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ABSTRACT: In this paper, numerical simulations of circular boreholes under internal hydraulic pressure are 
carried out to investigate the energy transferred to the surrounding rock and the breakdown pressure. The 
simulations are conducted by using a micromechanical continuum damage model proposed by Golshani et al. 
(2006). The simulation results suggest that the borehole breakdown pressure and the energy transferred to the 
surrounding rock are dependent on the mechanical properties of the rock and borehole size. Although the 
energy transferred to the surrounding rock increases with increasing borehole size, the borehole breakdown 
pressure decreases. 

1 Introduction 

Stresses are applied inside the boreholes either to produce deformations in order to determine the modulus of 
the rock or to induce fractures (Jaeger and Cook, 1969). Hydraulic fracturing is one of the techniques used to 
stimulate the production of oil or gas in reservoirs. This technique involves pumping a fluid under pressure into a 
borehole. This pressurized fluid introduced into the borehole produces stress concentration in the surrounding 
rock causing the development of fractures. Other applications of hydraulic fracturing have been recently found in 
geotechnical engineering for ground reinforcement and in environmental engineering for solid waste disposal. In 
fact, attention is focused on the prediction of the borehole pressure and is usually the only parameter available 
to evaluate the operation (Papanastasiou, 1997). However, the energy transferred to the rock during 
pressurization of the borehole can be considered as another parameter for the evaluation of the operation. 
Energy can be stored in or released from the rock medium in the vicinity of a borehole subjected to internal 
pressure. If the internal energy exceeds the limit that the material can withstand, the energy release will occur to 
re-establish the internal energy level within a tolerable limit. Griffith (1920) suggested that a potential relief 
mechanism is the micro-cracking. According to his theory the excess of energy is dissipated with the growth of 
microcracks during rock failure.  
The energy transferred to the surrounding rock associated with the phenomena occurring in the borehole under 
breakdown pressure (the energy requirements for rock fracturing) is given by 
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where 
sW , 

fW , 
tW   and 

cW  represent strain energy (borehole wall deformation), fracture energy, thermal 

energy (thermal exchange between rock and fluid) and chemical energy (chemical change of the rock due to the 
interaction with the fluid). 
The strain energy is the potential energy stored in the rock under stress and is given by 
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where V is the volume of the rock. σ  and  ε  are the stress and strain in the rock under applied stresses. The 

symbol  (:) stands for the inner product. 
The fracture energy is material property of rock and is given by 
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where KC and E are the fracture toughness and Young’s modulus of the rock and A is the area of fracture 
created.  
When the internal energy reaches a critical limit, this level must be reduced by one or more relief mechanisms. 
As previously explained, the most significant relief mechanism for rocks is microcracking.  
The main objective of this paper is to investigate numerically the energy transferred to the rock around a vertical 
borehole under breakdown pressure i.e., the pressure at which fracturing occurs, by using a micromechanics-
based continuum damage model (2D) proposed by Golshani et al. (2006).  For this purpose three types of rocks 



i.e., Inada granite, Mount Isa granite and Toowoomba basalt are simulated. The effect of borehole diameter on 
the transferred energy will also be discussed. In this study we only consider the effects of borehole wall 
deformation and the fracture energy and the fluid is restricted from entering the microcracks. 

2 Micromechanics-based continuum damage model 

In this model, the rock matrix is regarded as an elastic solid with N groups of microcracks distributed at different 

orientations, and the i-th group is characterized by the microcracks orientation θ
(i)

, the number density of the 

microcracks  ρ(i)
, and the average microcracks length  2c

(i)
. θ(i)

  is the inclination angle of the unit vector n
(i)

, 
normal to a microcrack, to the global axis  x1 (see figure 1).  In the following discussion, “´” indicates quantities in 
the local coordinate x'i- axes. 
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Figure 1. Rock material containing numerous microcracks 

By assuming that microcrack growth occurs in tensile mode I (Hallbauter et al., 1973, Kranz, 1979, Costin, 1983, 
Blair and Cook, 1998), the stress intensity factor KI for a single microcrack with respect to local axes x'i (i=1, 2) 
axes is approximated by 

  
tI cK σπ ′−=                                                                            (4)                                

where 
tσ ′  is the tensile stress acting normal to the microcrack surface (Fig. 2), and is expressed as: 
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Figure 2. A single microcrack under local stresses 

 
It should be noted that the compressive stress is taken to be positive. The first term on the right hand side of Eq. 
(5) stems from the far field compression, hence it takes a positive value (compression) in a common case. This 
means that the first term acts as an inhibiting factor for microcracking. The second term is the tensile stress, 
which is locally generated as a result of the inhomogeneity of rock and sliding movement on asperities. 
Following the suggestion by Costin (1983), we assume that the local tensile stress increases proportionally to 
the deviatoric stress 

