient quality field data 
on root depth, water extraction, and water deficit stress response on a 
genotype level, made appropriate model parameterisation for green and 
senesced biomass, and leaf and stem biomass more challenging and 
more work is needed to further enhance model performance. However, 
the model parameterisations could adequately predict total crop 
biomass production across a wide range of environments varying in 
water availability, so the fundamental relationships between water 
stress and growth are likely to be robust. 

A key requirement in forage models is the ability to predict forage 
nutritive value for livestock, which is largely unnecessary in grain crop 
models. Although there has been more recent interest in the nutritive 
value of forage and dual-purpose crops in APSIM (Bell et al., 2009) many 
parameters such as DMD, which are important to quantify for livestock 
production systems, are not available in all crop models. The wheat and 
forage sorghum models are the only crop models where available DMD 
parameters have been tested, although testing for these are limited (Bell 
et al., 2009; Pembleton et al., 2013). Many of the APSIM crop models 
have been developed using historical data sets that have extensive in
formation on crop phenology, biomass, and yield, but minimal data on 
crop nutritive value at the various stages of growth or for the different 

plant components (i.e., leaf and stem). In this study, we made significant 
changes to the DMD parameters in APSIM-canola in order to predict the 
high nutritive value for forage brassicas during their vegetative growth 
stage (stage of highest nutritive value). Although DMD predictions for 
the forage brassicas were improved by the iterative modifications made 
to the green leaf and stem DMD parameters during the calibration stage, 
many of the statistical analyses indicated potential to further improve 
model performance, especially the need to better capture the variability 
in DMD over time and across environments. The DMD parameters in 
APSIM use stage of plant growth and biomass partitioning (i.e., leaf, 
stem, pod etc.) for DMD predictions. However, environmental stresses, 
such extreme temperatures, water deficit stress, and shading are also 
known to impact plant digestibility as they influence the lignification of 
plant tissues, as well as leaf to stem ratio (Buxton and Casler, 1993). The 
current processes of APSIM for DMD may explain why the predictions 
failed to capture the variability of observed DMD data across the 
different environments. Despite our efforts to modify the DMD param
eters in our model, improvements in the way that APSIM predicts DMD 
currently (i.e., based on growth stage and biomass partitioning) will 
need to be refined before further improvements can be made. Since 
water deficit stress also impacts the leaf to stem ratio, more 
genotype-specific modifications for water deficit stress using quality 
field data, may also enhance the ability of the model to predict DMD. 
While model performance statistics here were generally poor for DMD, 
observed data captured a relatively small range, mainly during the 
vegetative growth stage, when grazing is most likely. Further, in reality 
DMD values above 70% are likely to have minimal impact on animal dry 
matter intake and thus, animal production outcomes (Blaxter et al., 
1961) and observed DMD values in our model testing set were above this 
value. A further challenge in simulating the observed DMD values is the 
different laboratory methods used by the various data sources. All 
observed DMD data in our model test set were obtained using near 
infrared reflectance spectrophotometry (NIRS) from different feed 
testing laboratories and few of those data sources mentioned any use of 
wet chemistry methods to validate NIRS predictions. Nearly 50% of 
observed DMD values were within the range of 87–95% DMD, which 
were much higher than those reported in studies that validated NIRS 
predictions with wet chemistry (Watt et al., 2021) or used in vivo di
gestibility measures (Sun et al., 2015b, 2012). These much higher DMD 
values were especially poorly predicted by the model. Collection of good 
crop nutritive value data, that is validated by wet chemistry, is needed 
for future forage model developments. Further, nutritive value data over 
the entire growing period is needed as our calibration data set was 
limited to the vegetative stage of growth and provided little variability 
in observed data. 

The model was unable to capture the large variability of observed CP 
content and since CP is an important nutrient for livestock, this will limit 
its application in combination with livestock grazing systems models. 
The issues with CP content are fundamental as N content (used to 
calculated CP content) is calculated from plant N uptake and biomass, 
which is one of the main components in all APSIM crop models and is 
driven by other main crop components: crop biomass and root system 
(Wang et al., 2002). Furthermore, N demand, uptake and accumulation 
has been well-tested for a number of cereal and legume crops with close 
agreement between predicted and observed data (Chen et al., 2016; 
Probert et al., 1998; Robertson et al., 2002). Poor predictions of forage 
crop CP content has been previously reported (Pembleton et al., 2013) 
and our study further affirms the need to better adapt the N content 
component of the APSIM model to more accurately predict N accumu
lation and partitioning, especially for forage crops. The N cycle of forage 
crops are considerably complex as N is removed at various times via 
biomass removal during grazing and then partially returned via animal 
excreta (Jarvis, 1993; Pakrou and Dillon, 2000), compared to grain only 
crops where N accumulates in the seed during grain fill and is removed 
at harvest (Asseng et al., 2002). APSIM is also predominantly used for 
broadacre crops in rainfed systems where N may also be limited. Some of 
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our model testing data sets from the temperate, cool season wet envi
ronments, may represent environments with excess N supply that may 
be problematic for many brassicas which are known to take up luxury 
amounts of N when it is available. These processes may not be handled 
appropriately by the current model. 

A further limitation of the current parameterisations for forage 
brassicas outlined here is the phenology parameters were developed 
from phenology data from a narrow range of environments with limited 
vernalisation, photo-period and thermal time drivers of plant develop
ment. The data collected in field experiments are from a single location 
and over a limited growing window mainly targeting the vegetative 
stage, hence predictions of reproductive development is likely to need 
further attention if this is desired in future model capabilities. Despite 
this, the phenology parameters derived for each of the genotypes 
generated plant growth and biomass allocations that closely agree with 
observations of biomass, nutritive value, and floral initiation date 
(where this occurred in experiments). Further, in most cases, manage
ment of forage brassicas will target keeping them in a vegetative growth 
stage, and hence applying the model outside this period (e.g., to predict 
seed yield) is unlikely to be of wide interest and would require further 
work before the model would be suitable outside its application as a 
forage crop as intended here. Since forage brassicas are used for grazing 
by livestock, regrowth, and defoliation parameters in the APSIM crop 
models will need to be addressed for future modelling work. We did not 
test these in our current model, largely due to the lack of quality data for 
testing and limitation of the APSIM-Classic model in resetting crop stage, 
and the mobilisation of nutrients during regrowth (McCormick et al., 
2012). The increasing use of APSIM for crop/forage-livestock modelling 
(Holzworth et al., 2018) and the current developments of APSIM Next 
Generation (Holzworth et al., 2018) are likely to improve capture of 
regrowth processes and may improve integrated forage-livestock sys
tems simulations in the future. 

5. Conclusion 

This study has demonstrated that APSIM can now be used to satis
factorily predict forage productivity for several forage brassica geno
types during the vegetative stages of growth across multiple production 
environments and agronomic management practices. These forage 
brassica models have furthered our capacity to explore the potential 
production of different forage brassica genotypes and their contribution 
to the feedbase in livestock systems in a range of environments. How
ever, further model developments may be required for more sophisti
cated integrated forage-livestock simulations where aspects such as 
biomass partitioning, regrowth after grazing, and nutritive value pa
rameters in later stages of plant growth will be more critical. 
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