
Predictive Distribution of Regression
Vector and Residual Sum of Squares for

Normal Multiple Regression Model

Shahjahan Khan
Department of Mathematics & Computing

University of Southern Queensland
Toowoomba, Queensland, Australia

Email: khans@usq.edu.au

Abstract

This paper proposes predictive inference for the multiple regression model
with independent normal errors. The distributions of the sample regression
vector (SRV) and the residual sum of squares (RSS) for the model are derived
by using invariant differentials. Also the predictive distributions of the future
regression vector (FRV) and the future residual sum of squares (FRSS) for the
future regression model are obtained. Conditional on the realized responses, the
future regression vector is found to follow a multivariate Student-t distribution,
and that of the residual sum of squares follows a scaled beta distribution. The
new results have been applied to the market return and accounting rate data
to illustrate its application.
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1 Introduction

The predictive inference had been the oldest form of statistical inference used in

real life. In general, predictive inference is directed towards inference involving the

observables, rather than the parameters. The predictive method had been the most

popular statistical tool before the diversion of interest in the inferences on parameters

of the models. Predictive inference uses the realized responses from the performed

experiment to make inference about the behavior of the unobserved responses of the

future experiment (cf. Aitchison and Dunsmore, 1975, p.1). The outcomes of the
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two experiments are connected through the same structure of the model and indexed

by the same set of parameters. For details on the predictive inference methods and

its wide range of applications readers may refer to Aitchison and Dunsmore (1975)

and Geisser (1993). Predictive inference for a set of future responses of the model,

conditional on the realized responses from the same model, has been derived by many

authors including Aitchison and Scalthorpe (1965), Fraser and Haq (1969), and Haq

and Khan (1990). The prediction distribution of a set of future responses from the

model has been used by Guttman (1970), Haq and Rinco (1973) and Khan (1992) to

derive β-expectation tolerance region. There are many other kinds of applications of

the prediction distributions available in the literature (see Geisser, 1993, for instance).

Like almost every other branches of statistics, there has been many studies in

the area of predictive inference mainly for the independent and normal error model.

The pioneering work in this area includes Fraser and Guttman (1956) Aitchison

(1964), and Aitchison and Sculthorpe (1965), Fraser and Haq (1969), and Guttman

(1970). Aitchison and Dunsmore (1975) provide an excellent account of the theory

and application of the prediction methods. Fraser and Haq (1969) obtained prediction

distribution for the multivariate normal model by using the structural distribution,

instead of the Bayes posterior distribution. Haq (1982) used the structural rela-

tions, rather than the structural distribution, to derive the prediction distribution.

Geisser (1993) discussed the Bayesian approach to predictive inference and included

a wide range of real-life applications of the method. This includes model selection,

discordancy, perturbation analysis, classification, regulation, screening and interim

analysis. The predictive inference for the linear model has been dealt with by Lieber-

man and Miller (1963), Bishop (1976) and Ng (2000). Haq and Rinco (1976) derived

the β-expectation tolerance region for generalized linear model with multivariate nor-

mal errors using the prediction distribution obtained by structural approach. Unlike

the above normal theory based studies, Khan (1992), Khan and Haq (1994); and

Fang and Anderson (1990), Khan (1996) and Ng (2000) provide predictive analyses

of linear models with multivariate Student-t errors and spherical errors respectively.

In this paper we consider the widely used multiple regression model for the unob-

served but realized responses as well as for the unobserved future responses. The two

sets of errors are assumed to follow independent normal distribution. However, they

are connected to one another through the common regression and scale parameters.