22S ′  , and that f(c) is a proportionality coefficient depending only on half the microcrack 



length c.  It is of particular importance to point out that the local tensile stress must decrease as the microcrack 
grows. Otherwise, the microcrack would propagate without any limit as soon as the stress intensity factor KI  
reaches the fracture toughness KIC. This unsatisfactory situation is easily avoided if the proportional coefficient 
f(c) is inversely proportional to half the microcrack length 

 cdcf /)( =                                                                               (6)                                          

Where d is a typical length scale of material such as grain size, and is experimentally determined (see Golshani 
et al., 2006). 
The stress-induced microcrack growth takes place in tensile mode I when the following relation is satisfied 

 0=−′−=− ICtICI KcKK σπ                                                                  (7)          

Equation (7) was formulated for a single microcrack and the effect of neighbouring microcracks was not 
considered. In order to evaluate the elastic interaction among neighbouring microcracks, we use the so-called 
pseudo-traction method developed by Horii and Nemat-Nasser (1985a, 1985b). For simplicity, we first consider 

an infinite plate with two microcracks α and β with lengths 2cα and 2cβ, both of which are subjected to far field 
stresses (see figure 3). This problem is elastically analysed by decomposing it into three sub-problems; i.e. a 

homogeneous sub-problem and two sub-problems α and β, as shown in Figure 3. There is no microcrack in the 

homogenous sub-problem, which is subjected to the same far field stresses as the original problem (i.e. σ11, σ22 

and σ12). In the sub-problem α and β, we deal with a single microcrack under zero stresses, individually. The 
traction-free condition must be satisfied on the surface of the microcracks in the original problem since the 

microcracks α and β are assumed to be open. To do this, )( 2222

αα σσ P′+′−  and )( 1212

αα σσ P′+′−  must be applied to 

the surface of the microcrack α in the sub-problem α. Here, ασ 22
′ and ασ 12

′ are the stresses at the position of 

microcrack α arising from the far field stresses in the homogenous problem, and ασ P

22
′ and ασ P

12
′ , called pseudo-

tractions, stand for the stresses at the position of microcrack α in sub-problem β. That is, the pseudo-tractions 

are generated by microcrack β  through elastic interactions between the microcracks α and β.  
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Figure 3. Decomposition of (a) the original problem into (b) the homogeneous problem and (c) and (d) two sub-

problems 

The pseudo-tractions are calculated such that all the boundary conditions for the original problem are satisfied  

 { } [ ]{ } { }( )ββαβα σσγσ PP ′+′′=′                                                                  (8)                                       

where { } { }TPPPP αααα σσσσ 122211 ,, ′′′=′ , { } { }Tββββ σσσσ 122211 ,, ′′′=′ , and [ ]αβγ ′   is a  3×3 matrix and each element of 

which is a function of the position vectors  xα and  xb of the centres of microcracks  α and β,  their half lengths (cα 

and  cβ), and the inclination angle θαβ  between  x1
'β and  x1

'α. Eq. (8) is tentatively called the consistency 
equation in the sense that stress boundary conditions are taken into account. If more details are necessary, 
readers should refer to the papers by Horii and Nemat-Nasser (1985a, 1985b), Okui et al. (1993), and Golshani 
et al. (2006). 



 
Equation (8) was formulated by considering the elastic interaction between two microcracks. In order to deal with 
more general cases in which a large number of microcracks are involved, the consistency equation (8) can be 
generalized as an integral equation. Consider N groups of microcracks, we can rewrite Eq. (8) with respect to the 
global axes xi (i=1, 2), as follows 
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Considering the effect of the interaction among microcracks, the stress intensity factor equation (Eq. (4)) can be 
rewritten as follows 
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It is assumed that the rock matrix remains elastic in the entire process so that the inelastic deformation arises 
from opening of microcracks. Since the matrix is elastic, the stress-strain relationship is given by:  

 )(: εεσ
)

−= teD                                                                         (11)                      

where De is the elastic modulus tensor,  ε t is the total strain tensor and ε
)

 is the inelastic strain tensor arising 

from the opening of microcracks. The inelastic strain caused by the microcracks belonging to the i-th group is 
obtained in the local axes x'i (i=1, 2) as 
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where n'(i) is the unit vector normal to the microcrack, and  [ ] ( ))(
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where G is the shear modulus, and  κ is the Lame constant (Nemat-Nasser and Hori, 1993). 
The inelastic strain arising from opening the i-th group microcracks is formulated in terms of the average length 

of microcracks 2c(i), microcracks orientation  θ(i), number density of microcracks ρ(i) , and the applied stresses σ 
(Golshani et al., 2006). The inelastic strain arising from all microcracks is calculated by summing Eq. (13) with 
respect to the global coordinate axes xi (i=1, 2) 
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We now have governing equations for analysing stress-induced behaviour of brittle rock; i.e., microcrack growth 

law (7), consistency equations (9) and constitutive equations (11). Unknowns are σ, c and σP. The initial values 
of the unknowns are given by solving boundary value problems by using the stress-induced microcrack growth 
law. They correspond to a state just after the application of a load. Based on the finite element methods, we 
solved the governing equations on a numerical basis. Three-node triangular elements were used, in each of 
which the displacement, the interaction stresses and the length of the microcracks belonging to the i-th group 
are constant. 

