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ABSTRACT

Mental health conditions are one of the most significant challenges to global society.
This thesis explores the integration of artificial intelligence (AI) techniques in psychiatric
research, focusing on enhancing the detection, diagnosis, and treatment of depression.
While simultaneously exploring the implications of integrating Al into clinical practice.
Through the use of empirical experiments the works contained within this thesis demon-
strate the potential uses for Al in mental healthcare. These works show Al techniques
can reliably predict treatment outcomes to repetitive transcranial magnetic stimulation
(rTMS) above the existing state-of-the-art. Combining these methods with explainable
AT (XAI) this work identifies candidate biomarkers indicative of treatment response to
rTMS. Furthermore, this work shows predictive performance can be improved by using
diversity enhanced training data. This thesis includes a novel method for enhancing the
diversity of training data. Including experiments which demonstrate the possibility of
synthetic data to improve dataset diversity. This thesis also presents a novel method for
addressing label bias when detecting suicide risk on social media through semi-supervised
deep label smoothing. Empirical experiments show this methods improves classification
accuracy by leveraging fuzzy labels and Bayesian techniques. Put together, the research
within this thesis highlights the transformative potential of Al in psychiatry, demonstrat-
ing the possibility of personalised psychiatry, advocating for innovative data augmentation
and regularisation methods to improve model performance. By critically analysing these
empirical experiments, this thesis examines the broader implications of AT in psychiatry.
It places special emphasis on methods to ensure the ethical and equitable deployment of

AT in mental healthcare.
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CHAPTER 1: INTRODUCTION

Mental health conditions significantly burden both society and the individuals who expe-
rience them. Globally, mental illness will effect 1 in 5 people (Timmons et al. 2022), with
similar statistics observed in Australia (Kasturi et al. 2023). Of these mental health con-
ditions depression places the largest economic burden. Annually, between 1 and 2 million
Australians will experience episodes of diagnosable depression (Kasturi et al. 2023). This
prevalence makes the investigation of safe and effective treatments a significant societal is-
sue. Recent developments in artificial intelligence (AI) has fuelled interest in investigating

the ways Al can be used to support the reduction of this significant disease burden.

AT offers promise as a technology to innovate and disrupt the existing model of men-
tal healthcare. This potential ranges from better targeting treatments to the discovery
of previously unidentified biomarkers of mental health conditions. FExisting research is
highlighting the ability of Al to equal or exceed human performance on a variety of
health specific tasks. From the classification of potentially cancerous skin lesions (Furriel
et al. 2024) to the analysis of chest x-rays (Mir6 Catalina et al. 2024). However, signifi-
cant work is required to bridge the gap between controlled empirical experiments and real
world clinical settings. This thesis aims to bridge the gap between research and clinical
deployment by exploring the necessary work. It focuses on addressing key issues, includ-
ing mitigating data bias, incorporating explainable AI (XAI), and handling statistical

uncertainty.



1.1 Artificial Intelligence as a disruptor of mental health

care

Since the industrial revolution no technological innovation is predicted to be as disrup-
tive as what is expected of Al. From the first Generally Pre-trained Transformer (GPT)
(Radford et al. 2018), to AI’s breakthrough into the public discourse following the release
of ChatGPT (OpenAl 2023). Broadly, “Al is the science and engineering of making in-
telligent machines, especially intelligent computer programs” (Xu et al. 2023, p.657). In
a technical sense, this thesis uses the term Al to encompasses a set of technical tools such
as machine learning (ML) and deep learning (DL). Visually this is represented in Figure
1.1.
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Figure 1.1: Artificial Intelligence and its antecedents. Source: (Interaction Design Foundation

~ IxDF 2016)

ML then refers to early shallow Al systems such as linear regression, support vector
machines (SVM) or k-nearest neighbours (KNN). Most of the recent hype around Al
has been driven by DL. DL builds upon the original artificial neural network (ANN) or
multilayer perceptron (MLP). In his seminal work, Rosenblatt (1958) is attributed as one
of the pioneers of Al through the proposal of the perceptron. The perceptron is one of the

foundational features of modern DNN. Modern advances in hardware have allowed for the



layering of perceptrons in such a way it allows for the learning of complex multivariate
relationships beyond what existing shallow networks are capable of. These large networks
then become highly parameterised with complex foundation models such as ChatGPT-4

(OpenAlI 2023) which is believed to include 1.8 trillion paramaters.

The influence and disruption caused by Al is so significant it could be defined as the fourth
industrial revolution (Girasa 2020). Disruptive innovation is loosely defined as processes
that initially focus on new markets, which are initially inferior to the incumbent, but
eventually evolve to meet and exceed the needs of the consumer. (Christensen et al. 2018,
Si & Chen 2020). Such technological innovations can challenge existing ways of doing such
that in extreme cases the existing methods are no longer valued. Under this definition
we can posit a future where Al challenges the existing status quo such that to do health

care without the aid of some form of Al becomes unrealistic.

Disruptive innovation is distinct from social disruption where a disruptor, such as a tech-
nology, impacts society in such a way that society could not continue without change
(van de Poel et al. 2023). Thus we can see at both a business and societal level Al is
emerging as an innovation to challenge existing ways of being such that old methods will
eventually by outdated and superseded. This contention is echoed in Pavéloaia & Necula
(2023), as existing methods are superseded by technologies with entirely new character-
istics whose capabilities eventually existing ways of doing. In these preliminary stages of
the AI revolution humans have the potential to shape how Al systems are used. This
motivates the central theme of this thesis: if Al is to become widespread, it must be used
to enhance social good. From a practitioner’s perspective, this means improving patient

outcomes, mitigating bias, and ensuring that AI benefits all members of society.

AT has captured the attention of both the public and the research community for its ex-
pected impact on society. The hype associated with the use of Al, especially in healthcare,
is worth investigating. Strange (2024) argues that both positive hype and concern raising
about the nature of the use of Al in healthcare are equally unhelpful. Strange (2024)
contends these dichotomous positions take away from the nuance required to explore the
actual effects of AI in healthcare. Similarly, Xu et al. (2023) argues that high expec-
tations of the opportunities presented by Al are useful for providing momentum for Al

funding. However, this leaves Al researchers in the position of maintaining balanced and



realistic expectations. This thesis then moves away from hype to providing a balanced
presentation of the strengths, limitations and potential solutions Al in psychiatry could
provide. Thus, it is the nuanced discussion of Al applications in healthcare that allows

AT to fulfill its potential (Xu et al. 2023).

1.2 Personalised Psychiatry and Trustworthy AI

Personalised medicine utilises the power of individual differences between patients. By
using data to quantify patient-to-patient variability, personalised medicine can target
treatments based on individual differences (Stefanicka-Wojtas & Kurpas 2023, Suwinski
et al. 2019). This model moves away from traditional prescription methods based on
population averages. Figure 1.2 demonstrates visually the contrast between the existing
healthcare model and the potential of Al-assisted personalised treatment prescription.
Vicente et al. (2020) outline their core vision for the “next generation” of healthcare. Un-
der the model, by 2030 they hope healthcare systems are equipped to deliver, “personally
tailored, optimised health promotion and disease prevention, diagnosis, and treatment for
the benefits of patients” (Vicente et al. 2020, p.2). Fulfilling this outlined goal would truly
be disruptive innovation as Al tailored care would make former models of care redundant

and improve outcomes for patients.

Despite the ambitious goals of personalised medicine, the progress towards personalised

healthcare is not being mirrored in psychiatry:

“Unlike the high-profile breakthroughs made in personalized medicine, progress
in psychiatry, which relies mainly on subjective methods of assessment and
firsthand accounts for diagnosis, has lagged behind in delivering personalized
treatments. Paradoxically, psychiatry is a field that could benefit greatly from
more personalized approaches, owing to the wide heterogeneity of symptoms
within individual disorders. Many psychiatric disorders are complex and can
be associated with numerous, often thousands of, genetic variants, each, how-
ever, with a small effect. Polygenicity and high heterogeneity in psychiatric

disorders, combined with environmental and epigenetic effects, suggest the
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Figure 1.2: A Comparison Between Personalised Medicine and Traditional Healthcare

need to apply different approaches and lines of action to shaping personalized
psychiatry.” (excerpt from "The right treatment for each patient: unlocking

the potential of personalized psychiatry’ 2023)

The significant heterogeneity within psychiatric disorders raises another important con-
sideration in the pursuit of personalised psychiatry. For Al to be effectively deployed
in this field, the systems must be deemed trustworthy. Diversity, non-discrimination,
and fairness are core components of trustworthy Al systems (Diaz-Rodriguez et al. 2023,

Cannarsa 2021).

However, small and homogeneous samples may limit the generalisability of results to all
members of the population. This is especially true in psychiatry where small sample sizes
and lack of large diverse datasets have somewhat limited the application of Al systems.
Data augmentation then is one potential tool for improving the trustworthiness of Al

systems (Diaz-Rodriguez et al. 2023).

Psychiatry is ideally suited to the hype of Al personalised care. However, further work is
required to match the breakthroughs seen in medicine. Additionally, it is imperative Al

systems deployed in psychiatry are trustworthy. This clear and obvious gap in the litera-



ture motivates the exploration of AT and its use to personalise psychiatric care. Specifically

looking at depression as the mental illness with the greatest burden on Australian society.

Section 1.1 emphasises Al is poised to be a significant disruptor to the healthcare industry.
However, a critical and nuanced discussion of both the strengths and limitations of Al in

psychiatry is required to ensure the technology meets the needs of the community.

1.3 Depression and rTMS

Depression and suicide are common and expensive mental health issues. Given this preva-
lence researchers have explored many avenues to aid in the treatment and diagnosis
of these issues. Barriers such as reduced access to mental health services (Fitzpatrick
et al. 2021), and stigma associated with seeking mental health care (Gaur et al. 2019) are

among the factors which prevent people from seeking help.

The global impact of these mental health conditions require the investigation of effective
treatments. Frontline treatments to depression vary from pharmacological antidepressants
(Thornton et al. 2023), psychological treatments (Malhi et al. 2020) or a combination of
the two. However, these frontline treatments vary in their effectiveness. Some patients
will benefit greatly from their treatments while others will see little to no improvement

in their symptoms.

When Depression is recurring or difficult to treat is referred to as Treatment-resistant
depression (Johnston et al. 2019, TRD). Due to its complexity there is no collectively
agreed upon definition of TRD. Within the literature most commonly, TRD is defined as
depression which does not respond to at least 2 treatments (Hannah et al. 2023). The
pursuit of ineffective treatments associated with TRD provides a significant burden to
patients. Johnston et al. (2019) showed greater treatment resistance was associated with

increased costs and a reduced health related quality of life.

Recent research suggests that what is currently diagnosed as depression under the ex-
isting diagnostic model is likely not a single condition, but multiple distinct conditions.

The significant heterogeneity offers one explanation for why some patients benefit from



treatment while others do not. Potentially, Al can reimagine existing diagnostic cate-
gories, where r'TMS is seen as a potential treatment for some subtypes of depression. The

challenge for r'TMS and other brain stimulation techniques is as follows:

If brain stimulation is going to become a reliable frontline approach, clini-
cians will have to determine, among other things, who responds best to which

treatments. (Yam 2024, p.4)

r'TMS involves electromagnetic stimulation of the brain through coils applied to the pa-
tient’s scalp (Razza et al. 2018). The applied magnetic field induces an electrical current
within the brain which over time alters the underlying structures (George & Taylor 2014).
rTMS sessions vary in their intensity and duration. Patients are prescribed treatment
times in advance with a variety of treatment times being available to doctors (Fitzgerald

et al. 2020).

1.4 Uncertainty quantification and data in Psychiatry

A significant challenge in diagnosing, detecting, and treating mental health conditions is
the reliance on self-reporting and clinical judgment. Unlike other areas of medicine, which
depend on objective measurements, psychiatry often relies on subjective assessments.

Therefore, mechanisms are needed to capture this subjectivity for AT models.

For example, the classification of suicidal behaviours using assessment tools can be difficult
(Interian et al. 2017). When it is difficult for human raters to agree with an annotation
it is likely difficult for AI models to uncover underlying patterns (Gaur et al. 2019).
Handling these inherent uncertainties contained within data is a rapidly expanding field

of AT research.

Many people are turning to social media to seek support and share mental health related
information (Akhther & Sopory 2022). The use of Al systems to detect depression has
seen extensive research. Similarly, Gaur et al. (2019) turned their attention to how text

classification can be used to recognize social media users who may be at risk of suicide.



More recently, Guo et al. (2024) reported social media text can be used to identify suicide

risk. Suicide is a rapidly growing public health risk (Naseem et al. 2023, Guo et al. 2024)

The automation of these tools using DL methods is a further application of Al in psychia-
try. Text classification systems for suicide behaviours could help to connect users sharing
their emotions and mental health struggles with health professionals using artificial intel-

ligence models.

As DL systems become more prominent in non-trivial fields such as healthcare, it is im-
portant we understand how model decisions are made and how confident we can be in
their predictions. Begoli et al. (2019) assert that uncertainty quantification is a necessary
next step for the deep learning and artificial intelligence field when systems are being
relied upon to make critical medical decisions. Additionally, Stahl et al. (2020) contend,
given deep learning algorithms are not capable of making out-of-domain predictions, it is
essential algorithms can express their uncertainty when faced with out-of-sample exam-

ples.

Abdar et al. (2021) in their recent survey of uncertainty quantification identify two cate-
gories of techniques for equipping models with uncertainty quantification: Bayesian tech-
niques and deep ensembles. Among these techniques the Bayesian technique of Monte
Carlo Dropout (MC Dropout). MC Dropout has been applied extensively to research on
image segmentation. However, little research has applied uncertainty quantification using
MC Dropout to text classification tasks requiring natural language processing (Abdar

et al. 2021).

Prominent techniques for equipping models with prediction confidence find their origins in
traditional statistics. The core difference between probabilistic DL and traditional DL is
the model outputs. Outputs from traditional models are expressed as a single prediction,
instead, probabilistic models express their predictions as a probability distribution. Re-
peated simulations of these distributions, known as Monte Carlo dropout, enable models
to express uncertainty. Practically, prediction confidence can be leveraged to enhance the

accuracy of models.



1.5 Thesis objectives

So far, this chapter has highlighted the significant global impact of mental illness. Specif-
ically, in Australia, depression places the largest burden on society. As Al becomes more
prominent and powerful, research is increasingly exploring how Al can aid in the de-
tection, diagnosis, and treatment of depression. This thesis argues that Al represents a
disruptive innovation in the healthcare industry. Through research efforts like this thesis,
Al is expected to dramatically transform psychiatry, challenge existing diagnostic cate-
gories, improve the diagnosis of mental health conditions, and enhance the targeting of

treatments.

The purpose of this thesis is to explore the ways in which artificial intelligence can sup-
port and enhance the delivery of psychiatric care. It will explore the ways Al can disrupt
existing mental health treatment decision making and care This thesis presents novel
works which explore the minimum requirements for personalised rTMS delivery, poten-
tial biomarkers indicative of treatment response, novel methods for mitigating bias and

delivering trustworthy Al.

In doing so, this work explores the following research questions:

1. RQ1: How can artificial intelligence methods be used to facilitate person-
alised psychiatry? Predictive medicine is a rapidly expanding area of research.
As part of this work we explore data-driven informatics paradigms to predict treat-
ment outcomes. We seek to identify the minimum data requirements for predicting

treatment outcomes for depression treatments.

2. RQ2: What are the requirements for the use of artificial intelligence
as decision support in psychiatry to be effective? The disruption of Al
in psychiatry is certainly hyped in the research community. To meet these use
case expectations, it is necessary to investigate and analyse the requirements for
the effective deployment of Al based decision support in psychiatry. This analysis
includes identifying the required data types, DL methodologies and data for the

effective use of Al in psychiatry.

3. RQ3: How are researchers ensuring artificial intelligence systems in per-



sonalised psychiatry are trustworthy? In identifying the preconditions for
effective decision support systems in psychiatry it is necessary to consider situa-
tions in which these requirements are not fulfilled. As such when sufficiently diverse
data, or high quality objective data is not available what strategies can be applied

to ensure Al systems remain trustworthy?

In addressing these research questions this thesis makes the following contributions:

1. An overview of the current state-of-the-art in Al use in psychiatry, exploring how

Al is supporting the detection, diagnosis, and treatment of depression.

2. A detailed comparison of the data required to predict treatment outcomes using
AT including the identification of candidate biomarkers indicative of treatment re-

sponse.

3. A novel framework for data augmentation of depression datasets to enhance the

diversity of small datasets with underrepresented values.

4. A methodology for capturing the subjective nature of expert mental health judge-

ments.

1.6 Overview of the Thesis

This thesis examines how Al is poised to disrupt the delivery of mental healthcare, with
a focus on its potential to support the treatment, detection, and diagnosis of depression.
In addressing the research questions outlined above, this thesis further investigates the
implications of a future where the use of AI becomes more widespread. In this sense, if
Al is to be used more in clinical settings, significant work must be done to ensure it is

fair for all users.

Figure 1.3 provides a detailed overview of the structure of this thesis. The Figure visually
represents the relationship between research questions and thesis content to aid the reader.

This dissertation is organized as follows:
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Chapter 2: Deep Learning and machine learning in psychiatry: a survey of
current progress in depression detection and diagnosis This chapter pro-
vides a survey of the existing state-of-the-art methods for the detection and diagno-
sis of depression. It further explores the ways Al is being integrated into psychiatric
care. It highlights the potential of Al-driven methods to support precision psychi-
atry through the improved targeting of treatments to uncovering new diagnostic
categories. This chapter also highlights potential limitations and challenges related
to the widespread adoption of Al in psychiatry, including the need for larger and
more diverse datasets and the necessity for more robust validation of AI models

within the research community.

Chapter 3: Identifying predictive biomarkers for repetitive transcranial mag-
netic stimulation response in depression patients with explainability In
this chapter, the research paper explores the use of DL methods to predict the treat-
ment response to r'TMS using fMRI connectivity data. This work explores the data
types required to predict treatment outcomes demonstrating neuroimaging data to
be superior to demographic data. Furthermore, this research shows DL techniques
can reliably predict rTMS treatment outcomes before treatment begins. Addition-
ally, the work incorporates the use of XAl to both identify potential biomarkers

indicative of treatment response and make model performance more transparent.

Chapter 4: DE-CGAN: Boosting rTMS Treatment Prediction with Diversity
Enhancing Conditional General Adversarial Networks This chapter presents
a novel method called Diversity Enhancing Conditional Generative Adversarial Net-
work (DE-CGAN). A novel method for generating synthetic examples of underrep-
resented features. The model generates a diversity-enhanced dataset, and empirical
experiments have shown that it produces more robust predictions compared to mod-
els trained on non-diversity-enhanced data.This work highlights the importance of
guaranteeing data diversity and ensuring AI models are trained on representative

data.

Chapter 5 Enhancing Suicide Risk Detection on Social Media through Semi-
Supervised Deep Label Smoothing This chapter investigates the use of Al for
improving the detection of suicide risk in social media posts. Introducing a novel

methodology of non-uniform label smoothing, these works explore the effects of

12



leveraging uncertainty between human raters to improve model performance. This
work demonstrates how the use of fuzzy labels improve the ability of a DL model

to identify social media posts describing suicide risk.

Chapter 6 Discussion and ConclusionsThis final chapter situates the research pre-
sented in this thesis within the broader context of the future applications of Al in
psychiatry, highlighting the ongoing work needed to ensure that any implemented

AT system is free from bias.

This thesis seeks to contribute to the emerging and expanding interest in the ways Al can
be used to support societal good. As Al becomes more prominent in everyday systems, it
is important for AI researchers to play a role in ensuring Al meets societal expectations
of fairness and ethical behavior. Thus, this thesis details the ways Al and DL can be
used to improve patient outcomes, while at every step considering the broader context

and ethical responsibility to ensure Al is fair and without discrimination.

13



CHAPTER 2: LITERATURE REVIEW

2.1 Introduction

This section provides a detailed overview of the use of artificial intelligence techniques for
the detection, diagnosis and treatment of depression. This chapter presents the article
Deep learning and machine learning in psychiatry: o survey of current progress in de-
pression detection, diagnosis and treatment. In this work this thesis explores the current
state of the art in the use of Al techniques for the detection, diagnosis and treatment of
depression. The findings of this work provides the foundation for papers described in the

remaining chapters

2.2 Published paper
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Abstract

Informatics paradigms for brain and mental health research have seen significant advances in recent years. These
developments can largely be attributed to the emergence of new technologies such as machine learning, deep
learning, and artificial intelligence. Data-driven methods have the potential to support mental health care by provid-
ing more precise and personalised approaches to detection, diagnosis, and treatment of depression. In particular,
precision psychiatry is an emerging field that utilises advanced computational techniques to achieve a more individu-
alised approach to mental health care. This survey provides an overview of the ways in which artificial intelligence

is currently being used to support precision psychiatry. Advanced algorithms are being used to support all phases

of the treatment cycle. These systems have the potential to identify individuals suffering from mental health condi-
tions, allowing them to receive the care they need and tailor treatments to individual patients who are mostly to
benefit. Additionally, unsupervised learning techniques are breaking down existing discrete diagnostic categories and
highlighting the vast disease heterogeneity observed within depression diagnoses. Artificial intelligence also provides
the opportunity to shift towards evidence-based treatment prescription, moving away from existing methods based
on group averages. However, our analysis suggests there are several limitations currently inhibiting the progress of
data-driven paradigms in care. Significantly, none of the surveyed articles demonstrate empirically improved patient
outcomes over existing methods. Furthermore, greater consideration needs to be given to uncertainty quantifica-
tion, model validation, constructing interdisciplinary teams of researchers, improved access to diverse data and
standardised definitions within the field. Empirical validation of computer algorithms via randomised control trials
which demonstrate measurable improvement to patient outcomes are the next step in progressing models to clinical
implementation.
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1 Introduction

Conditions associated with poor mental health place a
significant burden on the Australian health care system.
Some evidence [1, 2] suggests despite government invest-
ment, availability of inpatient mental health services
sits below the level of demand. Additionally, demand
for mental health services is expected to grow further
as the psychological effects of the Coronavirus pan-
demic are felt by the population [3]. To support increases
in demand, modern algorithms have the potential to
streamline the diagnosis of mental health conditions and
support the improved targeting of treatments utilising a
data-driven paradigm.

Advanced computing techniques including machine
learning, deep learning and artificial intelligence are well
positioned to positively contribute to mental health out-
comes of individuals [4]. With these advanced techniques
comes the potential for precision medicine. The aim of
precision medicine is to tailor treatments to the individ-
ual patient as opposed to population averages [5]. More
recently, the notion of precision medicine has opened
the possibility of personalised mental health care. This
personalisation is often referred to as precision psychia-
try. Research exploring the ways artificial intelligence,
machine learning and big data can be used to support
mental health treatment is growing rapidly. Evidence
of this growth is demonstrated by Brunn et al. [6] who
observed a 250% increase in publications exploring arti-
ficial intelligence and psychiatry between 2015 and 2019
on PubMed.

Artificial intelligence will be a part of mental health
care in the future. This notion is widely acknowledged
by practising psychiatrists [7]. Doraiswamy et al. [7]
reported results from a global survey of psychiatrists
in which most acknowledge artificial intelligence will
impact the future of their profession. However, clinicians
vary on the degree of disruption artificial intelligence
will have on the field. Few psychiatrists believe artificial
intelligence will be able to “provide empathetic care to
patients” [7, p. 3]. However, a slim majority believe artifi-
cial intelligence will be able to diagnose or predict patient
outcomes “better than the average psychiatrist” [7, p. 4].
Whilst opinion differs on the level of artificial intelligence
disruption, most clinicians believe that artificial intelli-
gence will never completely replace mental health profes-
sionals [8, 9].

While artificial intelligence may never replace the per-
sonalised, empathetic care that a psychiatrist can pro-
vide, this paper will detail the data-driven informatics
approaches positioned to revolutionise the diagnosis,
detection and treatment of depression.

Pattern recognition is one of the key strengths of
machine and deep learning algorithms. These techniques
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have shown some promise in identifying generalisable
patterns amongst patients suffering mental health con-
ditions. For example, Carrillo et al. [10] demonstrated
a Gaussian Naive Bayes classifier using transcribed tex-
tual data could successfully categorise healthy controls
from patients suffering depression with a Fl-score of
0.82. Given the observed difficulty in diagnosing mental
health conditions, systems with the ability to diagnose
depression provide some benefit to Psychiatrists. Com-
pared to other domains of medicine, mental health con-
ditions have no objective markers of disease [11]. This
lack of objective marker is one of several key diagnostic
challenges in identifying psychopathology [12]. Current
diagnostic systems are being questioned due to the sig-
nificant heterogeneity of symptoms amongst populations
diagnosed with the same condition [13]. Unsupervised
learning techniques are supporting the identification of
distinct subtypes of depression or potentially new diag-
nosis. Exploring depression heterogeneity, Drysdale et al.
[11] used an unsupervised learning technique, hierarchi-
cal clustering, to explore functional connectivity amongst
patients diagnosed with depression. While the major-
ity of research surveyed in this paper utilises supervised
techniques, unsupervised techniques provide research-
ers with the opportunity to uncover previously unknown
relationships. The work by Drysdale et al. [11] uncovered
four distinct biotypes of depression based on fMRI scans.
Each of these biotypes was shown to respond differently
to rTMS treatment. Given each subtype responded dif-
ferently to treatments it is possible that each subtype
represents a unique condition. This work highlights the
possibility of artificial intelligence systems to support a
transition to new diagnostic taxonomies.

As well as supporting the detection and diagnosis of
mental health conditions, modern computing techniques
offer the potential to personalise treatment prescription.
Currently, clinicians rely on a trial and error approach to
find the best antidepressant for a patient [4, 14, 15]. How-
ever, groundbreaking research by Chang et al. [16] dem-
onstrates the potential for psychiatrists to evaluate the
likely effect of an antidepressant drug before prescribing
it. Their work shows using an artificial neural network,
the Antidepressant Response Prediction Network, or
ARPNet, can reliably predict the effect of an antidepres-
sant prior to treatment. These technologies raise the pos-
sibility of treatment tailored to the patient level.

In its earliest form, artificial intelligence aimed to
synthetically reproduce human processes [17]. In its
infancy, symbolic artificial intelligence was the aim of
such research. The goal of symbolic artificial intelli-
gence work was to “carry out a series of logic-like rea-
soning steps over language like representations” [18,
p. 17]. However, symbolic artificial intelligence is no
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longer the predominant area of interest for the major-
ity of artificial intelligence researchers. Instead, pat-
tern recognition through the use of artificial neural
networks now dominates the field [17]. The seminal
work of Rosenblatt [19] provides the first example of
the perceptron, the foundation of much of the current
work on neural networks. Increasingly, with advances
in technology, these networks have become larger lead-
ing to the advent of deep learning [20]. The depth, in
deep learning refers to the number of hidden layers in
an artificial neural network. However, no agreed-upon
definition exists to what constitutes a ‘deep’ neural net-
work [20, 21]. Sheu [22] assert a deep neural network
has a minimum of 3 layers, an input layer, a hidden
layer and an output layer. However, in general, modern
researchers require several hidden layers before declar-
ing a network a deep neural network.