Here, we pursue the predictive approach to derive the distribution of the regression

vector and the residual sum of squares of the future responses, conditional on the

set of realized responses. This is a new approach that proposes predictive inference

for the regression parameters of the multiple regression model based on the future

responses. The proposed predictive inference of the regression parameters depends
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on the realized responses, but not through the prediction distribution of the future

responses. First the joint distribution of the sample regression vector and the resid-

ual sum of squares of the errors are derived from the joint distribution of the two

error vectors by using the invariant differentials (cf Fraser, 1968, p.30). Then the

distribution of the sample regression vector and the residual sum of squares of the

realized responses are derived by using appropriate transformations. The sample re-

gression vector is found to be a multivariate normal vector and the residual sum of

squares statistic turns out to be a scaled gamma variable. These two statistics are in-

dependently distributed. Finally, the distribution of the same statistics of the future

regression model, that is, the future regression vector and residual sum of squares of

the future responses, conditional on the realized responses, are obtained by using the

non-informative prior distribution for the parameters.

The predictive distribution of the future regression vector follows a multivariate

Student-t distribution and that of the residual sum of squares of the future regression

follows a scaled beta distribution. Unlike the sample regression vector and residual

sum of squares of the realized regression model, the distribution of the same statistics

for the future regression model, conditional on the realized responses, are dependent,

and hence the joint density can’t be factorized into the marginal distributions.

In many occasions the researchers may require to predict the value of the param-

eter, rather than the response itself. In particular, if the interest is in the predictive

inference on the regression parameter, the rate of change in the response variable with

unit change in the explanatory variable, we require to find the prediction distribution

of the future slope vector. Given a set of realized responses and an appropriate prior

distribution for the underlying parameters, this can be obtained by defining the joint

distribution of the parameters and future regression vector based on the unobserved

future responses. In this paper we assume that the non-informative prior distribution

for the parameters of the model under consideration. Ng (2000) used an improper

prior for the derivation of prediction distribution.

In the next section, we discuss the multiple regression model with normal errors.

Some preliminaries are provided in section 3. Distributions of the sample regression

vector and the residual sum of squares of the realized model are obtained in section

4. The multiple regression model for the future responses is introduced in section 5.

The predictive distributions of the regression vector and the residual sum of squares

of the future regression model, conditional on the realized responses, are derived in

section 6. An illustrative example based on stock market data is provided in section

7. Some concluding remarks are included in section 8.
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2 The Multiple Regression Model

Consider the commonly used linear regression equation

y = βx + σe (2.1)

where y is the response variable, β is the vector of regression parameters assuming

values in the p-dimensional real space Rp, x is the vector of p regressors, σ is the

scale parameter assuming values in the positive half of the real line R+, and e is the

error variable associated with the response y. Assume that the error component, e,

is normally distributed with mean 0 and variance 1, so that the variance of y is σ2.

Now, consider a set of n > p independent responses, y = (y1, y2, · · · , yn), from the

above regression model that can be expressed as

y = βX + σe (2.2)

where the n-dimensional row vector y is the vector of the response variable; X is the

p× n dimensional matrix of the values of the p regressors; e is the 1× n row vector

of the error component associated with the response vector y; and the regression

vector β and scale parameter σ are the same as defined in (2.1). Then the error

vector follows a multivariate normal distribution with mean 0, a vector of n-tuple

of zeros, and variance-covariance matrix, In. Therefore, the joint density function of

the vector of errors becomes

f(e) = [2π]−
n
2 e−

1
2
{ee′}. (2.3)

Consequently, the response vector follows a multivariate normal distribution with

mean vector βX, and variance-covariance matrix, σ2In. Thus the joint density func-

tion of the response vector becomes

f(y; β, σ2) = [2πσ2]−
n
2 e
− 1

2σ2

{
(y−βX)(y−βX)

′}
. (2.4)

In this paper, we call the above multiple regression model as the the realized model

of the responses from the performed experiment. The above joint density becomes

the likelihood function of β and σ2 when treated as a function of the parameters,

rather than the sample response. The maximum likelihood estimators (m.l.e.) of the

parameters as well as the likelihood ratio test can be derived, to test any hypothesis

regarding the regression parameters, from the likelihood function. It is well known

that the m.l.e. of the parameters of this model is the same as the ordinary least

squares estimator (o.l.e.), and hence is best linear unbiased. However, in this paper

we are interested to find the distribution of the sample regression vector (SRV) and
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the residual sum of squares (RSS) for the realized responses from the above multiple

regression model as well as that of the future regression vector (FRV) and future

residual sum of squares (FRSS) of the unobserved future responses from the future

regression model to be defined in section 5.