3 Numerical simulation 

In this study a single borehole in rock medium (3000mm×3000mm) was simulated and plane strain condition 
was assumed.  First mesh convergence study was performed to determine the finite element mesh with 
satisfactory accuracy. For this purpose, Inada granite was considered. Then using this mesh, numerical 
simulation was carried out for three types of rocks i.e., Inada granite, Mt. Isa granite and Toowoomba basalt to 
determine the internal energy transferred to the surrounding rock under pressure inside the borehole at failure 
(using Eqs.1-3).  

3.1 Mesh convergence study 

In finite element modelling, a finer mesh typically results in a more accurate solution. However, as a mesh is 
made finer, the computation time increases. A mesh convergence study enables us to obtain an accurate 
solution with a mesh that is sufficiently dense and not too demanding of computing resources. To perform a 
mesh convergence study, first we create a mesh using the fewest, reasonable number of nodes and elements 
and analyse the model. Then, we re-create the mesh with a denser element distribution, re-analyse it and 
compare the results to those of the previous mesh. We keep increasing number of nodes and elements and re-
analyse the model until the results converge satisfactorily within a given tolerance.  
Inada granite is biotite granite from a quarry in Kasama, Ibaraki, Japan. Inada granite consists of coarse to 
medium grains of quartz, feldspar and biotite. The mean grain size of Inada granite is about 2.0 mm (Takemura 
et al., 2005). From earlier study the mechanical and mineralogical characteristics of Inada granite are known: 

Inada granite elastic properties are Young’ modulus E=73 MPa and Poisson’s ratio ν=0.23. Fracture toughness 
and length parameter for Inada granite were chosen as KIC=2.50 MPa1/2 and d=0.34 mm. The average length of 

microcracks and microcrack number density are c=0.5mm and ρ=0.21 (see Golshani et al., 2006). The uniaxial 



compression strength and tensile strength of Inada granite were reported as 160 MPa and -7.9 MPa (Takemura 
et al., 2005) 
We considered seven cases of meshes as shown in Table 1. The borehole diameter was 50 mm for all cases. 
Uniform pressure was applied inside the hole for each case and internal energy under breakdown pressure was 
determined (Fig. 4). Note that the results were normalized using the reference energy (Wr) that was chosen as 
the energy for the first case.  As shown in Fig. 4, the energy remains essentially the same from the 3rd case 
(i.e., the mesh with 326 elements) onwards. It is note worthy that computational cost increases faster than mesh 
sizes. Thus, we chose the fourth case: a mesh with 195 nodes and 350 elements that satisfies the accuracy 
requirement of a minimum computational cost. 

Table 1. Number of elements and nodes for different cases 

Case No.       No. of elements      No. of nodes

1                        234                       132

2                        246                       140     

3                        326                       182     

4                        350                       195     

5                        414                       228     

6                        510                       278     

7                        626                       338     
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Figure 4. Normalized energy for the meshes with different number of elements and nodes 

3.2 Calculation of the energy for Inada granite, Mt. Isa granite and Toowoomba basalt 

Mt. Isa granite occurs in Northwest Queensland, Australia and its grain size is about 0.2 mm (Geoscience report, 
Australia, 2001). Toowoomba basalt (South-eastern Queensland, Australia) is generally fine-grained, dark grey 
to black igneous rock. In most cases individual minerals cannot be recognized by the naked eye because of the 
fine grain size (Willmott et al., 1995). Basalt is characterized by mineral grain size less than 0.3 mm and for 
Toowoomba basalt, which is fine-grained basalt, the average grain size is set to 0.05 mm.  
The input parameter used in the numerical simulation of Mt. Isa granite and Toowoomba basalt are listed in 
Table 2 where elastic properties and fracture toughness are from experimental tests using samples with 60 mm 
diameter and 145 mm height.  
In crystalline rocks, it is assumed that grain boundaries act as the predominant source of stress concentrating 
flaws and that the initial microcrack lengths are of the order of the rock grain size (Eberhardt et al., 1999). Thus, 
we can estimate initial microcrack length of Mt. Isa granite and Toowoomba basalt based on their grain size. The 
microcrack number density of Mt. Isa granite and Toowoomba basalt are not reported and are set to be 0.21 on 
a tentative basis.  
 