In this paper, we will define artificial intelligence as the
broad field of techniques, encompassing all of machine
learning, the neural network and deep learning. In turn,
machine learning will be used to refer to all non-neural
network techniques, regardless of depth. This will include
techniques such as linear regression, logistic regression
and nearest neighbours. Given the ambiguity in the dif-
ference between artificial neural networks and deep
learning, the terms will be used somewhat interchange-
ably. Additionally, to help the reader navigate this paper
we have an included a concept map in Fig. 1. This figure
provides a high-level representation of the data types and
techniques being used to explore the field of depression
detection, diagnosis and treatment response prediction.

s N s N
Depression Diagnosis Treatment Response

Page 30f 19

This paper explores the ways in which modern phe-
nomenons such as machine learning and deep learning
are contributing to improvements in the detection, diag-
nosis and treatment of mental health condition. As such,
this article contributes:

+ An overview of the current data types and methodol-
ogies being used by the research community to pro-
gress the detection, diagnosis and treatment response
prediction of mental health conditions.

+ A survey of the modern computational techniques
used for the detection, diagnosis and treatment
response prediction of mental health conditions.
Including software repositories useful for feature
generation.

+ A summary of the current methodological and tech-
nical limitations facing the field researching precision
psychiatry.

+ Reflection on the current issues facing the field and
possible solutions to guide future research.

Currently, detection systems are the most widely
researched areas utilising artificial intelligence to support
mental health care. Section 2 provides an overview of the
ways modern computational techniques are shaping the
detection of mental health conditions. This area of study
focuses on the design of systems built using multimodal
data, such as audio, video and text data to detect men-
tal health conditions. Section 2.3 provides a summary
of the modern systems being used to revolutionise cur-
rent diagnostic systems, including the vast heterogeneity

Fig. 1 Content map
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within current diagnostic categories. Additionally, Sect. 3
provides an in-depth overview of one of the more recent
advances in the literature, treatment response prediction.
To date, detection models for mental illness have domi-
nated the literature. More recently, using data to predict
how effective a treatment might be has become an excit-
ing area of research with much potential.

2 Informatics paradigms and the diagnosis
and detection of depression

Traditionally the study of psychiatry has relied heavily on
statistical inference. Inferential statistics are mainly con-
cerned with underlying distributions. Inference “creates
a mathematical model of the data generation process to
formalize understanding or test a hypothesis about how
a system behaves” [23, p. 233]. Where statistical infer-
ence focuses on explaining group differences based on a
handful of variables. Prediction is instead suited to larger
variable sets to make predictions around some target
variable. Machine learning is interested in prediction and
pattern recognition. Diagnosing a mental health condi-
tion requires recognising common patterns associated
with a condition to make a prediction at an individual
level. More recently, advances in computing processing
power have led to the rise of deep learning models.

2.1 Machine learning to support the diagnosis
of depression

Depression detection using machine learning has grown
quickly, taking advantage of the vast corpus of text gen-
erated by social media. The diagnosis of depression from
social media data can be understood as a supervised
learning task where posts are labelled as depression or
not depression. From the literature surveyed two classes
of experiments emerge; Research where depression status
is confirmed by psychometric test or clinical opinion and
research relying on self-report.

When building depression detection systems variables
must be preprocessed for model input. Preparing text for
machine learning is referred to as Natural Language Pro-
cessing (NLP). NLP is the process of converting natural
language to numerical representations that are computer
interpretable. Observed processing techniques within the
literature are the LIWC [24], Affective Norms for Eng-
lish Words [25], LabMT [26], Latent Dirichlet Alloca-
tion [27], n-grams and bag-of-words [28, see Chapter 3].
N-grams and bag-of-words are elementary methods
to numerically represent text, where bag-of-words is a
simple text representation which counts the frequency
of each word within a text document [28]. Despite their
simplicity, the utility of these methods has been shown
on several occasions [29-33]. More recently, audio and
visual features have been included with several systems
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utilising processed audio features [34—36] and others
which combine audio and visual information [37, 38].

Text data have become a staple feature of most depres-
sion detection systems. In pioneering work, De Choud-
hury et al. [39] attempted to predict depression in
Twitter users. Similarly, Reece et al. [31] sought to use
Twitter content to classify depressed users. Both [31, 39]
recruited participants via crowdsourcing and validated
a depression diagnosis using psychological diagnostic
questionnaire. For example, in both [31, 39] participants
completed the Center for Epidemiological Studies-
Depression (CES-D; [40]) self-report survey. Results
from this diagnostic tool were used as the ground truth
labels between depressed and non-depressed individu-
als. In these examples [31, 39] researchers used surveys
to attempt to confirm a depression diagnosis, however,
some works rely on self reported depression status with-
out survey data. De Choudhury et al. [39] developed one
of the earliest depression diagnosis systems in the litera-
ture. Motivated by the limitations of self-report question-
naires De Choudhury et al. [39] aimed to construct an
objective depression measurement. These early text anal-
ysis systems exploring word usage and depression relied
on dictionary-based text analysis software. These sys-
tems used hard-coded dictionaries of words selected and
grouped by their psychometric properties. Primarily used
by clinicians these systems sought to explore differences
in language use between depressed and non-depressed
individuals.

The Linguistic Inquiry and Word Count (LIWC; [24])
was one of the earliest examples of a text analysis soft-
ware. Before the LIWC, text analysis was generally con-
ducted by human raters, however, this was inefficient,
costly, and emotionally draining for judges [41]. Fur-
thermore, raters rarely agreed when evaluating the
same piece of writing [41]. Hence, computational solu-
tions provide a faster and more consistent alternative.
For depression researchers the LIWC allowed the com-
parison of language usage between depressed and non-
depressed populations. Combining linguistic features,
such as the LIWC, with Twitter behavioural data, De
Choudhury et al. [39] showed a support vector machines
(SVM) classifier could predict a depressive episode up to
twelve months in advance. Similarly, in the Japanese con-
text Tsugawa et al. [33] combined linguistic features with
users’ Twitter information to detect depression on Twit-
ter. Along with analysing the sentiment of posts, Tsugawa
et al. [33] show understanding the underlying topics of
tweets to be helpful in distinguishing depression status.
Combining LDA, a statistical technique used to iden-
tify underlying topics within a passage of text [27], with
sentiment and twitter data Tsugawa et al. [33] returned
an Fl-score of 0.46. Both [39, 33] these works used
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questionnaires to validate depression status. In contrast,
Hassan et al. [30] used self-reported depression status to
generate a text corpus. Using SVM and multiple linguis-
tic features, Hassan et al. [30] achieved a F-score of 0.81
in their depression measurement system. The LabMT
and ANEW could be broadly described as classes of sen-
timent analysers. These dictionaries associate each word
with a valence which can be then input into a machine
learning classifier. The LabMT word list contains 5000
of the most common words used on popular online plat-
forms such as Twitter [26]. Similarly, The ANEW is a
dictionary of words and an associated valence [25]. Fur-
thermore, these tools can be manipulated to a research
problem. For example, Shen et al. [42], constructed the
Valence, Arousal and Dominance (VAD) tool from the
ANEW. Shen et al. [42] assert their VAD tool was useful
for explaining human emotions within text documents.

Reece et al. [31] used a random forest classifier to
detect depression indicators in a Twitter corpus. Similar
to methods described previously, a depression diagnosis
was verified using psychological questionnaire. Report-
ing a F1-score of 0.644 Reece et al. [31] assert their work
offers strong support for a computational method to
detect depression. Similarly, Islam et al. [43] found all
LIWC dimensions fed into a KNN showed promise in
the detection of depression. Table 1 provides a summary
of the classification systems identified under the scope
of this survey. However, this table does not include deep
learning algorithms or neural networks which are dis-
cussed in Sect. 2.2.

Some detection systems base their ground truth labels
on the self reported health status of the participant. All of
Pirina and Céltekin [44], Islam et al. [43], Tadesse et al.
[32], Shen et al. [42] rely on self-report of depression
status. These works used pattern matching to identify

Table 1 Detection systems and their features
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depression indicative content, searching for that include
sentences like, “I have depression” Depression indicative
posts are labelled and used as training data for super-
vised learning techniques. Unfortunately, when datasets
are developed in this manner depression status is never
assessed by psychologist or questionnaire. As such,
some mislabeled examples must be expected within the
dataset [44]. Despite these limitations, large datasets
allow researcher to uncover algorithms and feature sets
which can be applied to the detection and diagnosis of
depression.

The relationship between mental health status and
speech is well established [45]. While text features focus
on the content of speech, audio features involve the pro-
cessing of the sound to analyse a variety of measure-
ments. The inclusion of audio features in depression
detection systems requires signal processing of the audio
for it to be included in classification models. Several open
source speech processing repositories exist and are used
in the literature including COVAREP [46], openSMILE
[47] to aid in feature extraction. Equivalent tools for pro-
cessing of visual data technologies include measurements
such as Facial Action Units (FAU) [37, 38]. Where FAU’s
“objectively describe facial muscle activations” [48, p. 2].

From Table 1, we see distinct performance difference
depending on how depression status was validated. These
findings raise concerns around how accurate methods
relying on self-report actually are. Existing methods fail
to capture this uncertainty inherent within self-reported
data. Mental health data is often subjective which makes
creating establishing ground truth labels more difficult.
Future work should endeavour to adopt emerging data
science techniques such as Bayesian Neural Networks
(BNN) which are currently being explored to account for
inherent data uncertainty.

Researcher Method Features

Dataset F1-score

McGinnis et al. [35]

Logistic regression and linear SYM  Zero crossing rate, Mel frequency cepstral coef-

McGinnis et al. [35] -

ficients and the Z-score of the power spectral

density
Tadesse et al. [32] SVM LIWC, LDA and Bigram Pirina and Coltekin [44] 091
Islam et al. [43] Coarse KNN LwC Islam et al. [43] 071
Reece et al. [31] Random Forest LIWC, LabMT, ANEW and Unigram Reece et al. [31] 061
Hassan et al. [30] SVM N-gram, POS tagger, Sentiment Analyser and Hassan et al. [30] 081
Negation
Shen et al. [42] Multimodal dictionary learning LIWC, VAD, LDA, word2vec and Twitter behaviour  Shen et al. [42] ~0.85

data
Deshpande and Rao [29] Multinominal Naive Bayes
Tsugawa et al. [33] SVM

Bag-of-words
Bag-of-words, LDA, sentiment analysis+user

Deshpande and Rao [29] 0.83
Tsugawa et al. [33] 0.46

specific information

De Choudhury etal [39] SVM

ANEW,LIWC and Twitter behaviour data

De Choudhury etal. [39]  0.68
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2.2 Artificial neural networks and deep learning:

from hand-crafted features to text embeddings

and beyond
To date, the tools described above have shown to be effi-
cacious in the development of depression detection sys-
tem. For machine learning, feature selection is a vital part
of model building. However, the development of these
features can be laborious and time consuming [49]. As
such, recent approaches have sought to automate the
feature selection process. One of the strengths of deep
learning algorithms is their ability to learn feature repre-
sentations without the need for lengthy feature selection
process.

More recently, deep learning has been applied to the
detection of depression from text, audio and visual fea-
tures. Similar to the machine learning techniques dis-
cussed in Sect. 2.1, deep learning methods are trained
using labelled examples to discern patterns between
individuals with and without depression. In contrast to
traditional machine learning techniques, in general deep
learning algorithms do not require hand-crafted features.
Advanced deep learning algorithms that use textual data
require word embeddings to make text machine readable.
These embeddings are vector representations of text doc-
uments [28]. Deep learning algorithms use these vector
representations to then learn features from the provided
data [49]. Neural word embeddings such as Word2Vec
[50], Global Vectors for Word Representation [51, GloVE]
and more recently transformer based architectures such
as Google’s Bidirectional Encoder Representation from
Transformers [52, BERT] are becoming far more preva-
lent in depression research for representing text numeri-
cally for deep learning models.

To date, little work has applied deep learning to the
assessment of psychopathology [53]. There are likely sev-
eral reasons for the delay in adoption of these techniques.
One of which is concerns around the lack of transparency
in how deep learning models make their predictions.
These concerns have led some [54] to argue against the
use of deep learning models for important health-related
decisions. Instead preferencing traditional techniques
which have greater prediction transparency. Despite con-
cerns about model transparency, deep learning models
have been shown to significantly outperform traditional
machine learning techniques for the detection of depres-
sion. Cong et al. [49] proposed a system which combined
XGBoost with an Attentional Bidirectional LSTM (BiL-
STM). Their work was tested on the Reddit Self-Reported
Depression Dataset (RSDD; [55]). Compared against sev-
eral systems applied to the same dataset (including an
SVM using LIWC features), the authors [49] reported a
Fl1-score of 0.60. Despite its performance, previous sec-
tions have outlined some issues with self report data (see
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Sect. 2.1). While the system design may be useful, a data-
set trained on a self-reported sample may not be applica-
ble in a clinical setting. Rosa et al. [53] developed a deep
learning approach for the recognition of stressed and
depressed users. Their work used a dataset constructed
using 27,308 labelled Facebook messages. The authors
assert their Convolutional Neural Network (CNN) BiL-
STM-Recurrent Neural Network (RNN) using SoftMax
recorded the best results for recognising depressed users.
They [53] reported an Fl-score of 0.92 with a precision
of 0.9 for the recognition of depressed users, significantly
outperforming a Random Forest and Naive Bayes. How-
ever, it is not clear from their paper how responses were
labelled or participants recruited. As highlighted in pre-
vious sections how study participants are recruited has a
huge impact on model performance.

As such, textual data are commonly used data type for
detection of mental health conditions. Building upon
the success of text-based systems emerging research
is utilising multimodal data to detect depression. The
Distress Analysis Interview Corpus (DAIC; [56]) is a
database of 621 interviews collected utilising a com-
bination of face to face, teleconference and automated
agent interview. The dataset includes text, physiologi-
cal data (such as electrocardiogram), voice recordings
and psychological questionnaire scores. Utilising this
dataset, Alhanai et al. [34] combined audio with tran-
scribed transcripts to predict depression categorically
using a neural network. Their approach trained two
LSTM models separately, one trained on audio features,
the other using text features. Each model was trained
individually, with their own weights and hyperparam-
eter. The outputs of these two separate models were
then concatenated and passed to another LSTM layer.
The best performing model reported by Alhanai et al.
[34] utilised both text and audio features to report a F1-
score of 0.77. Highlighting the benefits of combining
multiple data types in model performance.

Chen et al. [57] applied a deep learning approach to
automate the diagnosis of perinatal depression. Their
method used WeChat, a popular social media applica-
tion, in the design of their system. Participants were
recruited from doctors based on their Edinburgh Post-
natal Depression Score (EDPS). Their work [57] was
built using Long Short Term Memory (LSTM), a type
of neural network. In this work the authors assert their
findings match the findings of the EDPS in their sam-
ple however, little evidence is offered to support this
assertion.

Table 2 provides an overview of the surveyed depres-
sion detection systems which deploy deep learning mod-
els. From this table we see a heavy reliance on text data.
Recently, we observe a trend away from hand-crafted
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Table 2 Deep learning and neural networks

Researcher Deep learning architecture Feature types Dataset F1-score

Kabir et al. [58] BERT, DistilBERT BERT DEEPTWEET [58]

Ansari et al. [59] LSTM with Attention GLoVE, SenticNet Reddit, CLPsych 2015, eRisk Dataset 0.77

Wani et al. [60] CNN, LSTM Word2Vec, TF-IDF Wani et al. [60] 0.99

Nemesure et al. [61] Stacked ensemble Electronic health records; Nemesure et al. [61] -
demographic and medical

Zogan et al. [62] CNN, BiGRU BERT Shenetal. [42] 091

Wan et al. [63] Hybrid EEGNet Resting state EEG Wan et al. [63] 0.95

Ray et al. [37] BiLSTM Audio, text and visual DIAC [56] -

Rosa et al. [53] CNN, BiLSTM and RNN with SoftMax - Rosa et al. [53] 0.92

Tadesse et al. [32] MLP LIWC, LDA and Bigram Pirina and Coltekin [44] 091

Tasnim and Stroulia [36] DNN Audio AVEC 17 [64] 061

Alhanai et al. [34] LSTM Audio and text DIAC [56] 0.77

Cong et al. [49] XGBoost and attentional-BiLSTM - Yates et al. [55] 0.60

Chenetal. [57] LST™M - Chenetal.[57] -

Yang et al. [38] Deep CNN and DNN Audio and video AVEC 17 [64] -

features towards complex neural word embedding
models such as those seen in [59, 58, 62]. This mirrors
a pattern seen in the data science field in general with
powerful text embedding models becoming the current
state of the art. Future research should combine interdis-
ciplinary teams to ensure researchers are using the cur-
rent leading data science techniques. The utility of these
deep learning systems for the recognition of depression
is quickly growing, however, to date fewer examples exist
of systems that model depression treatment effect. While
sophisticated deep learning networks are rapidly being
utilised in research the lack of transparency of these deep
neural networks comes with several limitations for their
use in practice. Deep learning systems although promis-
ing in their detection are unable to justify or explain why
they classify a study participant a certain way. As such,
[54] argue so-called ’'black box’ models should not be
used in high stakes fields including healthcare, when a
model is not human interpretable.

2.3 Uncovering new diagnostic categories

with unsupervised learning and data-driven

informatics
Current systems of diagnosis in psychiatry rely on diag-
nostic labels constructed through research rather than
objective measurements of disorder [4]. The problems
associated with the diagnosis of mental health conditions
are widely acknowledged in the literature. An observed
flaw of the diagnosis of mental health conditions is the
subjectivity on which it relies. Furthermore, the categori-
cal descriptions of psychopathology ignores heterogene-
ity of within group variation for specific conditions. For
example, Fried and Nesse [65] identified 1030 unique

symptom profiles amongst 3703 patients diagnosed with
clinical depression as part of the Sequenced Treatment
Alternatives to Relieve Depression (STAR*D) trial. Fried
and Nesse [65] go on to conclude “dissatisfaction with the
diagnostic criteria of major depressive disorder might
be reduced by acknowledging that it is not one coherent
condition with a single cause” [65, p. 100].

Categorical diagnosis systems treat conditions as
binary entities. Under a categorical approach disease
entities or either present or absent [66]. Past research [67,
68] has sought to use neuroimaging to delineate between
individuals suffering depression and healthy controls.
For example, Yang et al. [68] used fMRI to compare dif-
ferences in resting state activations, identifying reduced
activity in the left dorsolateral prefrontal cortex when
compared to prefrontal cortex. More recently, Artifi-
cial intelligence has the potential to identify sub groups
within disease populations through pattern recognition.
This pattern recognition can be referred to as unsu-
pervised learning. In contrast to the supervised tasks
surveyed so far, unsupervised algorithms are used to
“identify inherent groupings within the unlabeled data”
[69, p. 5]. Thus, unsupervised algorithms can be used
to identify groupings that transcend existing diagnos-
tic labels [70]. Exemplifying the possibility of new diag-
nostic criteria, Drysdale et al. [11] utilised hierarchical
clustering, a type of unsupervised learning to identify
four sub types of depression. Their method, grouped
patients based on fMRI connectivity measures. Further
exploration showed these sub types could be used to pre-
dict treatment response to rTMS. Of note the machine
learning classifier was better able to predict treatment
response than a model built using symptoms alone [11].
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These results offer support for that position that depres-
sion may not be one single disease entity but in fact
made up of multiple different conditions. More recently,
Kuai et al. [71] explored a brain computing approach to
construct and evaluate prediction models using differ-
ent brain states. Kuai et al. [71] argue a brain mapping
approach to understanding mental health offers strengths
over existing strategies as it allows for hypothesis testing
to validate causal results. Future work using brain com-
puting may in fact be used to verify differences in the
underlying brain structures of people diagnosed with the
same condition.

This section has raised the possibility of either dis-
tinct subtypes of depression, or in fact several different
underlying conditions distinct from depression. What is
significant from the patients perspective is these different
depression variants vary in their response to treatment.
As such, the use of data to support treatment decisions
in mental health has been an area of significant research.
As research for personalised medicine has increased
so to has work exploring the ways in which psychiatric
treatments can be tailored to the individual. One emerg-
ing area of interest is the use of machine learning algo-
rithms to predict a patient’s response to treatment prior
to intervention.

3 Learning systems to predict depression
treatment response

Patterns of response to treatments for mental health
conditions are often inconsistent. Conventional research
aims to find interventions which are successful at the
group level [4]. However, as highlighted above, recent
research is now uncovering significant heterogeneity
of symptoms among patients classified under the same
diagnostic label. As such, diagnosis alone are not suf-
ficient to inform treatments [70]. The heterogeneity of
categorical diagnostic systems is reflected in the incon-
sistent response to treatment interventions for patients
diagnosed with the same condition. Major depressive
disorder provides an example of the difficulties in pre-
scribing treatments and the inconsistency in treatment
response and remission rates.

Estimates of remission rates to antidepressant treat-
ments vary from 25 to 33% of patients achieving remis-
sion after their first course of treatment [15, 72-74].
However, this does not mean that patients do not go on to
achieve remission of their disorder. Some estimates sug-
gest 67% of patients go on to achieve remission after tri-
als of multiple antidepressant treatments [15]. Given this,
a preferred method for assigning treatments would be to
maximise the likelihood of success. However, currently
no standardised way exists of prescribing treatments with
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clinicians relying on a trial and error approach to find the
best [14, 15].

A more desirable option would be to identify likely
responders to an intervention prior to treatment. Under
this approach, treatments can be targeted to the individ-
ual patients who are most likely to derive benefit [4]. This
is the aim of precision psychiatry. Precision psychiatry
supported by artificial intelligence would allow clinicians
to move beyond diagnostic categories and make room
for the individual variability of care [70]. Tailoring treat-
ments to the individual has several benefits. If it is possi-
ble to predict whether a patient will respond to treatment
before commencing the therapeutic intervention. Hence
reducing the time spent pursuing likely ineffective treat-
ments. Additionally, time saved reduces both the finan-
cial and psychological burden on patients and health care
systems [14, 75].

3.1 rTMS response prediction

Repetitive transcranial magnetic stimulation (rTMS) is
an evidenced based treatment for depression. However,
despite a demonstrated clinical benefit when compared
to a control [76] for some patients rTMS is ineffective.
Berlim et al. [76] in their meta analysis report a response
rate to r'TMS treatment of ~ 30% and remission rate of
A 19%. Similarly, Fitzgerald et al. [77] in their pooled
sample review observed a response rate of ~ 46% and
remission rate of ~ 30%. According to Koutsouleris et al.
[78] the variability of response to rTMS is seen as one
of the main barriers to the widespread adaptation of the
treatment modality. This section provides an overview of
the data science techniques used to delineate rTMS treat-
ment responders from non-responders. Focusing on sys-
tems which make predictions on treatment response at
the level of individual patients. These treatment response
prediction systems employ supervised learning tech-
niques and utilise several types of predictor variables
such as neuroimaging (MRI, EEG, fMRI), genetic, phe-
nomenological or a combination of several variable types
[79].

The works by Fitzgerald et al. [77] highlights a distinctly
bimodal pattern of response to rTMS treatment. This pat-
tern of response is distinguished by patients who respond
to the rTMS treatment, and those who see little benefit.
Using traditional inferential statistical techniques [77]
note no variable alone could delineate between respond-
ers and non-responders. This limitation of traditional sta-
tistics highlights one strength of artificial intelligence and
machine learning approaches. Advanced techniques have
the ability to combine and make treatment recommenda-
tions based on multiple variables. As such, in situations
where one variable alone cannot distinguish between a
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responder and non-responder, combinations of variables
may have that power. Additionally, these advanced tech-
niques allow for the combination of data from multiple
sources. More recently, researchers [11, 14, 75, 78, 80—
83] have utilised more sophisticated machine learning
techniques to distinguish rTMS responders from non-
responders. The works summarised in Table 3, combine
physiological measurements such as electroencephalo-
gram (EEG) [14, 75, 80—82] and fMRI [11, 83]. Table 4
provides a brief overview of the common EEG features
input into the models described in this survey.

Noting the link between working memory and depres-
sion (for example, [87]), Bailey et al. [80] explored the
predictive power of working memory related EEG meas-
urements. Models were built combining Montgomery
Asberg Depression Rating Scale [88, MADRS] scores,
performance on a working memory test, reaction times
and EEG measurements. EEG measurements included
connectivity, power, and theta gamma coupling meas-
ures. Where connectivity was calculated using weighted
Phase Lag Index (wPLIL; [89]).

Exploring the relationship between connectivity and
rTMS response, Chen et al. [84] investigated the role of
connectivity features collected using MRL. In their study,
Chen et al. [84] report using functional connectivity

Table 3 rTMS treatment response prediction
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maps as features as inputs to their SVM regression analy-
sis. Recently, Hopman et al. [85] deployed a linear SVM
using features collected via fMRI, such as connectiv-
ity features between the subgenual anterior cingulate
cortex, lateral occipital cortex, superior parietal lobule,
frontal pole and central opercular cortex. During fivefold
cross-validation, the authors present a training accuracy
of ~ 97% however, on a held out test set, model perfor-
mance drops to an average ~ 87% with a 95% confidence
interval from 100% to roughly 70% accuracy. Similarly, a
SVM model of 30 features the [80] report an F1-score of
0.93 and a balanced accuracy of 91%. These metrics were
the mean results of a robust internal validation scheme
of 200,000 iterations of fivefold cross-validation. Build-
ing upon these initial findings [81] explored the utilised
linear SVM with resting EEG features collected prior
to treatment and after 1 week of treatment to predict
rTMS treatment response for depression. Built using
54 features the research utilised 5000 trials of fivefold
cross-validation to achieve a balanced prediction accu-
racy of 86.6%. The 54 features combined measures col-
lected from MADRS questionnaire and quantitative EEG
signals Alpha Power, Theta Power, Alpha Connectiv-
ity, Theta connectivity, Theta Cordance and Individual-
ised Alpha Peak frequency. Building upon [81, 75] used

Author Condition Features Algorithm

Chen et al. [84] Depression Resting state MRI SVM regression

Hopman et al. [85] Depression Resting state fMRI Linear SVM

Bailey et al. [81] Depression EEG and MADRS Linear SYM

Fan et al. [83] Depression Resting state fMRI Hierarchical regression

Hasanzadeh et al. [14] Depression EEG K-NN

Zandvakili et al. [75] Depression and post-traumatic stress EEG Lasso regression and SVYM
disorder

Bailey et al. [80] Depression EEG Linear SYM

Koutsouleris et al. [78] Schizophrenia - Linear SVM

Drysdale etal. [11] Depression fMRI Hierarchical clustering and SYM

Rostami et al. [86]
Erguzel et al. [82]

Unipolar and bipolar depression
Depression

Clinical and demographic Binary logistic regression

EEG Artificial neural network

Table 4 EEG feature summary

Feature Description

Cordance The sum of z-transformed absolute and relative power for a frequency band [90]

Coherence Coherence is a measure of correlation between signals [91, 92]. Contextualised, coherence is operation-
alised as a measure of functional connectivity between brain regions [75].