3 Some Preliminaries

Some useful notations are introduced in this section to facilitate the derivation of the

results in the forthcoming sections. First, we denote the sample regression vector of

e on X by b(e) and the residual sum of squares of the error vector by s2(e). Then

we have

b(e) = eX ′(XX ′)−1 and s2(e) = [e− b(e)X][e− b(e)X]′. (3.1)

Let s(e) be the positive square root of the residual sum of squares based on the error

regression, s2(e), and d(e) = s−1(e)[e− b(e)X] be the ‘standardized’ residual vector

of the error regression.

Now we can write the error vector, e, as a function of b(e) and s(e) in the following

way:

e = b(e)X + s(e)d(e) and hence we get ee′ = b(e)XX ′b′(e) + s2(e) (3.2)

since d(e)d′(e) = 1, inner product of two orthonormal vectors, and Xd′(e) = 0, since

X and d(e) are orthogonal.

From (3.2) and (2.2), the following relations (cf. Fraser, 1968, p.127) can easily

be established:

b(e) = σ−1{b(y)− β}, and s2(e) = σ−2s2(y), (3.3)

where

b(y) = yX ′(XX ′)−1 and s2(y) = [y − b(y)X][y − b(y)X]′ (3.4)

are the sample regression vector of y on X, and the residual sum of squares of the

regression based on the realized responses respectively. It may be mentioned here that

both s2(e) and s2(y) have the same structure since the definitions of s2(e) in (3.3) and

that of s2(y) in (3.4) ensure the same format of the two residual statistics of errors

and realized responses respectively. Haq (1982) called the relation in (3.3) as the

structural relations. It can easily be shown that d(e) = s−1(y)[y − b(y)X] = d(y).

From the above results, the density of the error vector in (2.3) can be written as a

function of b(e) and s(e) as follows

f(e) = ψ × e
− 1

2

{
b(e)XX′b′(e)+s2(e)

}
(3.5)
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where ψ is an appropriate normalyzing constant. In section 5, we define similar future

regression vector and future residual sum of squares for the future regression model.

4 Distribution of SRV and RSS

From the probability density of e in (2.3) and the relation (3.2) the joint probability

density of b(e) and s2(e), conditional on the d(e), is obtained by using the invariant

differentials (see Eaton, 1983, p.194-206 or Fraser, 1968, p.30) as follows

f
(
b(e), s2(e)|d(e)

)
= K1(d) [s2(e)]

n−p−2
2 e

− 1
2

{
b(e)XX′b′(e)+s2(e)

}
(4.1)

where K1(d) is the normalizing constant. It can be shown that the above density

does not depend on d(e) (cf. Fraser, 1978, p.113) and can be written as the product

of two densities in the following way:

f
(
b(e), s2(e)

)
= f1 (b(e)) × f2

(
s2(e)

)
(4.2)

where

f1 (b(e)) = K11e
− 1

2

{
b(e)XX′b′(e)

}
and f2

(
s2(e)

)
= K12[s

2(e)]
n−p−2

2 e−
1
2
s2(e) (4.3)

in which

K−1
11 = [2π]

p
2 |XX ′|−n

2 and K−1
12 = [2]

n−p−2
2 Γ

(
n− p

2

)
(4.4)

are the respective normalizing constants. Clearly, the joint distribution factors, and

hence the marginal distributions of b(e) and s2(e) are independent of one another.

Therefore, the sample regression vector based on the error regression follows a mul-

tivariate normal distribution with mean 0 and covariance matrix [XX ′]−1. That is,

b(e) ∼ Np (0, [XX ′]−1) . The residual sum of squares of the error regression, s2(e),

follows a gamma distribution with shape parameter (n−p
2

).