 
 
 
 
 
 
 



Table 2. Model parameters used in numerical calculations for Mt. Isa Granite and Toowoomba Basalt 

Parameter                                             Mt. Isa Granite      Toowoomba Basalt

Young’s modulus (GPa)                             61.4                           78.7

Poisson’s ratio                                            0.22         0.25

Fracture toughness (MPa m1/2)                   1.94                           1.88

Initial microcrack length* (µm)                     50                           12.5        

Number density of microcracks* 0.21                          0.21

Tensile Strength (MPa)                              -10.1                         -14.8 

* These data are estimates.

Parameter                                             Mt. Isa Granite      Toowoomba Basalt

Young’s modulus (GPa)                             61.4                           78.7

Poisson’s ratio                                            0.22         0.25

Fracture toughness (MPa m1/2)                   1.94                           1.88

Initial microcrack length* (µm)                     50                           12.5        

Number density of microcracks* 0.21                          0.21

Tensile Strength (MPa)                              -10.1                         -14.8 

* These data are estimates.
 

The region (3000mm×3000mm) with a hole of 50 mm diameter was meshed with 195 nodes and 350 elements 
(Fig. 5). Uniform stress was applied inside the borehole and the energy at failure for Inada granite, Mt. Isa 
granite and Toowoomba basalt was obtained as 4.5 KJ, 5.7 KJ and 7.3 KJ. The breakdown stresses of theses 
three types of rocks were 173 MPa, 204 MPa and 255 MPa. The relationship between borehole pressure and 
transferred strain energy of Mount Isa granite is shown in Fig. 6.  
The tangential stress at the borehole surface was calculated for Inada granite (-62.5 MPa), Mt. Isa granite (-71.4 

MPa) and Toowoomba basalt (-85.6 MPa) and which considerably exceed the tensile strength of these rocks 
obtained experimentally. In relation to this point, Mortia et al. (1997) have found that borehole breakdown does 
not take place even if the largest tangential stress at the borehole reaches the tensile strength of rock. They 
suggested that borehole breakdown occurs when the initiated fracture becomes unstable after significant growth.  
Our simulation shows that at internal pressure of 125 MPa, the length of microcracks in the vicinity of the 
borehole is about 0.6 mm and during pressurization before breakdown, microcrack growth becomes unstable 
locally (at internal pressure of 170 MPa, microcrack growth becomes unstable in some areas around the 
borehole with large cracks of about 3 mm in length).   
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Figure 5. (a) A region with a hole inside under pressure of p (not scaled) (b) Finite element mesh 
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Figure 6. Relationship between pressure p and strain energy Ws transferred to the surrounding 
 

3.3 The borehole diameter 

To investigate the effect of the borehole size on the energy transferred to the surrounding rock under breakdown 
pressure, Inada granite with boreholes of 25 mm, 50 mm and 75 mm diameter was simulated. The number of 
elements for these three simulations respectively was 494, 350 and 426 that provide us accurate results. The 
results show that borehole breakdown pressure and energy are dependent on the borehole size (Table 3).  The 
borehole breakdown pressure is higher for smaller diameter holes. Morita et al. (1995) obtained similar results in 
the laboratory tests on cubic Berea sandstone (76 cm×76 cm×76 cm) with holes of 10 mm and 38 mm 
diameters subjected to internal pressure and far field confining stresses. As the borehole diameter increases, 
the energy transferred to the surrounding rock increases which is due to increase of strain energy component 
with increasing borehole diameter. Cuss et al. (2003) obtained similar results in their experiments with 
sandstone.  

Table 3. Breakdown pressure and energy transferred to the surrounding rock at failure. 

Hole diameter       Breakdown pressure      Energy

(mm)                        (MPa)                    (KJ)

25                             187                     2.05

50                             173                     4.52 

75                             156                     8.08

Hole diameter       Breakdown pressure      Energy

(mm)                        (MPa)                    (KJ)

25                             187                     2.05

50                             173                     4.52 

75                             156                     8.08
 

 

4 Concluding remarks 

A single borehole in rock medium under internal pressure was simulated using a micromechanical continuum 
damage model (Golshani et al., 2006). The numerical simulation predicts that the borehole breakdown pressure 
and the energy transferred to the rock depend on the formation’s mechanical properties and borehole size. It 
was found that although the energy transferred to the surrounding rock increases with increasing borehole size 
the borehole breakdown pressure decreases. Furthermore, the energy seems to increase faster than the 
decrease of the breakdown pressure. 
It should be noted that thermal energy and chemical energy were neglected in the calculation of the energy 
transferred to the rock around a borehole under internal pressure.  For more accurate results these should be 
taken into consideration. 
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