Power A measure of the activity in a frequency band [92]

Theta gamma coupling
Weighted Lag Phase Index (wPLI; [89])

Research [93] has shown a relationship between theta gamma coupling and deficits in working memory
A measure of functional connectivity
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machine learning to predict response to rTMS of depres-
sion sufferers with comorbid post-traumatic stress dis-
order (PTSD). However, in contrast to Bailey et al. [81],
Zandvakili et al. [75] utilised lasso regression to model
treatment prediction. Alpha EEG signal coherence was
used to build the lasso prediction model. Coherence is
a measure of correlation between signals [91, 92]. Con-
textualised, coherence is operationalised as a measure of
functional connectivity between brain regions [75]. Uti-
lising a regression model the model outputs predicted
percentage reductions in scores on the Post-Traumatic
Stress Disorder Checklist-5 (PCL-5; [94]) and Inventory
of Depressive Symptomatology-Self-Report (IDS-SR;
[95, 96]). Reductions of greater than 50% are classified
as a clinical response. Continuous predictions of ques-
tionnaire score reduction are then converted to clas-
sifications. For example, a model that predicts a 60%
reduction in IDS-SR for an actual reduction of 65% is the
correct. While Zandvakili et al. [75] report an impres-
sive AUC of 0.83 utilising Alpha coherence to predict
IDS-SR response and AUC of 0.69 for PCL-5 response
classification. These results must be interpreted in the
context of high sensitivity (approx. 100%) and low speci-
ficity (approx. 50%) suggesting a large number of false
positives.

Continuing with the use of pretreatment EEG features
[14] sought to predict treatment response to rTMS.
Where response was defined as a reduction of Hamil-
ton Rating Scale for Depression (HRSD; [97]) or Beck
Depression Inventory (BDIL [98]) by over 50%. Their
sample included 46 patients with a balanced sample of
responders and non-responders. The model utilised
K-NN built on EEG features with the best single feature
model built using the Power of beta. This model achieved
a classification accuracy of 91.3% when using leave one
out cross-validation. The best performing of the multi-
feature models included the Power measurements of all
bands (Delta, Theta, Alpha, Beta) accuracy remained at
the level as the model built using only the power of Beta.
However, the model utilising all power features did differ
in terms of specificity and sensitivity. Hasanzadeh et al.
[14] claim their system built using only pretreatment
EEG features offers a better alternative to systems requir-
ing multiple measurements.

To our knowledge [82] provides the only example of
a deep learning algorithm for the prediction of rTMS
responders. Erguzel et al. [82] explored the possibility
of quantitative EEG to predict treatment response using
an artificial neural network. The main predictive model
utilised Quantitative EEG (QEEG) cordance as the main
predictive feature, this is consistent with Bailey et al.
[81] who offer some support for the use of cordance as
an input feature. Further evidence [99, 100] suggests
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theta cordance for the discrimination between treatment
responders and non-responders. The majority of sur-
veyed papers relying on EEG use hand-crafted features
consisting of existing signal processing techniques. How-
ever, more recently [63], showed through a novel deep
learning CNN, EEG data can be processed directly by a
deep learning architecture. This provides an opportunity
for future researchers to streamline the data pipeline by
inputting EEG data directly into networks.

The literature so far has highlighted the value of rTMS
treatment for at a minimum a subset of the population
experiencing depression. Additionally, emerging evi-
dence exists to support the use of rTMS for the treat-
ment of schizophrenia [101, 102]. Koutsouleris et al. [78]
utilised linear SVM to predict treatment response for
schizophrenia to rTMS treatment. Utilising structural
MRI they utilised principal component analysis to reduce
image features to approximately 25 principal compo-
nents. According to Koutsouleris et al. [78] response was
defined using the positive and negative syndrome scale
(PANSS; [103]). In contrast to depression, schizophre-
nia is characterised by both positive symptoms including
hallucinations and delusions as well as negative symp-
toms such as social withdrawal [104]. As such, response
to treatments for schizophrenia is defined as a greater
than 20% increase in the positive symptoms sub-scale
(PANSS-PS) or greater than 20% increase in the nega-
tive symptom sub-scale (PANSS-NS). Hence, response
to treatment is classified in terms of response for positive
symptoms or negative symptoms. In the active treatment
condition a cross validated model produced a balanced
accuracy of 85% between responders and non-respond-
ers. Consistent with expectation and findings observed
by Tian et al. [105] when utilising a leave-one-site-out
validation protocol was utilised balanced accuracy
dropped to 71%. Koutsouleris et al. [78] provides evi-
dence for machine learning algorithms utility irrespective
of condition. With enough data, advanced computing
techniques have the potential to support improvements
across multiple conditions in psychiatry.

To that end, prediction of responders at the single
patient level has become of interest to the research com-
munity. The surveyed papers show EEG features to be
the most common neuroimaging feature [14, 75, 80—82],
with a recent trend towards fMRI and MRI features [83—
85]. EEG measurements of interest include connectivity,
measured using coherence or wPLI, along with power
and cordance. Additional features include depression
rating surveys such as MADRS [81]. These observations
are consistent with Lee et al. [79] who explored the use
of machine learning algorithms to predict treatment
outcomes for patients with either depression or bipo-
lar depression. In the current work SVM was the most
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widely used algorithm to delineate between treatment
responders and non-responders of rTMS treatments.
Several studies report exceptional predictive perfor-
mance (for example, [80]) for their models, however, the
studies surveyed rely almost exclusively on cross-val-
idation, an internal validation strategy. Of note [14, 78]
included some pseudo-external validation in the form of
a leave one group out validation. In their multi-site sam-
ple, validation involved holding one site out from training
for model evaluation. Interestingly, performance of this
model dropped significantly when tested on a site not
included in the training set. Future opportunities exist for
the streamlining of techniques to preprocess data such as
EEG, MRI and fMRI for input into deep learning models.
Future work may see networks which automate this pre-
processing reducing the need for hand-crafted features.

3.2 Pharmacological intervention response prediction

Currently, robust biomarkers or objective measurements
of psychiatric conditions do not exist. However, several
studies have identified neuroimaging techniques as “can-
didates of prognostic biomarkers in major depression
disorder” [72, p. 2]. Seminal work by Khodayari-Ros-
tamabad et al. [15] provides an early example of treat-
ment response prediction for antidepressants. Their
system utilised pretreatment EEG features combined
with a mixed feature analysis [106]-based classifier to
predict treatment response prediction. More recently,
Jaworska et al. [72] explored the efficacy of several
machine learning classifiers for the prediction of treat-
ment response of antidepressants. The work explored,
random forests, Adaboost, SVM, classification and
regression trees (CART) and the multilayer perceptron
(MLP). The best performing model reported by Jaworska
et al. [72] was a random forest classifier which combined
117 features from a variety of sources including eLO-
RETA, EEG and clinical features. The model recorded an
Fl-score of 0.901. Despite this impressive performance,
models built with large numbers of features are vulner-
able to overfitting [107]. Given the problem of overfitting,
the more suitable model presented by Jaworska et al. [72]
is built using twelve predictive features selected based
using extremely randomised trees. This method ranks
the predictive power of features using the average impu-
rity score. Of models built using only twelve features,
[72] report random forest to have the best prediction
performance with an Fl-score of 0.827 slightly outper-
forming Adaboost with an F1-score of 0.815. Similar to
the findings of Drysdale et al. [11], Jaworska et al. [72]
assert models built on features incorporating imaging
techniques outperformed models built solely on clini-
cal or demographic data. This assertion suggests models
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neuroimaging techniques to be a more reliable measure
of psychiatric health.

While imaging, clinical and demographic features are
the predominant features of interest, pioneering works
[16, 109, 110] have included genetic features, such as sin-
gle nucleotide polymorphisms (SNP). Pei et al. [109] col-
lected SNP’s via a blood sample where the significance of
each allele was determined using logistic regression. The
outcome variable of interest was treatment response vs
non-response. Continuing with the theme of algorith-
mic feature set selection, Pei et al. [109] utilised SVM
recursive feature elimination. Linear SVM was used in an
ensemble approach outperforming single classifiers built
using the same predictor variables. This result is consist-
ent with the literature that emphasises the strength of
ensemble methods for classification tasks in supervised
learning [114]. Similarly, Lin et al. [110] explored the pre-
dictive power of SNPs utilising the deep learning algo-
rithm, multilayer feedforward neural networks (MFEN).
The work explored the performance capability of the
MFEN compared to logistic regression with a feature
set of 16 biomarkers and six clinical features to predict
both treatment response and remission. For a set of 16
features, the MFFN with up to three hidden layers out-
performed logistic regression in both AUC and sensitiv-
ity, however, logistic regression achieved slightly better
specificity. When the number of features was lowered
to six biomarkers, similar to Jaworska et al. [72] perfor-
mance declined as the number of features dropped. For
6 features, the best AUC score dropped to an AUC of
0.5597 for a single-layer MFEN with the logistic regres-
sion achieving higher specificity.

Also utilising a deep learning for the prediction of
treatment response, Chang et al. [16] developed a neu-
ral network based system, the Antidepressant Response
Prediction Network (ARPNet), to predict both the degree
of treatment response, as a continuous variable, and
whether a patient reaches clinical remission. In contrast
to other studies (see [72, 109]), Chang et al. [16] define
clinical remission as a greater than 50% reduction in
HAM-D score; whereas [110] defined remission as a
HDRS score of less than 7. These differences in defini-
tions are significant. As the field strives for clinical use of
artificial intelligence systems a standardisation of defini-
tions would be helpful for comparing models. Despite
terminology differences, Chang et al. [16] present a
robust system to predict response with their model sig-
nificantly outperforming other widely used classifiers
such as linear regression. Similar to Pei et al. [109], Lin
et al. [110], ARPnet includes genetic variables and com-
bines this information with neuroimaging biomark-
ers. The system utilises elastic net feature selection with
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hyper parameter tuning conducted using fivefold cross-
validation with a test set of 10%. Two features unique
to ARPnet is the antidepressent prescription layer of
the neural network and the use of ARPnet to predict
the degree of treatment response, measured in terms of
HAM-D score across time. This novel approach would
allow psychiatrists to model the likely response of an
antidepressant before prescribing it [16].

While text features were widely used for the detec-
tion of depression (see Sect. 2), the use of these features
is uncommon in treatment response prediction. Carrillo
et al. [10], in a unique method present text analysis as a
method for predicting the treatment response to psilo-
cybin. Given, the established relationship between psy-
chological health and language use [115-119], Carrillo
et al. [10] first show that a Gaussian Naive Bayes classi-
fier could distinguish between individuals suffering from
depression, and healthy controls. Their model was built
using features constructed by sentiment analysis col-
lected via interview. Additionally, this Gaussian system
able to distinguish responders from non-responders at a
level of significance when compared to permutation test-
ing. However, this research is significantly limited by the
small sample size of only 17 study participants compris-
ing 7 responders and 10 non-responders.

So far this section has explored a variety of data sources
used as features for systems that predict treatment
response. With the most common physiological feature
being EEG. An additional and emerging data type is the
use of fMRI neuroimaging [11, 83, 105]. Tian et al. [105]
explored resting fMRI features as predictors of escitalo-
pram response in patients suffering depression. The work
explored the predictive power of fMRI features across
three sites. Using data of 34 patients from Nanjing Brain
Hospital across a 7-year period [105] used an SVM clas-
sifier to deliver an optimal accuracy of 79.41%. Using per-
mutation test as comparison the authors [105] conclude
this result to be significant at the p <0.001 level. Using the
minimum redundancy maximum relevancy the authors
identified 7-8 features which combined to produce
the optimal classifier. Similar to Hasanzadeh et al. [14],
Koutsouleris et al. [78], as Tian et al. [105] was a multi-
site trial, a leave one group/site out analysis was used as
a validation technique. Using one site as the hold out set
for more thorough validation which tests model generali-
sation. For Tian et al. [105] a leave one group out analysis
showed performance decrease. This leave one group out
protocol achieved accuracy of between 69 and 71% com-
pared to the 79.41% when data were trained and tested at
a single site. This performance drop highlights the com-
mon limitation of machine learning, model generalisation
to unseen data. Similar performance decline is observed
by Browning et al. [108] who provide one of few examples
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of external validation on an independent dataset. Explor-
ing the possibility of baseline Quick Inventory of Depres-
sion Severity (QUIDS; [120]) and the face-based emotion
recognition task (FERT). Browning et al. [108] observed
performance decline from approximately 80% accuracy
to 60% accuracy on the independent dataset. Similarly,
Chekroud et al. [112] using gradient boosting machines
achieved an accuracy score 64.6% during cross-validation
compared to an accuracy of 59.6% on an external data
a performance drop not in the magnitude of Browning
et al. [108]. The difference in relative performance drop
could be due to the low accuracy reported in the internal
validation stage by Chekroud et al. [112]. Performance
comparisons between Browning et al. [108] and Chek-
roud et al. [112] are further complicated by their different
target variables. Browning et al. [108] sought to identify
patients who achieved a response to treatment, defined
by a greater than 50% reduction in QIDS-SR, in contrast,
Chekroud et al. [112] sort to identify clinical remission
defined by the QIDS-SR as a final score less than or equal
to five.

Several algorithms have been trialled for the prediction
of treatment response to pharmacological treatments of
depression. A summary of these techniques can be found
in Table 5. These algorithms include deep learning tech-
niques such as MFFN [72] and customised neural net-
based systems such as those in Chang et al. [16]. Other
commonly utilised algorithms include Linear SVM [109,
105], tree-based methods [72, 113] and logistic regres-
sion [111].

While the majority of studies discussed in this section
report impressive results, they are significantly limited by
small samples (see Table 6) and lack of external valida-
tion. Commonly, internal validation techniques such as
k-fold cross-validation and leave-one-out cross-valida-
tion. And others [110, 111] employed repeated cross-val-
idation, the most robust form of internal validation [121].
We observed significant performance drops when data
were spread across multiple sites or models tested on
independent data. This performance decline highlights
the issue of generalisation in machine learning, one of the
key barriers to clinical adoption of these techniques [5,
122].

We also note the recent shift towards more sophisti-
cated deep learning techniques, with Tian et al. [105]
claiming their MFFN to outperform a logistic regression,
[16] reporting their neural net-based system to outper-
form common strategies such as SVM and random for-
ests. The majority of response prediction studies agreed
to a common definition of response as a greater than 50%
reduction in score from a psychometric questionnaire
used to asses depression severity, with instrument of
choice varying across samples. Notably, only Chang et al.
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Table 5 Pharmacological treatment response prediction
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Author Features

Algorithm

Validation

Jaworska et al. [72] EEG and eLORETA

Random forests

Tenfold cross-validation

Browning et al. [108] Initial QIDS-R and face-based Linear SVYM External validation on unseen data
emotional recognition task
(FERT)
Pei et al. [109] EEG and genetic markers Linear SYM Leave-one-out cross-validation
Changetal.[16] MRI and genetic markers Artificial neural network Holdout set and k-fold cross-validation
for hyperparamater tuning
Tian et al. [105] fMRI Linear support vector machine Leave-one-out cross-validation
Carrillo et al. [10] Speech data Gaussian Naive Bayes Sevenfold cross-validation
Linetal.[110] Genetic markers Multilayer feedforward neural network 10 iterations of tenfold cross-validation
Mumtazetal. [111] EEG Logjistic regression 100 iterations of tenfold cross-validation

Chekroud etal. [112] Sociodemographic, question-
naires (such as HAMD), clinical
information

Patel etal.[113]

Khodayari-Rostamabad et al. [15] ~ Pretreatment EEG

Gradient boosting machine

Demographic and neuroimaging  Alternating decision trees
Mixture of factor analysis

10 iterations of tenfold cross-validation
and externally validated on unseen data

Leave-one-out cross-validation

100 iterations of leave N out cross-
validation

Table 6 Pharmacological treatment response sample summary

Author Samplesize  Definition of response

Jaworska et al. [72] 51 > 50% reduction in MADRS score

Pei etal. [109] 98 > 50% reduction in HDRS 6

Linetal.[110] 421 -

Changetal. [16] 121 Remission defined as > 50%
reduction in HAM-D

Carrillo et al. [10] 17 > 50% reduction in QIDS

Mumtazetal. [111] 34 > 50% reduction in BDI-II

Khodayari-Rostama- 22 > 30% reduction in HAM-D

bad etal. [15]

[16] differed in their definition responder, defining clini-
cal remission as a 50% reduction in HAM-D score.

As artificial intelligence becomes more prevalent in
medicine and psychiatry a more standardised framework
is required for the testing and validation of deep learning
models. Differences in definitions between models make
comparison between systems more difficult. As such reg-
ulators and the research community should endeavour
to standardise definitions; This standardisation would
first make the regulation of artificial intelligence systems
easier and secondly make communication of model per-
formance more transparent.

4 Discussion: challenges and opportunities

Advances in deep learning, machine learning and natural
language processing are slowly being applied to the field
of precision psychiatry. This paper serves as a guide for
psychiatrists and data science practitioners alike as to the

existing state-of-the-art techniques and the open prob-
lems which require further work.

Supporting a shift towards precision psychiatry artifi-
cial intelligence provides the opportunity for treatment
response prediction. Treatment response prediction pro-
vides empirical evidence for the likely effect of an inter-
vention. Currently, clinicians rely on trial and error to
find the best antidepressant for a patient [4, 14, 15]. As
such, treatment response prediction offers a shift from
trial and error treatment prescription to evidence-based
treatment recommendations supported by data. The
surveyed works explore two categories: single patient
response prediction for rTMS and pharmacological
interventions. These systems utilise any of neuroimag-
ing, demographic and clinical features [79]. Jaworska
et al. [72] observed neuroimaging features outperformed
clinical and demographic features. This is consistent with
Drysdale et al. [11] reports “clinical symptoms alone were
not strong predictors of rTMS treatment responsive-
ness at an individual level” [11, p. 8]. Systems built using
neuroimaging techniques consistently demonstrated the
ability to delineate between treatment responders and
non-responders for both rTMS and drug-based treat-
ments. However, for these systems to be adopted in a
clinical setting several limitations must be addressed.

4.1 Challenges and limitations

Through our survey of the literature, we identified some
consistent themes for consideration by the research
community. The studies reviewed so far report impres-
sive results for the detection, diagnosis and treatment
response prediction. Despite impressive results reported
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above, none of the works surveyed as yet have been
shown to demonstrate improved treatment outcomes
for patients. Given the field of personalised psychiatry is
not new, with surveyed works spanning a decade. Further
collaboration between mental health professionals and
data scientists to ensure this research is being converted
into improved patient outcomes. This section explores
the limitations of existing systems which reduces the pos-
sibility of real world application.

4.1.1 Model validation: the need for external validation
Several of the surveyed studies described in previous sec-
tions report impressive power for predicting treatment
response with several performing above current stand-
ards observed in practice. However, several issues exist
in moving these research systems to clinical practice.
Of the papers reviewed above the most obvious limita-
tion, or barrier to implementation is the issue of model
validation.

Of the surveyed articles two studies include multiple
sites [78, 105] and two test their models on independent
data [108, 112]. Rigorous validation is crucial if machine
learning systems are to effectively transition to industry
use [122]. The majority of papers cited above use some
form of internal validation such as k-fold cross-valida-
tion. Widely cited work by Harrell Jr [121] provides a
hierarchy of validation techniques used to predict model
performance on new data. Using this hierarchy validation
techniques range in effectiveness from only reporting the
best performing iteration of model performance, to the
most powerful validation technique, external validation
by an independent research team on new data. Harrell
Jr [121] asserts the strongest of internal validation tech-
niques is repeated iterations of k-fold cross-validation.
Model validation is of significant importance in the tran-
sition of predictive models. Frohlich et al. [5] notes the
path to implementation for predicative artificial intel-
ligence models must include robust internal validation,
external validation on independent data and empirical
validation as part of a clinical trial.

These views are supported by Browning et al. [108] who
contend randomised control trials are necessary to vali-
date model performance to a level that would justify clin-
ical adoption. Of the papers surveyed to date few tested
their models on independent data and none included
randomised control trials of their systems. With the lack
of publicly accessible data for depression, external valida-
tion of model performance is challenging. Open datasets
would enable researchers to build their models on one
dataset and compare performance across samples. This
realisation is already being realised by datasets such as
ADNI, providing an established research pipeline for the
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study of Alzheimer’s. Providing researchers with datasets
for external validation.

4.1.2 Small sample sizes and greater data access

The issue of access to data and sample sizes provides a
brief overview of progress in the respective dimensions
covered in this review. Data relating to depression detec-
tion are widely available compared to data for treatment
response prediction. For example, social media text,
DIAC [56] and AVEC [64] are widely accessible. Access
to data provides computer scientists and researchers
the opportunity to compare their systems on the same
datasets. In contrast, researchers exploring treatment
response prediction at the single patient level are limited
by small samples and challenges accessing data. A cen-
tralised cloud-based repository of mental health data as
proposed by Chen et al. [123] offers one potential solu-
tion, however, would be require significant infrastructure
to implement.

Treatment response prediction relies more heavily on
neuroimaging data. Labelled examples for treatment
response prediction are far less available with the sur-
veyed articles relying on small samples. Table 6 provides
an overview of the sample sizes used to generate the
results discussed in this paper. Consistent with trends
identified in Arbabshirani et al. [124], with the exception
of [110] the majority of studies surveyed have samples
under 150. Arbabshirani et al. [124] assert it is difficult
to generalise results from small samples to the broader
patient population. Furthermore, it is likely small samples
overstate the predictive power of a system [125]. Button
et al. [126] assert low statistical power as a result of small
sample sizes is a problem of endemic proportions within
the field of neuroscience. Combined, with observed pub-
lication bias of artificial intelligence systems [125] it is
likely the published literature provides only a theoretical
upper limit of the current effectiveness of artificial intel-
ligence systems for precision psychiatry. Furthermore,
small sample sizes do increase the probability of overfit-
ting [4], leaving researchers to overstate the performance
of their model.

For the continued growth of personalised psychiatry
research larger datasets become more accessible. The
dearth of open datasets is especially true for the study
of depression. With the benefits of open data sharing is
exemplified by the success garnered from the Alzheimer’s
Disease Neuroimaging Initiative. Recently, Birkenbihl
et al. [122] report the ADNI dataset has now been refer-
enced more than 1300 times. To date there is no equiva-
lent data repository for conditions such as depression.
Possible large cloud based solution such as that proposed
by Chen et al. [123] may pave the way forward, however,
further work is required.
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4.2 Future trends and opportunities

The last decade of research has seen rapid advancements
in the technologies being used to support mental health
care. For the detection and diagnosis of depression we
observe a trend away from machine learning algorithms
to sophisticated deep learning architectures. Similarly,
text classification is moving away from traditional text
mining features such as n-grams and bag-of-words to
more sophisticated transformer-based embeddings such
as BERT. However, the transition to deep learning archi-
tectures is less evident in treatment response predic-
tion. Despite using quantitative data like EEG, fMRI or
MR, this field is relying on existing technologies such as
SVM. Few methods exist where raw neuroimaging data,
such as EEG is passed directly to Deep Learning Algo-
rithms. Thus an opportunity exists for the use of deep
learning methods to learn feature representations for
the treatment response prediction and streamline data
preparation.

4.2.1 Causal artificial intelligence
Existing trends in this survey show a move from hypoth-
esis testing, to pattern recognition using artificial intelli-
gence techniques. However, predictive techniques do not
establish causality as hypothesis and randomised con-
trol trials did. While some confuse pattern recognition
for causality, Sgaier et al. [127] asserts “Relying solely on
predictive models of Al in areas as diverse as health care,
justice, and agriculture risks devastating consequences
when correlations are mistaken for causation.”
Establishing causation using artificial intelligence
would be a significant breakthrough in depression
research and precision psychiatry alike. In some medical
fields we are starting to see early attempts at establishing
causality with the use of deep learning. Wang et al. [128]
show their model DeepCausality was able to identify 20
causal factors for identifying drug induced liver disease
from electronic health records. Furthermore, advances in
brain mapping such as the strategies shown in Kuai et al.
[71] may allow for the establishment of causal relation-
ships between changes in brain activity and depression
severity

4.2.2 New technologies and automating data pipelines

Recent advances in text embeddings such as BERT,
GloVe or Word2Vec are more often being utilised by
practitioners to prepare text for depression detection.
The use of these transformer-based word embeddings
have led to more streamlined data pipelines. Further
opportunities exist for data scientists to develop new
techniques to process neuroimaging data directly such
as the approach proposed by Wan et al. [63]. CNNs
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are well equipped to handle sequence data and feature
work may allow for networks equipped to handle neu-
roimaging data without prepossessing.

To date, the detection and diagnosis of mental health
conditions relies on self-report or clinician-adminis-
tered questionnaires. Currently, objective biomarkers
of psychopathology do not exist [11]. Given this chal-
lenge, significant research has explored the possibility
of depression detection using text, audio and visual.
Currently, evidence [37] suggests the content of speech
is the best predictor when compared to audio and vis-
ual to delineate between people who are healthy and
individuals suffering mental health conditions. Sys-
tems designed for depression detection utilise a variety
of techniques progressing from elementary machine
learning methods to more sophisticated techniques
such as deep learning algorithms. Depression detection
is the most widely researched area explored within the
scope of this survey. This advancement has been driven
by the access to significant bodies of text and publicly
accessible datasets such as DIAC [56] and AVEC [64].

4.2.3 Uncertainty quantification

As the field strives for clinical implementation of the
artificial intelligence systems surveyed further work
is required to capture the uncertainty associated with
model building. This includes the two types of uncer-
tainty, data uncertainty (aleatoric uncertainty), and
epistemic uncertainty, (model uncertainty). The aleato-
ric uncertainty can be seen in the variations in depres-
sion detection system performance depending on how
ground truth labels were collected. We noted perfor-
mance drop off when self-report measures were used
as ground truth labels. The use of self-report measures
encompasses some inherent uncertainty which existing
methods fail to capture. Additionally, if these models
are to become prevalent in their use in informing treat-
ment decisions, these models must be able to express
their prediction confidence, which currently is not
included in model outputs. Bayesian Neural Networks
are an emerging technology to encompass both data
uncertainty and express prediction confidence. Fur-
ther to this, more work is required to ensure as models
become more complex effort is made to understand the
inner workings of these models. Some concerns exist
regarding the lack of transparency in how deep learning
models make their predictions. These concerns have
led some [54] to argue against the use of deep learning
models for important health-related decisions. Accu-
rate predictive models which are interpretable are of
significant interest to the research community.
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5 Conclusions

Much excitement surrounds the potential for artificial
intelligence and machine learning to revolutionise psy-
chiatry. This paper provides an overview of the tech-
niques and methodologies available to researchers for the
detection, diagnosis and treatment of depression. Whilst
every endeavour has been made to ensure the complete-
ness of this survey paper given the speed of progress
within the data science community we cannot guarantee
all papers within the literature have been included. How-
ever, this paper aims to provide an up-to-date assessment
of the current position of artificial intelligence’s use in the
field of psychiatry.

The last decade of research has seen rapid advance-
ments in the technologies being used to support mental
health care. For the detection and diagnosis of depression
we observe a trend away from machine learning algo-
rithms to sophisticated deep learning architectures. Simi-
larly, text classification is moving away from traditional
text mining features such as n-grams and bag-of-words to
more sophisticated transformer-based embeddings such
as BERT. However, the transition to deep learning archi-
tectures is less evident in treatment response prediction.
Despite using quantitative data like EEG, fMRI or MRI,
this field is relying on existing technologies such as SVM.
Few methods exist where raw neuroimaging data, such as
EEG is passed directly to deep learning algorithms. Thus
an opportunity exists for the use of deep learning meth-
ods to learn feature representations directly and stream-
line the treatment response prediction process.