To find the distributions of the sample regression vector of the response regression,

b(y), and the residual sum of squares of the response regression, s2(y), we use the

following relations of the multiple regression model:

b(e) = σ−1[b(y)− β] and s2(e) = σ−2s2(y). (4.5)

So the associated differentials can be expressed as

db(e) = σ−pdb(y) and ds2(e) = σ−2ds2(y). (4.6)

Therefore, the density function of b(y) is written as

f (b(y)) = [2πσ2]−
p
2 |XX ′|n2 e

− 1
2σ2

{
(b(y)−β)XX′(b(y)−β)

′}
(4.7)

6



and that of s2(y) is given by

f
(
s2(y)

)
=

1

[2]
n−p−2

2 Γ(n−p
2

)

[s2(y)]
n−p−2

2

[σ2]
n−p

2

e−
1

2σ2 s2(y). (4.8)

Thus the sample regression vector of the realized response regression follows a mul-

tivariate normal distribution with mean vector β and covariance matrix σ2(XX ′)−1,

that is, b(y) ∼ Np (β, σ2(XX ′)−1), and the residual sum of squares of the response

regression, s2(y) is distributed as a scaled gamma variable with shape parameter
(n−p)

2
. The sample regression vector and the residual sum of squares of the realized

response regression are independently distributed. This is true for both the error re-

gression and the response regression. However, the parameters of the distributions of

the statistics of the error regression are different from that of the response regression.

5 Regression Model for Future Responses

In this section we introduce the idea of predictive model for the future responses, and

use both the realized sample and unobserved future sample to derive the distributions

of the future regression vector as well as the future residual sum of squares. First,

consider a set of nf ≥ p future unobserved responses, yf = (yf1, yf2, · · · , yfnf
), from

the multiple regression model as given in (2.1) with the same regression and scale

parameters as defined in section 2. Such a set of future responses can be expressed

as

yf = βXf + σef (5.1)

where Xf is the p × nf matrix of the values of the regressors that generate the

future response vector yf , and ef is the nf -dimensional row vector of future error

terms. The future responses are assumed to be generated by the same data generating

process as that of the realized responses and involve the same regression and scale

parameters. Thus the responses of the realized sample and the unobserved future

responses are related through the same indexing parameters, β and σ2. We assume

non-informative prior distribution of the above parameters. Our objective here is to

find the distributions of the future regression vector and the residual sum of squares

of the future regression model, conditional on the realized responses.

Following the same process as in section 2, we define the following statistics based

on the future regression model:

bf (ef ) = efX
′
f (XfX

′
f )
−1, s2

f (ef ) = [ef − bf (ef )Xf ][ef − bf (ef )Xf ]
′ (5.2)

in which bf (ef ) is the future regression vector and s2
f (ef ) is the residual sum of

squares of the future error of the future model respectively. Then we can write the
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future error vector, ef , in the following way:

ef = bf (ef )Xf + sf (ef )df (ef ) (5.3)

where sf (ef ) is the positive square root of s2
f (ef ), and hence we get

efe
′
f = bf (ef )XfX

′
fb
′
f (ef ) + s2

f (ef ) (5.4)

since Xf and d(ef ) are orthogonal and df (ef ) is orthonormal. Moreover, the following

relations can easily be observed:

bf (ef ) = σ−1{bf (yf )− β}, and s2
f (ef ) = σ−2s2

f (yf ), (5.5)

where

bf (yf ) = yfX
′
f (XfX

′
f )
−1 and s2

f (y) = [yf − bf (yf )Xf ][yf − bf (yf )Xf ]
′ (5.6)

in which bf (yf ) is the future regression vector of the future responses and s2
f (yf )

is the residual sum of squares of future responses respectively. Note that the future

response vector, independent of the realized responses, follows an nf -dimensional

multivariate normal distribution, that is, yf ∼ Nnf

(
βXf , σ2Inf

)
. Following the

same argument as in section 2, the density function of the future error vector is given

by

f(ef ) = [2π]−
nf
2 e−

1
2(efe′f). (5.7)

and hence by using the invariant differentials, as in section 4, we get the joint distri-

bution of bf (ef ) and s2
f (ef ) as follows

f
(
bf (ef ), s

2
f (ef )