Current limitations of treatment response systems
include small sample sizes and model validation. The
small samples observed in the treatment response pre-
diction systems described in Sect. 3 make it difficult to
generalise findings to the broader population [124].
Additionally, small sample sizes increase the likelihood
of model overfitting [4]. Larger, more publicly acces-
sible datasets such as the data pipelines that are well
established for the study of Alzheimer’s disease (see
[122]) would address this issue. Further barriers to the
widespread adoption of these systems is the issue of
model validation. As noted by Fréhlich et al. [5] the path
to implementation for predicative artificial intelligence
models includes robust internal validation, external vali-
dation and empirical validation as part of a clinical trial.
Of the works included within the scope of this review
the majority includes only internal validation, falling well
below the standard for implementation. To advance the
field of personalised psychiatry to the clinic, future work
should seek larger datasets and explore empirical valida-
tion in the form of randomised control trials. We suggest
greater collaboration between healthcare professionals
and artificial intelligence researchers may speed up the
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process of adoption and ensure state-of-the-art tech-
niques are being used to improve health outcomes.
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2.3 Links and implications

This work identified the potential opportunity for the use of DL for treatment response
prediction. While some work has explored the us of DL for evaluating and predicting
response to frontline depression treatments, such as antidepressants. A dearth of literature
exists applying DL for predicting rTMS treatment outcomes, existing work in rTMS has
focused largely on shallow ML techniques. Furthermore, this work highlights the issue of
small datasets which is discussed further in Chapter 3.3 which emphasises the importance

of mitigating data bias to improve Al fairness.

For the preceding chapters, however, this chapter has identified one of the primary chal-
lenges in psychiatry a lack of objective biomarkers for detecting and diagnosing depres-
sion. XATI techniques then provide a useful tool for understanding the influence of certain

biomarkers on response to treatment and hence their impact on depression.
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CHAPTER 3: PAPER 2 - IDENTIFYING PREDICATIVE

BIOMARKERS FOR REPETITIVE TRANSCRANIAL MAGNETIC

STIMULATION RESPONSE IN DEPRESSION PATIENTS WITH

EXPLAINABILITY

3.1 Introduction

This chapter presents the work Identifying predictive biomarkers for repetitive transcranial
magnetic stimulation response in depression with explainability. This work extends on the
findings of the previous chapter and in consultation with our industry partners at Belmont
Private Hospital compares the strength of a variety of demographic, psychological and
physiological variables for predicting the outcome of r'TMS treatment. This work serves
as a proof of concept for the use of DL for the prediction of rTMS treatment response in
the first of its kind work. Furthermore, this chapter shows the utility of XAI techniques
for identifying predictive biomarkers which may be of use to clinicians and researchers

alike

3.2 Published paper
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ARTICLE INFO ABSTRACT

Keywords:

Repetitive transcranial magnetic stimulation
Deep learning

Explainable Al

Depression

Repetitive Transcranial Magnetic Stimulation (rTMS) is an evidence-based treatment for depression. However,
the patterns of response to this treatment modality are inconsistent. Whilst many people see a significant
reduction in the severity of their depression following rTMS treatment, some patients do not. To support and
improve patient outcomes, recent work is exploring the possibility of using Machine Learning to predict rTMS
treatment outcomes. Our proposed model is the first to combine functional magnetic resonance imaging (fMRI)
connectivity with deep learning techniques to predict treatment outcomes before treatment starts. Furthermore,
with the use of Explainable AI (XAI) techni we identify potential biomarkers that may discriminate between
rTMS responders and non-responders. Our experiments utilize 200 runs of repeated bootstrap sampling on two
rTMS datasets. We compare performances between our proposed feedforward deep neural network against
existing methods, and compare the average accuracy, balanced accuracy and Fl-score on a held-out test set.
The results of these experiments show that our model outperforms existing methods with an average accuracy of
0.9423, balanced accuracy of 0.9423, and F1-score of 0.9461 in a sample of 61 patients. We found that functional
connectivity measures between the Subgenual Anterior Cingulate Cortex and Centeral Opercular Cortex are a
key determinant of rTMS treatment response. This knowledge provides psychiatrists with further information
to explore the potential mechanisms of responses to rTMS treatment. Our developed prototype is ready to be
deployed across large datasets in multiple centres and different countries.

pression severity. However, others see minimal improvement in their
depression rating scale scores post-treatment. Given this disparity, cur-
rent work is investigating the potential of using artificial intelligence
(AD) to predict treatment outcomes and personalize mental healthcare.

To date, existing research has sought to predict response to rTMS
treatment using machine learning (ML) algorithms. These systems aim

1. Introduction

Depression is a highly prevalent and debilitating mental illness [1].
As such, finding effective and efficient treatments for depression is a
high priority. Repetitive Transcranial Magnetic Stimulation (rTMS) is
an evidence-based treatment for depression [2-4]. rTMS involves elec-

tromagnetic stimulation of the brain that aims to alter its underlying
structures to improve a patient’s symptoms [7]. However, the patterns
of response to this treatment are inconsistent [5]. Evidence [6,9,5] sug-
gests that the distribution of response to rTMS is bimodal. For some
patients, rTMS treatment will lead to a significant reduction in de-

* Corresponding authors.

to delineate between responders and non-responders in rTMS treatment.
Thus, the problem can be defined as a supervised binary classification
task. Existing works [21,22,11-13,15-17,10,9,18] have applied a vari-
ety of algorithms to predict the response to rTMS treatment. Methods in-
clude linear support vector machines [22,11,12], linear regression [13]
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and k-nearest neighbours [15]. These surveyed methods vary from those
that rely on features collected after treatment has begun, to emerging
methods that utilize pre-treatment measures only.

Predicting the treatment outcome before it begins is the goal of
personalized mental healthcare. However, such examples are in the mi-
nority. For example, only Hopman et al. [11] and Hasanzadeh et al.
[15] predicted treatment outcomes before starting treatment. In their
work, Hasanzadeh et al. [15] utilized pre-treatment EEG features to
accurately predict rTMS treatment outcomes in roughly 90% of cases.
Hopman et al. [11] instead used pre-treatment functional magnetic res-
onance imaging (fMRI) to predict treatment outcomes. These results
suggest that there is scope for the use of more advanced techniques,
such as deep neural networks (DNN), to predict the outcome of rTMS in
patients [7]. This observation is echoed by [12], who assert that future
work could explore the efficacy of deep learning (DL) algorithms for
predicting the treatment response. For example, the linear support vec-
tor machine (SVM) used by Hopman et al. [11] performed excellently
during cross-validation, however, Hopman et al. [11] reported sharp
declines in predictive performance on a held-out test set. Therefore,
an opportunity exists to explore more sophisticated algorithms, such as
DNNs, which are known - under the right settings - to generalize well on
unseen data. As such, our work seeks to address the following research
questions:

-

. Can a deep neural network improve upon existing methods for pre-
dicting treatment response on a held-out test set?

2. Which features most predict treatment response?

. In what circumstances is the proposed network vulnerable to mis-
classification?

. Are there any commonalities in misclassification errors that can be
communicated to the end user to improve clinical utility?

w

N

To address these research questions, we compare empirically exist-
ing shallow ML methods against our proposed DNN. Furthermore, with
the aim of increasing the value of work for end users and in collabora-
tion with domain experts, we utilize explainable artificial intelligence
(XAI) techniques to identify the features that are most predictive of
treatment response. In addressing this research question, we aim to
identify candidate biomarkers indicative of treatment response. Ad-
ditionally, to support the potential implementation of our model, we
present model knowledge, which is an extension of the ‘model facts la-
bels’ presented by [20]. Model knowledge is our process of rigorously
evaluating model performance, including potential limitations. By gath-
ering model knowledge, we can enhance the clinical utility by explicitly
declaring circumstances such as when the model performs well or is vul-
nerable to prediction errors, which in turn promotes trust in end users.
Lack of trust in AI models is seen as a key barrier to its implementa-
tion in healthcare [19]. Through addressing these research questions,
our work makes the following contributions:

« A robustly validated regularised deep feedforward neural network
that predicts the treatment outcome of rTMS before treatment com-
mences.

A robust analysis of rTMS treatment response patterns through the
use of two datasets, namely, the differences in the predictive power
of self-reported psychometric data against fMRI connectivity mea-
sures.

The use of XAI techniques, including SHAPLEY values, to identify
candidate biomarkers indicative of response to rTMS treatment.

These findings help to provide confidence to clinicians in our model
while also uncovering new knowledge for depression researchers.

The current work proposes a DNN model for predicting treatment
response to rTMS. We use multi-modal data to predict treatment out-
comes and explore XAI techniques to add support and robustness to
our model. As such, our work aims to produce the first DNN model to

Computer Methods and Programs in Biomedicine 242 (2023) 107771

model rTMS treatment outcomes that includes explainability. The paper
is structured as follows. The following section reviews existing strate-
gies for treatment response prediction used to evaluate rTMS. Given
the dearth of literature exploring DL architectures in rTMS, we include
an exploration of DL systems applied in other medical contexts. Ad-
ditionally, we survey some methods used to produce interpretable Al
systems. In Section 2, we present the research problem, a summary of
the dataset, formally define the research problem and introduce the
notation. Section 2 also introduces our proposed model, the baseline
models, and model hyperparameters. Details on the experiment design,
performance measuring schemes and experiment results are included in
Section 3. Finally, comments about our findings and proposed future
directions from this research topic are included in Section 4.

1.1. Related work

Previous studies [21,22,11-13,15-17,10,9,18] have applied a va-
riety of techniques to predict treatment outcomes to rTMS. To date,
ML algorithms have performed well on this binary classification task.
A summary of the current literature is shown in Table 1.

This Table shows that several feature modalities, including elec-
troencephalogram (EEG), fMRI, psychological, and demographic fea-
tures, have been used to predict treatment response to rTMS. Existing
work has relied on shallow machine learning methods like linear SVM
(LSVM) and k-nearest neighbours algorithms (KNN). Recently, Shad-
abi et al. [22] became the first to apply DL methods to rTMS response
prediction when they explored the ability of a convolutional neural net-
work (CNN) to predict treatment response to rTMS using EEG features.
CNNs are well suited to the temporal data collected by EEG, with the
authors reporting a 97.1% average accuracy after 10 fold cross valida-
tion.

Previously, existing research has relied on shallow ML methods. For
example, Hopman et al. [11] deployed a LSVM using features collected
via fMRI. They used connectivity features between the subgenual an-
terior cingulate cortex and lateral occipital cortex, superior parietal
lobule, frontal pole and central opercular cortex. During five-fold cross
validation, the authors presented a training accuracy of ~ 97% how-
ever, on a unseen test set, model performance dropped to an average of
~ 87%, with a 95% confidence interval from 100% to roughly 70% ac-
curacy. Further implementations of a LSVM include Bailey et al. [12],
who built a LSVM classifier composed of 54 features. These features
consisted of a combination of mood and EEG measurements collected
at baseline and after one week of treatment. In addition to measure-
ments collected at these two-time points, features were extracted for
the change between week 1 and baseline. Each feature was standard-
ized, which is a common technique in ML. Testing of the final classifier
was validated against 5000 runs of five-fold validation. For this LSVM,
Bailey et al. [12] reported a mean balanced accuracy of 86.60%. As part
of their conclusions, they felt that the efficacy of existing algorithms for
the prediction of treatment response could be improved [12].

DL algorithms are capable of modelling complex relationships and
yield high classification performances. Moving from ML to DL to predict
1TMS treatment outcomes is the potential next step in mental health-
care. The strength of DL architectures is the ability to model complex
multi-variable relationships with improved accuracy [26]. Hence, the
opportunity exists for DL methods to be applied to rTMS modelling us-
ing fMRI connectivity features. However, the challenge in applying DL
methods to critical domains such as mental health care is the distrust
toward DL methods due to their lack of interpretability [19]. XAI is
a field of AI research that focuses on the inner workings of complex
DL models. DL models are more powerful for identifying relationships
than more interpretable shallow methods. However, there is a trade-
off between performance and interpretability. XAI techniques aim to
eliminate that trade-off by increasing the interpretability of DL models.
Furthermore, Hopman et al. [11] observed that their LSVM failed to
generalise well to unseen data. By contrast, DNNs are known to gener-
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Table 1
rTMS depression treatment response prediction.
Author Modality Features Algorithm Performance Validation
Ebrahimzadeh et al. [21] EEG EEG beta power, Correlation Dimension SVM 94.31% average 10 fold cross
(CD), Permutation entropy (PE), Fractal accuracy after cross validation
i ion (FD), Lempel-Ziv C i validation
(LZC), Power spectral density, Frontal
and prefrontal cordance
Shahabi et al. [22] EEG Continuous Wavelet Transform CNN 97.1% average ten-fold cross
accuracy after cross validation
validation
Hopman et al. [11] fMRI Connectivity features: subgenual LSVM 87% accuracy on a five-fold cross
anterior cingulate cortex, lateral held out test set validation
occipital cortex, superior parietal
lobule, frontal pole and central
opercular cortex
Bailey et al. [12] EEG and Alpha power, theta power, alpha LSVM Mean balanced 5000 runs of
Mood connectivity, theta connectivity, theta accuracy of 86.60% five-fold cross
cordance, individualised alpha peak validation
frequency (iAPF) and MADRS
Fan et al. [13] MRI Network Segregation of the Salience Regression Coefficient of NA
Network determination of
0.27
Hasanzadeh et al. [15] EEG Power of beta K-NN Accuracy of 91.3% Leave-one-out cross
validation
Bailey et al. [17] Mood, Alpha power, theta power, gamma LSVM F1 score = 0.93 200000 runs of five
Behaviour power, alpha connectivity, theta fold cross
and EEG connectivity, gamma connectivity, theta validation
gamma coupling, MADRS, working
memory and reaction time
Drysdale et al. [9] fMRI Connectivity features Hierarchical Balanced accuracy Leave-one-out cross
Clustering and of 90.39% validation
SVM

“ Best performing model.

alise well to unseen data, which potentially addresses the performance
decline found in studies such as [11]. Additionally, the inclusion of ex-
plainability can improve trust in end users and take advantage of DNN’s
improved performance over existing methods.

At present, there is a dearth of literature exploring XAI and rTMS
treatment. A recent review by [19] argued for the importance of includ-
ing XAI through methodologies like SHAP values to enhance trust in DL
methods. Thus, our work is motivated to enhance trust in DL meth-
ods from psychiatrists through both improving performance in rTMS
response prediction, and including XAI in our approach.

2. Materials and methods

This section outlines the problem statement, the datasets used and
defines the research problem to be explored. Here, we provide some
background information on DNNs and their development, before we
present our model, which uses quantitative data to evaluate the treat-
ment effects of rTMS. Additionally, this section includes details about
our strategies for reducing overfitting and internally validating our
model.

2.1. Problem statement

The effectiveness of rTMS for the treatment of depression is now
well-established [27]. Significant evidence shows rTMS to be a safe and
effective intervention for treatment-resistant depression [2-4]. Despite
this effectiveness, some patients will see no significant improvement
in their depression severity following rTMS treatment [5]. To address
these inconsistent response patterns, we are exploring ways to better
target rTMS treatment toward patients who are likely to see the most
benefit. In order to personalize care, Al can be deployed to support

psychiatrists [28]. The aim of our work is to explore the potential of
a DNN architecture to predict response to rTMS treatment and identify
any potential biomarkers indicative of treatment response.

2.2. Research design

The current work aims to test the efficacy of a DNN to predict the
treatment outcome of rTMS. Utilising empirical experiments, we seek
to investigate whether DL offers any improvement over existing meth-
ods. As part of this work, we identify the features that provide the most
information for treatment response in the hope of identifying the key
biomarkers. Additionally, our experiments compare self reported mea-
sures or fMRI connectivity features for predicting treatment response.
By utilising XAI techniques, we present new knowledge that can aid
clinicians in prescribing treatments.

2.3. Datasets

To address whether a DNN can provide robust predictions compared
to existing methods, we utilise two datasets. The first dataset was used
in published work by Hopman et al. [11] and made publicly available
in [29]. The data includes several fMRI features, along with a patient’s
treatment outcomes. A summary of the mean connectivity measures
across response type can be seen in Table 2. Further detailed summary
statistics of this dataset, including associated ethics approval, can be
found in [29].

The second dataset is new data collected from a large private hospi-
tal in Australia that specializes in the delivery of rTMS care. A summary
of the relevant psychological variables collected in this data is shown
in Table 3. This Table shows the mean survey scores between groups.
The psychological health information in this Table was collected using
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Table 2 Table 4
Mean connectivity measurements by group in Dataset 1: Hopman [29]. Symbol descriptions.
Responders Non-responders Symbol Description
N (@ =61) 33 28 X Dataset
Frontal Pole Connectivity 0.0252 -0.1026 Yy Set of class labels and a patient’s class label
Occipital Cortex Connectivity 0.0667 —0.0467 P A patient
Superior Parietal Lobule Connectivity 0.0802 ~0.0450 dy, Ad Depression severity at baseline, change in depression
Centeral Opercular Cortex Connectivity 0.1142 0.0266 severity following treatment
Left Lateral Occipital Cortex Connectivity 0.0607 —0.0440 FP Functional connectivity measure between Subgenual
Right Lateral Occipital Cortex Connectivity 0.0386 —0.0476 Anterior Cingulate Cortex and Frontal Pole
oc Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Occipital Cortex
SPL Functional connectivity measure between Subgenual
Table 3 ) Anterior Cingulate Cortex and Superior Parietal Lobule
Mean DASS measurements by groups in Dataset 2: data collected from Belmont coc Functional connectivity measure between Subgenual
hospital. Anterior Cingulate Cortex and Centeral Opercular Cortex
Responders Nonresponders 10CL Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Left Lateral Occipital Cortex
N (n=133) 83 50 10CR Functional connectivity measure between Subgenual
Depression Baseline 29.4819 27.4000 Anterior Cingulate Cortex and Right Lateral Occipital Cortex
Anxiety Baseline 17.0843 16.3600
Stress Baseline 25.4578 23.4800
Depression after 10 sessions 17.1566 25.9800
Anxiety after 10 sessions 11.4698 13.7200 2.5. Deep neural networks
Stress after 10 sessions 15.3253 20.4400

the Depression, Anxiety and Stress Subscale [DASS 30]. DASS is a self-
report survey measuring three dimensions of mental health: depression,
anxiety and stress. Patients are required to complete a baseline survey
prior to treatment, then in the rTMS program, they complete the DASS
survey 3 times during treatment. An additional survey is completed
after 10 sessions of rTMS, and a final measurement about patients is
collected following treatment.

In the current work, the DASS-21 was used, a short form of the
42 item DASS. Each dimension of mental health in the DASS-21 has a
maximum score of 42. For the depression dimension, a score of greater
than 21 is deemed severe depression [23]. Participants in this study
consented to DASS data being used for the study of rTMS treatment.
Ethics approval was obtained from the University’s Human Research
Ethics Committee to use and analyse collected data.

2.4. Problem definition

The current work seeks a function that optimizes the classification
of patients as responders or non-responders to rTMS treatment. In ad-
dition, this function provides a model of the treatment effect of rTMS
dependent on either psychological or neuroimaging based variables.

Formally, let X be a dataset containing Patients P and class label Y,
where:

X ={(P1:31):(P2:32): (P3.¥3) .- (P ¥) } @

Each patient p has a set of connectivity measures C such that

C ={FP,0C,SPL,COC,IOCL,IOCR}

1 if & <05
yi= o 2
0 otherwise

Patients are assigned a class label according to the function in Equa-
tion (2). Any patient who experiences a greater than 50% reduction in
depression severity, Ad < —0.5, is classified as a responder and assigned
the class label y; = 0. Conversely, patients who see a less than 50% re-
duction, Ad > -0.5, are classed as non responders and receive the label
y; =0. The target variable for this binary classification task is y. As such,
we seek a classifier

hlpl=y

which minimizes the prediction error between classes. See Table 4.

DL is a subfield of ML that builds upon existing neural network ar-
chitectures by increasing the number of hidden layers of a network
[24]. This increased depth allows for modelling of increasingly complex
nonlinear functions [25]. The complexity makes it possible for models
to learn complex representations of existing data, which may not be
observable using traditional inferential statistics or standard ML tech-
niques.

The basis for the artificial neural network (ANN) is found in the
seminal work of Rosenblatt et al. [31]. Where initially a single percep-
tron defined a linear decision boundary between a binary set of classes,
the multilayer perceptron (MLP) adds the concept of a hidden layer.
The hidden layer involves multiple perceptrons, with each perceptron
sharing an edge with each node in the hidden layer. This increase in
model complexity increases the model’s predictive power beyond linear
functions to learning complex nonlinear decision boundaries between
classes [33]. The MLP is a feedforward neural network applied to clas-
sification and regression [32]. An MLP with several hidden layers is
referred to as a DNN [8]

A crucial aspect of the performance of the MLP is the training of
the network. Training refers to the model weights being tuned so that
predicted outputs match the expected outputs or ground truth values of
the data [33]. The process of tuning these weights or parameters can
be referred to as learning. Rarely can a model match all examples with
their ground truth labels, therefore, we need a function to monitor the
performance of the model during training. Training aims to minimize a
loss function to obtain the weights so that the difference between the
expected and predicted outcomes is minimized [32].

2.6. Regularisation

Modern solutions have enabled the fitting of increasingly complex
functions to data. However, the added complexity of networks with
several hidden layers increases the risk of overfitting. That is, where
functions simply memorise datasets. Regularisation encompasses a class
of tools used to reduce the risk of model overfitting. Common strategies
for reducing the risk of overfitting include: early stopping, weight reg-
ularisation and dropout [24].

Early stopping involves monitoring a metric during training and
ending training when the selected value stops improving [34]. In ad-
dition to an unseen test dataset, we use a validation set during model
training in our project. Validation loss is monitored throughout train-
ing, and for each trained model as part of our bootstrap resampling,
patience was set to 100. We set a minimum improvement in validation
loss of 0.05 as being required to continue model training.
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Table 5
Model hyperparameters.
Hidden Layers 4
Layer Width 10
Activation Function reLU
Loss Function Binary Crossentopy
Regularisation Layers 4
Test set size 20%
Epochs 2000 or until early stopping criteria met

Dropout involves turning a proportion of parameter weights down
to zero. Conceptually, we can perceive this as ‘dropping’ edges between
nodes. Srivastava et al. [35] first proposed dropout as a regularisation
strategy to add noise to a neural network. The introduction of noise
through ‘dropping’ connections between neurons forces the network be-
ing trained on the data to identify the true nature of the signal within
the data. In turn, this reduces an overparametrised network’s ability to
memorize the dataset. The benefit in identifying the true signal from
the data means a greater potential for identifying meaningful patterns
within the data. As such, each layer of our trained model includes a
dropout probability of 0.3.

The final hyperparameters of our model are shown in Table 5.
These final hyperparameters were selected after an iterative model
building process. Through several cycles of experiments, we monitored
how changes in model hyperparameters impacted model performance.
Through continual refinement and the aim of creating a model robust
to overfitting, we settled on the final model hyperparameters. These se-
lected values achieve the goal of a model that generalizes well to unseen
data when compared against existing methods.

2.7. Experimental design

This section provides an overview of the empirical experiments
used to explore the research questions outlined in Section 1. The cur-
rent work presents two experiment arms. In the first arm, we test our
proposed DNN on data collected by [11]. This data includes fMRI con-
nectivity features from 61 patients suffering from depression treated by
rTMS. In this experiment arm, we assess the ability of our model to
discriminate rTMS responders from non-responders neuroimaging fea-
tures.

Our second set of experiments utilises a privately collected dataset
from Belmont Private Hospital, Brisbane, Australia. This data includes
the records of 133 patients who undertook rTMS treatment. However, in
contrast to the first experiment, the features of the second experiment
arm include only features collected through a self-reported question-
naire.

Rigorous validation of ML and DL algorithms is essential to en-
sure the robustness of reported results. The validation of Al systems
for healthcare is an important step in the transition to clinical practice
[36]. Harrel [37] asserts that the strongest form of internal validation
is repeated bootstrap resamples, with analysis of the target variable
repeated for each resample. This process ensures that a relationship be-
tween input variables and target variables exists, thus increasing the
robustness of the results.

These experiments are designed to compare the performance of self
reported psychometric measures of depression severity against quantita-
tive fMRI measures, in predicting treatment outcomes to rTMS. Through
these experiments, we aim to identify candidate biomarkers that explain
the patterns of response to rTMS treatment.

2.8. Baseline models

Our baseline models include a LSVM, as proposed by [21,11,12],
and a KNN classifier [21]. Additionally, we include XGBoost and ran-
dom forests as baseline models, which are widely used in healthcare
with explainability [19]. The hyperparameters of all baseline models
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Fig. 1. Box plot showing the accuracies obtained using various algorithms.

were optimized using grid search. In our final experiments, we used the
best hyperparameter set found during grid search to compare against
our proposed DNN. Full baseline model hyperparameters are listed in
Appendix A, Table A.11.

For our second dataset, we explore the potential of DNNs to model
changes in depression severity from psychometric questionnaires. For
this experiment, we utilize the only model that includes the same fea-
tures. This baseline model is provided by Feffer et al. [6].

As outlined in Section 1.1, Feffer et al. used early symptom im-
provement to predict treatment response to rTMS. In their study, they
proposed that patients with < 20% reduction in depression severity
after 2 weeks of treatment (10 sessions) are unlikely to respond to treat-
ment. As such, inline with the model proposed by Feffer et al., patients
with < 20% improvement in symptoms after 10 sessions are classed as
non-responders, and the remaining cases are defined as responders. The
Feffer et al. [6] model reported high sensitivity but low specificity.

2.9. Performance measuring schemes

Performance metrics are required to evaluate models and make com-
parisons between them. These metrics differ slightly depending on the
nature of the outcome variable. Common metrics used for the evalua-
tion of classification models in psychiatry include F1 score and accu-
racy, as used in Chang et al. [38]. Additionally, in line with Bailey et
al. [12], we have included balanced accuracy to assess performance in
both the positive and negative cases.

3. Results

We present the results of our two experiment arms (Experiments 1
and 2) in the two sub-sections below.

3.1. Experiment 1: fMRI connectivity measures to predict rTMS treatment
outcomes

Recent work by Hopman et al. [11] proposed a LSVM for the early
prediction of treatment response to rTMS. Their works combined fMRI
features with a Linear SVM to predict treatment outcomes. Our experi-
ments compare the performance of several baseline models against our
proposed DNN architecture over 200 repeated bootstrap samples. The
distribution of test set accuracy for each algorithm is shown in Fig. 1.