)
= K2 × [s2

f (ef )]
nf−p−2

2 e
− 1

2

{
bf (ef )Xf X′

fb
′
f (ef )+s2

f (ef )

}
)

(5.8)

where K2 is the normalizing constant. The unconditional marginal distributions of

the future regression vector and future residual sum of squares of the error regression

for the future model can be obtained from the above joint density in (5.8). Since the

future sample is independent of the realized sample, the join density function of the

combined error vector, that is, the errors associated with the realized and that of the

future responses, (e, ef ) can be expressed as

f(e, ef ) = [2π]−
n+nf

2 e−
1
2{ee′+efe′f}. (5.9)

Haq and Khan (1990) used this density function to derive the prediction distribution

of future responses, conditional on the realized responses. Figure 1 provides the graph

of the prediction distribution for the accounting rates of stocks for the data used by

Barlev and Levy (1979). Here we use this density function to derive the prediction

distributions of the future regression vector and future sum of squared errors.
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6 Predictive Distributions of FRV and FRSS

In this section we derive the predictive distributions of the future regression vector

and the residual sum of squares for the future multiple regression model, conditional

on the realized responses. Since both the realized and future regression models in-

volve the same parameters, the joint distribution of the responses would contain

the same regression and scale parameters. In the absence of any knowledge about

the parameters, we consider non-informative prior distribution for the parameters as

follows:

p(β) ∝ constant, and p(σ2) ∝ σ−2. (6.1)

This prior distribution is used to derive the predictive distributions of b(yf ) and

s2(yf ) from the joint distribution of β, σ2, b(yf ) and s2(yf ). Justification for the

use of such a non-informative prior is given by Geisser (1993, p.60 & p.192), Box and

Tiao (1992, p.21), Press (1989, p. 132) and Meng (1994) among any others. It is worth

noting that no prior distribution is required in the structural approach (cf. Fraser,

1978) as the structural distribution, similar to the Bayes posterior distribution, can

be obtained from the structural relation of the model without involving any prior

distribution. Fraser and Haq (1969) discussed that for the non-informative prior, the

Bayes posterior density is the same as the structural density.

6.1 Distribution of the Future Regression Vector In this sub-section we derive

the prediction distribution of the future regression vector, conditional on the realized

responses. The joint density function of the error statistics b(e), s2(e), bf (ef ) and

s2
f (ef ), for given d(·), is derived from the joint density in (5.9) by applying the

properties of invariant differentials, as follows:

p
(
b(e), s2(e), bf (ef ), s

2
f (ef )|d(·)

)
= Ψ11(·)[s2(e)]

n−p−2
2 e

− 1
2
g1

(
b,X

)

×Ψ21(·)[s2
f (ef )]

nf−p−2

2 e
− 1

2
g2

(
bf ,Xf

)
(6.2)

where g1

(
b, X

)
= b(e)XX ′b′(e); g2

(
bf , Xf

)
= bf (ef )XfX

′
fb
′
f (ef ); and Ψ11 and Ψ21

are the normalizing constants. Since the above density does not depend on d(·) so

the conditioning in (6.2) can be disregarded as we need to find the joint density of

b(y), s2(y), bf (yf ) and s2
f (yf ) from the above joint density. The structural relation

of the model yields

b(e) = σ−1[b(y)− β] and s2(e) = σ−2s2(y). (6.3)

The joint distribution of b(y), s2(y), bf (ef ), and s2
f (ef ) is then obtained by using

the Jacobian of the transformation,

J
{
[b(e), s2(e)] → [b(y), s2(y)]

}
= [σ2]

− p+2
2 , (6.4)
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as follows:

p
(
b(y), s2(y), bf (ef ), s

2
f (ef )

)
= Ψ2 × [s2]

n−p−2
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n
2

×e
− 1

2σ2

{
ξ1(b,β)+s2+ξ2(bf (ef ))+s2

f (ef )

}
(6.5)

where ξ1(b,β) = (b − β)XX ′(b − β)′; ξ2(bf (ef )) = bf (ef )XfX
′
fb
′
f (ef ); b = b(y)

and s2 = s2(y). The normalizing constant Ψ2 can be obtained by integrating the

right hand side of the above function over the appropriate domains of the underlying

variables. Since we are interested in the distributions of bf (yf ) and s2
f (yf ), the future

regression vector and residual sum of squares for the future regression, respectively,

conditional on the realized responses, we don’t pursue the matter any further in this

paper.

To derive the joint distribution of β, σ2, bf (yf ) and s2
f (yf ) from the above joint

density, note that from the structure of the future regression equation we have

bf (ef ) = σ−1[bf (yf )− β] and s2(ef ) = σ−2s2(yf ) (6.6)

where

bf (yf ) = yX ′
f (XfX

′
f )
−1, s2(yf ) = [yf − bf (yf )X

′
f ][yf − bf (yf )Xf ]

′. (6.7)

Therefore, the Jacobian of the transformation is found to be

J
{
[bf (ef ), s

2
f (ef )] → [bf (yf ), s

2(yf )]
}

= [σ2]
− p+2

2 . (6.8)

Now, the joint density of b(y), s2(y), bf (yf ) and s2
f (yf ) is obtained as

p
(
b, s2, bf , s

2
f

)
= Ψ3(·)× [s2]

n−p−2
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n+nf

2

×e−
1

2σ2

{(
b− β

)
XX ′(b− β

)′

+s2 +
(
bf − β

)
XfX

′
f

(
bf − β

)′
+ s2

f

}
(6.9)

where bf = bf (yf ) and s2
f = s2

f (yf ) for notational convenience. From the non-

informative prior distribution of the parameters of the model and the density in

(6.9), we find the following joint density of β, σ2, bf (yf ) and s2
f (yf ),

p
(
β, σ2, bf , s

2
f

)
= Ψ3(·)× [s2]

n−p−2
2 [s2

f (yf )]
nf−p−2

2 [σ2]−
n+nf +2

2

×e−
1

2σ2

{(
b− β

)
XX ′(b− β

)′

+s2 +
(
bf − β

)
XfX

′
f

(
bf − β

)′
+ s2

f

}
. (6.10)

A similar result can be obtained by using the structural distribution approach. In

fact, the final results of this paper will be similar to that obtained by the structural
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distribution approach. Interested readers may refer to Fraser and Haq (1969) for

details.

To evaluate the normalizing constant Ψ3(·), in the above density, we go through

the following steps. Let

Iσ2 =
∫

σ2
p
(
β, σ2, bf , sf

)
dσ2

= [s2
f ]

nf−p−2

2

∫

σ2
[σ2]−

n+nf +2

2 e−
1

2σ2 Qdσ2 (6.11)

where

Q =
(
b− β

)
XX ′(b− β

)′
+ s2 +

(
bf − β

)
XfX

′
f

(
bf − β

)′
+ s2

f . (6.12)

Therefore,

Iσ2 = [2]
n+nf

2 Γ
(

n + nf + 2

2

)
[s2

f ]
nf−p−2

2 [Q]−
n+nf +2

2 . (6.13)

To facilitate the further integrations, the terms involving the regression vector β in

Q can be expressed as follows:

(
b− β

)
XX ′(b− β

)′
+

(
bf − β

)
XfX

′
f

(
bf − β

)′
=

(
β − FA−1

)
A

(
β − FA−1

)′
+

(
bf − b

)
H−1

(
bf − b

)′
(6.14)

where

F = bXX ′ + bfXfX
′
f , A = XX ′ + XfX

′
f , and H = [XX ′]−1 + [XfX

′
f ]
−1. (6.15)

Then, let

I
σ2β =

∫

β
Iσ2 dβ = [2]

n+nf
2 Γ(

n + nf + 2

2
)[s2

f ]
nf−p−2

2

×
∫

β

[(
bf − b

)
H−1

(
b′f − b

)
+ s2 + s2

f + g
(
β, A

)]−n+nf +2

2 dβ

= [2]
n+nf

2
(π)

p
2 Γ(

n+nf−p+2

2
)

|A| 12 [s2
f ]

nf−p−2

2

×
[(

bf − b
)
H−1

(
bf − b

)′
+ s2 + s2

f

]−n+nf−p+2

2 (6.16)

where

g
(
β, A

)
=

(
β − FA−1

)
A

(
β − FA−1

)′
. (6.17)