From this diagram we see while most algorithms have an upper limit
of correctly predicting all cases in the test set. The DNN finds this opti-
mal solution more frequently across all trials. Followed by the logistic
regression, and the LSVM. With the observed LSVM performance closely
mirroring the performance that [11] obtained on the same dataset.
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Table 6
Summary of average model performance matrices obtained from 200 bootstrap resamples.
Model Accuracy F1 score Balanced
accuracy
DNN 0.9423 (0.0605) 0.9461 (0.0561) 0.9423 (0.0618)
XGBoost 0.7813 (0.0823) 0.7916 (0.0794) 0.7804 (0.0830)
LSVM 0.9107 (0.0588) 0.9127 (0.0584) 0.9115 (0.0587)

KNN 0.8913 (0.06842)

0.8942 (0.06753) 0.8918 (0.0686)

Random 0.8416 (0.0822) 0.8506 (0.0790) 0.8404 (0.0830)
Forests
Logistic 0.9047 (0.0636) 0.9071 (0.0647) 0.9052 (0.0635)
Regression
Table 7
Summary of average model performance in Experiment 2.
Model type Feature Set F1-score Accuracy Balanced
accuracy
Feffer et al. [6] Domain Knowledge 0.857 0.815 0.791
DNN DASS Scores 0.772 0.630 0.500
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Fig. 2. A graph of training loss against validation loss.

Table 6 shows the summary of results obtained using our model
compared against our baseline models. Reported results are the aver-
age of 200 bootstrap resamples with standard deviations included in
parentheses. Again, our proposed DNN outperformed all baseline mod-
els across the reported metrics.

In addition to the described summary metrics obtained using 200
samples, the LSVM identified the optimal solution for correctly classify-
ing the unseen test set 21 times compared to 64 times using the DNN.
To demonstrate the robustness of the DNN model we have also included
training curves. One way to ensure the robustness of DNN performance
is to monitor training loss compared to validation loss. The significant
divergence between training and validation loss, when validation loss
deteriorates significantly compared to training loss, indicates that the
model is overfitting. The training curve from 1 of the 200 trained net-
works is shown in Fig. 2. The figure shows no significant divergence
between losses. During our testing when regularisation was removed,
the model was prone to overfitting. This was demonstrated by a signif-
icant divergence between validation loss and training loss.

It may be noted from the performance of both the LSVM and DNN
that a signal exists between variables and patterns of response. This
motivated us to further explore which variables are most significant
for correctly predicting treatment response. Based on the results of our
experiments, a DNN with the hyperparameters described in Table 5 out-
performs the existing baseline models across all metrics.

3.2. Experiment 2: self-reported DASS scores to predict final rTMS
treatment outcome

Extending our current work, we investigate the potential for self-
reported measures to predict rTMS treatment outcomes. Existing work
has shown early changes in symptom severity to be a reasonable predic-
tor of rTMS treatment outcome. Extending upon this work, we explore
whether a DNN can identify the relationship between self-reported de-
pression severity and treatment response.

The results shown in Table 7 highlight that when using DASS scores,
the preferred method to predict treatment response is domain knowl-
edge as described in [6]. These results highlight that the fMRI connec-
tivity features are superior to self reported DASS scores. Surprisingly,
the DNN was unable to pick up on the relationship between early symp-
tom improvement and final treatment outcome.

3.3. Explainable AI (XAI) approaches to identify potential biomarkers
indicative of response to treatment

This paper has emphasized the importance of understanding model
performance. This position is echoed by Tjoa and Guan [41], who as-
serted that when DNNs and AI models are applied to non-trivial tasks,
improving model understanding is imperative. Methods for assessing
feature importance vary from global to local explanations. Global meth-
ods explore feature importance from a global scope [42]. In contrast,
local methods provide an explanation as to which variables are con-
tributing to the prediction of an individual case within the dataset.

We consider two methods for ranking feature importance: a global
and a local method. A global post-hoc method that is commonly used
to interpret Al methods is permutation feature importance (PFI) [25].
A PFI score involves the shuffling of one variable within the testing set
before the data containing the shuffled feature is input into the trained
model [25]. Similar to ablation, the more significant the decline in the
model’s performance metrics, the greater the relative importance to the
model. This process is then repeated throughout all variables in the
dataset. One limitation of this approach is that any correlation between
a shuffled feature and an unshuffled feature may lead to underestimat-
ing the importance of a feature [25]. This issue is similar to the issue of
colinearity in simple linear regression.

Utilizing the PFI score, Table 8 shows the relative performance de-
clines in performances associated with each variable. This Table high-
lights that shuffling of COC leads to the most significant performance
decline in model performance. This is measured by the change in test
set accuracy by iteratively shuffling each variable. For clarity, the rela-
tive performance change attributed to each feature is shown visually in
Fig. 3.
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Table 8
Summary of feature importance scores.

Feature Test set accuracy Percentage drop in accuracy
FP 92.3077 —7.6923
ocC 76.9230 —23.0769
SPL 61.5384 —38.4616
Ccoc 53.8462 —46.1538
LOCL 92.3077 ~7.6923
LOCR 92.3077 —7.6923
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Fig. 3. Relative change in the performance due to various features.
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Fig. 4. Average SHAP values on Training Set.

3.3.1. Shapley (SHAP) values

One local method used for assessing feature importance is the SHAP
value [43]. Inspired by the seminal work of Shapley [44], Lundberg and
Lee [43] introduced the SHAP value. The Shapley value is a game the-
oretic approach to measure a player’s contribution to an end goal in an
n-player cooperative game. SHAP values then provide a local explana-
tion for the contribution of each feature to a final output.

Using the SHAP values calculated in Python’s SHAP package of-
fers support for computing PFI score results. Fig. 4 shows that COC
contributes significantly to model predictions, followed by OC. These
findings mirror the results of the PFI score except for SPL, which is
ranked much lower by SHAP value when compared to the results in
Fig. 3.

One strength of local approaches to XAl is the ability to investigate
SHAP values for individual cases. We can use this to instill greater trust
from clinicians in our model to support its use.
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Fig. 5. Plot of Principal Component 2 (PCA2) versus Principal Component 1
(PCA1).

3.4. Model limitations

To the best of our knowledge, we are the first group to use a DNN
with fMRI connectivity features for the classification of rTMS response.
By using connectivity measures collected before treatment, our network
reliably predicts the final treatment outcome. Motivated by Sendak et
al. [20], we have included a detailed overview of our model, including
potential limitations and the relative contribution of each feature to the
model’s overall performance. These contributions are an essential step
to support the transition from research to clinical use.

Given the high accuracy reported in Section 2.7, it is useful to give
some attention to any misclassified examples. By aiming to understand
their occurrences, this investigation provides end users - in our case,
psychiatrists - with a complete understanding of the model’s behaviour.

Amershi et al. [39] present several guidelines for human-AI interac-
tion. These guidelines emphasise the importance of setting clear expec-
tations for the quality and capability of Al systems. Additionally, [39]
highlight the importance of making the user aware of situations when
an Al system may make mistakes. Formalizing this process, Sendak et al.
[20] present model facts, a systematic approach to documenting a ML
model designed for clinicians, including advice on interpreting model
outputs and warnings. As noted by Sendak et al. [20], warnings regard-
ing the use of an Al model are rarely discussed in the literature. Model
limitations must be acknowledged if proposed models are to have an
impact in clinical practice.

Exploring the performance of our model, we investigated similarities
between commonly misclassified cases. Swayamdipta et al. [40] present
a novel methodology for recognizing areas of uncertainty within a large
corpus of text. Existing works focus on identifying mislabelled examples
within the training data. In contrast, our work focuses on identifying
portions of the data that are mislabelled in the test set. Using this novel
adaptation, we identified a portion in the lower left-hand quadrant of
Fig. 5 that is vulnerable to misclassification. The clustering of these
misclassified examples motivated us to explore the hypothesis that these
points may share commonalities.

3.4.1. Extreme values are vulnerable to being misclassified

Given the clustering of misclassified examples in Fig. 5, we hypoth-
esise that these values may share some similarities. Identifying these
commonalities is an important step in communicating the potential
limitations of our model to clinicians. Analysis of the proposed model
indicated that after 200 runs, our model accurately predicts treatment
response on a held-out test set ~ 92% of the time. This leaves roughly
8% of cases being misclassified. A variable-wise comparison of distribu-
tions by t-test is shown in Table 9. It can be noted from the Table that,
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Table 9
Comparison of variable distributions in cor-
rectly labelled and mislabelled cases.

Variable t p-value
FP —0.8274 0.4113
ocC 1.9119 0.0607
SPL -0.1517 0.8800
coc 0.5420 0.5899
10CL 1.2261 0.2250
10CR 1.2907 0.2018

Table 10
Exploring the differences in OC between examples correctly labelled and misla-
belled examples.

95% Confidence interval

Group Mean Lower bound Upper bound
Correct 0.0297 —-0.0044 0.06372
Misclassified -0.0313 -0.0749 0.01220

although marginally short of the level of significance, there is some dif-
ference between groups in the OC variable.

Through further analysis of group differences as shown in Table 10,
we can see the differences between values that were accurately clas-
sified and misclassified. Misclassified values had, on average, lower
connectivity measures in the OC variable compared to the correctly
classified values.

Rerunning an analysis of our model with the removal of the OC
variable shows a drop in performance over 200 bootstrap resamples.
Highlighting OC is valuable in discerning between classes, however, it
does have some observed failure cases. These are important considera-
tions, given each rejected positive case is a patient who may be denied
access to treatment when they may actually benefit from it, or con-
versely, a patient who commits time to receive treatment and sees no
benefit. As such, we include the limitation or warning of misclassifica-
tions in our model between the 95% confidence interval of —0.0749 to
0.0122. These model limitations can be communicated to end users.

4. Discussions

The current work demonstrates that a feedforward DNN model can
accurately predict the treatment outcome of rTMS before treatment.
With rigorous internal validation, our work shows a DNN using fMRI
connectivity features outperforms existing baseline methods. In our ex-
periments, the performance of prominent ML algorithms like XGBoost
and random forests was disappointing. It may be noted that tree-based
algorithms like XGBoost have under-performed when the number of
samples is less than 500 [14]. Furthermore, the baseline LSVM repro-
duces the findings of Hopman et al. [11], offering additional support
for the use of fMRI features and their ability to predict rTMS treat-
ment outcomes. These findings further emphasize the potential of fMRI
connectivity measures as biomarkers for response to rTMS treatment.
Furthermore, the current work reiterates that demographic and psycho-
metric variables alone are insufficient to identify patterns of response
to rTMS treatment. Even when using sophisticated algorithms, psycho-
metric variables could not improve on the existing rule-based methods
proposed by Feffer et al. [6]. Using these psychometric variables, a DL
model was unable to identify the association between early change in
depression severity and treatment outcome, similar to Feffer et al. [6].

Our work utilizes high levels of internal validation to ensure robust
results in an important setting: the psychiatric care of those suffering
from depression. Along with this validation, we demonstrated the signif-
icant impact of regularisation on model performance to reduce the risks
of overfitting. These initial findings will become increasingly significant
as larger rTMS datasets become available to further explore the poten-
tial of verifying these results against independent datasets. Our results
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highlight the benefits of using DNNs with several hidden layers com-
pared against shallow ML methods in modelling complex relationships.
The proposed architecture outperforms other shallow methods in terms
of F1 score, balanced accuracy, and accuracy. This superior predictive
performance may be due to the ability of DL algorithms to model com-
plex multi-variable relationships. Shallow methods, such as traditional
linear algorithms, are unable to recognize these complicated relation-
ships. In practice, the interplay between treatment, psychiatrists and
patient variables is more complex than can be modelled using linear
models. The proposed model here consists of 1191 parameters, high-
lighting the complexity of the model compared to shallow methods.

One thing to note is that the current work has been developed using
a limited number of complete records. In the future, we plan to impute
the missing records to increase the size of the data. Furthermore, par-
ticipants for whom data is incomplete may have left the study due to
a lack of improvement in their psychological health, leaving only pa-
tients who benefited. The risk, then, is that the remaining sample is not
truly representative of the true population of patients receiving rTMS
treatment. Also, there is a possibility that the model may be overfitting
to the current distribution of patients. Further work involving data col-
lected from multiple centres could help to improve the robustness of this
model. While the current work is completed using data where classes
are relatively balanced, it is not known how the current method would
perform if training data was imbalanced. Future work could attempt to
incorporate methods that are robust to uneven class distributions of the
target variable.

5. Conclusions

In this work, we have proposed a novel DL architecture to predict
the outcome of rTMS treatment using fMRI connectivity features. To the
best of our knowledge, we are the first to apply both a DNN and com-
bine a DNN with XAI to rTMS response prediction using fMRI connec-
tivity features. Through empirical experiments, we showed that a DNN
using fMRI connectivity measures outperforms existing state-of-the-art
algorithms. In our repeated bootstrap simulations, we demonstrate our
model finds the optimal solution in an unseen test set more frequently
than other methods. The demonstrated robustness of this model moves
the field closer to clinical implementation over existing shallow meth-
ods. Furthermore, our work demonstrates neuroimaging variables are
superior to psychometric variables in predicting treatment response to
rTMS. Additionally, using XAI techniques, our work shows functional
connectivity measures between the Subgenual Anterior Cingulate Cor-
tex and Centeral Opercular Cortex to be a key determinant for rTMS
treatment response. These findings are validated using both SHAP val-
ues and relative feature importance. The current work improves upon
existing methods by including XAI and predicting treatment outcomes
before the start of treatment. However, the main limitation of this work
is that only a small dataset has been used to develop and test the model.
In the future, we plan to use larger datasets from various centres and
ethnicities to improve the accuracy of our work.

Statement of ethical approval

Ethical approval for this project was granted by the Universities Hu-
man Research Ethics Committee (H21REA026).

Funding

This work is partially funded by The Cannan Institute, Belmont Pri-
vate Hospital, Brisbane. The authors declare no competing interests.

Declaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence
the work reported in this paper.

43




M. Squires, X. Tao, S. Elangovan et al.

Computer Methods and Programs in Biomedicine 242 (2023) 107771

N. Koutsouleris, T. Wobrock, B. Guse, B. Langguth, M. Landgrebe, P. Eichhammer,
E. Frank, J. Cordes, W. Wélwer, F. Musso, G. Winterer, W. Gaebel, G. Hajak, C.
Ohmann, P.E. Verde, M. Rietschel, R. Ahmed, W.G. Honer, D. Dwyer, F. Ghasem-
inejad, P. Dechent, B. Malchow, P.M. Kreuzer, T.B. Poeppl, T. Schneider-Axmann,
P. Falkai, A. Hasan, Predicting response to repetitive transcranial magnetic stimula-
tion in patients with schizophrenia using structural magnetic resonance imaging: a
multisite machine learning analysis, Schizophr. Bull. 44 (5) (Aug. 2017) 1021-1034.
H. Hopman, S. Chan, W. Chu, H. Lu, C.-Y. Tse, S. Chau, L. Lam, A. Mak, S. Neggers,
ial magnetic stimulation clinical response in

using biomarkers and

N. Bailey, K. Hoy, N. Rogasch, R. Thomson, S. McQueen, D. Elliot, C. Sullivan, B.
i ders and d

to rTMS treatment for depression after one week using resting EEG connectivity

J. Fan, LF. Tso, D.F. Maixner, T. Abagis, L. Hernandez-Garcia, S.F. Taylor, Segre-
gation of salience network predicts treatment response of depression to repetitive
i i Clin. 22 (2019) 101719.

M. Zou, W-G. Jiang, Q-H. Qin, Y-C. Liu, M-L. Li, Optimized XGBoost model with
small dataset for predicting relative density of Ti-6Al-4V parts manufactured by
selective laser melting, Materials, MDPI AG 15 (15) (Aug. 2022) 5298, hitps://doi.

F. Hasanzadeh, M. Mohebbi, R. Rostami, Prediction of rTMS treatment response in
major depressive disorder using machine learning techniques and nonlinear features

A. Zandvakili, N.S. Philip, S.R. Jones, A.R. Tyrka, B.D. Greenberg, L.L. Carpenter,
Use of machine learning in predicting clinical response to transcranial magnetic
stimulation in comorbid posttraumatic stress disorder and major depression: a rest-
ing state electroencephalography study, J. Affect. Disord. 252 (Jun. 2019) 47-54.
N. Bailey, K. Hoy, N. R0g1sch R. Thomson S. McQueen, D. Elliot, C. Sullivan,
ders to rTMS for depression show
increased fronto-midline theta and theta connectivity compared to non-responders,

T.T. Erguzel, S. Ozekes, S. Gultekin, N. Tarhan, G.H. Sayar, A. Bayram, Neural net-
work based response prediction of rTMS in major depressive disorder using QEEG

H.W. Loh, C.P. Ooi, S. Seoni, P.D. Barua, F. Molinari, U.R. Acharya, Application of
Explainable Artificial Intelligence for Healthcare: A Systematic Review of the Last
Decade (2011-2022), Computer Methods and Programs in Biomedicine, vol. 226,

M.P. Sendak, M. Gao, N. Brajer, S. Balu, Presenting machine learning model infor-
mation to clinical end users with model facts labels, npj Digit. Med. 3 (1) (Mar.

E. Ebrahimzadeh, F. Fayaz, L. Rajabion, M. Seraji, F. Aflaki, A. Hammoud, Z.
Taghizadeh, M. Asgarmejad H. Soltanian-Zadeh, Machine Learning Approaches
in Frontal Region to Predict
TMS Treatment Response in Major Depressive Disorder, Frontiers in Systems Neu-

M.S. Shahabi, A. Shalbaf, R. Rostami, R. Kazemi, A convolutional recurrem neural
to repetitive
stimulation in major depressive disorder, Sci. Rep. 13 (1) (Jun. 2023), https://doi.

LN. Beaufort, G.H. De Weert-Van Oene, V.A.J. Buwalda, J.R.J. De Leeuw, A.E.
Goudriaan, The depression, anxiety and stress scale (DASS-21) as a screener for de-
pression in substance use disorder inpatients: a pilot study, Eur. Addict. Res. 23 (5)

Dec.
2021, [Online]. Available: https://www.ebook.de/de/product/40499536/francois_

Y. han Sheu, Illuminating the black box: interpreting deep neural network models

S. Itani, M. Rossignol, At the crossroads between psychiatry and machine learning:
ity, Front. Psychiatry

P.B. Fitzgerald, M.S. George, S. Pridmore, The evidence is in: repetitive tran-
scranial magnetic stimulation is an effective, safe and well-tolerated treatment
for patients with major depressive disorder, Aust. N.Z. J. Psychiatry (Aug. 2021)

P.M. Doraiswamy, C. Blease, K. Bodner, Artificial intelligence and the future of psy-
chiatry: insights from a global physician survey, Artif. Intell. Med. 102 (Jan. 2020)

H. Hopman, S. Chan, W. Chu, H. Lu, C-Y. Tse, S. Chau, L. Lam, A. Mak, S. Neggers,
magnetic stimulation clinical re-
sponse in medication- refraclory depresslon data, Data Brief 37 (Aug. 2021) 107264,

S. Lovibond, P.F. Lovibond, Manual for the Depression Anxiety Stress Scales, 2nd

Acknowledgements [10]
We gratefully acknowledge the support from Belmont Private Hos-
pital team members, especially, Ms Mary Williams (CEO), Rachel Stark
(Area Manager), Dr Mark Spelman (Psychiatrist), Dr Sean Gills (Psychi-
atrist), and Dr Tom Moore (Psychiatrist). Without their kind support,
this work wouldn’t be possible. (11}
Personalized prediction of
. patients with tre efractory
Appendix A machine learning, J. Affect. Disord. 290 (Jul. 2021) 261-271.
[12]
A.1. Baseline model hyperparameters Fulcher, Z. D is, P. 1d, Differentiating
measures, J. Affect. Disord. 242 (Jan. 2019) 68-79.
Table A.11 [13]
Baseline models and their hyperparameters. A ¢
t magnetic
Model Hyperparameter Value n4
Linear SVM C 100
If::]‘;a iineat org/10.3390/ma15155298.
[15]
KNN Distance Metric Manhattan
k 4 of EEG signal, J. Affect. Disord. 256 (Sep. 2019) 132-142.
Weight Uniform [16]
XGBoost colsample_bytree 0.7
learning_rate 0.01
max depth 3 171
n_estimators 200 B. Fulcher, Z. D
subsample 1
Random Forest bootstrap True Brain Stimul. 11 (1) (Jan. 2018) 190-203.
‘max_depth 10 (18]
max features auto
min_samples_leaf 1 cordance, Psychiatry Investig. 12 (1) (2015) 61.
‘min_samples_split 2 [19]
n_estimators 50
Logistic Regression [¢ 5.4287 Elsevier BV, Nov. 2022, p. 107161.
Penalty L1 [20]
2020).
References [21]
and Non-linear Pr ing of Extracted Ce
[11 D. Schofield, M. Cunich, R. Shrestha, R. Tanton, L. Veerman, S. Kelly, M. Passey, n OF B
Indirect costs of depression and other mental and behavioural disorders for Australia . . .
from 2015 to 2030, BJPsych Open 5 (3) (May 2019). 2 roscience, vol. 17, Frontiers Media SA, Mar. 2023.
[2] P.B. Fitzgerald, K.E. Hoy, J. Reynolds, A. Singh, R. Gunewardene, C. Slack, S. network with attention for response
Ibrahim, Z.J. D: A pragmatic rand d controlled trial exploring the re- P
lationship between pulse number and response to repetitive transcranial magnetic - N 3 .
stimulation treatment in depression, Brain Stimul. 13 (1) (Jan. 2020) 145-152. - 0rg/10.1038/541598-023-35545-2, Springer Science and Business Media LLC.
[3] C.A. Conelea, N.S. Philip, A.G. Yip, J.L. Barnes, M.J. Niedzwiecki, B.D. Greenberg, ~ L20)
A.R. Tyrka, L.L. Carpenter, Transcranial magnetic stimulation for treatment-resistant
depression: naturalistic treatment outcomes for younger versus older patients, J. N
Affect. Disord. 217 (Aug. 2017) 42-47. (2017) 260-268, https://doi.org/10.1159/000485182, S. Karger AG.
[4] C.L. Hovington, A. McGirr, M. Lepage, M.T. Berlim, Repetitive transcranial magnetic [24] F. Chollet, Deep Learning with Python, second edition, Manning Publ.,
stimulation (FTMS) for treating major depression and schizophrenia: a systematic T T ]
review of recent meta-analyses, Ann. Med. 45 (4) (May 2013) 308-321. chollet deep learning with_python _second_edition.html.
[5] P.B. Fitzgerald, K.E. Hoy, R.J. Anderson, Z.J. Daskalakis, A study of the pattern [25] e N
of response to rTMS treatment in depression, Depress. Anxiety 33 (8) (Apr. 2016) for psychiatric research, Front. Psychiatry 11 (Oct. 2020).
746-753. [26] §. Itani, | cer
[6] K. Feffer, H.H. Lee, F. Mansouri, P. Giacobbe, F. Vila-Rodriguez, S.H. Kennedy, Z.J. insights into and for clinical
Daskalakis, D.M. Blumberger, J. Downar, Early symptom improvement at 10 ses- 11 (Sep. 2020).
sions as a predictor of rTMS treatment outcome in major depression, Brain Stimul. [27]
11 (1) (Jan. 2018) 181-189.
[71 M. Squires, X. Tao, S. Elangovan, R. Gururajan, X. Zhou, U.R. Acharya, A Novel
Genetic Algorithm Based System for the Scheduling of Medical Treatments, Expert 000486742110430.
Systems with Applications, vol. 195, Elsevier BV, Jun. 2022, p. 116464. [28]
[8] O.A. Montesinos Lopez, A. Montesinos Lopez, J. Crossa, Fundamentals of artificial
neural networks and deep learning, in: Multivariate Statistical Machine Learn- 101753.
ing Methods for Genomic Prediction, Springer International Publishing, 2022, [29]
pp. 379-425. P of
[9] A.T. Drysdale, L. Grosenick, J. Downar, K. Dunlop, F. Mansouri, Y. Meng, R.N.
Fetcho, B. Zebley, D.J. Oathes, A. Etkin, A.F. Schatzberg, K. Sudheimer, J. Keller, https://doi.org/10.1016/j.dib.2021.107264, Elsevier BVc.
H.S. Mayberg, F.M. Gunning, G.S. Alexopoulos, M.D. Fox, A. Pascual-Leone, H.U. [30]
Voss, B. Casey, M.J. Dubin, C. Liston, Erratum: resting-state connectivity biomark- ed., Psychology Foundation, Sydney, 1995.
ers define neurophysiological subtypes of depression, Nat. Med. 23 (2) (Feb. 2017) [31] F. blatt, The : a pr

264.

model for information storage and
organization in the brain, Psychol Rev. 65 (6) (1958) 386-408.

44




M. Squires, X. Tao, S. Elangovan et al.

[32]

[33]

[34]

[351

[361

(371

[38]

H. Ramchoun, M. Amine, J. Idrissi, Y. Ghanou, M. Ettaouil, Multilayer perceptron:
architecture optimization and training, Int. J. Interact. Multimed. Artif. Intell. 4 (1)
(2016) 26.

E. Aldana-Bobadila, A. Kuri-Morales, I. Lopez-Arevalo, A.B. Rios-Alvarado, An un-
supervised learning approach for multilayer perceptron networks, Soft Comput.
23 (21) (Nov. 2018) 001.

X. Ying, An overview of overfitting and its solutions, J. Phys. Conf. Ser. 1168 (Feb.
2019) 022022.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, R. Salakhutdinov, Dropout: a
simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15 (1)
(Jan. 2014) 1929-1958.

C. Birkenbihl, M.A. Emon, H. Vrooman, S. Westwood, S. Lovestone, M. Hofmann-
Apitius, H. F., Differences in cohort study data affect external validation of artificial
intelligence models for predictive diagnostics of dementia - lessons for translation
into clinical practice, EPMA J. 11 (3) (Jun. 2020) 367-376.
F.E. Harrell Jr, i deling Strategies: with to Linear Models,
Logistic and Ordinal Regression, and Survival Analysis, Springer, 2015.

B. Chang, Y. Choi, M. Jeon, J. Lee, K.-M. Han, A. Kim, B.-J. Ham, J. Kang, ARPNet:
antidepressant response prediction network for major depressive disorder, Genes
10 (11) (Nov. 2019) 907.

[39]

[40]

[41]
[42]

[43]

[44]

Computer Methods and Programs in Biomedicine 242 (2023) 107771

S. Amershi, D. Weld, M. Vorvoreanu, A. Fourney, B. Nushi, P. Collisson, J. Suh,
S. Igbal, P.N. Bennett, K. Inkpen, J. Teevan, R. Kikin-Gil, E. Horvitz, Guidelines
for human-Al interaction, in: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems, ACM, May 2019.

S. Swayamdipta, R. Schwartz, N. Lourie, Y. Wang, H. Hajishirzi, N.A. Smith, Y. Choi,
Dataset cartography: mapping and diagnosing datasets with training dynamics, in:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Association for Computational Linguistics, 2020, pp. 9275-9293,
Online. https://doi.org/10.18653/v1/2020.emnlp-main.746.

E. Tjoa, C. Guan, A survey on explainable artificial intelligence (XAI): toward medi-
cal XAl IEEE Trans. Neural Netw. Learn. Syst. 32 (11) (Nov. 2021) 4793-4813.

L. Gianfagna, A.D. Cecco, Explainable AI with Python, Springer International Pub-
lishing, 2021.

S.M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in:
Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS'17, Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 4768-4777.
L.S. Shapley, A value for n-person games, in: Contributions to the Theory of Games
(AM-28), Volume TI, Princeton University Press, Dec. 1953, pp. 307-318.