In the same way, let

I
σ2βbf

=
∫

bf

Iσ2β dbf
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= [2]
n+nf

2
(π)

p
2 Γ(

n+nf−p+2

2
)

|A| 12 [s2
f ]

nf−p−2

2

×
∫

bf

[(
bf − b

)
H−1

(
bf − b

)′
+ s2 + s2

f

]−n+nf−p+2

2

dbf

= [2]
n+nf

2
(π)pΓ(

n+nf−2p+2

2
)

|A| 12 |H|− 1
2

[s2
f ]

nf−p−2

2 [s2 + s2
f ]
−n+nf−2p+2

2 . (6.18)

Finally, let

I
σ2βbf s2

f
=

∫

s2
f

I
σ2βbf

ds2
f

= [2]
n+nf

2
(π)pΓ(

n+nf−2p+2

2
)

[|A| 12 |H|− 1
2

∫

s2
f

[s2
f ]

nf−p−2

2 [s2 + s2
f ]
−n+nf−2p

2 ds2
f

= [2]
n+nf

2
(π)p Γ(n−p+2

2
)Γ(

nf−p

2
)

|A| 12 |H|− 1
2 [s2]

n−p+2
2

. (6.19)

Thus, the normalizing constant for the joint distribution of β, σ2, bf and s2
f becomes,

Ψ3(·) =
|A| 12 |H|− 1

2 [s2]
n−p

2

[2]
n+nf

2 (π)p Γ(n−p+2
2

)Γ(
nf−p

2
)
. (6.20)

The marginal density of β, bf and s2
f , conditional on y, is derived by integrating out

σ2 from the above joint density. Thus, we have,

p
(
β, bf , s

2
f |y

)
= Ψ4 × [s2

f ]
nf−p−2

2

[
s2 +

(
β − FA−1

)
A

×
(
β − FA−1

)′
+

(
bf − b

)
H−1

(
bf − b

)
+ s2

f

]−n+nf
2

(6.21)

where Ψ4 is the normalizing constant.

Similarly, the marginal density of bf and s2
f is obtained by integrating out β over

Rp from (6.21). This gives the joint density of bf and s2
f , conditional on y, as

p
(
bf , s

2
f |y

)
= Ψ5 × [s2

f ]
nf−p−2

2

×
[
s2 + s2

f +
(
bf − b

)
H−1

(
bf − b

)]−n+nf−p

2 (6.22)

where

Ψ5 =
|H|− 1

2 Γ(
n+nf−p

2
)[s2]

n−p
2

(π)
p
2 Γ(n−p

2
)Γ(

nf−p

2
)

(6.23)

is the normalizing constant. The prediction distribution of the future regression

vector, bf = bf (yf ), can now be obtained by integrating out s2
f from (6.22). The

integration yields

p
(
bf

∣∣∣y
)

= Ψ6 ×
[
s2 +

(
bf − b

)
H−1

(
bf − b

)′]−n
2

(6.24)
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where Ψ6 = Ψ4 ×B
(

nf−p

2
, n

2

)
[s2]

n−p
2 . On simplification we get

Ψ6 =
Γ(n

2
)

(π)
p
2 Γ(n−p

2
)|H| 12 [s2]

n−p
2

. (6.25)

The prediction distribution of bf can be written in the usual multivariate Student-t

distribution form as follows:

p
(
bf

∣∣∣y
)

= Ψ6 ×
[
1 +

(
bf − b

)[
s2H

]−1(
bf − b

)′]−n
2

(6.26)

in which n > p. Since the density in (6.26) is a Student-t density, the prediction

distribution of the future regression vector, bf , conditional on the realized responses,

follows a multivariate Student-t distribution of dimension p, with (n − p) degrees

of freedom. Thus, [bf |y] ∼ tp(n − p, b, s2H) where b is the location vector and H

is the scale matrix. It is observed that the degrees of freedom parameter of the

prediction distribution of bf depends on the sample size of the realized sample and

the dimension of the regression parameter vector of the model. The above prediction

distribution can be used to construct β-expectation tolerance region for the future

regression parameter.

6.2 Distribution of Future Residual Sum of Squares

The prediction distribution of the future residual sum of squares from the future

regression, s2
f (yf ), based on the future responses, yf , conditional on the realized

responses, y, is obtained by integrating out bf from (6.22) as follows:

p
(
s2

f (yf )
∣∣∣y

)
= Ψ7 ×

[
s2

f (yf )
]nf−p−2

2
[
s2 + s2

f (yf )
]−n+nf−2p

2 . (6.27)

The density function in (6.27) can be written in the usual beta distribution form as

follows:

p
(
s2

f

∣∣∣y
)

= Ψ7 ×
[
s2

f

]nf−p−2

2
[
1 + s−2s2

f

]−n+nf−2p

2 (6.28)

where Ψ7 =
Γ

(
n+nf−2p

2

)
[s2]

n−p
2

Γ(n−p
2 )Γ

(
nf−p

2

) . This is the prediction distribution of the future resid-

ual sum of squares based on the future response yf , conditional on the realized

responses, from the multiple regression model with normal error variable. The den-

sity in (6.28) is a modified form of beta density of the second kind with (nf − p) and

(n− p) degrees of freedom.

7 An Illustration

To illustrate how the method works, we consider a real life data set from Barlev

and Levy (1979). The simple regression model fitted to this data is a special case of

13
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Figure 1: Graph of prediction distribution of the future regression param-
eter
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the model considered in our paper. The data set was used in the study of relation-

ship between accounting rates on stocks and market returns. It provides information

on the two variables for 54 large size companies in the USA. Considering the mar-

ket return to be the response and the accounting rate as the explanatory variables

the fitted model becomes ŷ = 0.084801 + 0.61033x with x̄ = 12.9322, ȳ = 8.7409,
∑54

j=1 x2
j = 10293.10893,

∑54
j=1 xjyj = 6874.4131 and s2 = 25.864, the mean squared

error. The prediction distribution of the regression parameter involves H which in

this special case becomes [
∑54

j=1 x2
j ]
−1 + [xf

2]−1.

The top two graphs in Figure 1 display the prediction distributions of future

responses for future accounting rate 5 and 25 respectively. Both the distributions

are Student-t distributions, but the one with higher future accounting rate has wider

spread than the one with lower value of future accounting rate. The prediction

distribution of the future regression (slope) parameter of the regression of future

market rate on the future accounting rate is given in the middle two graphs of Figure

1. Both the graphs represent the Student-t distributions with different parameters.

Although the shape of the distribution of both the graphs is roughly the same, the

first graph here has a slightly more spread, but lower pick, than the second graph.

The bottom two graphs of Figure 1 displays the prediction distribution of the future

sum of squared errors for different sample sizes. These last two graphs in Figure 1

represent the beta distribution with varying arguments.

8 Concluding Remarks

The foregoing analyses reveal the fact that for the multiple regression model with in-

dependent normal errors the sample regression vector and the residual sum of squares

are independently distributed. This is true for both the error regression and response

regression of the realized model. But for the future regression model, the predictive

distributions of the future regression vector and the residual sum of squares, condi-

tional on the realized responses, are not independent. The sample regression vector of

the realized model follows a multivariate normal distribution, but the future regres-

sion vector of the future model follows a multivariate Student-t distribution. Thus

every element of the sample regression vector is independently distributed, but the

components of the future regression vector are not independent. Moreover, the resid-

ual sum of squares of the realized multiple regression model follows a scaled gamma

distribution, while that of the future regression model, conditional on the realized

responses, follows a scaled beta distribution. The residual sum of squares based on

the error regression and that of the response regression differs by a constant for the

realized regression model.
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