45




3.3 Links and implications

Based on the results of the literature review, this paper is the first of its kind to show DL
can reliably predict the outcome of r'TMS treatment using fMRI connectivity features.
The work distinguishes fMRI connectivity features to be a better predictor of rTMS
outcome than psychological and demographic features alone. Furthermore, this work
shows connectivity between the Subgenual Anterior Cingulate Cortex and the Centeral

Opercular Cortex to be the most influential predictor in the DL model.

This work makes two broader observations on the current state of Al in psychiatry. Firstly,
this work shows that imaging techniques are superior to easier to collect variables for
predicting treatment response. However, this work identifies a subset of patients which
the DL model routinely misclassified. Looking through the hype of Al in psychiatry it is
important these limitations are acknowledged and investigated such that AI models are
not biased to any population group. As such, methods to address the miscllasification of

underrepresented values should be explored.
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CHAPTER 4: PAPER 3 - DE-CGAN: BOOSTING RTMS

TREATMENT PREDICTION WITH DIVERSITY ENHANCING

CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

4.1 Introduction

Previously, Chapter 1.6 identified the limited access to patient data as a significant chal-
lenge to deploying Al in psychiatry. DL models perform at their best when trained on
large and diverse datasets. However, access to diverse data has so far been a challenge for
researchers. This problem is not insignificant. Diversity and fairness are core components
of creating trustworthy Al systems. Models trained on homogeneous datasets may in turn

perform poorly on more diverse test sets decreasing trust in the system.

Data augmentation then provides a strategy for overcoming these limitations. If we can
use Al to generate high quality synthetic examples perhaps we can artificially increase
the size of existing datasets. Furthermore, the use of data augmentation methods could
be used to increase the diversity of datasets with underrepresented populations. In this
chapter, a novel data augmentation technique is presented which proposes the use of DL

methods to increase the diversity of rTMS training data.

4.2 Published paper
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Abstract

Repetitive Transcranial Magnetic Stimulation (rTMS) is a well-supported,
evidence-based treatment for depression. However, patterns of response to this
treatment are inconsistent. Emerging evidence suggests that artificial intelligence
can predict r'TMS treatment outcomes for most patients using fMRI connectivity
features. While these models can reliably predict treatment outcomes for many
patients for some underrepresented fMRI connectivity measures DNN models
are unable to reliably predict treatment outcomes. As such we propose a novel
method, Diversity Enhancing Conditional General Adversarial Network (DE-
CGAN) for oversampling these underrepresented examples. DE-CGAN creates
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synthetic examples in difficult-to-classify regions by first identifying these data
points and then creating conditioned synthetic examples to enhance data diver-
sity. Through empirical experiments we show that a classification model trained
using a diversity enhanced training set outperforms traditional data augmenta-
tion techniques and existing benchmark results. This work shows that increasing
the diversity of a training dataset can improve classification model performance.
Furthermore, this work provides evidence for the utility of synthetic patients pro-
viding larger more robust datasets for both Al researchers and psychiatrists to
explore variable relationships.

Keywords: Data Augmentation, Al Fairness, Mental Health, Data and Bias

1 Introduction

Depression is a highly prevalent and debilitating mental illness [1]. For some, treatment
will lead to a reduction in their depression severity. However, approximately one-third
of patients will see a minimal reduction in the severity of their depression [2, 3]. For
many patients suffering from TRD, rTMS provides some relief. However, other patients
will see little improvement in their depression severity. Given the variance in observed
response rates, research is exploring the use of artificial intelligence (AI) techniques
to predict treatment response to rTMS [4-15]. These works aim to delineate between
responders and non-responders to treatment before or early in the treatment cycle.
Thus reducing the financial and psychological toll that ineffective treatments place on
patients [10, 11].

Personalising psychiatric treatments through the use of Al is a rapidly expand-
ing area of research. Despite this interest, progress towards implementation has been
slowed by challenges of model generalisation and access to appropriately sized data.
Koppe et al. [16] discuss some of the challenges of implementing deep learning (DL) in
psychiatry. DL algorithms require large, diverse datasets to produce their best results,
however, these large samples are generally not available in psychiatry [16]. When mod-
els are built on large, diverse and representative training sets the better the model
will generalise to unobserved data [17]. As such methods to address the lack of quality
psychiatric data are required as a method to improve model generalisation.

Enhancing fairness in Al is an important topic of research. Potential challenges to
fairness of Al include data bias [18]. When limited examples of a phenomenon exists
within the training set, classifiers trained on these datasets tend to generalize poorly
[19]. Furthermore, the class imbalance problem is one of the most significant challenges
in data mining [20]. Oversampling of the minority class in a dataset is one estab-
lished strategy to balance datasets with few examples of the minority class [21, 22].
However, these methods fail to address oversampling the feature space with distinct
values which could belong to either class. Thus we seek a method which can both
enhance the diversity of training dataset and create synthetic examples conditioned on
class label. Conditional Generative Adversarial Networks (CGANS) offer an alternative
to traditional generative networks by conditioning synthetic examples on additional
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information, such as class label. This paper proposes a novel methodology, Diver-
sity Enhancing Conditional General Adversarial Network (DE-CGAN) for boosting
the diversity of underrepresented samples conditioned on class labels. This proposed
method seeks to boost the diversity of sparse regions of the feature space with syn-
thetic examples belonging to either class, distinct from the problem of oversampling
the minority class.

Recently, we showed a Deep Neural Network (DNN) could reliably predict rTMS
treatment outcomes using fMRI connectivity features collected before treatment [4].
However, this research also identified certain connectivity values, particularly val-
ues of functional connectivity between the Subgenual Anterior Cingulate Cortex and
Occipital Cortex which a DNN consistently mislabeled. In an effort to address these
misclassifications, we explore the use of generative networks to oversample examples
of these difficult-to-classify patients and increase the diversity of the available data.

Synthetic data is artificially created data [23]. Broadly, two classes of methods
exist for the generation of synthetic data: process-driven and data-driven [24]. Process-
driven methods ”derive synthetic data from computational or mathematical models of
an underlying physical process” [24, p.2]. However, process-driven methods cannot be
implemented when a system cannot be modeled. As such, data-driven methods have
surged in popularity in both research and public discourse. These data-driven methods
use an underlying data distribution to create synthetic examples, which ideally, come
from the same distribution [23, 25]. The benefit of such methods is that generated
data is assumed to contain the same characteristics as the original data but protects
the privacy of the original data. This protection is especially important for data that
contains sensitive information, such as medical data. However, as Jain et al. [26] noted,
that generated examples come from the same probability distribution is the best case.
More likely, however, that generated examples are less diverse than the original data.
As such, we explore methods for evaluating the quality of synthetic (X,Y) pairs to
increase the diversity of r'TMS datasets to improve classification performance. The
current work aims to evaluate the use of synthetic data points to enhance the diversity
of rTMS training data. We do this exploring the following research question.

1. How does the use of synthetic r'TMS patients impact classification model perfor-
mance on a real test set?

2. How does oversampling with synthetic patients of underrepresented fMRI connec-
tivity features alter model performance on a held-out test set of real patients?

In answering these questions the current paper makes the following contributions:

A novel framework we are calling Diversity Enhancing Conditional General Adver-
sarial Network (DE-CGAN) for oversampling underrepresented fMRI connectivity
features with synthetic values and their class labels.

A diversity-enhanced rTMS dataset for the study of rTMS patterns of response to
treatment.

Empirical experiments showing a diversity-enhanced training set improves model
performance on a held-out test set of real examples.
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This paper is structured as follows. Section 2 provides a review of the current state-
of-the-art techniques, for generating synthetic data. Including those used specifically
for generating medical data. Section 3 the details of the constructed generative network
are outlined. Section 4 provides the experiment design and evaluation metrics with
experiment results presented in Section 5. Finally, Section 6 provides a commentary
on experiment results.

2 Related Work

The class imbalance problem is one of the most significant challenges in data mining
[20]. Class imbalance describes a situation where a target class is underrepresented in
the training data compared to other classes [27, 28]. When training sets lack diver-
sity across classes performance can decline on the underrepresented examples [22].
To address the class imbalance issue a variety of sampling and data augmentation
techniques have been proposed [29].

Methods of data augmentation vary from traditional oversampling methods to
more recent advances such as the use of Al to create synthetic examples. Synthetic
Minority Oversampling TEchnique [30, SMOTE] is one of the first oversampling meth-
ods to address the issue of class imbalance. SMOTE proposes using synthetic examples
by oversampling the minority class. Synthetic examples are created by taking the
distance between minority samples and creating a synthetic example in this region.
However, some limitations of SMOTE have been identified, particularly when oversam-
pling in regions surrounded by majority class samples which can introduce unnecessary
noise [31, 32].

Alternatively, generative networks and more recently, deep generative networks
Wang et al. [33, see], have been used across a variety of sectors to generate syn-
thetic examples. For example, in finance [34], health [35], and remote sensing [36]. In
healthcare, generative networks have largely been used to synthetically augment neu-
roimaging [35] and electronic health records [37]. For a detailed overview of GANs and
their applications see [38].

While SMOTE works to create linear combinations of existing minority sam-
ples modern AT techniques generate synthetic examples while capturing relationships
between variables. Recently, [39] proposed a correlation-capturing Generative Adver-
sarial Network (CorGAN) to synthesize electronic health records. Their method
combines the use of a 1-dimensional Convolutional GAN with a convolutional autoen-
coder to discretize continuous values and produce the desired output. Convolutional
autoencoders have been proposed as an alternative to the standard autoencoder [40].
In their work, Torfi and Fox [39] showed CorGan to outperform baseline models in
creation of medical records and synthetic EEG data. Utilising these same generative
techniques researchers have shifted from computer vision to the generation of synthetic
medical information. For example, Choi et al. [41] showed generative adversarial net-
works (GANs) were able to create realistic electronic health records. The architecture,
named medGAN, produced predominantly realistic-looking electronic health records
as judged by a doctor of medicine. More recently, Torfi et al. [42] proposed convolution
GANSs for the generation of synthetic medical information. Their work utilised this
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architecture to construct synthetic medical data. Goncalves et al. [24] explored sev-
eral data-driven techniques for the generation of synthetic electronic health records.
Their work evaluated the extent to which expected variable relationships were main-
tained using Surveillance, Epidemiology and End Results (SEER) a widely known
cancer dataset. In contrast to Choi et al. [41] and Torfi et al. [42], Goncalves et al.
[24] question the efficacy of GANS for creating realistic synthetic data. When compar-
ing several techniques ”the generative adversarial network-based model MC-MedGAN
failed to generate data with similar statistical characteristics to the real dataset” [24,
p.30]. These promising but contrasting findings motivate the exploration of GANs to
model synthetic psychiatric data.

Emerging evidence suggests data augmentation methods, such as generative net-
works, could be used to enhance the diversity of health datasets. For example, Behal
et al. [43] proposed Minority Class Rebalancing through Augmentation by Generative
modeling (MCRAGE). The work proposes a conditional denoising diffusion proba-
bilistic model to generate synthetic examples. MCRAGE aims to balance datasets of
electronic health records based on demographic features such as race, gender and age.
Their work shows a classifier trained on a synthetic dataset created by a diffusion
improves classifier performance when compared to the original dataset.

DL is positioned to significantly disrupt healthcare. However, progress towards the
implementation of AI has been slowed by the limited availability of diverse datasets.
One possible strategy to overcome these barriers is the use of synthetic data [25].
Synthetic data may have the potential to create more diverse datasets [44]. To date
the use of GANs in healthcare has focused largely on the generation of synthetic
images [35]. This motivates our work to explore the use of generative techniques to
augment psychiatric data. Existing solutions address imbalances in the class label
y. However, these methods fail to target under represented regions in feature spaces
[x1, 22,23, -+ ,xy,]. Behal et al. [43] provides one example of balancing imbalanced
data based using feature space variables. This motivates our work to balance feature
space variables in psychiatry and evaluate the impact this has on a classifier trained
on a synthetic dataset

3 Methods

3.1 Problem Statement

Existing research has shown fMRI connectivity features can reliably predict the out-
come of rTMS treatment using a DNN [4]. As part of this existing work we identified
repeatedly mislabelled examples share common characteristics. To address this issue,
the current work proposes using synthetically generated patients to enhance the diver-
sity of a training set in these difficult to classify regions. Previous work has explored
algorithmic methods to oversample minority classes in imbalanced datasets. In con-
trast, this work seeks to generate under represented examples and their class labels to
improve model performance. The current work presents DE-CGAN a novel method for
enhancing the diversity of rTMS training sets. DE-CGAN secks to balance datasets
by oversampling difficult to classify regions of connectivity between the Subgenual
Anterior Cingulate Cortex and Occipital Cortex.

t
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3.2 Problem Definition

The current work aims to show our proposed framework DE-CGAN can boost the
diversity of our r'TMS patient dataset with synthetic patients. Through enhancing
the diversity of the training set we seek to improve the performance of a classifica-
tion model which predicts rTMS patient outcomes using fMRI functional connectivity
measures.

To test this empirically we evaluate the impact of augmenting our training data
with varying proportions of synthetic patients. We use this hybrid dataset to train
a new classifier and test its performance, and hence the quality of our synthetically
generated examples on a test set of real examples.

For our experiments, we define real patients and their associated fMRI connectivity
features as follows:

Dreat = {(mi, y) 1
and
z; = [FP,0C,SPL,COC,IOCL,IOCR]
DE-CGAN generates synthetic patients and their class labels:

Daynth = {(73731;)};21

and
z = [FP',0C',SPL',COC',10CL',I0OCR/]
Combing the datasets let the resultant dataset be defined as:

Dhybria = Drear U Dayntn

Where a defines the proportion of synthetic patients within the training data set,
such that:

Ds

o ynth

Dhybria(a) = D
real

3.3 Conceptual Model

This section describes the conceptual model of the framework deployed to address
the problem described above. Based on the results of our literature review this is the
first model deployed to generate synthetic r'TMS patients with the aim of enhancing
the diversity of our dataset. Through this oversampling we aim to improve predictive
model performance to improve the generalisability of our model to unseen data.
Figure 1 describes the conceptual framework that underpins our work. Previously.
in Squires et al. [4] we showed that a DNN trained on fMRI connectivity features
could reliable predict rTMS treatment outcomes before treatment begins. As part
of this work we identified a portion of the dataset which was regularly mislabelled.
Using these results, we use these mislabeled examples to train a conditional general
adversarial network (CGAN) to oversample the mislabelled examples with class labels.
These works are distinct to existing works which oversample the minority class. By
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Table 1 Symbol Descriptions

Symbol | Description

D,eqi | Original Dataset from [7]

Dyynen | Synthetic examples created by DE-CGAN
Dhpypria | Training dataset denoted by Dyeqi U Dgynin

(z,y) | An original patient’s features with class label
(2',y") | Synthetic patient and class label
o DE-CGAN hyperparamater, sets the proportionality

0fDsynth t0 Dreal

FP Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Frontal Pole
ocC Functional connectivity measure between Subgenual

Anterior Cingulate Cortex and Occipital Cortex
SPL Functional connectivity measure between Subgen-
ual Anterior Cingulate Cortex and Superior Parietal
Lobule

COC | Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Centeral Opercular
Cortex

1I0CL | Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Left Lateral Occipital
Cortex

I0CR | Functional connectivity measure between Subgenual
Anterior Cingulate Cortex and Right Lateral Occip-
ital Cortex

augmenting and extending the dataset with synthetic patients each with their own
class label.

To evaluate our models performance we leverage our previously described results
to evaluate the impacts of including synthetic examples in model training data. The
details of which are described in Section 4.3.

3.4 Data Augmentation

Data Augmentation is a class of regularization techniques aimed at improving model
performance by making modifications to the training data [17]. One data augmentation
technique involves the use of generative models to generate synthetic examples within
from the same distribution as the training data [16]. Mumuni and Mumuni [17] refers
to these as ’data synthesis methods’ methods which create new synthetic training
examples generally through methods such as GANs or VAEs.

To date data augmentation research has largely focused on image [45] and signal-
based tasks [46]. In the medical space these data augmentation techniques have largely
been applied to medical imaging [47, 48]. For example, Frid-Adar et al. [49] showed that
synthetically augmenting a dataset of computed tomography (CT) images improves
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Fig. 1 DE-CGAN conceptual model (Created with BioRender.com)

model performance. While to date, the majority of research has focused on health-
related data augmentation, however, to our knowledge, little work has explored data
augmentation in psychiatry.

3.4.1 GAN

The classical GAN was first proposed by Goodfellow et al. [50], which harnesses game
theory to generate synthetic examples based on the training data set. The game takes
place between two networks, the generator, and the discriminator. In classical architec-
ture, the role of the generator is to create realistic examples derived from the training
data set. The goal of the generator is to deceive the discriminator into mislabeling
fake examples as real. In contrast, the goal of the discriminator is to accurately dis-
cern fake examples. Through training, the game reaches a state of Nash equilibrium
where neither the discriminator nor the generator is able to further advance their posi-
tion. Nash [51] in the seminal work showed all 2-person zero-sum games have such
an equilibrium point. In theory, the generated examples should mirror the probability
distribution of the training data on which the network was trained. However, many
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in the research community question this assertion [26, 52, 53]. The first generative
network was described by Goodfellow et al. [50]. The theoretical proof provided by
Goodfellow et al. [50] assumes a non-parameterized network of infinite capacity. How-
ever, in practice network size cannot be infinite. This bounding of network size has
led some [26, 52, 53] to question whether the generated data is representative of the
data on which the model was trained. Arora et al. [52] asserts even for popular GAN
variants mode collapse remains a significant issue. The manifestation of the reduc-
tion in the diversity of generated examples has significant implications. Recently, Jain
et al. [26] demonstrated the inherent distributional decay and biases of several popu-
lar GAN variants. In novel works, Jain et al. [26] used generative networks to create
images of engineering staff members. Generated images were then assessed by human
raters along with race and gender. Jain et al. [26] reports synthetic images of engi-
neering professors were more likely to have lighter skin tones and masculine features
when compared to the original distribution of actual images. These works add tangible
examples of differences between synthetic data and the original data distribution.

3.4.2 CGAN

Extending the original GAN the CGAN was first proposed by [54]. The CGAN involves
training the original GAN on some additional information, such as a class label [54].
The strength of the CGAN over the original GAN is by conditioning on class labels
outputs will also have class labels. For example, Sun et al. [55] show a novel cGAN
architecture to generate labeled facial expression images. Mert [56] showed the use of
synthetic datasets developed using CGANs improved classifier performance on several
medical datasets. Compared to other data augmentation frameworks the CGAN is
prefered for this problem as it allows for the conditioning synthetic examples on class
labels. Thus capturing important relationships between feature variables and class
label.

3.5 DE-CGAN Model Architecture and Hyperparamaters

This Section provides a detailed overview of our proposed DE-CGANs model architec-
ture. Algorithm 1 describes the workflow for our DE-CGAN framework. As part of this
method we identify frequently mislabelled examples when evaluating a DNN trained
and evaluated on real examples. We then use these frequently mislabelled examples
as training data for a CGAN. This produces synthetic examples in difficult to classify
regions of the training dataset. The output of our DE-CGAN is a diversity enhanced
training dataset for evaluation.

The hyperparameters of both the generator and discriminator are shown in Table
2 and Table 3 respectively. The architecture of these networks is motivated by the
architecture in [29] who adopted similar hyperparameters in designing a CGAN to
generate synthtetic breast cancer data
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Algorithm 1 Diversity Enhancing CGAN Workflow

Input: Dyea
Output: Dhybrid
Parameters: o, DNN, CGAN,

: Train Deep Neural Network with Dyea
: for each input z in D, do

Predict label y using the Deep Neural Network
end for

: Pass the labeled data to Mislabelled
: function MISLABELLED(z, y)

Identify Mislabelled cases
Initialize Conditional GAN with Mislabelled examples

: end function
. Conditional GAN Details:

Generator G: Receives a noise vector z and label y, generates synthetic data
samples G(z,y) = z*

Discriminator D: Receives both real data samples (z|y, y) and synthetic data
samples (z*|y,y), outputs a probability (via sigmoid) indicating the likelihood of
the sample being real

: Train Conditional GAN (Generator G and Discriminator D) iteratively
: for a specified number of iterations or until convergence do

Train Discriminator D to distinguish between real and generated data
Train Generator G to create synthetic data that fools Discriminator D

: end for

: Generate o synthetic cases using CGAN Generator Dgynin
: Split Dyeal into a training set Dypain and a test set Diegt

. Transform Dirain U Dsynth = Dhybrid

4

Table 2 Generator Hyperparameters

Hidden Layers 2
Layer Width 128, 64
Activation Function | Leaky reLU

Latent Dimensions 100

Experiment Overview

4.1 Experiment Design

This section outlines the experiments used to evaluate the quality of datasets aug-
mented by our DE-CGAN. The current work aims to show that augmenting training
data with synthetically generated underrepresented examples improves the perfor-
mance of a binary classification model. This work seeks to show that augmented
training data is superior to the original training data.

10
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Table 3 Discriminator Hyperparameters

Hidden Layers 2
Layer Width 64, 32
Activation Function Leaky reLU
Loss Function Binary Cross-entopy
Optimizer Adam
Learning Rate 0.0002

As part of our experiments, we evaluate the performance of varying proportions
of augmented data on classifier performance. These experiments compare the per-
formance of a classifier trained using data augmented by a traditional GAN, our
DE-CGAN and the original dataset. We test these training datasets empirically using
200 runs of Monte Carlo simulation. During each simulation, a DNN is trained using
an augmented dataset with a validation set of 20% used during each training iteration.
Early stopping is used to terminate the training process once model performance sta-
bilises. The performance of each model is tested on a held-out test set of real examples.
Further details of this methodology are described in Section 4.3.

4.2 Dataset

The original data used in this work is publicly available in Hopman et al. [7, 57].
The data includes several fMRI features, along with a patient’s r'TMS treatment out-
comes. Further detailed summary statistics of this dataset, including associated ethics
approval, can be found in [57]. The input variables used from this data are detailed
in 1.

4.3 Evaluation metrics

This section further outlines the methods and metrics used to evaluate the quality of
augmented training sets:

e Classification Evaluating generative networks is an open problem [58]. Esteban
et al. [59] proposed a novel framework for evaluating the quality of synthetic exam-
ples. Train Synthetic Test Real (TSTR) involves training a classifier on synthetic
examples and evaluating its performance on real examples. If the distribution of the
synthetic data matches the real data then we would expect the performance of a
classifier trained using synthetic examples to perform similarly to that of a classi-
fier trained on the real dataset. This method has several benefits over training on
real sets and evaluating on synthetic data. Given the limitations of many generative
methods is mode collapse, that is, when synthetic examples become less diverse than
the original training data. Hence, the performance of a model on trained on real
data and tested on synthetic data may overestimate the quality of these synthetic
examples.

® Hypothesis Testing We propose the use of two-tail proportion test to evaluate
any differences between the proportion of optimal solutions found using training
sets augmented with varied proportions of synthetic data.
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Table 4 Model Hyperparameters

Hidden Layers 4
Layer Width 10
Activation Function reLU
Loss Function Binary Crossentopy
Regularisation Layers
Test set size 20%
Epochs 2000 or until early stopping criteria met

4.3.1 Classification Model and Evaluation

Using the TSTR framework evaluation metrics are required to test the classifier per-
formance on the held-out test set. Given the aim of this work is to evaluate the impact
of augmenting training data with synthetic examples it is important the classifier
remains constant across examples. The model hyperparameters are shown in Tab 4.
In each simulation the network is retrained after shuffling the augmented data set.

To evaluate performance we use commonly used deep learning metrics: accuracy,
described in Equation 1, balanced accuracy, described in Equation 2 and fl-score
in Equation 3. Both balanced accuracy and fl score are selected as they consider
classification performance across classes.

TP + TN
Accuracy = L (1)
N
1 TP TN
Balanced Accuracy = 5 <m + m) (2)

F—2x Precision x Recall 3)

Precision 4+ Recall
4.3.2 Hypothesis Testing

Further to the classification metrics described above we use hypothesis testing to com-
pare the amount of optimal solutions found using varying proportions of augmented
data. The proportion test, described in Equation 4, can evaluate the extent to which
differences in proportions between the amount optimal solutions are found

_ (Rqan - Pd%st)z
2= 5D Pyun) )

Where
SD (Pgan ) =

5 Results

This section describes the results of our empirical experiments to evaluate the effec-
tiveness of our proposed model DE-CGAN, and the synthetic patients generated by
our model.
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As described above the performance of our proposed method was evaluated using
200 monte carlo simulation. The average performance and standard deviation of these
models is described in Table 5. These results show a hybrid dataset of 10% synthetic
patients from DE-CGAN to be the best performing on a held out test set. Followed by
a hybrid dataset of 5% synthetic patients. These models including synthetic examples
created by DE-CGAN Followed by our benchmark model presented in Squires et al.
[4] with the original dataset described in [7] and no synthetic examples.

Table 5 Mean model performance metrics and standard deviations

Model Accuracy F1-Score Balanced Accuracy
DE-CGAN (o =0.05) 0.9280 (0.0664) 0.9310 (0.6666) 0.9286 (0.0661)
DE-CGAN (a =0.10) 0.9360 (0.0662) 0.9414 (0.0589) 0.9355 (0.0684)
DE-CGAN (a =0.15) 0.9073 (0.0817) 0.9085 (0.0908) 0.9085 (0.0802)
DE-CGAN (a =0.20) 0.9112 (0. 0787) 0.9124 (0.0806) 0.9130 (0.0775)
Squires et al. [4] 0.9227 (0.0696) 0.9276 (0.0647) 0.9224 (0.0708)
CGAN (a =0.05) 0.9246 (0.0617) 0.9280 (0.0610) 0.9248 (0.0613)
CGAN (a =0.10) 0.9134 (0.0767) 0.9189 (0.0735) 0.9128 (0.0773)
CGAN (a =0.15) 0.9023 (0.0858) 0.9100 (0.0813) 0.9007 (0.0874)

Visually the distribution of accuracies is displayed in Figure 2. This figure visually
shows changes in accuracies across models through the empirical experiments with
outliers. Visually we see similarities between the DE-CGAN (a = 0.05) and DE-CGAN
(o = 0.10) distributions with our benchmark model Squires et al. [4] and the baseline
model CGAN (« = 0.05).

In further analysis of our results, we report the frequency of optimal solutions
obtained by each algorithm. These results are shown in Figure 3. From these results,
we see both DE-CGAN (a = 0.05) and DE-CGAN (a = 0.10) are the only models
to obtain the optimal solution more frequently than the benchmark model in Squires
et al. [4].

To formally compare the proportion of optimal solutions found by each model we
use the proportion test to compare the frequencies against our benchmark model. From
Table 6 we see the only model which varies significantly is DE-CGAN (« = 0.10) which
shows using our DE-CGAN to create a training set made up of 10% synthetic cases
produces performance above that from using the original dataset without synthetic
data.

6 Discussion

The current work shows the generation of synthetic psychiatric patients and their class
labels improves the performance of a DNN classification model. These findings empha-
size the importance of diverse datasets in deep learning and psychiatric research. This
work introduces our novel framework DE-CGAN a novel method for the oversampling
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Fig. 2 Box plot showing the distribution of accuracies obtained using various algorithms.

Table 6 Proportion Test Results

Model Name VA P Significant
DE-CGAN (a=0.05) -0.5327  0.59612 p > 0.05
DE-CGAN (a=0.10) -2.1779 0.02926 p < 0.05*
DE-CGAN (a=0.15) 1.4438 0.1499 p > 0.05
DE-CGAN (a0 =0.20) 0.4344 0.6672 p > 0.05
CGAN (a = 0.05) 0.5443 0.5892 p > 0.05
CGAN (a = 0.10) 0 1 p > 0.05
CGAN (o = 0.15) 1.4438 0.1499 p>0.05

of difficult to classify fMRI connectivity features and synthetic class labels. These find-
ings have significant implications in the field of psychiatry a field where the use of Al
has been impacted by small sample sizes [16].

Previous work has introduced methods for oversampling minority classes in classi-
fication tasks with imbalanced class labels. In the field of data mining this is referred
to as the class imbalance problem [20]. The class imbalance problem occurs in classi-
fication tasks where examples for some classes are underrepresented when compared
to the majority classes. In contrast, our problem deals with the under-representation
of fMRI connectivity measures at certain bandwidths. Our work shows that identify-
ing examples prone to misclassification and generating synthetic examples paired with
a synthetic class label in the distribution of difficult to classify regions can lead to
improvements in model performance.
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Frequency of Optimal Sultions by Model
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Fig. 3 Bar chart showing the frequency of optimal solutions by algorithm.

Artificial intelligence systems are being deployed rapidly in areas of non-trivial
importance. Increasingly, researchers are exploring ways to deploy artificial intelligence
systems to personalise medical care. Deep learning algorithms rely heavily on the
data on which they are trained. However, problematically, the training data on which
these algorithms rely is often not representative with insufficient examples of certain
features. Tasci et al. [60] assert under-representation of demographic, biological and
outcome variables in data all contribute to algorithmic bias.

Model performance is generally dependent on the data on which it is trained. As
the artificial intelligence field pushes towards deployment of predictive models high-
quality, representative data is essential Chen et al. [25]. The importance of high quality
data is twofold. Data that is truly representative of the general population is likely to
improve the generalisation of models. An observed limitation of deep learning models.
Additionally, data bias reduces the generalisability of artificial intelligence to unseen
populations. Each of these issues is central to the fairness and equity of data science
and its implementation in the field.

The current work shows a training dataset of 10% DE-CGAN examples achieves the
optimal solution on a holdout test data set of real cases significantly more frequently
than a model trained on real examples only. These works provide evidence for the
generation of synthetic fMRI connectivity features and their class labels to over-sample
datasets with difficult-to-classify patients due to under representation.

Furthermore, these findings emphasize that synthetically generated patients have
the potential to supplement small datasets to improve model performance in small
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sample sizes. Additionally, these synthetic examples allow psychiatrists further data
points to investigate relationships between variables and their impact on mental
health.

While this work highlights the potential of synthetic records to increase the diver-
sity of small datasets, this work also demonstrates as shows as the proportion of
synthetic examples in the training data increases classification performance deterio-
rates. We propose two potential reasons for this performance decline: Firstly as the aim
of DE-CGAN is to increase the proportion of underrepresented cases, as the propor-
tion of these underrepresented cases makes up a greater proportion of the dataset the
representation of the data population skews outside the true population such that the
classification model is unable to classify the majority of examples. Secondly, it is pos-
sible that due to identified issues with GANs such as mode collapse, as the proportion
of synthetic examples increases the synthetic data becomes less diverse.

The general belief of generative networks is the synthetic data created comes from
the same probability distribution as the training data from which they are created.
However, as Jain et al. [26] noted, that generated examples come from the same
probability distribution is the best case. More likely, however, is generated examples
are less diverse than the original data. As such, future work should explore explore
further methods for generating diverse datasets for the purpose of sharing sufficiently
diverse data between research organisations.

7 Conclusion

This paper presents Diversity Enhancing Conditional Generative Adversarial Network,
DE-CGAN, a novel framework for oversampling of underrepresented fMRI connec-
tivity features and their class labels. Deep learning models require large and diverse
datasets to perform optimally. When diverse datasets are not available model perfor-
mance can start to deteriorate and is unlikely to generalise well to unseen data. In
psychiatry, large datasets are difficult to source due to privacy and legal obligations.
DE-GAN provides an option for balancing and extending datasets in psychiatry.

The current work demonstrates increasing the diversity of a training dataset
of fMRI connectivity features with synthetic examples improves performance on a
held-out test set of real examples. This work provides evidence for the viability of
synthetically generated patients to increase the size and diversity of datasets which
provides psychiatrists with more data to explore relationships between connectivity
features and treatment outcomes.

Future work should explore the potential of larger synthetic datasets for the study
of rTMS response prediction. These synthetic datasets should maintain the charac-
teristics of the original data to allow for sharing between research groups where legal
obligations may prevent the sharing of actual data.
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4.3 Links and implications

This thesis has demonstrated DL can reliably predict the treatment outcome to rTMS
using fMRI connectivity features. However, Chapter 2.3 demonstrated this technology
does not perform as well for a subset of patients. If Al is to be deployed safely and
fairly in psychiatry then we must strive that Al systems are designed to mitigate bias.
Thus working towards the stated aim of personalised psychiatry, ”the right treatment for
every patient” (right treatment for each patient:unlocking the potential of personalized
psychiatry’ 2023). This chapter demonstrates techniques like data augmentation can be
used to mitigate the bias of underrepresented examples. By synthetically boosting the

diversity of training datsets we cam improve performance.
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CHAPTER 5: PAPER 4 - ENHANCING SUICIDE RISK

DETECTION ON SOCIAL MEDIA THROUGH SEMI-SUPERVISED

DEEP LABEL SMOOTHING

5.1 Introduction

Chapter 1.6 highlighted one of the most significant challenges of diagnosis in psychiatry is
the lack of objective marker of disease. Even amongst experts there can be disagreement
on some diagnosis. The challenge associated with this is that DL models expect a level of
certainty. However, when experts disagree then to use only binary classification scheme
does not accurately represent the true nature of a system. This chapter presents a novel
take on representing this uncertainty using label smoothing. Utilising this technique,
this chapter seeks to more accurately represent ground truth labels in fuzzy systems by

transposing hard binary classification labels to smoothed labels.

5.2 Published paper
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Abstract

Suicide is a prominent issue in society. Unfortunately, many people at risk
for suicide do not receive the support required. Barriers to people receiv-
ing support include social stigma and lack of access to mental health care.
With the popularity of social media, people have turned to online forums,
such as Reddit to express their feelings and seek support. This provides the
opportunity to support people with the aid of artificial intelligence. Social
media posts can be classified, using text classification, to help connect peo-
ple with professional help. Text classification of social media posts for the
detection of mental health distress is a large and ever-expanding field. How-
ever, these systems fail to account for the inherent uncertainty in classifying
mental health conditions. Unlike other areas of healthcare, mental health
conditions have no objective measurements of disease often relying on expert
opinion. Thus when formulating deep learning problems involving mental
health, using hard, binary labels does not accurately represent the true na-
ture of the data. In these settings, where human experts may disagree, fuzzy
or soft labels may be more appropriate. The current work introduces a novel
label smoothing method which we use to capture any uncertainty within the
data. We test our approach on a five-label multi-class classification prob-
lem. We show, our semi-supervised deep label smoothing method improves
classification accuracy above the existing state of the art. Where existing
research reports an accuracy of 43% on the Reddit C-SSRS dataset, using
empirical experiments to evaluate our novel label smoothing method, we im-
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prove upon this existing benchmark to 52%. These improvements in model
performance have the potential to better support those experiencing mental
distress. Future work should explore the use of probabilistic methods in both
natural language processing and quantifying contributions of both epistemic
and aleatoric uncertainty in noisy datasets.

Keywords: Label Smoothing, Mental Health, Probabilistic Deep Learning,
Uncertainty Quantification

1. Introduction

Depression and Suicide are significant issues in society. Given this, re-
searchers have explored many avenues to aid in the treatment and diagnosis
of these mental health conditions. Barriers such as reduced access to mental
health services [1], and stigma associated with seeking mental health care
[2] are among the factors which prevent people from seeking help. As such,
many people are turning to social media to seek support and share mental
health related information [3]. The use of Artificial Intelligence (AI) systems
to detect depression has seen extensive research. Building upon existing
work, Gaur et al. [2] investigated the use of text classification to recognise
social media users who may be a suicide risk. Text classification systems for
suicide behaviours could help to connect users sharing their emotions and
mental health struggles with health professionals using AT models.

A difficulty of mental health research, in contrast to other fields of health-
care, mental health conditions have no objective markers of disease [4]. This
lack of objective markers is one of several key challenges in identifying psy-
chopathology [5]. Furthermore, human raters can find classifying suicidal
behaviours using assessment tools to be difficult [6]. When it is difficult for
human raters to agree on a ground truth label it is likely difficult for Al to
uncover underlying patterns [2]. In turn, this presents a difficulty for deep
learning models which have traditionally relied on binary labels. Fuzzy logic,
however, allows for an alternative view. When borders between groups are
unclear fuzzy variables “facilitate gradual transitions between states and,
consequently, possess a natural capability to express and deal with observa-
tion and measurement uncertainties” [7, p.4]. The inadequacy of binary, ore
one hot encoded ground truth labels has also been explored in the field of
text emotion classification [8]. Where fuzzy emotions can be used to capture
text which may convey multiple emotions, where a binary mapping fails to
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capture an accurate ground truth.

Uncertainty is ever present in the mental health field due to the reliance on
self-reporting and observation. When uncertainty is present in the labelling
of ground truth, it seems unreasonable to use traditional hard labels where
y € 0,1. In these settings binary variables as ground truth labels do not
represent the true nature of a system. Label smoothing is a technique which
involves subtracting a small value from the true class, and distributing the
subtracted value evenly across each remaining class. Label smoothing is
uniform, that is the distribution remains constant across all remaining labels,
as below:

1—a lfQ,ZO
y—{ 1)

a/(k—1) otherwise

These updated labels are referred to as soft labels. Initially proposed as
a regularisation technique to help prevent model overfitting some research
investigates the use of soft labels to improve model performance. Recently,
Zhang et al. [9] showed non-uniform label smoothing to improve model per-
formance on benchmark datasets such as CIFAR-100 and ImageNet. Our
work extends the use of non-uniform distribution label smoothing to text
classification and introduces a novel strategy using Bayesian techniques to
generate the smoothed labels. These smoothed labels are likely more repre-
sentative of the fuzzy nature of classifications in the mental health space. As
such, this paper seeks to explore issues of uncertainty central to the use of
Al in mental health care. Formalised in the following research questions:

e How can the uncertainty in ground truth labels be expressed in settings
where expert opinion may be divided?

e How does incorporating uncertainty into labels impact model perfor-
mance?

e Can the underlying truth label distribution be found?

To explore these research questions we utilise the Reddit C-SSRS dataset
first presented by [2]. The data includes posts by 500 Reddit users assessed
by experts using the Columbia Suicide Severity Rating Scale (C-SSRS). Ac-
cording to Gaur et al., [2] user posts were labelled by four practising clinical
psychiatrists with pairwise annotator agreement varying between ~ 80% and
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~ 60%, however, one-hot encoded variables fail to capture the uncertainty
between raters.

Our work is motivated by the idea that it is difficult for deep learning
models to identify underlying relationships in data when the labels do not
represent the true nature of the system. Thus if human mental health care
experts do disagree on how to classify a post then this uncertainty must
be expressed. As such, we propose a novel label smoothing method which
builds upon existing work to more accurately capture the uncertainty of
ground truth labels. Through our experiments exploring the detection of
mental distress of social media posts we make the following contributions:

o A novel fuzzy semi supervised deep learning method for label smoothing
to represent uncertainties in ground truth labels

e A state of the art text classification model, achieving accuracy surpass-
ing existing models tested on the same dataset using fuzzy labels;

e An exploration of the use of fuzzy class membership for the use of text
classification

This paper is structured as follows. Section 2 provides an overview of
existing methods used for uncertainty quantification. These techniques, pre-
dominantly used for image segmentation, and the dearth of literature in
mental health care motivates this work. This section identifies the gap in the
literature and the opportunity for the use of uncertainty estimation in text
classification. Section 3 provides an overview of the methods, techniques and
data set used to present our novel uncertainty estimation techniques incorpo-
rated with text classification. In the remaining sections, Section 5 provides a
summary of the performance of the current work compared against the base-
line model. Finally, Section 6 and 7 provide concluding remarks explaining
the models behaviour and offering future directions for the field.

2. Related Work

The quantification of uncertainty when using deep learning in healthcare
is expanding rapidly. This is due to the acknowledgement that if deep learn-
ing is to be used in critical settings, such as healthcare, uncertainty quantifi-
cation must be further developed [10]. Probabilistic deep learning methods,
such as Bayesian Neural Networks, Deep Ensembles and Monte-Carlo (MC)
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dropout are common techniques proposed to explore these uncertainties. To
date, the use of stochastic methods in healthcare focuses on medical imag-
ing and image processing (see [11]). For example, Bayesian techniques were
applied to the detection of oral cancer from intraoral images, the diagnosis
of COVID-19 from X-rays and the classification of brain lesions from MRI
images.

In their survey, Abdar et al. [12] identify aleatoric and epistemic uncer-
tainty as the two main categories of uncertainty. Epistemic uncertainty refers
to uncertainty resulting from a model’s lack of understanding. Hiillermeir and
Waegeman [13] define epistemic uncertainty as ”the uncertainty caused by
a lack of knowledge.” In the practical sense for Al or deep learning models
Hiillermeir and Waegeman [13] assert epistemic uncertainty "refers to the
ignorance of the agent or decision maker.” In this context, the ”agent or
decision maker” could refer to an Al agent or deep learning model. The un-
derstanding that epistemic uncertainty refers to the lack of knowledge by a
model, has resulted in epistemic uncertainty to be more commonly referred
to as model uncertainty [14]. Model uncertainty is taken to occur when a
model is exposed to an example which lies outside of the distribution on
which it was trained. Given this, the logical solution to handle epistemic
uncertainty is to provide more data [14]. While this may be possible for ac-
tive learners in fields with large and ever-expanding data sets, in some cases,
such as psychology and psychiatry large data sets are not always accessible,
making the expression of epistemic uncertainty hugely important.

In contrast, aleatoric uncertainty is defined as ”"noise inherent in the data
distribution” [15]. For example, annotation ambiguity. Where annotation
ambiguity refers to uncertainty regarding labelling examples in supervised
learning tasks. Put another way, Hiillermeir and Waegeman [13] contend
aleatoric uncertainty refers to the randomness inherent to data collection.
For this reason, aleatoric uncertainty is also known as data uncertainty. The
notion of inherent randomness in data collection is of particular significance
in the field of psychiatry and psychology. For many conditions within the
mental health space, few or no objective biomarkers of disease exist. As such,
the discipline relies heavily on subjective measurement to quantify disease.
For example, expert psychiatrists Gaur et al. [2] labelled posts on Reddit
according to a five-label suicide severity rating scale. Four practising clinical
psychiatrists annotated each post according to the five-label classification
scheme. Results reported in [2] show that pairwise annotator agreement on
the annotation of posts varied from 79& to 65%. This irreducible random-
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ness due to the subjective nature of mental health conditions is an important
consideration when modelling mental health conditions. This disagreement
between annotators motivates our work, to explore the utility of fuzzy la-
bels and label smoothing as a more accurate representation of the true data
distribution.

To date, few methods have been explored to represent the subjective-
ness of human raters in generating labels for mental health conditions. Data
cleaning methods such as label correction were trialled in [16], which showed
using clustering to correct potentially noisy labels improved model perfor-
mance. Given the success of label correction, our work seeks to explore the
possibility of soft labels to represent uncertainty within the labels. These
works move beyond label correction, to label smoothing.

Techniques for capturing this uncertainty can be divided into Bayesian
techniques and deep ensembles. Song et al. [17] applied a Bayesian Deep
Neural Network to the classification of oral cancer from a large image dataset.
The work utilised Monte Carlo Dropout a common Bayesian technique to ex-
press prediction uncertainty. Dropout is a common regularisation technique
used to reduce the chances of model overfitting. The technique involves
"dropping’ a percentage of nodes from a hidden layer [18]. This dropping is
achieved by turning the parameter weights of all edges to a given node to
zero, to in essence eliminate the impact of that node on the network. The
dropout rate indicates the percentage of nodes from a layer which should
be dropped. For example, in Song et al. [17] the dropout rate was set to
0.5 or 50% of nodes. Seminal work by Gal and Ghahramani [19] showed
combining Monte Carlo simulation with dropout could be used to quantify
the uncertainty in model predictions. As hidden layer nodes are dropped
randomly, repeatedly simulating the same network with dropout has the ef-
fect of in essence training different networks and ultimately leading to more
robust networks. The output predictions of each network can then be aver-
aged [19] and the variance of these predictions is defined as the prediction
uncertainty [17]. Song et al. [17] show, the performance of their Convolution
Neural Network (CNN) improves when the uncertainty threshold is varied.
As such, the aim of uncertainty quantification is that images with high levels
of uncertainty can be referred to human experts for further evaluation.

Additionally, Gour and Jain [20] provide a second example of the combi-
nation of MC dropout with a CNN. Gour and Jain [20] utilise a CNN for the
diagnosis of COVID-19 from x-ray images. The work utilises a dropout rate
of 0.425 with a pre-trained CNN. Furthermore, [21] utilised MC Dropout for
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the classification of brain lesions from MRI scans. Wu et al. [21] trained a
Deep Convolutional Neural Network (DCNN) with MC Dropout in a teacher-
student framework. The teacher-student framework involves the training of
two networks, the first model, the teacher is initially trained on the dataset.
The second model, the student uses the predictions made from the teacher
model with the initial data to make final predictions [22]. Although not
Bayesian, Gjestang et al. [22] provide an example of the use of a teacher-
student framework for the classification of gastrointestinal images. In Gjes-
tang et al. [22], the teacher model is first trained on unlabeled data to gen-
erate pseudo labels. The student is then trained using the teacher-generated
labels, the original data set and the original labels with the aim of minimiz-
ing the loss function against the target labels. In a novel approach by Wu et
al. [21] the teacher is a Bayesian Deep Network. The student then receives
as inputs the Bayesian probabilities output by the Teacher. However, Wu et
al. [21] do not provide details on the dropout rate of their network.

A recent review by Abdullah et al. [11] provides a comprehensive overview
of the current state of Bayesian deep learning techniques within the field.
There exists limited research which incorporates uncertainty quantification
and model confidence into natural language processing and text classification
problems. Abdullah et al. assert [11] they ”are not aware of any published
work on medical Natural Language Processing that has used Bayesian deep
learning (p.36522, [11]). This lack of published works exploring probabilistic
methods, uncertainty quantification and text classification provides the gap
which further motivates this work. Additionally, significant calls exist for the
addition of uncertainty estimation to deep learning models [10]. Given the
lack of research exploring uncertainty estimation and text classification and
the acknowledged need for deep learning models to express their prediction
confidence. Our work seeks to address the needs of the research community
by exploring both model and label uncertainty to produce better-performing
models, ultimately leading to improved mental health outcomes.

3. Method

3.1. Conceptual Model

This section provides an overview of our novel semi-supervised label
smoothing method and the experiments used to evaluate its efficiency when
compared to existing methods. As part of the current work, we explore both
aleatoric and epistemic uncertainty associated with classifying social media

7

79




Model Retrained on New Soft Labels

Bayesian Inference

CNN with Dropout
) )
s

Figure 1: Conceptual Model

Input Layer

X1, X2 X3

Xl

L MCDropout

Soft Labels
Hard Labels

posts and their suicide risk. For the purpose of this work, aleatoric uncer-
tainty can be thought of as the uncertainty associated with the ground truth
labels.

Our first experiment explores the label uncertainty which is generated by
the subjective nature of the diagnosis of mental health conditions. Given
this subjectiveness, human raters can at times disagree on the assessment of
the same social media post. To capture this uncertainty we propose fuzzy
smoothed labels, generated by our novel label smoothing approach using
Bayesian techniques. Additionally, we investigate the impact of prediction
confidence on

This section details the mechanisms of our approach and experiments
utilised to measure the efficacy of our model.

3.2. Problem Definition

The current work can be formally defined as a text classification problem.
We utilise a dataset, D which consists of posts from n Reddit users, such that
X = {z1,x9, 23+ ,x,}. Users’ posts are labelled according to a five-label
suicide classification scheme. Such that a post from a user, z,, belongs to a
single class K = {ky, ko, k3...k5}.

Our work explores the impact of using smoothed labels such that an
example can belong partially to several classes. For example, the target
label of a post x, could partially belong to multiple classes as demonstrated
in equation 1. In the current work, we introduce a novel method of obtaining
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the probability of class membership and explore the impact of uniform and
non-uniform label smoothing methods against existing methods on the same
dataset.

Where our aim is the classifier function which minimises the cost function
C' during model testing on a hold-out-test-set. Where C' is categorical cross-
entropy, the multiclass case of the widely used binary cross-entropy, is defined
as:

k
C=- Zl/k - log(yk) (2)

3.3. Conceptual Model

The curated data set provided by Guar et al. [2] contains posts from
500 Reddit users labelled according to a five-label suicide severity risk. To
perform text classification, natural language must be made machine-readable.

Before text can be used in machine learning tasks it must be prepared
for input into deep learning models. All associated preprocessing and model
building for this project was constructed in Python with the aid of the soft-
ware package Keras [23], a popular deep learning library. Preparing natural
language text for input to deep learning models requires word embeddings.
Text embeddings are the process of converting data to numerical representa-
tions [24]. A variety of word embedding techniques are available to machine
learning researchers to convert Reddit posts to input vectors. Following to-
kenisation, the input layer takes as input sequential arrays of length 5,041
which is passed to the word embeddings layer. The word embeddings layer
learns the most effective vector representation of the model inputs to perform
the text classification task.

Figure 1 details the proposed model architecture. Using this architecture.
The word embedding vector is then passed to the first convolutional layer for
model training. The convolutional layer is passed to a second convolutional
layer which is then down sampled via a pooling layer. The technical benefits
of combining convolutional and max pooling layers for text classification are
discussed in Section 3.3.1.

Following the max pooling later, the output is flattened before being
passed to the final fully connected layer. The fully connected layer utilises the
softmax activation function with five output nodes. In our proposed approach
Bayesian Inference is used to obtain updated smoothed labels which are then
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used to retrain the network. Our experiments explore the effectiveness of this
approach to represent the uncertainty faced when diagnosing mental health
conditions when human experts disagree on a classification. The aim of this
work is to capture these disagreements in the data to build a more effective
model.

3.3.1. Convolutional Neural Networks

An extension of the multilayer perceptron is the convolutional neural net-
work (CNN) and deep convolutional neural network. Convolutional Neural
networks are the workhorse of pattern recognition for images [25]. The input
vector of a multilayer perceptron is typically a flat one-dimensional array
or vector. In contrast, the CNN is equipped to take multi-dimensional vec-
tors as inputs. This allows CNNs to take as input a three-dimensional array
associated with the red, green and blue components of a two-dimensional
image.

The core components of the CNN which differ from the Multilayer Percep-
tron (MLP) are the convolutional and max pooling layers. The convolutional
layer is known to “learn local patterns—in the case of images, patterns found
in small 2D windows of the inputs” [26]. This concept of spacial dimensional-
ity is not possible for flattened inputs to MLPs which instead are constrained
to pattern recognition across the entire input vector. The size of the area
the convolutional layer looks to for these local patterns is referred to as the
kernel [25].

In addition to excelling in computer vision tasks, CNNs have demon-
strated high levels of performance in text classification [27]. As with images,
this success is attributed to the ability of convolutional layers to learn local
patterns within data. In the task of pattern recognition in text, convolutions
are able to capture patterns within sequential text. Goldberg [28] asserts
the combination of one-dimension convolution and pooling operates as an
n-gram detector. With [29] going further, suggesting pooling acts similarly
to a feature extraction layer, with only class discriminative n-grams passed
through the pooling layer. A pooling layer can be thought of as downsam-
pling the size of the original input [25], this ensures relevant information is
captured for text classification.

3.8.2. Fuzzy Label Smoothing
Label smoothing is a regularisation technique that has been shown to
improve model performance. The smoothing of hard labels involves removing
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a small value from the true case and distributing that value across all classes.
A formal definition of uniform label smoothing as described by Shen et al.

[30] is given below:
11—« ify;, =0
Yi = Y . ®3)
af(k—1) otherwise

In contrast to existing methods which either use a uniform distribution
or denoise data through label correction, our fuzzy label smoothing method
allows for partial multi-class membership. Figure 1, details our architecture.
We use the initial hard labels in the first training batch before repeatedly
simulations using MC Dropout. These simulations produce updated non-
uniform smoothed labels. These smoothed labels follow a non-uniform distri-
bution which looks to simulate the uncertainty of ground truth labels. More
accurately representing the disagreement in human raters to more accurately
represent the underlying distribution.

3.4. Bayesian Inference and MC Dropout

Deep learning models have demonstrated human-like or exceeded human
performance on many tasks. The concept of the artificial neural network
is not new. The foundations for the artificial neuron found their origins
in the 1950s. The building block of the artificial network, the perceptron
was founded by Rosenblatt et al. [31], and their seminal work on the per-
ceptron. Advances in computing power in the 2010s provided the oppor-
tunity for deep neural networks [32]. Advances in computing power, have
allowed for the chaining of perceptrons together in multiple layers providing
the ’depth’ of the deep neural network. Building upon traditional neural net-
works, Bayesian models have been shown to capture prediction confidence.
One popular Bayesian technique is MC dropout, a technique first described
in [19].

The following section emphasises the differences between the functional-
ity of a traditional artificial neural network and one which utilises the MC
Dropout method. Consider the traditional supervised learning task:

§=f@) (4)
In this task, we seek a function f which minimises the cost function C.
arg min C[f] (5)
11
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Thus a simple feed-forward neural network, with sigmoid activation # can
be denoted as:

fla) =0z w+0) (6)

As we look to model more complex relationships we can increase the
width and depth of the network. Width refers to the number of nodes in a
given layer whereas depth refers to the number of hidden layers. Hence deep
learning refers to networks with several hidden layers. With these additional
hidden layers, the weight term above is replaced with a set of weights W
connecting each input node with the hidden layer and a further set of weights
connecting each node of the hidden layer with the output node. This set of
weights is a weight constellation [32].

Before exploring the use of Monte Carlo Dropout as a Bayesian technique
we first provide familiarisation with Bayesian Neural Networks and Bayes
theorem. Bayes theorem is shown in Equation 7.

P(DIO)P(O) :

P(D) (7)
The regularisation technique dropout essentially involves turning a propor-
tion of parameter weights down to zero. Visually we can represent this by
dropping edges between nodes. When Monte Carlo dropout is used, multiple
passes through the network are simulated iteratively reducing the weights of
a proportion of nodes from a hidden layer down to zero. When dropout is
applied during testing each pass through the network will result in a different
weight constellation W. Thus for a simulation of 7' = 100, we get a set of
100 weights and 100 output predictions. Equation 8 can be interpreted as
the probability of y, given the input value z; from the data set D is equal
to the average of the probabilities for the z;th example from each weight
constellation, where W = (Wi, Wy, W5 ... W,).

P(0|D) =

Pl D) = 43 Plylri,w) (3)

Algorithmically we can describe the MC Dropout process as a Monte
Carlo simulation through 7" passes over a test sample. The final output of
the Monte Carlo simulation is a probability distribution of membership to
each class where the maximum is defined as the final output.
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Hence, for a multiclass problem with k, classes, we can compute the
probability of class membership for each weight matrix w;. Such that. The
probability of class membership, px is given by Equation: 9.

|
Pr =7 ;pm 9)

4. Experiments

4.1. Ezxperiment Settings
4.1.1. Label Smoothing

Our computational experiments explore the effects of hard labels, tradi-
tional uniform label smoothing and our novel fuzzy label smoothing meth-
ods on model performance. To evaluate these methods data was divided
into training and test set. In line with the proportions used in [2] 20% of
examples were used as a hold-out-test-set. For each experiment, the same
convolutional model was used with only the label type modified. The exper-
iment conditions were the original hard labels, uniform label smoothing and
finally our novel approach. The results reported are the performance on the
test set.

4.2. Baseline Models

The baseline model used for the current work is the model presented in
[2]. Their work provides the existing state-of-the-art performance on the
current dataset. The dataset used for this study is sourced from Gaur et
al. [2]. Gaur et al. [2] provide important work on the assessment of suicide
risk. The results of which are described later in Section 5. Their work
provides a novel five-label classification scheme of suicide risk. The five-
label scheme classifies Reddit posts from prominent mental health subreddits
as either Suicidal Ideation (ID), Suicidal Behaviour (SB), Actual Attempt
(AT), Suicide Indicator (IN) or Supportive (SU). Descriptive statistics for
the frequency of class membership are described in Table 1.

4.3. Metrics

Common metrics used for binary classification tasks include Accuracy,
Precision, Recall and Fl-score. However, the current problem is a multi-
class problem where the number of classes, k, exceeds 2 (ie. k > 2) as in
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Table 1: Frequency of Class Membership

Label Frequency
Ideation 171
Behaviour 77
Attempt 45
Indicator 99
Supportive 108

the binary sense (where k& = 2). Although this paper explores a multi-class
problem, common binary classification metrics can be used by incorporating
some modifications.

For multi-class classification, the accuracy metric remains the same as
in binary classification. Correctly labeled examples are divided by the total
number of examples in the test set. However, the precision and recall metrics
vary slightly from those used for binary classification.

From Grandini et al. [33]:

Precisi TP,
recisiony, = ————————
KT TP+ FP,
TP,
Recally, = ———*
Ut = Tp T FN,

Where TP, is the number of correctly labeled examples and F'P is the
number of false positives. This Precision metric can be calculated by class
or can be summarised using either micro or macro average.

Sk Precisiony]

MacroAveragePrecision = A

or

Sht TP
Zf Columny,

The challenge of computing summary metrics for multi-class problems is
an open problem in data science. Traditionally, a single summary metric,
such as Fl-score is preferred to capture mode performance. However, the
Fl-score using Micro averages fails to capture differences in class sizes [33].
Takahashi et al. [34] assert “the inherit drawback of multi-class F1 scores [is]

MicroAveragePrecision =
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that these scores do not summarize the data appropriately when a large vari-
ability exists between classes. ”[34, p.4966]. The current problem includes
large variability in classes. As such, along with average Precision and Recall,
we include balanced accuracy. Weighted balanced accuracy is the only metric
which captures variability in class sizes. Classes are weighted proportional
to their class frequency [33].

Sk Recally, - a
k-w
Where wy, is the assigned weight for each class, k and weights are propor-
tional to the frequency of each class within the sample.

Weighted Balanced Accuracy =

5. Results

Our experiments investigate the effect of different labelling methods on
model performance. Table 2 provides an overview of the results of our ex-
periments based on the labelling method used. Initially, we see the results
reported by Gaur et al. using their approach. We note, that our proposed ar-
chitecture trained using hard labels slightly outperforms the results reported
by Gaur et al. in accuracy, weighted balanced accuracy, macro average pre-
cision and macro average recall.

Table 2: Classification Accuracy by Labelling Method

Method Accuracy Weighted Macro Average Macro Average
Balanced Ac- Precision Recall
curacy

Gaur et al. [2]  0.4312 0.2567 0.2903 0.2734

Hard Labels 0.4451 0.3036 0.3337 0.3036

Label Smooth-  0.4699 0.3698 0.5284 0.3698

ing o =0.1

Label Smooth- 0.4783 0.4226 0.4364 0.4266

ing o = 0.05

Deep Bayesian 0.5233 0.4923 0.4721 0.4777

Label Smooth-

ing
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Label smoothing when o = 0.1 improves on both Gaur et al. and the orig-
inal hard labels. This alpha value records the best macro average precision of
all tested methods. Uniform label smoothing with o = 0.05 produces slight
improvements in accuracy and weighted balanced accuracy over the previous
alpha value however, we see a slight decline in macro average precision.

Utilising our novel deep Bayesian label smoothing method achieved the
best accuracy (52.33%) and the best weighted balanced accuracy (49.23%),
by a clear margin with the second best weighted balanced accuracy at 42.26%
demonstrating the ability of the non-uniform label smoothing approach to
more accurately predict across all classes within the data

In summary, Table 2 shows steady improvements in classification accu-
racy depending on the labelling method used. Uniform soft labels report
similar levels of classification accuracy. Whereas, our proposed, non-uniform
fuzzy label smoothing method, improves upon existing methods to produce
a greater weighted balanced average, and recall over existing methods.

6. Discussion

The overarching aim of this paper was to explore the effect of various
labelling methods to predict mental health distress. The difficulty in de-
veloping models on systems which rely heavily on subjective measurements,
such as mental health conditions, is binary labels to do not accurately capture
disagreement between experts. To capture this uncertainty we present Deep
Bayesian Label Smoothing, a new method for softening target labels of deep
neural networks to improve prediction accuracy. Given many mental health
conditions do not have objective markers of disease. This novel approach
is designed to incorporate uncertainty into ground truth labels. Which it is
hoped will in turn more accurately represent the true nature of a system,
thus leading to improvements in model performance.

Our experiments show, that using soft labels generated using non-uniform
label smoothing leads to improved performance on a held-out test set. Ex-
isting works on this Reddit C-SSRS curated data set was presented by [2].
Interestingly, the existing state-of-the-art work overwhelmingly predicts the
predominant class of the dataset. That is, 92% of predictions of the model
presented by [2] on the test set are made on the most frequent class of the
data. The baseline model exceedingly predicts suicidal ideation, and posts
displaying supportive behaviours. This model behaviour is exemplified by low
values in precision and recall for the remaining classes. These output metrics
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suggest the model is failing to uncover the underlying function represen-
tation, and is instead making predictions probabilistically. In contrast, our
proposed model demonstrates more consistent performance across all classes.
This consistent performance suggests some underlying patterns leading to in-
puts being classified in a certain way do exist. Past research has suggested
CNNs may act as n-gram detectors. Goldberg [28] contend that convolutional
networks that combine convolutions with pooling layers are useful “when we
we expect to find strong local clues regarding class membership, but these
clues can appear in different places in the input” [28, p.3]. In the sense
of the current problem, it is possible there exist class discriminant n-grams
identified by the CNN model.

A review of model performance highlights clear variations in performance
across classes. The baseline model records low precision and recall for the sui-
cide attempts, suicide behaviours and suicide indicators classes. The entropy-
filtered models presented in the current works significantly outperform the
baseline model, however, still have no true positives for the suicide attempt
class. Our reported results suggest there is no class which was consistently
classified as a suicide attempt. Thus the in-text relationships required to
detect suicide attempts were not learnt by the CNN model. The inability
to detect posts labeled as suicide attempts is one limitation of this model.
Demonstrating further improvement of suicide risk classification models is
required to excede human performance. Given easy-to-classify posts such as
“Its been a year for me since I survived my Suicide attempt” should clearly
be classified as posts describing a suicide attempt. This post is easily clas-
sified when inspected however, it is clear models to date have been unable
to detect this class of post. To advance this current work, the use of more
sophisticated text representation techniques which incorporate context may
improve model accuracy. Examples of text representation techniques which
represent contexts such as Glove or BERT [35]. It appears it is difficult
for the current work to interpret the context, that is if a suicide attempt is
referring to another user’s post or indicative of a user’s own suicide dataset.

The network proposed in this work utilises an embedding layer, two con-
volutional layers and a max pooling layer. Adopting the convolution-pooling
architecture of which the benefits are described in depth in [28]. It is possi-
ble deploying deeper convolutional networks, which incorporate more hidden
layers may benefit performance. However, deeper networks, these deeper
networks become computationally expensive to deploy. Typically, proba-
bilistic methods require large amounts of computational resources. As such,
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it is possible very deep convolutional networks with probabilistic methods
may become too computationally large to compute on a single machine in
reasonable computation time and hence difficult to deploy.

Additionally, as stated in Section 2, the authors of [2] state that each
post had varying levels of agreement on each post. However, [2] only presents
group-level annotator agreement. The level of inter-annotator agreement at a
post level, however, is not included in the dataset. Further details regarding
the levels of post uncertainty, hence, understanding the true distribution of
aleatoric uncertainty would likely benefit the model’s performance. Given
this, we assume the distribution of agreement, or aleatoric noise within the
data set to not be constant. Future work may explore further probabilistic
techniques which account for the varying levels of heteroscedastic aleatoric
uncertainty throughout the distribution.

7. Conclusion

The current paper presents Deep Bayesian Label Smoothing, a novel
method for generating soft labels for measurements with high levels of un-
certainty. We show through empirical experiments our proposed method
improves model performance when compared to hard labels and uniform
label smoothing. Additionally, the current work provides a text classifica-
tion system for the assessment of suicide behaviours based on a five-label
classification scheme. The incorporation of Bayesian uncertainty techniques
into the proposed works greatly improves upon the existing state-of-the-art
model on the same dataset. Furthermore, our model provides one of the
first adaptions of MC Dropout on a medical text classification task with the
majority of work to date focusing on computer vision and image segmenta-
tion tasks. Future work may benefit by incorporating word representation
models equipped to understand language context such as GloVe or BERT to
better classify hard-to-detect classes, such as whether a post is indicative of
a suicide attempt behaviour. This is especially true in areas where annotator
ambiguity is high.
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5.3 Links and implications

This work presents a novel method for representing uncertainty in fuzzy systems. Orig-
inally this work was intended as a stepping stone to applying NLP techniques to EHR,
however, the time to digitize the records of the industry partner exceded the time of this
thesis. This work then provides an example of a system which could be utilised to detect
psychological distress from text. Future work may seek to utilise these kind of detection
systems from patient notes with existing rTMS treatment response prediction systems to

evaluate the ability for clinical notes to contribute to the prediction of treatment response.
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CHAPTER 6: DISCUSSIONS AND CONCLUSIONS

This thesis sets out to explore the ways in which Al has the potential to disrupt traditional
mental health care. In doing so, this thesis provides evidence for the ways Al can be
used to improve outcomes for people suffering mental health distress. Depression is the
mental health condition which places the largest burden on Australia’s health care system
(Kasturi et al. 2023). Given the prevalence of depression in Australia this thesis has
largely focused on how Al is poised to disrupt the treatment, diagnosis and detection of

depression.

To achieve these stated aims this thesis addressed the following research questions stated

in Chapter :

1. RQ1l: How can artificial intelligence be used to disrupt existing models

of mental health treatment decision making and care?

2. RQ2: How can artificial intelligence methods be used to facilitate per-

sonalised psychiatry 7

3. RQ3: What are the implications and considerations required for the use

of artificial intelligence as decision support in psychiatry?

Through empirical experiments this thesis has sought to address these research questions.
The results detailed across this research have shown, for the first time, Al can reliably
predict which patients will respond to rTMS treatment. These groundbreaking results
offer the potential for a future where patients are screened using neuroimaging prior to

r'TMS treatment to assess their suitability. Furthermore, the research contained within
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this thesis has demonstrated that increasing the diversity of training data with synthetic
examples can enhance the fairness of Al models. It also presents a novel method for
handling the uncertainty of ground truth labels associated with subjective mental health
decisions. As a result of these works, this thesis has attempted to dissect hype from reality,
providing a critical overview of the current state-of-the-art of Al and its applications to
psychiatric practice. Additionally, this thesis has explored the limitations that need to
be addressed before the widespread ethical adoption of Al for improved patient outcomes

can become a reality.

The empirical experiments detailed throughout this thesis made use of a variety of datasets
collected across multiple countries. In the Australian context, data collected at Belmont
Private Hospital, Brisbane was used across multiple studies. Additionally, open source
data from Hopman et al. (2021) provided additional resources from which to complete
these experiments. This data along with the research questions outlined above allow this

thesis to makes the following contributions:

e An overview of the current state of the art AI use in Psychiatry by
exploring the ways in which AI is supporting the detection, diagnosis

and treatment of depression

This thesis contributes a survey which outlines the many ways Al is directly im-
pacting the detection, diagnosis and treatment of depression. Al-driven tools are
shown to detect depression through analysing speech, text and facial expressions.
Unsupervised Al methods are being shown to identify new disease categories and

some methods are being used to better target treatments

e A detailed comparison of the data required to predict treatment out-
comes using Al, including the identification of candidate biomarkers in-

dicative of treatment response

Throughout this thesis the data requirements to support the personalisation of
psychiatry are explored. This thesis shows for treatment response prediction of
rTMS neuroimaging data is superior to demographic and self reported psychological
data. By combining DL with fMRI connectivity features the outcomes to rTMS

treatment can be reliably predicted for most patients. By incorporating XAI this
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work identifies candidate biomarkers indicative of treatment response

A novel framework for data augmentation of depression datasets to en-

hance the diversity of small datasets with underrepresented values

In exploring the implications of Al use in psychiatry it is important to consider
algorithms’ fairness. This includes ensuring methods are trained on large and di-
verse training sets. However, these large datasets are often unavailable. For these
situations, this thesis demonstrates through the use of a novel data augmentation
framework, DE-CGAN, synthetic examples can be used to increase the diversity of
training datasets. These experiments demonstrate that increasing the diversity of
training data can enhance model performance across all examples, underscoring the

importance of representative training data.

A methodology for capturing the subjective nature of expert mental
health judgements One of the most significant challenges in mental healthcare is
the lack of objective disease markers. Al is gradually uncovering potential candidate
biomarkers. For example, research contained in this thesis shows functional con-
nectivity between the Subgenual Anterior Cingulate Cortex and Central Opercular
Cortex as a key determinant of treatment response to rTMS treatment in depres-
sion patients. However, in many circumstances quantitative data is unavailable.
In these circumstances, patients may be assessed based on self reported depression
severity or as judged by human expert. Despite this, the complexity of mental
health conditions means human experts can sometimes disagree. To improve the
performance of DL models trained in these contexts this thesis presents a novel

method of non-uniform label smoothing to capture this uncertainty.

As we discuss the broader context of the research works contained within this thesis. We

recall, Chapter 1.6 provides an overview of the current state of the art of Al use in psychi-

atry. This chapter details opportunities for the use of DL to predict treatment outcomes

to rTMS. Furthermore, the chapter explores the challenges of data access in psychiatry,

given the strict legal and privacy concerns regarding data in psychiatry. Additionally,

the survey article contends one of the primary challenges in psychiatry that Al is well

positioned to address is the lack of objective biomarkers of disease in depression. DL

methods are well suited to the task of identifying distinct patient groups where these
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distinct groups may respond differently to the same treatment, and hence the concept of

personalised psychiatry.

6.1 Treatment Response Prediction

In Chapter 2.3 this thesis has demonstrated that under certain circumstances DL models
can predict treatment outcomes to r'TMS. In Identifying predictive biomarkers for repeti-
tive transcranial magnetic stimulation response in depression patients with explainability
it is shown that self reported and demographic data is insufficient to predict treatment
outcomes above our baseline model. Where the selected baseline model is a simple rule-
based algorithm which uses changes in early treatment depression severity. Therefore, in
these works, we demonstrate, consistent with existing research, that an imaging technique

is necessary to realise the potential of Al-powered personalised psychiatry.

This thesis has shown that DL models can reliably predict the outcome of r'TMS treatment
prior to its commencement using fMRI connectivity features. This finding paves the way
for a future where treatment prescriptions can be informed by Al algorithms. Reducing
the burden placed on patients of exploring ineffective treatments. As it becomes inevitable
AT will be part of the future of practice in psychiatry (see Doraiswamy et al. 2020)
further work is required to ensure results of empirical experiments are replicated in clinical
settings. Additionally, more work is required to understand how these algorithms will co-

exist with practitioners.

Squires et al. (2023) illustrates both the exciting potential of AI in psychiatry and the
current shortcomings, highlighting the future work needed for Al to become an integral
part of everyday clinical practice. For these types of technologies to be become widely
adopted models must be trained on robust and diverse datasets (Furriel et al. 2024). The
absence of these datasets is something explored in (Squires, Tao, Elangovan, Gururajan,
Xie, Zhou, Li & Acharya 2024). Furthermore, external validation of DL models is required
to ensure model performance across all circumstances. While little regulation exists in
this space, as Al becomes more relevant it is essential these regulations become more

widespread. At this stage the AI community has worked towards self regulation of best
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practice (Miré Catalina et al. 2024). Similarly, further work is required to better under-
stand how AI and practitioners will work together, including processes of responsibility.
Ueda et al. (2023) contend clear processes of responsibility must be developed for Al to
be deployed in healthcare.

”Physicians should be responsible for verifying Al-generated diagnoses and
integrating them into the clinical decision-making process. This may involve
critically evaluating the AI outputs, considering them along with other rel-
evant clinical information, and making informed decisions regarding patient
care. Conversely, Al developers have a responsibility to ensure the accuracy,
reliability, and fairness of their algorithms. This includes addressing biases
and continuously improving the algorithms based on feedback from the clini-

cal community.” (Ueda et al. 2023, p.7)

Reducing and mitigating any bias is a consistent concern expressed throughout this thesis
and the literature more broadly. As regulation has failed to keep pace with developments
in the field at present the field is forced to regulate itself. External validation of models
has become the gold standard of testing the efficacy of AI algorithms (Miré Catalina
et al. 2024). In lieu of this, AI professionals must include detailed information regarding
how a model is trained and the quality of the training data to allow clinicians to make
the most informed decisions. Sendak et al. (2020) propose "model facts” as an approach
for documenting model limitations. This methodology includes the documentation of any
ML/DL model including advice on interpreting model outputs and warnings. If Al is to
fulfill in its promise then Al-human interaction must be at the forefront of model design.
This framework is demonstrated in (Squires et al. 2023) where it is documented the model

performs poorly on some regions of the feature space.

6.2 Data Augmentation for robust and fair AI in Psychiatry

Ueda et al. (2023) emphasise fairness as one of the core principals in Al ethics, they assert
data bias can occur when data is not representative. In Chapter 3.3 this thesis presents

DE-CGAN: Boosting rTMS Treatment Prediction with Diversity Enhancing Conditional
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Generative Adversarial Networks a novel framework for enhancing the diversity of training
datasets. This process involves generating conditional examples of regions of the training

dataset which have been previously difficult to classify.

Squires, Tao, Elangovan, Gururajan, Xie, Zhou, Li & Acharya (2024) shows improving the
diversity of DL training datasets boosts model performance. These works show utilising
a novel data augmentation methodology which first identifies under-represented samples
before generating synthetic examples in the latent space improves model accuracy across

all samples.

In many cases this access to diverse multi-site data is difficult or not possible (Yang
et al. 2022). The sensitive nature of collected data in many instances prevents the sharing
of data across multiple sites. Future works which focus on multiple sites and multiple
imaging machines are required to move closer to the deployment of developed models.
This thesis then raises two questions: if we can reliably predict the outcome of treatment
who is responsible when the AI makes mistakes? and what level of model performance is
deemed mecessary for these technologies to be deployed in a clinical setting?. Beyond the
use of generative Al to boost the diversity of the data feature space work is needed to

address other barriers to fairness of Al in psychiatry.

Large and diverse training datasets are one way to enhance the probability of model
generalisation. However, further considerations are required to ensure AI models that
are designed to improve patient outcomes do not perpetuate or exacerbate existing social

biases and inequalities (Timmons et al. 2022).

“The proliferation of available data and technological methods for extract-
ing insights from them might give the impression that such technologies are
unbiased. However, just as humans’ past experiences and personal values in-
fluence their decision-making in biased ways, algorithms built by people on
data collected by people are also subject to bias.” (Timmons et al. 2022,
p.1064)

For example, Sahin et al. (2023) showed in their surveyed articles general model pre-

dictions were biased against individuals with lower educational attainment. Sahin et al.
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(2023) contend any future work should include fairness assessments. A call which is echoed
in Timmons et al. (2022). Altong with the ethical considerations required as Al becomes
more prevalent in healthcare and psychiatry are the legal and societal implications. Naik
et al. (2022) argues further work is required to answer the question who is responsible for
Al decision making? Where doctors are directly responsible for their clinical decisions,

at present data scientists are not legally accountable for Als actions.

This section makes clear ensuring diverse training datasets is one area of reducing Al
bias. However, the implications of the greater use of Al are much more widespread.
Further work is required to ensure Al algorithms are designed to consider a wider range
of ethical considerations. In the future, Al researchers may be encouraged to include

fairness metrics as standard practice in research outputs.

6.3 Inter-rater uncertainty and ground truth labels

Timmons et al. (2022) contends label-bias is a bias that occurs when labels used to train Al
algorithms are incomplete. Label-bias could be due to mistakes, differences in experience

level or variations in how different clinicians interpret the data.

Any inter-rater disagreement has the potential to both reduce model performance and
contribute to any bias. Squires, Tao, Elangovan, Acharya, Gururajan, Xie & Zhou (2024)
shows training a model using a novel, non-uniform label smoothing technique to account
for label uncertainty improves model performance on the original binary labels. This
is consistent with other research which has demonstrated other methods of handling
inter-expert variability, such as label fusion have improved model calibration (Lemay

et al. 2022).

6.4 Limitations and Assumptions

This thesis has outlined the ways Al can potentially support improved outcomes for people
suffering mental health conditions. The research within this thesis has demonstrated

above state-of-the-art performance on a number of DL tasks related to the treatment and
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detection of mental health conditions.

In completing this research it it assumed beyond the standard data cleaning and pre-
prossessing data science techniques the data is correct. Any issues in data collection
beyond what is expected in a standard data science project may impact the findings
encompassed within this thesis. Additionally, we assume self-reported data is accurate to
the extent that self-reported data can be. This research was completed against the context
of the COVID-19 pandemic which adds an additional extraneous variable that may have
impacted empirical experiments in an unknown way. However, this thesis assumes the
data used is representative of the broader population and the research collected can be

generalised to the broader population.

The results reported in this thesis are based on empirical DL experiments, which are
inherently stochastic. Every effort is made to ensure their correctness, such as employing
robust validation measures like extensive Monte Carlo simulations. Despite this, some
variability in results during reproduction could be expected due to the probabilistic nature
of Al experiments. Nonetheless, the use of robust internal validation aims to mitigate

this limitation.

At the time of publishing, (Squires et al. 2023) was the first work to utilise DL to predict
treatment outcomes to r'TMS before treatment began. The standing as one of the only
works to utilise DL methods to predict treatment outcomes was recently confirmed in Jin
et al. (2024). In their review, Jin et al. (2024) identified only shallow learning methods
used in existing works. Squires et al. (2023) demonstrates, to our knowledge, for the
first time DL methods can predict treatment outcomes to rTMS using thorough internal
validation. The strength of adopting a DL approach compared to existing methods is the
known superiority of DL methods to generalise to unseen data and to identify complex

non-linear relationships.

The implications of Al algorithms demonstrating performance equivalent to human clin-
icians (Furriel et al. 2024) is the need to ensure such performance is consistent across
contexts. This requires diverse datasets. Squires et al. (2023) showed for the best out-
comes quantitative imaging data is superior to qualitative, demographic or self report

data. Hence, if Al is to become widely utilised in a clinical setting pre-treatment neu-
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roimaging will need to become more widespread. Chen et al. (2023) note the trend towards
imaging to support the diagnosis of mental health conditions. It is conceivable to envision
a future where combining Al with imaging supersedes existing qualitative measures, mak-
ing imaging the predominant method for diagnosing mental health conditions. However,
greater access to neuroimaging is an open challenge that will require interdisciplinary

intervention from a variety of stakeholders.

As an extension to the lack of access to neuroimaging in the treatment pathway. The
lack of large and diverse datasets greatly inhibits research by both AI and mental health
researchers alike. Greater collaboration between research entities may facilitate the req-
uisite datasets. However, in the mean time, the use of generative Al to generate more
robust datasets of synthetic data is an important area of research. Recently, Savage (2023)
argues synthetic data may be superior to standard data. This trend is being observed
across disciplines as some experts expect the availability of data to slow rapidly which

may also slow Al research progress (Villalobos et al. 2022).

6.5 Conclusions

The research contained in this thesis sought to explore the ways Al can contribute to im-
proved mental healthcare. As part of this academic journey, this thesis has demonstrated
a novel DNN framework combined with XAI to predict rTMS treatment outcomes above
the existing state-of-the-art, while also identifying potential candidate biomarkers indica-
tive of treatment response. Additionally, this thesis has shown that boosting the diversity

of training datasets with synthetic examples can improve model performance.

Furthermore, this research sought to explore the essential implications and considerations
of future AI use in clinical psychiatry. The exploration of these significant considerations
has motivated important research into methods for reducing Al bias in decision support
systems. This thesis presents methods for reducing label bias, such as the novel non-
uniform label smoothing method proposed here, which improves the ability of a DNN to

identify those at risk of suicide.

From the body of work constructed in this thesis, it is clear that for Al to fulfill its most
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optimistic potential in psychiatry, much further work is required. This thesis has demon-
strated much of the exciting hype and promise being shown throughout the research
community. However, additional work that explores its potential use cases and evaluates
any limitations is essential. This thesis shows that, in the best-case scenario, AI/DL
can be used to personalise psychiatric care. However, further work is required to miti-
gate potential biases and address the ways these systems can be integrated into current
workflows. Furthermore, this thesis demonstrates one potential strategy for addressing
data bias with diversity-enhancing data augmentation. While these works demonstrate
potential opportunities through rigorous internal validation, Al in psychiatry will have
difficulty progressing beyond research until such performance can be validated on external

datasets in studies across multiple sites.

6.6 Future Work

Large multi-site testing should be one of the highest priorities for deploying treatment
response prediction. Until models are validated across multiple sites, their high perfor-
mance will remain limited to contained datasets, restricting their broader application and
effectiveness. Without large multi-site experiments, even work incorporating the use of
regularisation techniques and best practice internal validation, will leave questions about
AT’s ability to generalise to unseen clinical data unanswered. This will hinder Al from

fulfilling the most optimistic expectations of personalized psychiatry.

Similarly, further work around the interactions between clinicians and Al-informed deci-
sion support systems is a critical step in deploying the systems discussed throughout this
thesis. Equipping Al with uncertainty measures and prediction confidence is one way to

improve the interactions between decision support systems and clinicians.
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